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FOREWORD

A few years ago I had an occasion to go through the book Calculus by LV Terasov. It unravels intricacies
of the subject through a dialogue between Teacher and Student. I thoroughly enjoyed reading it. For me this
seemed to be one of the few books which teach a difficult subject through inquisition, and using programmed
concept for learning. After that book, Dr Harish Chandra Verma’s book on physics, CONCEPTS OF PHYSICS is
another such attempt, even though it is not directly in the dialogue form. I have thoroughly appreciated it. It
is clear that Dr Verma has spent considerable time in formulating the structure of the book, besides its contents.
I think he has been successful in this attempt. Dr Verma’s book has been divided into two parts because of the
size of the total manuscript. There have been several books on this subject, each one having its own flavour.
However, the present book is a totally different attempt to teach physics, and I am sure it will be extremely
useful to the undergraduate students. The exposition of each concept is extremely lucid. In carefully formatted
chapters, besides problems and short questions, a number of objective questions have also been included. This
book can certainly be extremely useful not only as a textbook, but also for preparation of various competitive
examinations.

Those who have followed Dr Verma’s scientific work always enjoyed the outstanding contributions he has
made in various research areas. He was an outstanding student of Physics Department of IIT Kanpur during
his academic career. An extremely methodical, sincere person as a student, he has devoted himself to the task
of educating young minds and inculcating scientific temper amongst them. The present venture in the form of
these two volumes is another attempt in that direction. I am sure that young minds who would like to learn
physics in an appropriate manner will find these volumes extremely useful.

I must heartily congratulate Dr Harish Chandra Verma for the magnificent job he has done.

Y R Waghmare
Professor of Physics
IIT Kanpur.



PREFACE

Why a new book ?

Excellent books exist on physics at an introductory college level so why a new one ? Why so many books
exist at the same level, in the first place, and why each of them is highly appreciated ? It is because each of
these books has the privilege of having an author or authors who have experienced physics and have their own
method of communicating with the students. During my years as a physics teacher, I have developed a somewhat
different methodology of presenting physics to the students. Concepts of Physics is a translation of this
methodology into a textbook.

Prerequisites

The book presents a calculus-based physics course which makes free use of algebra, trigonometry and
co-ordinate geometry. The level of the latter three topics is quite simple and high school mathematics is sufficient.
Calculus is generally done at the introductory college level and I have assumed that the student is enrolled in
a concurrent first calculus course. The relevant portions of calculus have been discussed in Chapter 2 so that
the student may start using it from the beginning.

Almost no knowledge of physics is a prerequisite. I have attempted to start each topic from the zero level.
A receptive mind is all that is needed to use this book.

Basic philosophy of the book

The motto underlying the book is physics is enjoyable.

Being a description of the nature around us, physics is our best friend from the day of our existence. I have
extensively used this aspect of physics to introduce the physical principles starting with common day occurrences
and examples. The subject then appears to be friendly and enjoyable. I have taken care that numerical values
of different quantities used in problems correspond to real situations to further strengthen this approach.

Teaching and training

The basic aim of physics teaching has been to let the student know and understand the principles and
equations of physics and their applications in real life.

However, to be able to use these principles and equations correctly in a given physical situation, one needs
further training. A large number of questions and solved and unsolved problems are given for this purpose. Each
question or problem has a specific purpose. It may be there to bring out a subtle point which might have passed
unnoticed while doing the text portion. It may be a further elaboration of a concept developed in the text. It
may be there to make the student react when several concepts introduced in different chapters combine and
show up as a physical situation and so on. Such tools have been used to develop a culture: analyse the situation,
make a strategy to invoke correct principles and work it out.

Conventions

I have tried to use symbols, names, etc., which are popular nowadays. SI units have been consistently used
throughout the book. SI prefixes such as micro, milli, mega, etc., are used whenever they make the presentation
more readable. Thus, 20 uF is preferred over 20 x 10 “®F. Co-ordinate sign convention is used in geometrical
optics. Special emphasis has been given to dimensions of physical quantities. Numerical values of physical
quantities have been mentioned with the units even in equations to maintain dimensional consistency.

I have tried my best to keep errors out of this book. I shall be grateful to the readers who point out any
errors and/or make other constructive suggestions.

H C Verma
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TO THE STUDENTS

Here is a brief discussion on the organisation of the book which will help you in using the book most
effectively. The book contains 47 chapters divided in two volumes. Though I strongly believe in the underlying
unity of physics, a broad division may be made in the book as follows:

Chapters 1-14: Mechanics
15-17: Waves including wave optics
18-22: Optics
23-28: Heat and thermodynamics
29-40: Electric and magnetic phenomena
41-47: Modern physics
Each chapter contains a description of the physical principles related to that chapter. It is well supported
by mathematical derivations of equations, descriptions of laboratory experiments, historical background, etc.
There are "in-text" solved examples. These examples explain the equation just derived or the concept just

discussed. These will help you in fixing the ideas firmly in your mind. Your teachers may use these in-text
examples in the classroom to encourage students to participate in discussions.

After the theory section, there is a section on Worked Out Examples. These numerical examples correspond
to various thinking levels and often use several concepts introduced in that chapter or even in previous chapters.
You should read the statement of a problem and try to solve it yourself. In case of difficulty, look at the solution
given in the book. Even if you solve the problem successfully, you should look into the solution to compare it
with your method of solution. You might have thought of a better method, but knowing more than one method
is always beneficial.

Then comes the part which tests your understanding as well as develops it further. Questions for Short
Answer generally touch very minute points of your understanding. It is not necessary that you answer these
questions in a single sitting. They have great potential to initiate very fruitful dicussions. So, freely discuss
these questions with your friends and see if they agree with your answer. Answers to these questions are not
given for the simple reason that the answers could have cut down the span of such discussions and that would
have sharply reduced the utility of these questions.

There are two sections on multiple-choice questions, namely OBJECTIVE I and OBJECTIVE II. There are
four options following each of these questions. Only one option is correct for OBJECTIVE I questions. Any number
of options, zero to four, may be correct for OBJECTIVE II questions. Answers to all these questions are provided.

Finally, a set of numerical problems are given for your practice. Answers to these problems are also provided.
The problems are generally arranged according to the sequence of the concepts developed in the chapter but
they are not grouped under section-headings. I don’t want to bias your ideas beforehand by telling you that this
problem belongs to that section and hence use that particular equation. You should yourself look into the problem
and decide which equations or which methods should be used to solve it. Many of the problems use several
concepts developed in different sections of the chapter. Many of them even use the concepts from the previous
chapters. Hence, you have to plan out the strategy after understanding the problem.

Remember, no problem is difficult. Once you understand the theory, each problem will become easy. So, don’t
jump to exercise problems before you have gone through the theory, the worked-out problems and the objectives.
Once you feel confident in theory, do the exercise problems. The exercise problems are so arranged that they
gradually require more thinking.

I hope you will enjoy Concepts of Physics.

H C Verma
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CHAPTER 1

INTRODUCTION TO PHYSICS

1.1 WHAT IS PHYSICS ?

The nature around us is colourful and diverse. It
contains phenomena of large varieties. The winds, the
sands, the waters, the planets, the rainbow, heating of
objects on rubbing, the function of a human body, the
energy coming from the sun and the nucleus ...... there
are a large number of objects and events taking place
around us.

Physics is the study of nature and its laws. We
expect that all these different events in nature take
place according to some basic laws and revealing these
laws of nature from the observed events is physics. For
example, the orbiting of the moon around the earth,
falling of an apple from a tree and tides in a sea on a
full moon night can all be explained if we know the
Newton’s law of gravitation and Newton’s laws of
motion. Physics is concerned with the basic rules
which are applicable to all domains of life.
Understanding of physics, therefore, leads to
applications in many fields including bio and medical
sciences.

The great physicist Dr R. P. Feynman has given a
wonderful description of what is “understanding the
nature”. Suppose we do not know the rules of chess
but are allowed to watch the moves of the players. If
we watch the game for a long time, we may make out
some of the rules. With the knowledge of these rules
we may try to understand why a player played a
particular move. However, this may be a very difficult
task. Even if we know all the rules of chess, it is not
so simple to understand all the complications of a game
in a given situation and predict the correct move.
Knowing the basic rules is, however, the minimum
requirement if any progress is to be made.

One may guess at a wrong rule by partially
watching the game. The experienced player may make
use of a rule for the first time and the observer of the
game may get surprised. Because of the new move
some of the rules guessed at may prove to be wrong
and the observer will frame new rules.

Physics goes the same way. The nature around us
is like a big chess game played by Nature. The events
in the nature are like the moves of the great game.
We are allowed to watch the events of nature and
guess at the basic rules according to which the events
take place. We may come across new events which do
not follow the rules guessed earlier and we may have
to declare the old rules inapplicable or wrong and
discover new rules.

Since physics is the study of nature, it is real. No
one has been given the authority to frame the rules of
physics. We only discover the rules that are operating
in nature. Aryabhat, Newton, Einstein or Feynman are
great physicists because from the observations
available at that time, they could guess and frame the
laws of physics which explained these observations in
a convincing way. But there can be a new phenomenon
any day and if the rules discovered by the great
scientists are not able to explain this phenomenon, no
one will hesitate to change these rules.

1.2 PHYSICS AND MATHEMATICS

The description of nature becomes easy if we have
the freedom to use mathematics. To say that the
gravitational force between two masses is proportional
to the product of the masses and is inversely
proportional to the square of the distance apart, is
more difficult than to write

Fol% g
r

(1.1

Further, the techniques of mathematics such as
algebra, trigonometry and calculus can be used to
make predictions from the basic equations. Thus, if we
know the basic rule (1.1) about the force between two
particles, we can use the technique of integral calculus
to find what will be the force exerted by a uniform rod
on a particle placed on its perpendicular bisector.
Thus, mathematics is the language of physics.
Without knowledge of mathematics it would be much
more difficult to discover, understand and explain the



2 Concepts of Physics

laws of nature. The importance of mathematics in
today’s world cannot be disputed. However,
mathematics itself is not physics. We use a language
to express our ideas. But the idea that we want to
express has the main attention. If we are poor at
grammar and vocabulary, it would be difficult for us
to communicate our feelings but while doing so our
basic interest is in the feeling that we want to express.
It is nice to board a deluxe coach to go from Delhi to
Agra, but the sweet memories of the deluxe coach and
the video film shown on way are next to the prime
goal of reaching Agra. “To understand nature” is
physics, and mathematics is the deluxe coach to take
us there comfortably. This relationship of physics and
mathematics must be clearly understood and kept in
mind while doing a physics course.

1.3 UNITS

Physics describes the laws of nature. This
description is quantitative and involves measurement
and comparison of physical quantities. To measure a
physical quantity we need some standard unit of that
quantity. An elephant is heavier than a goat but
exactly how many times ? This question can be easily
answered if we have chosen a standard mass calling
it a unit mass. If the elephant is 200 times the unit
mass and the goat is 20 times we know that the
elephant is 10 times heavier than the goat. If I have
the knowledge of the unit length and some one says
that Gandhi Maidan is 5 times the unit length from
here, I will have the idea whether I should walk down
to Gandhi Maidan or I should ride a rickshaw or I
should go by a bus. Thus, the physical quantities are
quantitatively expressed in terms of a unit of that
quantity. The measurement of the quantity is
mentioned in two parts, the first part gives how many
times of the standard unit and the second part gives
the name of the unit. Thus, suppose I have to study
for 2 hours. The numeric part 2 says that it is 2 times
of the unit of time and the second part hour says that
the unit chosen here is an hour.

Who Decides the Units ?

How is a standard unit chosen for a physical
quantity ? The first thing is that it should have
international acceptance. Otherwise, everyone will
choose his or her own unit for the quantity and it will
be difficult to communicate freely among the persons
distributed over the world. A body named Conférence
Générale des Poids et Mesures or CGPM also known
as General Conference on Weight and Measures in
English has been given the authority to decide the
units by international agreement. It holds its meetings

and any changes in standard units are communicated
through the publications of the Conference.

Fundamental and Derived Quantities

There are a large number of physical quantities
which are measured and every quantity needs a
definition of unit. However, not all the quantities are
independent of each other. As a simple example, if a
unit of length is defined, a unit of area is automatically
obtained. If we make a square with its length equal
to its breadth equal to the unit length, its area can be
called the unit area. All areas can then be compared
to this standard unit of area. Similarly, if a unit of
length and a unit of time interval are defined, a unit
of speed is automatically obtained. If a particle covers
a unit length in unit time interval, we say that it has
a unit speed. We can define a set of fundamental
quantities as follows :

(a) the fundamental quantities should be indepen-
dent of each other, and

(b) all other quantities may be expressed in terms
of the fundamental quantities.

It turns out that the number of fundamental quantities
is only seven. All the rest may be derived from these
quantities by multiplication and division. Many
different choices can be made for the fundamental
quantities. For example, one can take speed and time
as fundamental quantities. Length is then a derived
quantity. If something travels at unit speed, the
distance it covers in unit time interval will be called
a unit distance. One may also take length and time
interval as the fundamental quantities and then speed
will be a derived quantity. Several systems are in use
over the world and in each system the fundamental
quantities are selected in a particular way. The units
defined for the fundamental quantities are called
fundamental units and those obtained for the derived
quantities are called the derived units.

Fundamental quantities are also called base
quantities.

SI Units

In 1971 CGPM held its meeting and decided a
system of units which is known as the International
System of Units. It is abbreviated as SI from the
French name Le Systéme International d'Unités. This
system is widely used throughout the world.

Table (1.1) gives the fundamental quantities and
their units in SI.
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Table 1.1 : Fundamental or Base Quantities

Quantity Name of the Unit  Symbol
Length metre m
Mass kilogram kg
Time second s
Electric Current ampere A
Thermodynamic Temperature kelvin K
Amount of Substance mole mol
Luminous Intensity candela cd

Besides the seven fundamental wunits two
supplementary units are defined. They are for plane
angle and solid angle. The unit for plane angle is
radian with the symbol rad and the unit for the solid
angle is steradian with the symbol sr.

SI Prefixes

The magnitudes of physical quantities vary over a
wide range. We talk of separation between two
protons inside a nucleus which is about 10 " m and
the distance of a quasar from the earth which is about
10” m. The mass of an electron is 9°1x 10 ' kg and

that of our galaxy is about 2:2x 10" kg. The
CGPM recommended standard prefixes for certain
powers of 10. Table (1.2) shows these prefixes.

Table 1.2 : SI prefixes
Power of 10 Prefix Symbol

18 exa E
15 peta P
12 tera T

9 giga G

6 mega M

3 kilo k

2 hecto h

1 deka da
-1 deci d
-2 centi c
-3 milli m
-6 micro n
-9 nano n
- 12 pico P
- 15 femto f
- 18 atto a

1.4 DEFINITIONS OF BASE UNITS

Any standard unit should have the following two
properties :

(a) Invariability : The standard unit must be
invariable. Thus, defining distance between the tip of
the middle finger and the elbow as a unit of length is
not invariable.

(b) Availability : The standard unit should be
easily made available for comparing with other
quantities.

CGPM decided in its 2018 meeting that all the SI
base quantities will be defined in terms of certain
universal constants and these constants will be
assigned fixed numerical values by definition. In this
case both the criteria of invariability and availability
are automatically satisfied. The new definitions
became operative since 20" May 2019. We give below
the definitions of the these quantities. The fixed values
given to the universal constants will appear in the
definitions only. The definitions carry certain physical
quantities and concepts that are beyond the scope of
this book but you need not worry about it.

Second

1 second is the time that makes the unperturbed
ground state hyperfine transition frequency Avc, to be
9192631770 when expressed in the unit Hz which is

equal to s .

Metre
1 metre is the length that makes the speed of light
in vacuum to be 299792458 when expressed in the unit

m-s ', where the second is defined in terms of the
caesium frequency Avg,.

Kilogram
1 kilogram is the mass that makes the Planck’s
constant % to be 6.62607015 x 10" when expressed in

the unit J-s which is equal to kg~m2 sﬁl, where the metre
and the second are defined in terms of ¢ and Av,..

Ampere

1 ampere is the current which makes the

elementary charge e to be 1.602176634 x 10" when
expressed in the unit C which is equal to A-s, where
the second is defined in terms of Avg,.

Kelvin

1 kelvin is the temperature that makes the
Boltzmann constant to be 1.380649 x 10" when
expressed in the unit J-K which is equal to

kg-mz-szK_l, where kilogram, metre and second are
defined in terms of A, ¢ and Avy..
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Mole

1 mole of a substance is defined to contain exactly

6.02214076 x 10° elementary entities. This number is
the fixed numerical value of the Avogadro constant

N, when expressed in the unit mol ' and is called
Avogadro number.

Candela

The candela is the SI unit of luminous intensity.
1 candela is the luminous intensity that makes the
luminous efficacy of monochromatic radiation of

frequency 540 x 10" Hz, K., to be 683 when expressed
in the unit Im'W ' which is equal to cd-srkg 'm’s’,
where kilogram, metre and second are defined in terms
of h, ¢ and Avg,.

1.5 DIMENSION

All the physical quantities of interest can be
derived from the base quantities. When a quantity is
expressed in terms of the base quantities, it is written
as a product of different powers of the base quantities.
The exponent of a base quantity that enters into the
expression, is called the dimension of the quantity in
that base. To make it clear, consider the physical
quantity force. As we shall learn later, force is equal
to mass times acceleration. Acceleration is change in
velocity divided by time interval. Velocity is length
divided by time interval. Thus,

force = mass x acceleration

velocity

=mass X —. =
time

length/time

=mass X ;
time

= mass x length x (time) " ... (1.2)

Thus, the dimensions of force are 1 in mass, 1 in
length and —2 in time. The dimensions in all other
base quantities are zero. Note that in this type of
calculation the magnitudes are not considered. It is
equality of the type of quantity that enters. Thus,
change in velocity, initial velocity, average velocity,
final velocity all are equivalent in this discussion, each
one is length/time.

For convenience the base quantities are
represented by one letter symbols. Generally, mass is
denoted by M, length by L, time by T and electric
current by I. The thermodynamic temperature, the
amount of substance and the luminous intensity are
denoted by the symbols of their units K, mol and cd
respectively. The physical quantity that is expressed
in terms of the base quantities is enclosed in square

brackets to remind that the equation is among the

dimensions and not among the magnitudes. Thus

equation (1.2) may be written as [force] = MLT °.

Such an expression for a physical quantity in terms
of the base quantities is called the dimensional

formula. Thus, the dimensional formula of force is
MLT °. The two versions given below are equivalent

and are used interchangeably.
(a) The dimensional formula of force is MLT ~2.

(b) The dimensions of force are 1 in mass, 1 in
length and —2 in time.

Example 1.1

Calculate the dimensional formula of energy from the

equation E = % mv®.

Solution : Dimensionally, E = mass x (velocity)®, since % is

a number and has no dimension.
2

(E] =Mx%j =ML*T

1.6 USES OF DIMENSION

A. Homogeneity of Dimensions in an Equation

An equation contains several terms which are
separated from each other by the symbols of equality,
plus or minus. The dimensions of all the terms in an
equation must be identical. This is another way of
saying that one can add or subtract similar physical
quantities. Thus, a velocity cannot be added to a force
or an electric current cannot be subtracted from the
thermodynamic temperature. This simple principle is
called the principle of homogeneity of dimensions in an
equation and is an extremely useful method to check
whether an equation may be correct or not. If the
dimensions of all the terms are not same, the equation
must be wrong. Let us check the equation

2
x=ut+%at

for the dimensional homogeneity. Here x is the distance
travelled by a particle in time ¢ which starts at a speed
v and has an acceleration a along the direction of
motion.

[x]=L

length
[ut] = velocity X time = e g

X time = L

1 . .
k at 2} = [at’] = acceleration x (time) ?
_ velocity
time
Thus, the equation is correct as far as the dimensions
are concerned.

2 _ length [time

; X (time) =L
time

X (time)
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Limitation of the Method
. . 2 .
Note that the dimension of %at is same as that

of at’. Pure numbers are dimensionless. Dimension
does not depend on the magnitude. Due to this reason
the equation x =ut +at” is also dimensionally correct.
Thus, a dimensionally correct equation need not be
actually correct but a dimensionally wrong equation
must be wrong.

Example 1.2

Test dimensionally if the formula ¢t =2 T['\/;i/x may be

correct, where t is time period, m is mass, F is force and

x is distance.

Solution : The dimension of force is MLT . Thus, the
dimension of the right-hand side is

L =10
MLT “/L T
The left-hand side is time period and hence the

dimension is T. The dimensions of both sides are equal
and hence the formula may be correct.

B. Conversion of Units

When we choose to work with a different set of
units for the base quantities, the units of all the
derived quantities must be changed. Dimensions can
be useful in finding the conversion factor for the unit
of a derived physical quantity from one system to
other. Consider an example. When SI units are used,
the unit of pressure is 1 pascal. Suppose we choose
1 cm as the unit of length, 1 g as the unit of mass and
1 s as the unit of time (this system is still in wide use
and is called CGS system). The unit of pressure will
be different in this system. Let us call it for the time-
being 1 CGS pressure. Now, how many CGS pressure
is equal to 1 pascal ?

Let us first write the dimensional formula of
pressure.

We have pP =§ O

_[F] _MLT > . -1, -2
Thus, [P] = @ L2 =ML T
so, 1 pascal=(1kg) (1m) ' (1s)”
and 1 CGS pressure =(1g) (Lcm) ' (1s)

2
1 pascal

Thus, 1 CGS pressure

-1 -
kgUO a 0
= MD#D EA
Olg Ol em [ sO
=40°40% =10
or, 1 pascal =10 CGS pressure.

Thus, knowing the conversion factors for the base
quantities, one can work out the conversion factor for
any derived quantity if the dimensional formula of the
derived quantity is known.

C. Deducing Relation among the Physical Quantities

Sometimes dimensions can be used to deduce a
relation between the physical quantities. If one knows
the quantities on which a particular physical quantity
depends and if one guesses that this dependence is of
product type, method of dimension may be helpful in
the derivation of the relation. Taking an example,
suppose we have to derive the expression for the time
period of a simple pendulum. The simple pendulum
has a bob, attached to a string, which oscillates under
the action of the force of gravity. Thus, the time period
may depend on the length of the string, the mass of
the bob and the acceleration due to gravity. We assume
that the dependence of time period on these quantities
is of product type, that is,

t=kl’m’g" (1.3)
where % is a dimensionless constant and a, b and ¢

are exponents which we want to evaluate. Taking the
dimensions of both sides,

T :LaMb(LT 72) c :La+chT720‘
Since the dimensions on both sides must be identical,
we have

a+tc=0
b=0
and -2c=1

giving a=%a b=0 and c=—%D

Putting these values in equation (1.3)

l

e

Thus, by dimensional analysis we can deduce that
the time period of a simple pendulum is independent
of its mass, is proportional to the square root of the
length of the pendulum and is inversely proportional
to the square root of the acceleration due to gravity at
the place of observation.

(1.4)

Limitations of the Dimensional Method

Although dimensional analysis is very useful in
deducing certain relations, it cannot lead us too far.
First of all we have to know the quantities on which
a particular physical quantity depends. Even then the
method works only if the dependence is of the product
type. For example, the distance travelled by a
uniformly accelerated particle depends on the initial
velocity u, the acceleration a and the time ¢. But the
method of dimensions cannot lead us to the correct
expression for x because the expression is not of
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product type. It is equal to the sum of two terms as
x=ut+ % at 2.

Secondly, the numerical constants having no
dimensions cannot be deduced by the method of
dimensions. In the example of time period of a simple
pendulum, an unknown constant £ remains in equation
(1.4). One has to know from somewhere else that this
constant is 21U

Thirdly, the method works only if there are as
many equations available as there are unknowns. In
mechanical quantities, only three base quantities
length, mass and time enter. So, dimensions of these
three may be equated in the guessed relation giving
at most three equations in the exponents. If a
particular quantity (in mechanics) depends on more
than three quantities we shall have more unknowns

and less equations. The exponents cannot be
determined wuniquely in such a case. Similar
constraints are present for electrical or other

nonmechanical quantities.

1.7 ORDER OF MAGNITUDE

In physics, we come across quantities which vary
over a wide range. We talk of the size of a mountain
and the size of the tip of a pin. We talk of the mass
of our galaxy and the mass of a hydrogen atom. We
talk of the age of the universe and the time taken by
an electron to complete a circle around the proton in
a hydrogen atom. It becomes quite difficult to get a
feel of largeness or smallness of such quantities. To
express such widely varying numbers, one uses the
powers of ten method.

In this method, each number is expressed as

ax10° where 1<a<10and b is a positive or negative
integer. Thus the diameter of the sun is expressed as

1'39 x 10 ° m and the diameter of a hydrogen atom as

1:06 x10 " m. To get an approximate idea of the
number, one may round the number a to 1 if it is less
than or equal to 5 and to 10 if it is greater than 5.
The number can then be expressed approximately as
10°. We then get the order of magnitude of that
number. Thus, the diameter of the sun is of the order
of 10 ’m and that of a hydrogen atom is of the order
of 10 m. More precisely, the exponent of 10 in such
a representation is called the order of magnitude of
that quantity. Thus, the diameter of the sun is 19
orders of magnitude larger than the diameter of a
hydrogen atom. This is because the order of magnitude
of 10° is 9 and of 10 ' is —10. The difference is
9-(-10)=19.

To quickly get an approximate value of a quantity
in a given physical situation, one can make an order

of magnitude calculation. In this all numbers are
approximated to 10 ® form and the calculation is made.

Let us estimate the number of persons that may
sit in a circular field of radius 800 m. The area of the
field is

A=1r>=314x(800m) =10°m".
The average area one person occupies in sitting
=50 cm x50cm =025m*=25x10 'm’=10 'm”
The number of persons who can sit in the field is
6 2
N=2 M g7,
10 m
Thus of the order of 10’ persons may sit in the
field.

1.8 THE STRUCTURE OF WORLD

Man has always been interested to find how the
world is structured. Long long ago scientists suggested
that the world is made up of certain indivisible small
particles. The number of particles in the world is large
but the varieties of particles are not many. Old Indian
philosopher Kanadi derives his name from this
proposition (In Sanskrit or Hindi Kana means a small
particle). After extensive experimental work people
arrived at the conclusion that the world is made up of
just three types of ultimate particles, the proton, the
neutron and the electron. All objects which we have
around us, are aggregation of atoms and molecules.
The molecules are composed of atoms and the atoms
have at their heart a nucleus containing protons and
neutrons. Electrons move around this nucleus in
special arrangements. It is the number of protons,
neutrons and electrons in an atom that decides all the
properties and behaviour of a material. Large number
of atoms combine to form an object of moderate or large
size. However, the laws that we generally deduce for
these macroscopic objects are not always applicable to
atoms, molecules, nuclei or the elementary particles.
These laws known as classical physics deal with large
size objects only. When we say a particle in classical
physics we mean an object which is small as compared
to other moderate or large size objects and for which
the classical physics is valid. It may still contain
millions and millions of atoms in it. Thus, a particle
of dust dealt in classical physics may contain about
10 *° atoms.

Twentieth century experiments have revealed
another aspect of the construction of world. There are
perhaps no ultimate indivisible particles. Hundreds of
elementary particles have been discovered and there
are free transformations from one such particle to the
other. Nature is seen to be a well-connected entity.
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Worked Out Examples

1. Find the dimensional formulae of the following (c) @=CV
quantities : or, IT=[CIML*I 'T"® or, [Cl=M 'L?I°T"
(a) the universal constant of gravitation G,

d) V=RI
(b) the surface tension S, @

2y-1 -3
(¢) the thermal conductivity k and or, R :‘77 or, [R] :%: ML?I *T 2,
(d) the coefficient of viscosity M.
Some equations involving these quantities are
Gm, m, pgrh 3. The SI and CGS units of energy are joule and erg
F= P ’ =79 respectively. How many ergs are equal to one joule ?
A®O,-0)t - 1 . 1 1 = i)
Q= 0,-9y) and Fo-nA U, — Uy Solution : Dimensionally, Enerigy massx (velocity)
d Xy~ X B y length)” _ MIL2T 2
where the symbols have their usual meanings. = mass time ) ’
. 2 -2
Solution : (2) F=G m, 72?12 Thus, 1 joule=(1kg) (1 m)“(1s)
r and lerg=(1g) (1 cm)2 (1s)™?
Fr’? . 2 -2
or, G:mm ljoule_[lng[lmj {ﬁj
122 Y s lerg |1g/llem) (1s
_[FIL° MLT ".L° 1.3, -2 2
or, Gl="yo ="y ~MLT" _ [—1010;) g] [71(1’2;“‘] =1000x 10000= 10",
(b) S = % So, 1joule=10"erg.
e M Lo
or, [ST=1[p]lgIL" = 2 72 L'=MT". 4. Young’s modulus of steel is 19x 10" N/m > Express it
© -~ A@®,-0,)¢ in dyne/cm”®. Here dyne is the CGS unit of force.
c =k————
d Solution : The unit of Young’s modulus is N/m °.
Qd
or, k= A_(BQ— Y : This suggests that it has dimensions of %-
Here, @ is the heat energy having dimension -2 L
22 : . . Thus, [Y]:@:%:MLIT ?
ML'T °, 6,-6, is temperature, A is area, d is L L
thickness and ¢ is time. Thus, N/mz is in SI units.
ML’T *L g - . i
k=" oy - MLT K So, 1N/m*= (kg1 m) " (1s)
S and 1 dyne/em *= (1 g)(1cm) '(1s)~°
(d) F=-nAZX1 - , -1 -2
X, —x “ 1N/m _(1kg)(lm) (HJ
2 ) 2~
or, MLT *= it 2F =ik Ldyne/em™ | 1g J{Lem) {1
1
or, [T’]]:ML_IT_I. =1000 XleZlO
2 2
2. Find the dimensional formulae of or 1 N/m "= 10 dyne/cm
(a) the charge @, or, 19%x10""N/m°*=19x10" dyne/cm®.
(b) the potential V,
(c) the capacitance C, and 5. If velocity, time and force were chosen as basic quantities,

(d) the resistance R.

! o - find the dimensions of mass.
Some of the equations containing these quantities are

Q=1It U=VIt Q =CV and V = RI; Solution : Dimensionally, Force = mass X acceleration
where I denotes the electric current, t is time and U is = mass X velocity
energy. - time

Solution : (a) @ =1It. Hence, [Q]=1IT. or mass = force x time
(b) U=VIt ’ velocity

or, ML*T *=[VI]IT or, [VI=ML*17'T " or, [mass]=FTV .
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6. Test dimensionally if the equation v’ =u’+ 2ax may be Assuming that F is proportional to different powers of
correct. these quantities, guess a formula for F using the method

. of dimensions.
Solution : There are three terms in this equationv’, u

. . _ a_b_ ¢
and 2ax. The equation may be correct if the dimensions Solution : Suppose the formula is F=kn r v

c

of these three terms are equal. » OO0
. Then, MLT *=[ML'T '°L %H
[UZ]:%D:LZT_Z; ay-atb+tem-a-c
0 =M“L T
2
] %B 22 Equating the exponents of M, L and T from both sides,
u = = ;
a=1
O, O —
and [2ax]:[a][x]:SI%DL:L2T_2. —a+tb+c=1
. -—a-c=-2

Thus, the equation may be correct. )
Solving these, a = 1,5 =1, and ¢ = 1.

7. The distance covered by a particle in time t is given by Thus, the formula for F' is F =knrv.

x=a+bt+ct +dt’ find the dimensions of a, b, ¢ and d.
10. The heat produced in a wire carrying an electric current
should have the same dimensions. Since [x] = length, depends on the current, the resistance and the time.

each of the remaining four must have the dimension of Assuming that the dependence is of the product of powers
length. type, guess an equation between these quantities using

Thus, [a]=length =1L dimensional analysis. The dimensional formula of
’ resistance is ML’ 1 *T “® and heat is a form of energy.

Solution : The equation contains five terms. All of them

[b¢] =L, or, [p]=LT"'
2 _ -2 Solution : Let the heat produced be H, the current through
[ct 3] =L, or, [e]=LT , the wire be I, the resistance be R and the time be ¢.
and [dt’]=L, or, [d]=LT " Since heat is a form of energy, its dimensional formula
. . . is ML’ T °.
8. If lthe ce;LtrL];)etal é‘orce is of the form m "~ v " r’, find the Let us assume that the required equation is
va.ueso c%, ar.L c. H:kIaRbtc’
Solution : Dimensionally, where % is a dimensionless constant.
Force = (Mass) “ x (velocity) b x (length) Writing dimensions of both sides,
or, MLT *=M‘W' T HL =M°L°**T° ML’T > =1°ML’I T %) °T °
Equating the exponents of similar quantities, =MbL® ey
a=1,b+c=1, -b=-2 , Equating the exponents,
or, a=1,06=2 ¢=-1 or, F=""_1 b=1
r 2b =2
-3b+c=-2
9. When a solid sphere moves through a liquid, the liquid a-9b=0

opposes the motion with a force F. The magnitude of F
depends on the coefficient of viscosity n of the liquid, the
radius r of the sphere and the speed v of the sphere. Thus, the required equation is H = kI > R¢.

Solving these, we get, a =2, b =1and ¢ = 1.

QUESTIONS FOR SHORT ANSWER

1. The metre is defined as the distance travelled by light 2. What are the dimensions of :
(a) volume of a cube of edge a,

. 1 s 1

m 299,792,458 second. Why didn’t people choose some (b) volume of a sphere of radius a,

easier number such as second ? Why not 1 (c) the ratio of the Volume of a cube of edge a to the
300,000,000 volume of a sphere of radius a ?

second ?
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. Suppose you are told that the linear size of everything
in the universe has been doubled overnight. Can you
test this statement by measuring sizes with a metre
stick ? Can you test it by using the fact that the speed
of light is a universal constant and has not changed ?
What will happen if all the clocks in the universe also
start running at half the speed ?

. If all the terms in an equation have same units, is it
necessary that they have same dimensions ? If all the
terms in an equation have same dimensions, is it
necessary that they have same units ?

. If two quantities have same dimensions, do they

represent same physical content ?

. It is desirable that the standards of units be easily

available, invariable, indestructible and -easily
reproducible. If we use foot of a person as a standard
unit of length, which of the above features are present
and which are not ?

. Suggest a way to measure :

(a) the thickness of a sheet of paper,
(b) the distance between the sun and the moon.

OBJECTIVE 1

. Which of the following sets cannot enter into the list of
fundamental quantities in any system of units ?

(a) length, mass and velocity,

(b) length, time and velocity,

(c) mass, time and velocity,

(d) length, time and mass.

. A physical quantity is measured and the result is
expressed as nu where u is the unit used and n is the
numerical value. If the result is expressed in various
units then

(a) n O size of u

(¢) n OVu

M nOu’
@no Lo
u

. Suppose a quantity x can be dimensionally represented
in terms of M, L and T, that is, [x]=M®L° T®. The
quantity mass

(a) can always be dimensionally represented in terms of
L, T and «,

(b) can never be dimensoinally represented in terms of

OBJECTIVE

1. The dimensions ML ' T"? may correspond to

(a) work done by a force
(b) linear momentum

(c) pressure

(d) energy per unit volume.

2. Choose the correct statement(s) :

(a) A dimensionally correct equation may be correct.

(b) A dimensionally correct equation may be incorrect.
(c) A dimensionally incorrect equation may be correct.
(d) A dimensionally incorrect equation may be incorrect.

L, T and «x,
(c) may be represented in terms of L, T and x if @ = 0,
(d) may be represented in terms of L, T and x if a # 0.

. A dimensionless quantity

(b) always has a unit,
(d) does not exist.

(a) never has a unit,
(¢) may have a unit,

. A unitless quantity

(a) never has a nonzero dimension,
(b) always has a nonzero dimension,
(¢) may have a nonzero dimension,
(d) does not exist.

G.J. ———=q"sin" % lD[I
‘/éax x’ O

The value of n is

(a) O (b) -1

(1 (d) none of these.

You may use dimensional analysis to solve the problem.

I

. Choose the correct statement(s) :

(a) All quantities may be represented dimensionally in
terms of the base quantities.

(b) A base quantity cannot be represented dimensionally
in terms of the rest of the base quantities.

(c) The dimension of a base quantity in other base
quantities is always zero.

(d) The dimension of a derived quantity is never zero in
any base quantity.

EXERCISES

. Find the dimensions of

(a) linear momentum,
(b) frequency and
(c) pressure.

2. Find the dimensions of

(a) angular speed w,

(c) torque I' and (d) moment of interia I.
Some of the equations involving these quantities are

(b) angular acceleration a,
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10.

11.

1

1.
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_62_61 :(")2_0‘)1
=t L=t

The symbols have standard meanings.

» T=Fr and I =mr”.

. Find the dimensions of

(a) electric field E, (b) magnetic field B and
(c) magnetic permeability U,.
The relevant equations are

Mol
F=qE, F=quB, and B_2T[a ;
where F is force, ¢ is charge, v is speed, I is current,
and a is distance.

. Find the dimensions of

(a) electric dipole moment p and

(b) magnetic dipole moment M.

The defining equations are p =q.d and M =1A;

where d is distance, A is area, q is charge and I is
current.

. Find the dimensions of Planck’s constant A from the

equation E =hv where E is the energy and v is the
frequency.

. Find the dimensions of

(a) the specific heat capacity c,

(b) the coefficient of linear expansion a and

(c) the gas constant R.

Some of the equations involving these quantities are
Q=mc(T,-T), l,=1[1+a(T,-T)] and PV =nRT.

. Taking force, length and time to be the fundamental

quantities find the dimensions of
(a) density, (b) pressure,
(c) momentum and (d) energy.

. Suppose the acceleration due to gravity at a place is

10 m/s”. Find its value in em/(minute)”.

. The average speed of a snail is 0'020 miles/hour and

that of a leopard is 70 miles/hour. Convert these speeds
in SI units.

The height of mercury column in a barometer in a
Calcutta laboratory was recorded to be 75 cm. Calculate
this pressure in SI and CGS units using the following
data : Specific gravity of mercury = 136, Density of
water = 10° kg/m®, g = 98 m/s® at Calcutta. Pressure
= hpg in usual symbols.

Express the power of a 100 watt bulb in CGS unit.

ANSWERS
OBJECTIVE 1
® 2@ 38 @ 4@ 5 (@ 6 (a 1
2.
OBJECTIVE II 3.
(©), (d) 2. (a), (b), (d) 3. (a), (b), (¢) 4.
5.
6.

12.

13.

14.

15.

16.

17.

18.

19.

The normal duration of I.Sc. Physics practical period in
Indian colleges is 100 minutes. Express this period in
microcenturies. 1 microcentury = 107°% x 100 years. How
many microcenturies did you sleep yesterday ?

The surface tension of water is 72 dyne/cm. Convert it
in SI unit.

The kinetic energy K of a rotating body depends on its
moment of inertia I and its angular speed w. Assuming

the relation to be K = kI “w’ where k is a dimensionless
constant, find ¢ and . Moment of inertia of a sphere

about its diameter is %Mrz.

Theory of relativity reveals that mass can be converted
into energy. The energy E so obtained is proportional to
certain powers of mass m and the speed c of light. Guess
a relation among the quantities using the method of
dimensions.

Let I = current through a conductor, R = its resistance
and V = potential difference across its ends. According
to Ohm’s law, product of two of these quantities equals
the third. Obtain Ohm’s law from dimensional analysis.
Dimensional formulae for R and V are ML’I >T"* and
ML*T ®1"" respectively.

The frequency of vibration of a string depends on the
length L between the nodes, the tension F in the string
and its mass per unit length m. Guess the expression
for its frequency from dimensional analysis.

Test if the following equations are dimensionally
correct :

_ 28 cosB _ /P
(a) h = org (b)v—'\/p

_mPr't _ 1 fmgl.
©@V="gnT @v=o VT

where h = height, S = surface tension, p = density, P =
pressure, V = volume, n = coefficient of viscosity, v =
frequency and I = moment of inertia.

Let x and a stand for distance. Is I_iflf_

Vo —x?
1 .. -1Q . .
=g sin dimensionally correct ?
EXERCISES

(a) MLT ™" b)) T (¢) ML™'T™®

(@ T M T (¢) ML’T ? (d ML’

(a) MLT °I"' (b) MT °I' (¢) MLT *1°°

(a) LTI (b) L’ 1

ML’T ™

(@ LT K" M K" (¢) ML’T *K™" (mol) !



10.
11.
12.
13.

(a) FL™*T? () FL™® (¢) FT (d) FL

. 36x10° cm/(minute) ”

0-0089 m/s, 31 m/s

10x10“N/m® 10 x 10° dyne/cm *
10° erg/s

19 microcenturies

0072 N/m

Introduction to Physics

14.
15.
16.

17.

18.
19.

a=1, b=2
E=kmec’
V=IR

k~JE

L m

all are dimensionally correct
no

11



CHAPTER 2

PHYSICS AND MATHEMATICS

Mathematics is the language of physics. It becomes
easier to describe, understand and apply the physical
principles, if one has a good knowledge of mathematics.
In the present course we shall constantly be using the
techniques of algebra, trigonometry and geometry as
well as vector algebra, differential calculus and
integral calculus. In this chapter we shall discuss the
latter three topics. Errors in measurement and the
concept of significant digits are also introduced.

2.1 VECTORS AND SCALARS

Certain physical quantities are completely
described by a numerical value alone (with units
specified) and are added according to the ordinary
rules of algebra. As an example the mass of a system
is described by saying that it is 5 kg. If two bodies one
having a mass of 5 kg and the other having a mass of
2 kg are added together to make a composite system,
the total mass of the system becomes 5kg + 2kg
= 7 kg. Such quantities are called scalars.

The complete description of certain physical
quantities requires a numerical value (with units
specified) as well as a direction in space. Velocity of a
particle is an example of this kind. The magnitude of
velocity is represented by a number such as 5 m/s and
tells us how fast a particle is moving. But the
description of velocity becomes complete only when the
direction of velocity is also specified. We can represent
this velocity by drawing a line parallel to the velocity
and putting an arrow showing the direction of velocity.
We can decide beforehand a particular length to
represent 1 m/s and the length of the line representing

3ms

1ms

1 1ms’
25ms

Figure 2.1

a velocity of 5 m/s may be taken as 5 times this unit
length. Figure (2.1) shows representations of several
velocities in this scheme. The front end (carrying the
arrow) is called the head and the rear end is called
the tail.

Further, if a particle is given two velocities
simultaneously its resultant velocity is different from
the two velocities and is obtained by using a special
rule. Suppose a small ball is moving inside a long tube
at a speed 3 m/s and the tube itself is moving in the
room at a speed 4 m/s along a direction perpendicular
to its length. In which direction and how fast is the
ball moving as seen from the room ?

C
@)
} /4‘ t=1s
/
Y
/ |
4m e }
/
/ |
/ |
J | t=0
O—————4
A B

Figure (2.2) shows the positions of the tube and
the ball at ¢t = 0 and ¢ = 1 s. Simple geometry shows
that the ball has moved 5 m in a direction 6 = 53° from
the tube. So the resultant velocity of the ball is 5 m/s
along this direction. The general rule for finding the
resultant of two velocities may be stated as follows.

Draw a line AB representing the first velocity with
B as the head. Draw another line BC representing the
second velocity with its tail B coinciding with the head
of the first line. The line AC with A as the tail and C
as the head represents the resultant velocity.
Figure (2.3) shows the construction.

The resultant is also called the sum of the two
velocities. We have added the two velocities AB and
BC and have obtained the sum AC. This rule of
addition is called the “triangle rule of addition”.
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C

Resultant

velocity Second

velocity

A B
First velocity

Figure 2.3

The physical quantities which have magnitude and
direction and which can be added according to the
triangle rule, are called vector quantities. Other
examples of vector quantities are force, linear
momentum, electric field, magnetic field etc.

The vectors are denoted by putting an arrow over
the symbols representing them. Thus, we write AB,
BC etc. Sometimes a vector is represented by a single

letter such as 17, F etc. Quite often in printed books
the vectors are represented by bold face letters like
AB, BC, v, f etc.

If a physical quantity has magnitude as well as
direction but does not add up according to the triangle
rule, it will not be called a vector quantity. Electric
current in a wire has both magnitude and direction
but there is no meaning of triangle rule there. Thus,
electric current is not a vector quantity.

2.2 EQUALITY OF VECTORS

Two vectors (representing two values of the same
physical quantity) are called equal if their magnitudes
and directions are same. Thus, a parallel translation
of a vector does not bring about any change in it.

2.3 ADDITION OF VECTORS

The triangle rule of vector addition is already
described above. If @ and b are the two vectors to be
added, a diagram is drawn in which the tail of &
coincides with the head of a. The vector joining the
tail of @ with the head of 5 is the vector sum of ¢ and
b. Figure (2.4a) shows the construction. The same rule

Figure 2.4

may be stated in a slightly different way. We draw the

vectors @ and b with both the tails coinciding
(figure 2.4b). Taking these two as the adjacent sides

we complete the parallelogram. The diagonal through
the common tails gives the sum of the two vectors.

Thus, in figure, (2.4b) AB + AC = AD .
Suppose the magnitude of @ =a and that of b = b.
What is the magnitude of a+b and what is its

direction ? Suppose the angle between a and b is 0. It
is easy to see from figure (2.5) that

Figure 2.5

AD?=(AB +BE)’ + (DE)*
=(a +b cosB) * + (b sind) >
=a’+2abcosO+b"

Thus, the magnitude of @ + b is

Va*+b7+2ab cosb. 2.1
Its angle with a is o where
tang = 2E - b sind 2.2)

AE ~ a+bcosb

Example 2.1

Two vectors having equal magnitudes A make an angle
0 with each other. Find the magnitude and direction of
the resultant.

Solution : The magnitude of the resultant will be

= V2471 + cos8) = V44 *eos > 2

2
0
=2A cos 9 O
The resultant will make an angle a with the first vector
where
o A sinf _2Asm§cos§_ta [}
an TA+Acosd ,0 9
2A cos” —
2
.28
or, =5

Thus, the resultant of two equal vectors bisects the angle
between them.
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2.4 MULTIPLICATION OF A VECTOR BY A NUMBER

Suppose a is a vector of ma_g}nitu_c)ie a and k is a
number. We define the vector b=%k a as a vector of
magnltude |ka| If & is positive the direction of
the vector b=k a 1s same as that of a. a. If £ is negative,

the direction of b is opposite to a. In particular,
multiplication by (—1) just inverts the direction of the

- -
vector. The vectors ¢ and —a have equal magnitudes
but opposite directions.
- -
If a is a vector of magnitude a and u is a vector
%

of unit magnitude in the direction of a, we can write
- -
a = au.

2.5 SUBTRACTION OF VECTORS

— — - =
Let a and b be two vectors. We define a — b as the
sum of the vector (7 and the vector (- 1?) . To subtract

- - — -
b from a, invert the direction of b and add to a.
Figure (2.6) shows the process.

Figure 2.6

Example 2.2

Two vectors of equal magnitude 5 unit have an angle
60° between them. Find the magnitude of (a) the sum of
the vectors and (b) the difference of the vectors.

Figure 2.7
Solution : Figure (2.7) shows the construction of the sum
- > —
A + B and the difference A -
- > — -
(a) A + B is the sum of A and B. Both have a magnitude

of 5 unit and the angle between them is 60°. Thus, the
magnitude of the sum is

- =
|A+B|=V5%+5%+2x5x5 cos60°
=2 x5 c0s30° = 5V3 unit.

(b) A B is the sum of A and (- B) As shown in the
figure, the angle between A and (- B) is 120°. The
magnitudes of both A and (—B) is 5 unit. So,

- -
|A-B|=V5%+52+2x5x5 cos120°

=2 x5 c0s60° = 5 unit.

2.6 RESOLUTION OF VECTORS

Figure (2.8) shows a vector 07:074 in the X-Y
plane drawn from the origin O. The vector makes an
angle o with the X-axis and f§ with the Y-axis. Draw
perpendiculars AB and AC from A to the X and Y axes
respectively. The length OB is called the projection of

— —
OA on X-axis. Similarly OC is the projection of OA
on Y-axis. According to the rules of vector addition

e
a=0A=0B+0C.
Thus, we have resolved the vector a_> into two parts,

one along OX and the other along OY. The magnitude
of the part along OX is OB =a cosa and the magnitude

of the part along OY is OC =a cosp. If 7and fdenote
vectors of wunit magnitude along OX and OY
respectively, we get

— —
OB =a coso.i and OC =a cosBj_>

- - -
so that a=acosoi+acosfy.

Figure 2.8

If the vector @ is not in the X-Y plane, it may have
nonzero projections along X)Y,Z axes and we can
resolve it into three parts i.e., along the X, Y and Z
axes. If o, B, y be the angles made by the vector a with
the three axes respectively, we get

N

- - -
a=acosoi+acosPj+acosyk (2.3)

where Z)j_)and I? are the unit vectors along X, Y and
Z axes respectively. The magnitude (a cosa) is called
the component of (7 along X-axis, (a cosf) is called the
component along Y-axis and (a cosy) is called the
component along Z-axis. In general, the component of
a vector a along a direction making an angle 6 with it
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is a cos0 (figure 2.9) which is the projection of (7 along
the given direction.

Equation (2.3) shows that any vector can be expressed
%

%
as a linear combination of the three unit vectors i, j
—
and k.

Example 2.3

A force of 105 N acts on a particle along a direction
making an angle of 37° with the vertical. Find the
component of the force in the vertical direction.

Solution : The component of the force in the vertical
direction will be

F =F cosd=(10'5N) (cos37°)

=(10'5 N)% =840 N.

We can easily add two or more vectors if we know
their components along the rectangular coordinate
axes. Let us have

T -
and c=cyitceyjtek
then
- - — - —
a+b+c=(a,+b,+c)i+(a,+b,+c))j+(a,+b,+c,)k.
If all the vectors are in the X-Y plane then all the z

components are zero and the resultant is simply

- o o - -
at+b+c=(a,+b,+c)i+(a,+b,+c)).

This is the sum of two mutually perpendicular vectors
of magnitude (a,+b,+c,) and (a,+b,+c,)). The
resultant can easily be found to have a magnitude

\/(ax+bx+cx)2+(ay+by+cy)2
making an angle o with the X-axis where

Yy T Ty
a,+b,+c,

a,+b,+c
tano = .

2.7 DOT PRODUCT OR SCALAR PRODUCT
OF TWO VECTORS

The dot product (also called scalar product) of two
vectors @ and b is defined as

-

N
a-b=ab cosd (2.4)

where a and b are the magnitudes of @ and b
respectively and 0 is the angle between them. The dot
product between two mutually perpendicular vectors
is zero as cos90° = 0.

U

—
a

Figure 2.10

The dot product is commutative and distributive.

I
a-b=b-a

o e e

a-b+c)=a-b+a-c.

Example 2.4

N

The work done by a force F during a displacement ris
-

given by F - 7 Suppose a force of 12 N acts on a particle

in vertically upward direction and the particle is

displaced through 2'0m in vertically downward

direction. Find the work done by the force during this
displacement.

: The angle between the force F and the
displacement r is 180°. Thus, the work done is
W=F. 7

=Fr cos®

= (12 N)(2'0 m)(cos180°)

=-24N-m=-24J.

Solution

Dot Product of Two Vectors in terms of the
Components along the Coordinate Axes
. % _> .
Consider two vectors a and b represented in terms

of the unit vectors i, j, %k along the coordinate axes
as

- - - -

a=ayita,jtak
and b=b,i+b,j+b,k
Then

a-b= (a, ik ayj_>+ a, l?) - (b, ir byj_)+ b, l?)

- o > - >
=a,byi-i+a,byi-jta,b,i-k

oo e - -
+a,b.j-i+a,bj-j+a,b.j-k

+a2bxl?-i_>+azl)yl?-j_>+0Lszl?~l;> ..o @)

. oo -
Since, i, j and k& are mutually orthogonal,
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we have i (J=ilk=j0=jk=k0=Fkj=0.

Also, 0 =1x1cos0=1.

Similarly, jJ=k [k =1.
Using these relations in equation (i) we get
alb=a, b,+a,b,+a,b,.

2.8 CROSS PRODUCT OR VECTOR PRODUCT
OF TWO VECTORS

The cross product or vector product of two vectors

a and b, denoted by axb is itself a vector. The
magnitude of this vector is

Oa x b 0= ab sind (2.5)

where a and b are the magnitudes of a and b
respectively and O is the smaller angle between the
two. When two vectors are drawn with both the tails
coinciding, two angles are formed between them
(figure 2.11). One of the angles is smaller than 180°

0
360°-@

Figure 2.11

and the other is greater than 180° unless both are
equal to 180°. The angle 6 used in equation (2.5) is the
smaller one. If both the angles are equal to 180°,

sin 8 = sin 180° = 0 and hence Ca x b (= 0. Similarly
if0=0,sin6=0and o xb =0. The cross product
of two parallel vectors is zero.

The direction of a xb is perpendicular to both
a and b. Thus, it is perpendicular to the plane formed

by a and b. To determine the direction of arrow on
this perpendicular several rules are in use. In order to
avoid confusion we here describe just one rule.

N
/ %&3

Figure 2.12

—_ -

axb

oy

Draw the two vectors a and b with both the tails
coinciding (figure 2.12). Now place your stretched right

palm perpendicular to the plane of ¢ and & in such a

way that the fingers are along the vector a and when

the fingers are closed they go towards b. The direction
of the thumb gives the direction of arrow to be put on

the vector a x b.

This is known as the right hand thumb rule. The
left handers should be more careful in using this rule
as it must be practiced with right hand only.

Note that this rule makes the cross product
noncommutative. In fact

axb=-bxa.
The cross product follows the distributive law
ax(b+c)=axb+axc.
It does not follow the associative law
ax(bxc)z(axb)xc.
When we choose a coordinate system any two
perpendicular lines may be chosen as X and Y axes.
However, once X and Y axes are chosen, there are two
possible choices of Z-axis. The Z-axis must be
perpendicular to the X-Y plane. But the positive
direction of Z-axis may be defined in two ways. We

choose the positive direction of Z-axis in such a way
that

ixj=Fk.
Such a coordinate system is called a right handed
system. In such a system

- -

Jxk=i and kxi=J.
Of course fxf:JﬁxJ?:EXEZO.

Example 2.5

The vector A has a magnitude of 5 unit, B has a
magnitude of 6 unit and the cross product of A and B
has a magnitude of 15 unit. Find the angle between A
and B.

If the angle between A and B is 0, the cross
product will have a magnitude

Solution :

| AxB | =AB sin®

or, 15=5 %6 sinb
ool

or, sin@ = 9 g

Thus, 6=230° or, 150°.

Cross Product of Two Vectors in terms of
the Components along the Coordinate Axes

—

Let a=asi+a,jtak

and b=b.i+b,j+b,k.
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- - -

(ayi+a, J+a k)x(b irh ,J+b, k
- =

=a,b, le+axb z><J+axb x k

Then a x b =

~

. . . . % %
+aybe><L+aybyJXJ+abeJxk
- -

+ a,b, k><L+ab k><]+ab kxk
= b K+ ab(—]) +ab(—k)+ab,(i)
IFxe 2
+asz(.])+azby(_l)

= (aybz - azby) i_>+ (asz - axbz)j_>

+ (axb, — ayb,) k.

Zero Vector

— -
If we add two Vegtors A_)and B, we get a vector.
Suppose the vectors A and B have equal glaggitudes

but opposite directions. What is the vector A + B ? The
magnitude of this vector will be zero. For mathematical
consistency it is convenient to have a vector of zero
magnitude although it has little significance in
physics. This vector is called zero vector. The direction
of a zero X)ector is indeterminate. We can write this

vector as 0. The concept of zero vector is also helpful
When we cons1de1; vector product of parallel vectors. If

A [l B the vector A x B is zero vector. For any vectorA

and for any number A,

2.9 DIFFERENTIAL CALCULUS : % AS
RATE MEASURER

Consider two quantities ¥y and x interrelated in
such a way that for each value of x there is one and
only one value of y. Figure (2.13) represents the graph

Y

X ————+—AXx—

Figure 2.13

of y versus x. The value of y at a particular x is
obtained by the height of the ordinate at that x. Let x
be changed by a small amount Ax, and the
corresponding change in y be Ay. We can define the
“rate of change” of y with respect to x in the following

way. When x changes by Ax, y changes by Ay so that
the rate of change seems to be equal to % - If A be the

point (x,y) and B be the point (x + Ax, y + Ay), the rate
% equals the slope of the line AB. We have

However, this cannot be the precise definition of the
rate. Because the rate also varies between the points
A and B. The curve is steeper at B than at A. Thus,
to know the rate of change of y at a particular value
of x, say at A, we have to take Ax very small. However
small we take Ax, as long as it is not zero the rate
may vary within that small part of the curve. However,
if we go on drawing the point B closer to A and

everytime calculate % =tanb, we shall see that as Ax

is made smaller and smaller the slope tan of the line
AB approaches the slope of the tangent at A. This slope
of the tangent at A thus gives the rate of change of y

with respect to x at A. This rate is denoted by Zx—y~

Thus,
dy . Ay
— = lim —.
dx Axl -0 A’Xf
For small changes Ax we can approximately write

Ay—%Ax

Note that if the function y increases with an increase
in x at a point, & is positive there, because both Ay

and Ax are positive. If the function y decreases with
an increase in x, Ay is negative when Ax is positive.

A dy . .
Then =~ and hence = is negative.
Ax dx

Example 2.6

d
From the curve given in figure (2.14) find Ey at x = 2,
6 and 10.

-2 0
Figure 2.14
Solution : The tangent to the curve at x = 2 is AC. Its
slope is tan, gg Z
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dy 5
Thus, x4 at x = 2.

The tangent to the curve at x = 6 is parallel to the X-axis.

d
Thus, & tan6 =0 at x = 6.

dx
The tangent to the curve at x = 10 is DF. Its slope is
cung _DE__5
anb, =pr=-7
dy 5
Thus, -4 at x=10-

If we are given the graph of y versus x, we can
find j—i at any point of the curve by drawing the

tangent at that point and finding its slope. Even if the
graph is not drawn and the algebraic relation between
y and x is given in the form of an equation, we can

find % algebraically. Let us take an example.

The area A of a square of length L is A =L"

If we change L to L + AL, the area will change
from A to A + AA (figure 2.15).

Figure 2.15

A+AA:(L+AL)2

=L’ +2L AL + (AL)*
or, AA = 2L(AL) + (AL)
or, %:2L+AL.

Now if AL is made smaller and smaller, 2L + AL will

approach 2L.
dA . AA
————— 1 ————
Thus, dl, Aleﬁo AL 2L.

Table (2.1) gives the formulae for Z—i for some of

the important functions. % is called the differential

coefficient or derivative of y with respect to x.

dy
—— for some common functions

Table 2.1 :
dx
y dy y dy
dx dx
2" nx L sec x secx tan x
sin x cos X cosec x — cosec x cot x
. 1
cos x —sinx In x =
x
2 x x
tan x sec”x e e
cot x — cosec’x

Besides, there are certain rules for finding the
derivatives of composite functions.

d .
(a) % (cy) =c é (c is a constant)

d du dv
(b)a(u+v)=a+%

d dv du
(c)a(uv)=ua+va

Jdu_ dv
d (u dx dx
@ & [—j e

v

dy dy du

(e) dx _du dx
With these rules and table 2.1 derivatives of almost
all the functions of practical interest may be evaluated.

Example 2.7

.o dy . v
FmdaLfy = e sin x.

Solution : y=e sinx.
d
So Tiz%(exsinx):ex%(sinx)+sinx%(ex)

X X . x .
=e cosx+e sinx =e (cosx + sin x).

2.10 MAXIMA AND MINIMA

Suppose a quantity y depends on another quantity
x in a manner shown in figure (2.16). It becomes
maximum at x; and minimum at x,.

Y

Figure 2.16
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At these points the tangent to the curve is parallel
to the X-axis and hence its slope is tan 6 = 0. But the

slope of the curve y-x equals the rate of change & O

dx
Thus, at a maximum or a minimum,
dy
—=0.
dx

Just before the maximum the slope is positive, at
the maximum it is zero and just after the maximum

.. . d .
it is negative. Thus, %C decreases at a maximum and

hence the rate of change of % is negative at a

maximum 1i.e.

Ly O
a Enlm< 0 at a maximum.

dx [lxp

The quantity % %%E is the rate of change of the
0

2
slope. It is written as % OThus, the condition of a

maximum is

d_y O
de O
e 0— maximum. (2.6)
F <0 g
X

Similarly, at a minimum the slope changes from
negative to positive. The slope increases at such a point

and hence % %&%> 0. The condition of a minimum is
dx E;lxD
dy o O
dx 0 g .
2 0— minimum. (2.7
4y _ o0
dx® O

Quite often it is known from the physical situation

whether the quantity is a maximum or a minimum.
2

The test on d—y2 may then be omitted.

dx

Example 2.8

The height reached in time t by a particle thrown upward
with a speed u is given by

1
h=ut-=gt
2g

where g =98 m/s” is a constant. Find the time taken in
reaching the maximum height.

Solution : The height A is a function of time. Thus, A will

be maximum when dh =0. We have,

dt
1
h=ut--gt
dh _d . _d 24
o dar ~di ) dt%gtg

_odt 1 d, -
Tug 987 ¢)

:u—%g(2t)=u—gt.

For maximum #,

dh _
dt_o
- -u
or, u—-gt=0 or, t gIZI

2.11 INTEGRAL CALCULUS

Let PQ be a curve representing the relation
between two quantities x and y (figure 2.17). The point
P corresponds to x = a and @ corresponds to x = b.
Draw perpendiculars from P and @ on the X-axis so
as to cut it at A and B respectively. We are interested
in finding the area PABQ. Let us denote the value of
y at x by the symbol y = flx).

Y

Q
p f (b)
T
fl(a)
O A Ax B X
—a—
Figure 2.17

Let us divide the length AB in N equal elements
each of length Ax = b% [IFrom the ends of each small

length we draw lines parallel to the Y-axis. From the
points where these lines cut the given curve, we draw
short lines parallel to the X-axis. This constructs the
rectangular bars shown shaded in the figure. The sum
of the areas of these NV rectangular bars is

I' =fla) &x + fla + &x) Ax + fla + 20x) Dx + ...
v tfla+ (N -1) Ax] Ax .

This may be written as

N
I'= flo) (2.8)
i=1

where x; takes the values a, a + Ax, a + 2Ax, .., b — Ax.

This area differs slightly from the area PABQ. This
difference is the sum of the small triangles formed just
under the curve. Now the important point is the
following. As we increase the number of intervals N,
the vertices of the bars touch the curve PQ at more
points and the total area of the small triangles
decreases. As N tends to infinity (Ax tends to zero
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because Ax = b%) the vertices of the bars touch the

curve at infinite number of points and the total area

of the triangles tends to zero. In such a limit the sum

(2.8) becomes the area I of PAB®. Thus, we may write,
N

I=lim S flx)Av.
Ae-0i21

The limit is taken as Ax tends to zero or as N tends
to infinity. In mathematics this quantity is denoted as
b

I=If(x) dx

and is read as the integral of flx) with respect to x
within the limits x = a to x = b. Here a is called the
lower limit and & the upper limit of integration. The
integral is the sum of a large number of terms of the
type flx) Ax with x continuously varying from a to b
and the number of terms tending to infinity.

Let us use the above method to find the area of a
trapezium. Let us suppose the line PQ is represented
by the equation y = x.

The points A and B on the X-axis represent x = a

and x = b. We have to find the area of the trapezium
PABQ.

Figure 2.18
Let us divide the length AB in N equal intervals.

b-a .
N The height

of the first shaded bar is y =x =a, of the second bar
is y=x=a+Ax, that of the third bar is y=x
=a +2Mx etc. The height of the Nth bar is y=x«
=a + (N - 1)Ax. The width of each bar is Ax, so that
the total area of all the bars is

I' =alx + (a + Ax) Mx + (@ + 200) Mx + ...
v FHla + (N - 1)Ax]Ax

The length of each interval is Ax =

=[a + (a +Ax) + (@ + 20%) + ...

e +(N- DAY A L (2.9)

This sum can be written as

N
I'ZinAx
i=1

-a
N
As Ax - 0 the total area of the bars becomes the
area of the shaded part PABQ.
Thus, the required area is
N
I= Alxl?})i glxi Nx

where Ax:b and x;=a, a +Ax, ... b — Ax.

b
:jxdx. .. @)

Now the terms making the series in the square
bracket in equation (2.9) are in arithmetic progression
so that this series may be summed up using the

formula S = % (a +1). Equation (2.9) thus becomes

I'= %[a +{a + (N - 1)Ax}]Ax

:N?Ax[2a+NAx—Ax]
:b;a[2a+b—a—Ax]
:b;a[a+b—Ax].

Thus, the area PABQ is

— 0
I=Tim 2= %a +5 - A
x-00 2 0O

b ;a (@+b)
:%(bz_az), . (i)
Thus, from (i) and (i)
b

_1.,92 o
_!xdx—z(b a’).

In mathematics, special methods have been
developed to find the integration of various functions
f (x). A very useful method is as follows. Suppose we
wish to find

b N
J ) dx = lim 3 flz) o
a ~0=

_b-a
where Ax——N

Now look for a function F(x) such that the

derivative of F(x) is flx) that is, dgﬁc) =f(x). If you can

yx,=a, a+le, ... b—Ax.

find such a function F(x), then
b
[fx) dx = F(b) - F(a) ;

F(b) - F(a) is also written as [F(x)] -
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F(x) is called the indefinite integration or the
antiderivative of flx). We also write If(x) dx = F(x).

This may be treated as another way of writing
dF(x)

=flx) O
o0 1d
For example, — dx % B— (x )— Px =x.
’ al D
Thus, x dx = xQD
Jra=grg
O O
%bzﬂ a’d
O O
STARE
as deduced above.
Table (2.2) lists some important integration

formulae. Many of them are essentially same as those
given in table (2.1).

Table 2.2 : Integration Formulae
e Fo=[faydx @ F(x) = [ flx) dx
. n n+1
sin x —cos x x(n#z-1) x
n+1
. 1
cos x sin x = Inx
x
2 1 -1X
sec x tan x —tan —
xi+a? a a
2 1 . -1
cosec x —cot x T sin < —
\/& 22
secx tan x sec x

cosec x cot x — cosec x

Some useful rules for integration are as follows:

(a) Ic fx)dx=c I f(x) dx where ¢ is a constant
(b) Let [flx) dx=F(x)
then I flex) dx = % F(cx).

© [ 1) +8()] dx = [ ) dx + [ig(o) .

Example 2.9

6

Evaluate I(Zx * + 3x + 5) dx.
3

Solution : I(Zx >+ 3x +5)dx
=IZx *dx +I3x dx +I5dx

=2jx2dx+3jxdx+5jx°dx

3 2 1

—oX 9% pX
—23+32+51

2 5 3
==x°+=x"+5x.
3x 2x bx
6

0
Thus,J’(2x2+3x+5)dx=%x3+gx2+5xD
3 ;)

_2 _ 3 (2q - _
=3 (216 - 27) + (36 - 9) + 5(6 - 3)

=126 +40'5 + 15 = 181'5.

2.12 SIGNIFICANT DIGITS

When a measurement is made, a numerical value
is read generally from some calibrated scale. To
measure the length of a body we can place a metre
scale in contact with the body. One end of the body
may be made to coincide with the zero of the metre
scale and the reading just in front of the other end is
noted from the scale. When an electric current is
measured with an ammeter the reading of the pointer
on the graduation of the ammeter is noted. The value
noted down includes all the digits that can be directly
read from the scale and one doubtful digit at the end.
The doubtful digit corresponds to the eye estimation
within the smallest subdivision of the scale. This
smallest subdivision is known as the least count of the
instrument. In a metre scale, the major graduations
are at an interval of one centimetre and ten
subdivisions are made between two consecutive major
graduations. Thus, the smallest subdivision measures
a millimetre. If one end of the object coincides with
the zero of the metre scale, the other end may fall
between 104 c¢cm and 105 cm mark of the scale
(figure 2.19). We can estimate the distance between
the 104 cm mark and the edge of the body as follows.

S

AR RARRE AR TT T TTT17T \\\\I\\\\ HHIHH H\\luu‘uul\
0 1 8 9 10 11

Figure 2.19

We mentally divide the 1 mm division in 10 equal parts
and guess on which part is the edge falling. We may
note down the reading as 10°'46 cm. The digits 1, 0 and
4 are certain but 6 is doubtful. All these digits are
called significant digits. We say that the length is
measured up to four significant digits. The rightmost
or the doubtful digit is called the least significant digit
and the leftmost digit is called the most significant
digit.
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There may be some confusion if there are zeroes
at the right end of the number. For example, if a
measurement is quoted as 600 mm and we know
nothing about the least count of the scale we cannot
be sure whether the last zeros are significant or not.
If the scale had marking only at each metre then the
edge must be between the marks 0 m and 1 m and the
digit 6 is obtained only through the eye estimation.
Thus, 6 is the doubtful digit and the zeros after that
are insignificant. But if the scale had markings at
centimetres, the number read is 60 and these two
digits are significant, the last zero is insignificant. If
the scale used had markings at millimetres, all the
three digits 6, 0, 0 are significant. To avoid confusion
one may report only the significant digits and the
magnitude may be correctly described by proper
powers of 10. For example, if only 6 is significant in
600 mm we may write it as 6 x 10° mm. If 6 and the
first zero are significant we may write it as
6:0 x 10° mm and if all the three digits are significant
we may write it as 6°00 x 10 mm.

If the integer part is zero, any number of
continuous zeros just after the decimal part is
insignificant. Thus, the number of significant digits in
00023 is two and in 1-0023 is five.

2.13 SIGNIFICANT DIGITS IN CALCULATIONS

When two or more numbers are added, subtracted,
multiplied or divided, how to decide about the number
of significant digits in the answer ? For example,
suppose the mass of a body A is measured to be 12:0 kg
and of another body B to be 7-0 kg. What is the ratio
of the mass of A to the mass of B ? Arithmetic will
give this ratio as

120

70 - 1-714285...
However, all the digits of this answer cannot be
significant. The zero of 12-0 is a doubtful digit and the
zero of 7°0 is also doubtful. The quotient cannot have
so many reliable digits. The rules for deciding the
number of significant digits in an arithmetic
calculation are listed below.

1. In a multiplication or division of two or more
quantities, the number of significant digits in the
answer is equal to the number of significant digits in
the quantity which has the minimum number of
significant digits. Thus, % will have two significant
digits only.

The insignificant digits are dropped from the result
if they appear after the decimal point. They are
replaced by zeros if they appear to the left of the

decimal point. The least significant digit is rounded
according to the rules given below.

If the digit next to the one rounded is more than
5, the digit to be rounded is increased by 1. If the digit
next to the one rounded is less than 5, the digit to be
rounded is left unchanged. If the digit next to the one
rounded is 5, then the digit to be rounded is increased
by 1 if it is odd and is left unchanged if it is even.

2. For addition or subtraction write the numbers
one below the other with all the decimal points in one
line. Now locate the first column from left that has a
doubtful digit. All digits right to this column are
dropped from all the numbers and rounding is done to
this column. The addition or subtraction is now
performed to get the answer.

Example 2.10

Round off the following numbers to three significant
digits (a) 15462, (b) 14°745, (¢) 14'750 and (d) 14:650
x 10",

: (a) The third significant digit is 4. This digit is
to be rounded. The digit next to it is 6 which is greater
than 5. The third digit should, therefore, be increased
by 1. The digits to be dropped should be replaced by
zeros because they appear to the left of the decimal.
Thus, 15462 becomes 15500 on rounding to three
significant digits.

(b) The third significant digit in 14:745 is 7. The number
next to it is less than 5. So 14745 becomes 14'7 on
rounding to three significant digits.

(c) 14'750 will become 14'8 because the digit to be
rounded is odd and the digit next to it is 5.

Solution

(d) 14'650 x 10 '* will become 146 x 10 because the
digit to be rounded is even and the digit next to it is 5.

Example 2.11

252 x 1374
333
are significant.

Evaluate O All the digits in this expression

252 x 1374
333
Out of the three numbers given in the expression 252
and 33'3 have 3 significant digits and 1374 has four.
The answer should have three significant digits.
Rounding 1039-7838... to three significant digits, it

becomes 1040. Thus, we write

Solution : We have =1039-7838....

252 x1374

sag = 1040.
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Example 2.12

Evaluate 24:36 + 0-0623 + 256-2.
Solution :
24:36
0-0623
2562

Now the first column where a doubtful digit occurs is
the one just next to the decimal point (256-2). All digits
right to this column must be dropped after proper
rounding. The table is rewritten and added below
244
01
256°2
280°7
The sum is 280°7.

2.14 ERRORS IN MEASUREMENT

While doing an experiment several errors can enter
into the results. Errors may be due to faulty
equipment, carelessness of the experimenter or
random causes. The first two types of errors can be
removed after detecting their cause but the random
errors still remain. No specific cause can be assigned
to such errors.

When an experiment is repeated many times, the
random errors are sometimes positive and sometimes
negative. Thus, the average of a large number of the
results of repeated experiments is close to the true
value. However, there is still some uncertainty about
the truth of this average. The uncertainty is estimated
by calculating the standard deviation described below.

Let «x,, x5, x3, ..., xy are the results of an
experiment repeated N times. The standard deviation
o is defined as

GZVE. x;—x) "

i=1

M=

where x = % Y x; is the average of all the values of x.

The best value of x derived from these experiments is

x and the uncertainty is of the order of +c. In fact

x * 1:96 6 is quite often taken as the interval in which
the true value should lie. It can be shown that there
is a 95% chance that the true value lies within
x+1960.

If one wishes to be more sure, one can use the
interval x £ 3 ¢ as the interval which will contain the

true value. The chances that the true value will be
within x + 3 ¢ is more that 99%.

All this is true if the number of observations N is
large. In practice if N is greater than 8, the results
are reasonably correct.

Example 2.13

The focal length of a concave mirror obtained by a
student in repeated experiments are given below. Find
the average focal length with uncertainty in + G limit.

No. of observation focal length in cm

254
252
256
251
253
252
255
254
253
257

© 00 3 O Uk~ W N =

[y
(=)

_ 10
Solution : The average focal length f :1—10 S fi
i=1

=25'37 = 25'4.

The calculation of ¢ is shown in the table below:

i f; fi-f (i-H)*  Z-D°
cm cm em? cm?
1 254 00 0-00
2 252 -02 0-04
3 256 02 0-04
4 251 -03 009
5 253 -01 0-01 033
6 252 -02 0-04
7 255 01 0-01
8 254 00 0-00
9 253 -01 0-01
10 257 03 0-09
\/%Z(Tmmm
=02 cm.

Thus, the focal length is likely to be within (254 *
02 cm) and we write

f=(254+02) cm.
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Worked Out Examples

1. A vector has component along the X-axis equal to 25 unit
and along the Y-axis equal to 60 unit. Find the
magnitude and direction of the vector.

Solution : The given vector is the resultant of two
perpendicular vectors, one along the X-axis of magnitude
25 unit and the other along the Y-axis of magnitude
60 units. The resultant has a magnitude A given by

The angle a between this vector and the X-axis is given
by

60
=—10
tana o5

2. Find the resultant of the three vectors shown in figure
(2-W1).

Figure 2-W1

Solution : Take the axes as shown in the figure.
The x-component of the 5:0 m vector =5°0 m cos37°
=40 m,
the x-component of the 30 m vector = 3:0 m
and the x-component of the 2'0 m vector = 2:0 m cos90°
=0.
Hence, the x-component of the resultant
=40m+30m+ 0 ="70m.
The y-component of the 5:0 m vector = 5°0 m sin37°
=30m,
the y-component of the 3:0 m vector = 0
and the y-component of the 2:0 m vector = 2:0 m.
Hence, the y-component of the resultant
=30m+ 0+ 20m =50m.
The magnitude of the resultant vector

=86m.
If the angle made by the resultant with the X-axis is 6,
then
_ y-component _ 5-0

tan® 7x—componen‘c =70 or, 6 =355°.

3. The sum of the three vectors shown in figure (2-W2) is
zero. Find the magnitudes of the vectors OB and OC.

Solution : Take the axes as shown in the figure

A

Figure 2-W2

The x-component of O_A =(0A)cos90° = 0.
The x-component of 073 = (OB)cos0° = OB.

The x-component of O_é =(0C)cos135° = - \/_12 ocC.

Hence, the x-component of the resultant

_Ap_ L .
=OB \/200. o @

It is given that the resultant is zero and hence its
x-component is also zero. From (i),

-1 .
OB = 72 OocC. .. ()

The y-component of 074 = 0A cos180° = - OA.
The y-component of O_B = OB c0s90° = 0.

The y-component of 0?) =0C cos4b5° = \/—12 ocC.
Hence, the y-component of the resultant
=\/—1200—OA ... (iii)
As the resultant is zero, so is its y-component. From (iii),
é OC=0A, or, OC=v20A =5V2m.

From (ii), OB = \%2 OC=5m.

4. The magnitudes of vectors O_A, O_é and O_é' in figure

(2-W3) are equal. Find the direction of O—A + O_é - O—é.

Figure 2-W3
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Solution : Let OA = OB = OC = F.

= V3
x-component of OA = F cos30° = F?IZI

x-component of OE? =F cos60° = %D

x-component of OE’ =F c0s135° = - \7_25

x-component of O—A + O_i? - O_é

U o0 rp0O
= BﬂEH %D— I}ED

02 0

:g(\/3+1+\/2).

N[y

y-component of O_A =F cos60° =—0

= Fv
y-component of OB =F cos150° = - 73 O

y-component of 0?: =F cos45° = 5—2 ad

y-component of O_A + O_j% - O_é

WD+%F\/3% OF O
SO0 5 O O50
%D 0o 20 H/ED

Y
=5 (1-V3-v2)
Angle of OA + OB - OC with the X-axis
F
_ 71—5(1—\/3—v2)_t - (1-V3-v2)
ctan TR 1+ V3 +V2)

§(1+\/3+\/2)

5. Find the resultant of the three vectors O_A,O_é and
OC shown in figure (2-W4). Radius of the circle is R.

2,

e

Figure 2-W4

Solution : OA = OC.

O_A + O_é is along O_Ié (bisector) and its magnitude is
2R cos45° = RV2.

(O_A + 0?)) + O_j% is along 073 and its magnitude is
RV2+R=R(1+V2).

6. The resultant of vectors O_A and O_lé is perpendicular to
OA (figure 2-W5). Find the angle AOB.

Figure 2-W5

Solution : Take the dotted lines as X, Y axes.
x-component of O_A =4 m, x-component of
O% =6 m cos6.
x-component of the resultant = (4 + 6 cos6) m.

But it is given that the resultant is along Y-axis. Thus,
the x-component of the resultant = 0

4+6¢c0s0=0 or, cosB=-2/3.

7. Write the unit vector in the direction of A=5i+ f— 2 k.

Solution :

The required unit vector is é
Al

-5 ;1 2 7
¥30 ' V307 " V30
8 Ifla+bl=la-bl show that a Ob.

Solution : We have la +b1°=(a +b) Ha +b)

=ai+ab+bu+blb
=a’+b’+2a[b.

Similarly,

la-bl°=(ad-b)Qa -b)
=a’+b*-2qa[b.
If la+bl =la-5bl,
a’+b*+2ab=a’+b"-2a b
or, ab=0
or, a 0b.

9 Ifa=2i+3j+4k and b=4i+35+2k, find the angle
between a and b.
a (b =ab cosd

-

Solution : We have

a

or, cosB = ab

where 0 is the angle between @ and b.

Now 5[5=axbx+ayby +a,b,
=2x4+3x3+4x2=25,

Also a= V?zf:r:z;zjr_azz

and b=Vb]+b +b] =V16+9 +4 =V29.
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25
Th ==
us, cos0 29
_1[ 25
— 149 .
or, 0 = cos 29

A-(BxC)
- = - - - =
Solution : BxC=(i+2k)X(j—-Fk)
- o > - o >
=ixX(J-k)+2kx(j-Fk)
i - o >
=iXj—ixk+2kxj-2kxk
s = —
=k+j- 21—0——2l+_]+k
- o 2 - - -
A-(BxC)=(2i- 3]+7k)( 21+]+k)
=@2)D+E=3) M+ D)
0.

11. The volume of a sphere is given by
v=dir
3

where R is the radius of the sphere. (a) Find the rate of
change of volume with respect to R. (b) Find the change
in volume of the sphere as the radius is increased from
200 cm to 20’1 cm. Assume that the rate does not
appreciably change between R = 200 cm to R = 20'1 cm.

Solution : (a) V= % TR’
av _4 s_ 4 ape_ 2
or, dR"3 dR ®R°® 3 -BR"=4nR".
(b) At R = 20 cm, the rate of change of volume with the
radius is
dv

v _ 2.
dR—4nR =471 (400 cm °)

=1600 T cm °.
The change in volume as the radius changes from
20°0 cm to 20'1 cm is

dv

AV=EAR

= (1600 7t cm *) (0°1 cm)
=160 mem .

12. Find the derivative of the following functions with respect
sin x

tox. (@) y=x"sinx, (b) y= and (¢) y =sin (x 5.

Solution :
(a) y=x"sinx
dy .d . . d
e x dr (sin x) + (sin x) dr (x5

=x’cosx+ (sin x) (2x)
= x(2sin x + xcos x).

(b) y=

xi(sinx)—sinx dx
dy dx dx

dx x

2

XC0S X — sin x
=7 2

x
dy o dx”)
© dx ~ dx? (sinx’)- dx
=cosx (2x)
=2 cosx _.

13. Find the maximum or minimum values of the function

y=x+%forx>0.

Solution : y=x+l
x
dy d . d,
dx_dx(x)+dx(x )
=l+(-x )
=1—i2-
x

dy
dx_O

or, 1—%=0
x

Thus,
For x > 0 the only possible maximum or minimum is at

x=1. Atle,y:x+%:2.

x=1 or -1.

Near x=0, y=x +% is very large because of the term

%~ For very large x, again y is very large because of the

term x. Thus x = 1 must correspond to a minimum. Thus,
y has only a minimum for x > 0. This minimum occurs
at x = 1 and the minimum value of y is y = 2.

14. Figure (2-W6) shows the curve y =x°. Find the area of
the shaded part between x = 0 and x = 6.

F——x—Ax

Figure 2-W6
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Solution : The area can be divided into strips by drawing
ordinates between x = 0 and x = 6 at a regular interval
of dx. Consider the strip between the ordinates at x and
x + dx. The height of this strip is y =x °. The area of this
strip is dA =y dx = x dx.

The total area of the shaded part is obtained by
summing up these strip-areas with x varying from 0 to
6. Thus

6
A:J.xzdx
0
6

3
x 216 -0
{3}0_ =T

3

¢
15. Evaluate _[A sin wt dt where A and o are constants.
0
¢
J.A sin ot dt

0

Solution :

t

=A{M} =é (1 - cos wt)-
® , O

16. The velocity v and displacement x of a particle executing
simple harmonic motion are related as

bty

dx
At x=0, v=v,. Find the wvelocity v when the
displacement becomes x.

Solution : We have
vty
dx

or, vdv=—w"xdx

v X
or, fvdvzj—mzxdx .. (1)

Vo 0
When summation is made on — o > x dx the quantity to

be varied is x. When summation is made on v dv the
quantity to be varied is v. As x varies from 0 to x the

velocity varies from v, to v. Therefore, on the left the
limits of integration are from v, to v and on the right
they are from 0 to x. Simiplifying (i),

or l(v2 02)— w2
’ 2 0 2
2 2 2 2
or, vV =v,-0 x
2 2
or, v=Nv,-0 x

17. The charge flown through a circuit in the time interval

between t and t + dt is given by dq =e i dt, where T is

a constant. Find the total charge flown through the
circuit between t=0 to t =1.

Solution : The total charge flown is the sum of all the dg’s
for ¢ varying from ¢ = 0 to ¢ =1. Thus, the total charge
flown is

T
Q=[e "at
0

/ T

—-t/T

e 1
{_1/1 }O=T(1_Ej'

18. Evaluate (21-6002 + 234 + 2732:10) x 13.

Solution :
21.6002 22
234 = 234
273210 2732
2988

The three numbers are arranged with their decimal
points aligned (shown on the left part above). The
column just left to the decimals has 4 as the doubtful
digit. Thus, all the numbers are rounded to this column.
The rounded numbers are shown on the right part above.
The required expression is 2988 x 13 = 38844. As 13 has
only two significant digits the product should be rounded
off after two significant digits. Thus the result is 39000.

QUESTIONS FOR SHORT ANSWER

1. Is a vector necessarily changed if it is rotated through
an angle ?

2. Is it possible to add two vectors of unequal magnitudes
and get zero ? Is it possible to add three vectors of equal
magnitudes and get zero ?

3. Does the phrase “direction of zero vector” have physical
significance ? Discuss in terms of velocity, force etc.

4. Can you add three unit vectors to get a unit vector ?
Does your answer change if two unit vectors are along
the coordinate axes ?
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Can we have physical quantities having magnitude and
direction which are not vectors ?

Which of the following two statements
appropriate ?

is more

(a) Two forces are added using triangle rule because
force is a vector quantity.
(b) Force is a vector quantity because two forces are
added using triangle rule.

Can you add two vectors representing physical
quantities having different dimensions? Can you
multiply two vectors representing physical quantities
having different dimensions ?

Can a vector have zero component along a line and still
have nonzero magnitude ?

9.

10.

11.

12.

13.

14.

Let €, and €, be the angles made by A and — A with the
positive X-axis. Show that tang, =tang,. Thus, giving
tane does not uniquely determine the direction of A.

Is the vector sum of the unit vectors ; and fa unit

vector ? If no, can you multiply this sum by a scalar
number to get a unit vector ?

Let A=3i+4 J. Write four vector B such that A # B but
A =B

Can you have AxB=A [B with A#0 and B #0? What
if one of the two vectors is zero ?

If AxB =0, can you say that (a) A=B, (b) A#B?

Let A:5f—4jﬁ and §:—7‘5lﬁ+6‘]f Do we have

o]

B=FkA? Can we say ==k ?

OBJECTIVE 1

. A vector is not changed if

(a) it is rotated through an arbitrary angle
(b) it is multiplied by an arbitrary scalar
(c) it is cross multiplied by a unit vector
(d) it is slid parallel to itself.

Which of the sets given below may represent the
magnitudes of three vectors adding to zero ?

(a) 2, 4, 8 (b) 4, 8, 16 1,21 (d) 05, 1, 2.
The resultant of A and B makes an angle a with A and
B with B,

(a)a<fP (b)a<pBif A<B

(c)a<Pif A>B (d) a<p if A=B.

The component of a vector is

(a) always less than its magnitude
(b) always greater than its magnitude
(c) always equal to its magnitude

(d) none of these.

A vector A points vertically upward and B points

towards north. The vector product AxB is
(a) along west (b) along east
(c) zero (d) vertically downward.

6. The radius of a circle is stated as 2:12 cm. Its area should

be written as
(a) 14 em?® (b) 14'1 em? (¢) 14'11 ecm” (d) 141124 cm>.

OBJECTIVE 1II

. A situation may be described by using different sets of

coordinate axes having different orientations. Which of
the following do not depend on the orientation of the
axes ?

(a) the value of a scalar (b) component of a vector

(c) a vector (d) the magnitude of a vector.

Let C=A +B.

(a) | C | is always greater than | A |

(b) It is possible to have | Cl<I1Al and
ICl<IBI

(c) C is always equal to A + B

(d) C is never equal to A + B.

Let the angle between two nonzero vectors A and B be
120° and its resultant be C.

(a) C must be equal to A -B [0

(b) C must be less than 0A -B O
(¢) C must be greater than JA - B [
(d) C may be equal to JA-B [

The x-component of the resultant of several vectors

(a) is equal to the sum of the x-components of the vectors
(b) may be smaller than the sum of the magnitudes of
the vectors

(c) may be greater than the sum of the magnitudes of
the vectors

(d) may be equal to the sum of the magnitudes of the
vectors.

The magnitude of the vector product of two vectors

| Al and | B Imay be
(a) greater than AB
(c) less than AB

(b) equal to AB
(d) equal to zero.
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EXERCISES

. A vector A makes an angle of 20° and B makes an angle

of 110° with the X-axis. The magnitudes of these vectors
are 3 m and 4 m respectively. Find the resultant.

. Let A and B be the two vectors of magnitude 10 unit

each. If they are inclined to the X-axis at angles 30° and
60° respectively, find the resultant.

. Add vectors ;\, B and C each having magnitude of 100

unit and inclined to the X-axis at angles 45°, 135° and
315° respectively.

. Leta=4i+3 fand b=3i+4 _]'_.' (a) Find the magnitudes

of (a) a, (b) b, (¢) a +b and (d) a - b.

. Refer to figure (2-E1). Find (a) the magnitude, (b) x and

y components and (c¢) the angle with the X-axis of the
resultant of OA, BC and DE .

Y

1.0m

E
Figure 2-E1

. Two vectors have magnitudes 3 unit and 4 unit

respectively. What should be the angle between them if
the magnitude of the resultant is (a) 1 unit, (b) 5 unit
and (¢) 7 unit.

. A spy report about a suspected car reads as follows. “The

car moved 2:00 km towards east, made a perpendicular
left turn, ran for 500 m, made a perpendicular right
turn, ran for 400km and stopped”. Find the
displacement of the car.

. A carrom board (4 ft x 4 ft square) has the queen at the

centre. The queen, hit by the striker moves to the front
edge, rebounds and goes in the hole behind the striking
line. Find the magnitude of displacement of the queen
(a) from the centre to the front edge, (b) from the front
edge to the hole and (c) from the centre to the hole.

. A mosquito net over a 7 ft x 4 ft bed is 3 ft high. The

net has a hole at one corner of the bed through which
a mosquito enters the net. It flies and sits at the
diagonally opposite upper corner of the net. (a) Find the
magnitude of the displacement of the mosquito. (b)
Taking the hole as the origin, the length of the bed as
the X-axis, its width as the Y-axis, and vertically up as
the Z-axis, write the components of the displacement
vector.

Suppose a is a vector of magnitude 4'5 unit due north.
What is the vector (a) 3 a, (b) —4a?
Two vectors have magnitudes 2 m and 3 m. The angle

between them is 60°. Find (a) the scalar product of the
two vectors, (b) the magnitude of their vector product.

12, Let A, A, A; A, A, A A, be a regular hexagon. Write the
x-components of the vectors represented by the six sides
taken in order. Use the fact that the resultant of these
six vectors is zero, to prove that
cos0 + cosTV3 + c0s2TV3 + cos3TV3 + cos417Y3 + cos5TY3 = 0.

Use the known cosine values to verify the result.

Y
Ag Ay
Ag Az
60° X
A1 Az
Figure 2-E2

13. Let ¢a=2i+3j+4k and b=3i+4j+5k. Find the
angle between them.

14. Prove that A ({A xB)=0.
15. IfA=2;+3j+4% and B=4i+3j+2F, find A x B.

16. If A, f?, C are mutually perpendicular, show that
C x(AxB)=0. Is the converse true ?

17. A particle moves on a given straight line with a constant
speed v. At a certain time it is at a point P on its straight

line path. O is a fixed point. Show that O—i’ xv is
independent of the position P.

18. The force on a charged partlcle due to electric and
magnetlc fields is given by F= q E +q v xB. Suppose
E is along the X-axis and B along the Y-axis. In what
direction and with what minimum speed v should a
positively charged particle be sent so that the net force
on it is zero ?

19. Give an example for which AB=CBbutAzC.

20. Draw a graph from the following data. Draw tangents
at x = 2, 4, 6 and 8. Find the slopes of these tangents.
Verify that the curve drawn is y = 2x * and the slope of

. _dy _
tangent is tanf = T 4x.
x 1 2 3 4 5 6 7 8 9 10

2 8 18 32 50 72 98 128 162 200
21. A curve is represented by y = sin x. If x is changed from

T T
3737100
22, The electric current in a charging R-C circuit is given
by i=ioe_t/RC where i,, R and C are constant

parameters of the circuit and ¢ is time. Find the rate of
change of current at (a) t =0, (b) ¢ = RC, (¢) t = 10 RC.

23. The electric current in a discharging R—C circuit is given

“HRC Ghere i,, R and C are constant parameters

Let i,=200A, R=6:00x10°Q

byi=i,e

and ¢ is time.
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and C = 0’500 pF. (a) Find the current at ¢t = 03 s 30. Write the number of significant digits in (a) 1001,
(b) Find the rate of change of current at ¢ = 0'3 s. (b) 100-1, (¢) 10010, (d) 0-001001.
(c') Find approximately the current at ¢ = 0-31 2S 31. A metre scale is graduated at every millimetre. How
24. Find the area bounded under the curve y =3x "+ 6x +7 many significant digits will be there in a length
and the X-axis with the ordinates at x =5 and x = 10. measurement with this scale ?
25. f{{zgistl:;targ:nencio(s)e:nl(oiy t}iencurve y = sinx and the 32. Round the following numbers to 2 significant digits.
ween x = r= (a) 3472, (b) 84-16, (c) 2:55 and (d) 28°5.
26. Find the area bounded by the curve y =e ", the X-axis . . .
and the Y-axis. 33. Thei.llengﬂill.and the r?dluz (:;f abcy}:gier meas;r§d75W1th
27. A rod of length L is placed along the X-axis between a S et.cal 1pgrsl al;e N 0?}? 01 ¢ ¢ t}fm aln d em
x = 0 and x = L. The linear density (mass/length) p of respeclively. Lalculate the volume ol the cyunder.
the rod varies with the distance x from the origin as 34. The thickness of a glass plate is measured to be
p =a + bx. (a) Find the SI units of @ and b. (b) Find the 2:17 mm, 217 mm and 218 mm at three different
mass of the rod in terms of a, b and L. places. Find the average thickness of the plate from this
28. The momentum p of a particle changes with time ¢ data.
. . d,
according to the relation d—l;=(10 N) + (2 N/s)t. If the 35. The length of the string of a simple pendulum is
momentum is zero at £ = 0. what will the momentum be measured with a metre scale to be 90'0 cm. The radius
at £ = 10s? of the bob plus the length of the hook is calculated to
29. The changes in a function y and the independent be 213 cm using measurements with a slide callipers.
. dy 5 . ) What is the effective length of the pendulum ? (The
variable x are related as ax X Find y as a function effective length is defined as the distance between the
of x. point of suspension and the centre of the bob.)
O
ANSWERS
OBJECTIVE I 11. (a) 3m”’ (b) 3v3 m*
L@@ 2@ 3@ 4@ 5 (@ 6 (b 13. cos™' (38/V1450)
15. -6:+127-6Fk
16. no
OBJECTIVE II 18. along Z-axis with speed E/B
1. (a), (c), (d) 2. ) 3.(c) 4. (a), ), @ 21. 00157
5. (b), (o), (d) iy i g
22. (a) RC (b) RCe () 0o 10
. -20 .
EXERCISES 23. (a) mA (b) — A/s (¢) ﬁA
e 3e 3e
1. 5m at 73° with X-axis 24. 1135
2. 20 cos15° unit at 45° with X-axis 25. 2
3. 100 unit at 45° with X-axis 26. 1 . .
4. ()5 (b) 5 () V2 (d) v2 27. (a) kg/m, kg/m (b) aL + bL'/2
5. (a) 1'6m  (b) 098 m and 1'3 m respectively 28. 200 kg—m/s
, 3
(c) tan™'(1°32) 29. y=% +(C
6. (a) 180° (b) 90° © 0 3
1 30. (a) 4 (b) 4 (© 5 (d) 4
7. 6:02km, tan" o0 31. 1,2 3 or 4
3 2 70 £ b 4770 oy £ 32. (a) 3500 (b) 84 ()26 (d) 28
. (a)g t (b) 3 t (c) t 33. 437 em’
9. (a) V74 ft (b) 7ft, 41t, 3ft 34. 2°17 mm
10. (a) 135 unit due north (b) 18 unit due south 35. 92'1 cm



CHAPTER 3

REST AND MOTION :

KINEMATICS

3.1 REST AND MOTION

When do we say that a body is at rest and when
do we say that it is in motion ? You may say that if a
body does not change its position as time passes it is
at rest. If a body changes its position with time, it is
said to be moving. But when do we say that it is not
changing its position ? A book placed on the table
remains on the table and we say that the book is at
rest. However, if we station ourselves on the moon (the
Appollo missions have made it possible), the whole
earth is found to be changing its position and so the
room, the table and the book are all continuously
changing their positions. The book is at rest if it is
viewed from the room, it is moving if it is viewed from
the moon.

Motion is a combined property of the object under
study and the observer. There is no meaning of rest
or motion without the viewer. Nothing is in absolute
rest or in absolute motion. The moon is moving with
respect to the book and the book moves with respect
to the moon. Take another example. A robber enters
a train moving at great speed with respect to the
ground, brings out his pistol and says “Don’t move,
stand still”. The passengers stand still. The passengers
are at rest with respect to the robber but are moving
with respect to the rail track.

o ﬁiﬁéﬁéﬁ o

Figure 3.1

To locate the position of a particle we need a frame
of reference. A convenient way to fix up the frame of
reference is to choose three mutually perpendicular
axes and name them X-Y-Z axes. The coordinates, (x,
y, z) of the particle then specify the position of the

particle with respect to that frame. Add a clock into
the frame of reference to measure the time. If all the
three coordinates x, y and z of the particle remain
unchanged as time passes, we say that the particle is
at rest with respect to this frame. If any one or more
coordinates change with time, we say that the body is
moving with respect to this frame.

There is no rule or restriction on the choice of a
frame. We can choose a frame of reference according
to our convenience to describe the situation under
study. Thus, when we are in a train it is convenient
to choose a frame attached to our compartment. The
coordinates of a suitcase placed on the upper berth do
not change with time (unless the train gives a jerk)
and we say that the suitcase is at rest in the train-
frame. The different stations, electric poles, trees etc.
change their coordinates and we say that they are
moving in the train-frame. Thus, we say that “Bombay
is coming” and “Pune has already passed”.

In the following sections we shall assume that the
frame of reference is already chosen and we are
describing the motion of the objects in the chosen
frame. Sometimes the choice of the frame is clear from
the context and we do not mention it. Thus, when one
says the car is travelling and the rickshaw is not, it
is clear that all positions are measured from a frame
attached to the road.

3.2 DISTANCE AND DISPLACEMENT

Suppose a particle is at A at time ¢; and at B at
time ¢, with respect to a given frame (figure 3.2).

Z/

Figure 3.2
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During the time interval ¢; to ¢, the particle moves
along the path ACB. The length of the path ACB is
called the distance travelled during the time interval
t; to t,. If we connect the initial position A with the
final position B by a straight line, we get the
displacement of the particle. The magnitude of the
displacement is the length of the straight line joining
the initial and the final position. The direction is from
the initial to the final position. The displacement has
both the magnitude as well as the direction. Further
the displacements add according to the triangle rule
of vector addition. Suppose a particle kept on a table
is displaced on the table and at the same time the
table is also displaced in the room. The net
displacement of the particle in the room is obtained by
the vector sum of the two displacements. Thus,
displacement is a vector quantity. In contrast the
distance covered has only a magnitude and is thus, a
scalar quantity.

Example 3.1

An old person moves on a semi-circular track of radius
400 m during a morning walk. If he starts at one end
of the track and reaches at the other end, find the
distance covered and the displacement of the person.

Solution : The distance covered by the person equals the
length of the track. It is equal to mR=nx400m
=126 m.

The displacement is equal to the diameter of the
semi-circular track joining the two ends. It is 2R =2

x 400 m = 80 m. The direction of this displacement is
from the initial point to the final point.

3.3 AVERAGE SPEED AND
INSTANTANEOUS SPEED

The average speed of a particle in a time interval
is defined as the distance travelled by the particle
divided by the time interval. If the particle travels a
distance s in time ¢; to ¢,, the average speed is defined
as

v = S
av t2—t1

(3.1

The average speed gives the overall “rapidity” with which
the particle moves in this interval. In a one-day cricket
match, the average run rate is quoted as the total runs
divided by the total number of overs used to make these
runs. Some of the overs may be expensive and some may
be economical. Similarly, the average speed gives the
total effect in the given interval. The rapidity or slowness
may vary from instant to instant. When an athelete
starts running, he or she runs slowly and gradually

INDIA 210/4

Overs 42

Average Run rate 5.00
Runs in prev. over:16

g

u (LT
Figure 3.3

increases the rate. We define the instantaneous speed
at a time ¢ as follows.

Let As be the distance travelled in the time interval
t to t + At. The average speed in this time interval is
_As
Y= pr
Now make A¢ vanishingly small and look for the value

of ;ﬁt- Remember As is the distance travelled in the

chosen time interval At. As At approaches 0, the

distance As also approaches zero but the ratio % has

a finite limit.
The instantaneous speed at a time ¢ is defined as

a0 AE - dt
where s is the distance travelled in time ¢. The average
speed is defined for a time interval and the
instantaneous speed is defined at a particular instant.
Instantaneous speed is also called “speed”.

(3.2)

Example 3.2

The distance travelled by a particle in time t is given

by s=(2'5m/s 2)1,‘2. Find (a) the average speed of the
particle during the time 0 to 50s, and (b) the
instantaneous speed at t = 50 s.

Solution : (a) The distance travelled during time 0 to
50s is
s=25m/s% (50s) " =625m.
The average speed during this time is

0, =325 _ 0.5 mys.
5s
(b) s=(25m/s% ¢’
or, % =(25m/s?) (28 =(50m/s?) ¢

At t = 50 s the speed is
v=L = 50mis? (505 =25ms.

If we plot the distance s as a function of time
(figure 3.4), the speed at a time ¢ equals the slope of
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the tangent to the curve at the time ¢ The average
speed in a time interval ¢ to ¢ + At equals the slope of
the chord AB where A and B are the points on the

S

Figure 3.4

curve corresponding to the time ¢ and ¢ + Af. As At
approaches zero, the chord AB becomes the tangent at

A and the average speed % becomes the slope of the

tangent which is %-

If the speed of the particle at time ¢ is v, the
distance ds travelled by it in the short time interval
t to t +dt is v dt. Thus, ds = vdt. The total distance
travelled by the particle in a finite time interval ¢; to
t, can be obtained by summing over these small
distances ds as time changes from ¢; to t,. Thus, the
distance travelled by a particle in the time interval

\

t to t
Figure 3.5

t, to t,is
tZ

s=_‘.vdt.

t

(3.3)

If we plot a graph of the speed v versus time ¢, the
distance travelled by the particle can be obtained by
finding the area under the curve. Figure (3.5) shows
such a speed-time graph. To find the distance travelled
in the time interval #;, to ¢, we draw ordinates from
t=t, and ¢ =¢,. The area bounded by the curve v -t¢,
the X-axis and the two ordinates at ¢t = ¢; and t=t,
(shown shaded in the figure) gives the total distance
covered.

The dimension of speed is LT “' and its SI unit is
metre/second abbreviated as m/s.

Example 3.3

Figure (3.6) shows the speed versus time graph for a
particle. Find the distance travelled by the particle
during the time t = 0 to t = 3 s.

0 1 2 3 (in selconds)

Figure 3.6

Solution : The distance travelled by the particle in the
time O to 3 s is equal to the area shaded in the figure.
This is a right angled triangle with height = 6 m/s and

the base = 3s. The area is %(base) (height) =%>< 3s)

(6 m/s) =9 m. Thus, the particle covered a distance of
9 m during the time 0 to 3 s.

3.4 AVERAGE VELOCITY AND
INSTANTANEOUS VELOCITY

The average velocity of a particle in a time interval
t; to ¢, is defined as its displacement divided by the
time interval. If the particle is at a point A (figure
3.7) at time ¢+ = ¢t; and at B at time ¢ = ¢,, t_l>1e

displacement in this time interval is the vector AB .
The average velocity in this_‘gime interval is then,
- AB

V=7 °
av tz_tl

Figure 3.7

Like displacement, it is a vector quantity.

Position vector : If we join the origin to the position
of the particle by a straight line and put an arrow
towards the position of the particle, we get the position
vector of the particle. Thus, the position Vector_> of the

particle shown in _f)lgure (3.7) at time ¢ = t; is OA and

that at ¢ = ¢, is OB . The displacement of the particle
in the time interval ¢, to ¢, is
= 5 >

- > -
AB=AO+0B=0B-0OA=r,-r,.
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The average velocity of a particle in the time interval

t; to t, can be written as
N O
UVgp=—70 3.4
w= "1 (3.4)

Note that only the positions of the particle at time
t =t; and t = ¢, are used in calculating the average
velocity. The positions in between ¢; and #, are not
needed, hence the actual path taken in going from A
to B is not important in calculating the average
velocity.

Example 3.4

A table clock has its minute hand 4'0 cm long. Find the
average velocity of the tip of the minute hand (a) between
6:00 a.m. o 630 a.m. and (b) between 600 am. to
6:30 p.m.

Solution : At 6'00 a.m. the tip of the minute hand is at
12 mark and at 6'30 a.m. or 6-30 p.m. it is 180° away.
Thus, the straight line distance between the initial and
final position of the tip is equal to the diameter of the
clock.

Displacement = 2 R = 2 x 4'0 cm = 80 cm.

The displacement is from the 12 mark to the 6 mark on
the clock panel. This is also the direction of the average
velocity in both cases.

(a) The time taken from 600 a.m. to 6:30 a.m. is 30
minutes = 1800 s. The average velocity is

_ Displacement  8:0 cm
Yo = ime  1800s

(b) The time taken from 600 a.m. to 6:30 p.m. is 12
hours and 30 minutes = 45000 s. The average velocity

=44 x10"° cm/s.

18

_ Displacement  8:0 cm

= = =18x107* .
Vv 45000 s 8x10 " cm/s

time

The instantaneous velocity of a particle at a time
t is defined as follows. Let the average velocity of the
particle in a short time interval ¢ to ¢ + A¢ be v,,. This
average velocity can be written as
G
Uav = Ly
where Ar is the displacement in the time interval Az
We now make Af vanishingly small and find the

limiting value of ar 0 This value is instantaneous

At
velocity v of the particle at time ¢.
- e A dr
=lim = -2~ O 3.5
"Talont  dt (3.5)

For very small intervals the displacement Ar is along
the line of motion of the particle. Thus, the length

Ar equals the distance As travelled in that interval. So

the magnitude of the velocity is

U_Dgfﬂ_ldf|_g§

Odt g dt dt

which is the instantaneous speed at time ¢
Instantaneous velocity is also called the “velocity”.

(3.6)

3.5 AVERAGE ACCELERATION AND
INSTANTANEOUS ACCELERATION

If the velocity of a particle remains constant as
time passes, we say that it is moving with uniform
velocity. If the velocity changes with time, it is said to
be accelerated. The acceleration is the rate of change
of velocity. Velocity is a vector quantity hence a change
in its magnitude or direction or both will change the
velocity.

Suppose the velocity of a particle at time ¢, is 171
and at time ¢, it is v,. The change produced in time

interval ¢, to ¢, is v,-v,. We define the average

acceleration a,, as the change in velocity divided by
the time interval. Thus,

- Ug — 171
Q=770
av tZ _ tl
Again the average acceleration depends only on the
velocities at time ¢, and ¢,. How the velocity changed
in between ¢; and ¢, is not important in defining the
average acceleration.

(3.7

Instantaneous acceleration of a particle at time ¢
is defined as
5 = lim & = @

a-o0 Nt dt (38)

where Av is the change in velocity between the time ¢
and ¢ + Af. At time ¢ the velocity is v and at time

. - - Av .
t + At it becomes v + Av. A I8 the average acceleration

of the particle in the interval At. As At approaches zero,
this average acceleration becomes the instantaneous
acceleration. Instantaneous acceleration is also called
“acceleration”.

The dimension og acceleration is LT _22 and its SI
unit is metre/second” abbreviated as m/s".

3.6 MOTION IN A STRAIGHT LINE

When a particle is constrained to move on a
straight line, the description becomes fairly simple. We
choose the line as the X-axis and a suitable time
instant as ¢ = 0. Generally the origin is taken at the
point where the particle is situated at ¢ = 0. The
position of the particle at time ¢ is given by its
coordinate x at that time. The velocity is
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_dx
v=r (3.9
. . _dv
and the acceleration is a = at (3.10)
_d Hixl d x
T T e

If % is positive, the direction of the velocity is
along the positive X-axis and if % is negative, the

direction, is along the negative X-axis. Similarly if %
is positive, the acceleration is along the positive X-axis
and if % is negative, the acceleration is along the

negative X-axis. The magnitude of v is speed. If the
velocity and the acceleration are both positive, the
speed increases. If both of them are negative then also
the speed increases but if they have opposite signs, the
speed decreases. When the speed decreases, we say
that the particle is decelerating. Deceleration is
equivalent to negative acceleration. An acceleration of
2:0m/s” towards east is same as a deceleration of
2:0 m/s” towards west.

Motion with Constant Acceleration

Suppose the acceleration of a particle is ¢ and
remains constant. Let the velocity at time 0 be u and
the velocity at time ¢ be v. Thus,

dv _ _
il or, dv=adt
v t

or, IdeIadt.
u 0

As time changes from 0 to ¢ the velocity changes from
u to v. So on the left hand side the summation is made
over v from u to v whereas on the right hand side the
summation is made on time from O to ¢. Evaluating
the integrals we get,

v t
[v], =alt],
or, v-u=at
or, v=u+at. (3.12)

Equation (3.12) may be written as

dx =u+tat
dt
or, dx = (u +at)dt
x t
or, Idx =I (u + at)dt.
0 0

At t = 0 the particle is at x = 0. As time changes
from 0 to ¢ the position changes from 0 to x. So on the
left hand side the summation is made on position from

0 to x whereas on the right hand side the summation
is made on time from 0 to . Evaluating the integrals,
the above equation becomes

t t

[x]z :Iu dt +Iatdt
0 0

t t

or, x:ujdt+aftdt
0 0
1
t
=ult] + 0
ul ]0 aDZ A
1 o
or, x=ut+ 9 at " O (3.13)
From equation (3.12),
vi= (u + at) 2
or, =u’+2uat+a’t’
g g
or, =u2+2a[]¢t+lat2|]
o 2 0O
or, =u’+2ax. .. (3.14)

The three equations (3.12) to (3.14) are collected
below in table 3.1. They are very useful in solving the
problems of motion in a straight line with constant
acceleration.

Table 3.1

v=u-+at
x:ut+lat2
2
vi=u’+2ax

Remember that x represents the position of the
particle at time ¢ and not (in general) the distance
travelled by it in time O to ¢z For example, if the
particle starts from the origin and goes upto x = 4 m,
then turns and is at x = 2m at time ¢ the distance
travelled is 6 m but the position is still given by
x=2m.

The quantities u, v and a may take positive or
negative values depending on whether they are
directed along the positive or negative direction.
Similarly x may be positive or negative.

Example 3.5

A particle starts with an initial velocity 2'5 m/s along
the positive x direction and it accelerates uniformly at
the rate 0-50 m/s®. (o) Find the distance travelled by it
in the first two seconds. (b) How much time does it take
to reach the velocity 7'5 m/s ? (¢) How much distance will
it cover in reaching the velocity 7'5 m/s ?
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: (a) We have,

Solution

x=ut+%at2
= (25 m/s) (2 5) +%(0-5o m/s ) (2s) >

=50m+10m=60m.
Since the particle does not turn back it is also the
distance travelled.

(b) We have,
v=u-+tat

or, 75m/s=25m/s+(050m/s?)¢

_75m/s-25m/s _

10 s
050 m/s *

or,

(c) We have,
vi=u’+2ax

or, (75m/s)’=(25m/s)”+2(0-50 m/s “)x

e (75 m/s) * - (25 m/s) _x
2 x 050 m/s >

Om

or,

Example 3.6

A particle having initial velocity u moves with a constant
acceleration a for a time t. (a) Find the displacement of
the particle in the last 1 second. (b) Evaluate it for
u=5m/s,a=2m/s’ and t=10s.

Solution : (a) The position at time ¢ is
1
=ut+ s at
s=ut+ za
The position at time (¢ — 1 s) is

s’=u(t—ls)+%a(t—1s)2

=ut - u(ls) +%at2—at(1 s) +%a(1 s)?
Thus, the displacement in the last 1s is
s;,=s-—¢§

=u(ls) +at(l s)—%a(l s)®

or, st:u(ls)+%(2t—ls)(ls). ()
(b) Putting the given values in (i)

H2x10s-1s)(1s)
0s O

=5m+d BH195) (1)
Os Qg

m[] 1 m
s, =d—Tls)+= 12—
t 5 SE( ) 9 e

=5m+19m =24 m.

Sometimes, we are not careful in writing the units
appearing with the numerical values of physical
quantities. If we forget to write the unit of second in
equation (i), we get,

a
st=u+§(2t—1).

This equation is often used to calculate the displacement
in the “¢th second”. However, as you can verify, different
terms in this equation have different dimensions and
hence the above equation is dimensionally incorrect.
Equation (i) is the correct form which was used to solve
part (b).

Also note that this equation gives the displacement of
the particle in the last 1 second and not necessarily the
distance covered in that second.

Freely Falling Bodies

A common example of motion in a straight line
with constant acceleration is free fall of a body near
the earth’s surface. If air resistance is neglected and
a body is dropped near the surface of the earth, it falls
along a vertical straight line. The acceleration is in the
vertically downward direction and its magnitude is
almost constant if the height is small as compared with
the radius of the earth (6400 km). This magnitude is
approximately equal to 9-8 m/s® or 32 ft/s” and is
denoted by the letter g.

If we take vertically upward as the positive Y-axis,
acceleration is along the negative Y-axis and we write
a = —g. The equation (3.12) to (3.14) may be written
in this case as

v=u-—-gt

_ 1 2
y=ut §gt
v2=u2—2gy.

Here y is the y-coordinate (that is the height above
the origin) at time ¢, u is the velocity in y direction at
t = 0 and v is the velocity in y direction at time ¢ The
position of the particle at t = 0 is y = 0.

Sometimes it is convenient to choose vertically
downward as the positive Y-axis. Then a = g and the
equations (3.12) to (3.14) become

v=u+gt
1 2

= + _
y=ut 2gt
v2=u2+2gy.

Example 3.7

A ball is thrown up at a speed of 40 m/s. Find the
maximum height reached by the ball. Take g = 10 m/s”.

Solution : Let us take vertically upward direction as the
positive Y-axis. We have v = 40 m/s and a = -10 m/s”.

At the highest point the velocity becomes zero. Using
the formula.
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v2:u2+2ay,
0=(4'0 m/s) * + 2(- 10 m/s *)y

_16m¥s’

= = 0-80 m.
YT 20 mss® m

or,

3.7 MOTION IN A PLANE

If a particle is free to move in a plane, its position
can be located with two coordinates. We choose the
plane of motion as the X-Y plane. We choose a suitable
instant as ¢ = 0 and choose the origin at the place
where the particle is situated at ¢ = 0. Any two
convenient mutually perpendicular directions in the
X-Y plane are chosen as the X and Y-axes.

The position of the particle at a time ¢ is completely
specified by its coordinates (x, y). The coordinates at
time ¢ + At are (x + Ax, y + Ay). Figure (3.8) shows the
positions at ¢ and ¢ + At as A and B respectively. The
displacement during the time interval ¢ to ¢ + At is

Ar=AB=AC +CB
=Axi_'+ij_'
A; A’Cﬁ Ay—»

_— +
or, AN N

X + AX X

Taking limits as At - 0
- dx - dy -
v = a 1+ a J-
Thus, we see that the x-component of the velocity is
_dx
T dt
and the y-component is
dy
vy =y
Differentiating (3.15) with respect to time,
- dv dv, - dv, -
T ar T ar
Thus, the acceleration has components
_du,
Tdt

(3.15)
(3.16)

Ux

O .. (3.17)

(3.18)

Ay

d
and a, = éﬁ 0 (3.19)

y
We see that the x-coordinate, the x-component of
velocity v, and the x-component of acceleration a, are
related by
v _dx and a,= dv,
Todt Todt
These equations are identical to equations (3.9)
and (3.10). Thus, if a, is constant, integrating these
equations we get

O

v,=u,ta,t
2

x=ut+ % at (3.20)

OoOoood

2 2
Uy U, +2a,x

where u, is the x-component of the velocity at ¢ = 0.
Similarly we have
dy dv,
Uy = E and a, = E
and if a, is constant,
v, =u, tat t
Y y y , 0
O

yEut+gat (3.21)

2_ 2,9
Uy = Uy T 2ayy U

The general scheme for the discussion of motion in
a plane is therefore simple. The x-coordinate, the
x-component of velocity and the x-component of
acceleration are related by equations of straight line
motion along the X-axis. Similarly the y-coordinate, the
y-component of velocity and the y-component of
acceleration are related by the equations of straight
line motion along the Y-axis. The problem of motion
in a plane is thus, broken up into two independent
problems of straight line motion, one along the X-axis
and the other along the Y-axis.

Example 3.8

A particle moves in the X-Y plane with a constant
acceleration of 1'5 m/s” in the direction making an angle
of 37° with the X-axis. At t = 0 the particle is at the
origin and its velocity is 80 m/s along the X-axis. Find
the velocity and the position of the particle at t = 4°0 s.

Y
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Solution : a, = (1'5m/s %) (cos37°)
=(1'5m/s?) x§=1~2m/s2
and a, = (1'5 m/s *) (sin37°)

= (15 m/s %) x % - 0-90 m/s®.
The initial velocity has components
u, =80 m/s
and u,=0
Att=0,x=0andy =0.
The x-component of the velocity at time ¢ = 4°0 s is given
by
Uy = Uy, Ta,t
=80 m/s + (12 m/s °) (40 s)
=80 m/s +4:8 m/s = 12:8 m/s.
The y-component of velocity at ¢ = 4'0 s is given by
Uy =uytayt
=0+ (090 m/s *) (40 s) = 3'6 mVs.
The velocity of the particle at ¢ = 4°0s is

=133 m/s.
The velocity makes an angle 6 with the X-axis where
Vy_36m/s _ 9
v, 128m/s 32

The x-coordinate at ¢ = 4°0 s is

tan0 =

1
X=Uyt +§axt2
= (80 m/s) (4°0s) + % (12 m/s %) (40s)>

=32m+96m=41'6 m.
The y-coordinate at t =40 s is

_ 1 2
y—uyt+5ayt

= % (090 m/s ®) (40 s) >

=72m.
Thus, the particle is at (41'6 m, 7'2 m) at 40 s.

3.8 PROJECTILE MOTION

An important example of motion in a plane with
constant acceleration is the projectile motion. When a
particle is thrown obliquely near the earth’s surface,
it moves along a curved path. Such a particle is called
a projectile and its motion is called projectile motion.
We shall assume that the particle remains close to the
surface of the earth and the air resistance is negligible.
The acceleration of the particle is then almost

constant. It is in the vertically downward dzirection and
its magnitude is g which is about 9:8 m/s".

Let us first make ourselves familiar with certain
terms used in discussing projectile motion. Figure
(3.10) shows a particle projected from the point O with
an initial velocity u at an angle 6 with the horizontal.
It goes through the highest point A and falls at B on
the horizontal surface through O. The point O is called
the point of projection, the angle 0 is called the angle
of projection and the distance OB is called the
horizontal range or simply range. The total time taken
by the particle in describing the path OAB is called
the time of flight.

The motion of the projectile can be discussed
separately for the horizontal and vertical parts. We
take the origin at the point of projection. The instant

using

Figure 3.10

when the particle is projected is taken as # = 0. The
plane of motion is taken as the X-Y plane. The
horizontal line OX is taken as the X-axis and the
vertical line OY as the Y-axis. Vertically upward
direction is taken as the positive direction of the
Y-axis.

We have u,=ucosb; a,=0
u,=usin; a,=-g
Horizontal Motion
As a, =0, we have

U, = U, +a,t=u,=ucosb
2
and x=uxt+%axt =u,t =ut cosb.

As indicated in figure (3.10), the x-component of
the velocity remains constant as the particle moves.

Vertical Motion

The acceleration of the particle is g in the
downward direction. Thus, a,=-g. The y-component
of the initial velocity is u,. Thus,

v, =u,—gt
1 2
and y:uyt—Egt .

Also we have,

2 2
vy = Uy, —28y.
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The vertical motion is identical to the motion of a
particle projected vertically upward with speed u sin®.
The horizontal motion of the particle is identical to a
particle moving horizontally with uniform velocity
u cosb.

Time of Flight

Consider the situation shown in figure (3.10). The
particle is projected from the point O and reaches the
same horizontal plane at the point B. The total time
taken to reach B is the time of flight.

Suppose the particle is at B at a time ¢ The
equation for horizontal motion gives

OB =x = ut cosb
The y-coordinate at the point B is zero. Thus, from
the equation of vertical motion,

y:utsine—lgt2

2
. 1 =
or, 0 =ut sinB - 3 gt
. 1
or, t(u sinB - ) gt) =0.
_ 2u sinb

Thus, either ¢t =0 or, ¢= O

8
Now ¢ = 0 corresponds to the position O of the
particle. The time at which it reaches B is thus,

oy si
T = 2u sin® 0 (3.22)
g
This is the time of flight.
Range
The distance OB is the horizontal range. It is the
distance travelled by the particle in time T = 2u sinb O
By the equation of horizontal motion,
x = (ucosB)t
. GD
or, OB = (u cosB) %mm
o 8 O
_2u ?sind cosd
, g
in20
== (3.23)
8

Maximum Height Reached

At the maximum height (A in figure 3.10) the
velocity of the particle is horizontal. The vertical
component of velocity is thus, zero at the highest point.
The maximum height is the y-coordinate of the particle
when the vertical component of velocity becomes zero.

We have,
Uy =u,—gt
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=u sinb - gt.
At the maximum height
0=usinB - gt
in®
or, =45 .. (3.24)
g
The maximum height is
1 .2
H= uyt - 5 gt
2
sindd 1 sin@l]
= (u sinB 0-= 0
( ) Oog 0O 2 £q g 0O
u *sin °0 1lu *sin °0
g 2 g
u ’sin 0
=———20 ... (3.25)
2g

Equation (3.24) gives the time taken in reaching
the maximum height. Comparison with equation (3.22)
shows that it is exactly half the time of the flight.
Thus, the time taken in ascending the maximum
height equals the time taken in descending back to the
same horizontal plane.

Example 3.9

A ball is thrown from a field with a speed of 12:0 m/s
at an angle of 45° with the horizontal. At what distance
will it hit the field again ? Take g = 10°0 m/s”.
u ’sin20
g

_ (12 m/s) * x sin(2 x 45°)

h 10 m/s *

144 m /s’

100 m/s”
Thus, the ball hits the field at 14'4 m from the point of
projection.

Solution : The horizontal range =

=144 m.

3.9 CHANGE OF FRAME

So far we have discussed the motion of a particle
with respect to a given frame of reference. The frame
can be chosen according to the convenience of the
problem. The position r, the velocity v and the
acceleration a of a particle depend on the frame
chosen. Let us see how can we relate the position,
velocity and acceleration of a particle measured in two
different frames.

Consider two frames of reference S and S' and
suppose a particle P is observed from both the frames.

The frames may be moving with respect to each other.
Figure (3.11) shows the situation.
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Figure 3.11

The position vector of the particle P with respect
to the frame S is 77,;, s =OP . The position vector of the

particle with respect to the frame S’ is 1:1;’ ¢ = O'_j’ . The
position of the frame S’ (the origin of frame S’ in fact)
with respect to the frame S is OO'.

It is clear that
OP=00'+0'P=0P +00

—

or, I'ps=Tpg tTs' g-

(3.26)

The position of the particle with respect to S is
equal to the position of the particle with respect to
S' plus the position of S’ with respect to S.

If we differentiate equation (3.26) with respect to
time, we get

d B - d B - d , -
E(rP,S):E(rP,S’)+E(r8’,s)

—

or, Ups=Upg tUgg

(3.27)

where JP,S is the velocity of the particle with respect
to S, vﬂpy s is the velocity of the particle with respect to

S' and JS., s is the velocity of the frame S’ with respect
to S. The velocity of the particle with respect to S is
equal to the velocity of the particle with respect to
S' plus the velocity of S' with respect to S.

It is assumed that the meaning of time is same in

both the frames. Similarly it is assumed that % has

same meaning in both the frames. These assumptions
are not correct if the velocity of one frame with respect
to the other is so large that it is comparable to
3 x 10 ° m/s, or if one frame rotates with respect to the
other. If the frames only translate with respect to each
other with small velocity, the above assumptions are
correct.
Equation (3.27) may be rewritten as

JP, S = JP,S - JS',S . (3.28)
Thus, if the velocities of two bodies (here the particle
and the frame S') are known with respect to a common
frame (here S) we can find the velocity of one body

with respect to the other body. The velocity of body 1

with respect to the body 2 is obtained by subtracting
the velocity of body 2 from the velocity of body 1.

When we say that the muzzle velocity of a bullet
is 60 m/s we mean the velocity of the bullet with
respect to the gun. If the gun is mounted in a train
moving with a speed of 20 m/s with respect to the
ground and the bullet is fired in the direction of the
train’s motion, its velocity with respect to the ground
will be 80 m/s. Similarly, when we say that a swimmer
can swim at a speed of 5 km/h we mean the velocity
of the swimmer with respect to the water. If the water
itself is flowing at 3 km/h with respect to the ground
and the swimmer swims in the direction of the current,
he or she will move at the speed of 8 km/h with respect
to the ground.

Example 3.10

A swimmer can swim in still water at a rate 40 km/h.
If he swims in a river flowing at 3'0 km/h and keeps his
direction (with respect to water) perpendicular to the
current, find his velocity with respect to the ground.

Solution : The velocity of the swimmer with respect to
water is JS, r =40 km/h in the direction perpendicular to
the river. The velocity of river with respect to the ground

is JR, ¢=30km/h along the length of the river. The
velocity of the swimmer with respect to the ground is
Vg ¢ Where

Usg=UsgptUrq-

Figure (3.12) shows the velocities. It is clear that,

=50 km/h
The angle 6 made with the direction of flow is
_40km/h _4
tan0 =y o km/m 3

Example 3.11

A man is walking on a level road at a speed of 3:0 km/h.
Rain drops fall vertically with a speed of 40 km/h. Find
the velocity of the raindrops with respect to the man.



Rest and Motion : Kinematics 41

Solution : We have to find the velocity of raindrops with

respect to the man. The velocity of the rain as well as
the velocity of the man are given with respect to the
street. We have

v

rain, man — vmin, street vman, street *

Figure (3.13) shows the velocities.

Vv, = 3.0 km/h

man,street

—Vman,street
-

7 =4.0 km/h

rain,street

Figure 3.13

It is clear from the figure that

=50 km/h.
The angle with the vertical is 6, where

_30km/h _3
" 40km/h 4
Thus, the rain appears to fall at an angle tan™' (3/4)
with the speed 50 km/h as viewed by the man.

tan6 a

The relation between the accelerations measured
from two frames can be obtained by differentiating
equation (3.27) with respect to time.

We have,
d - d - d -
di (vps) = di (vps) * di (vs,s)
or, Ups=Upg+ags. (3.29)

If S" moves with respect to S at a uniform velocity,
C_l's.’s =0 and so
ap s =0apg -
If two frames are moving with respect to each
other with uniform velocity, acceleration of a body is
same in both the frames.

Worked Out Examples

1. A man walks at a speed of 6 km/hr for 1 km and 8 km/hr

for the next 1 km. What is his average speed for the walk
of 2 km ?

Solution : Distance travelled is 2 km.

Time taken - _Lkm + L km
" 6km/hr 8 km/hr
_ g 7
—%+8Ehr—24hr.
_2kmx24 48
Average speed = The -7 km/hr
= 7 km/hr.

. The 1.Sc. lecture theatre of a college is 40 ft wide and
has a door at a corner. A teacher enters at 12:00 noon
through the door and makes 10 rounds along the 40 ft
wall back and forth during the period and finally leaves
the class-room at 12°50 p.m. through the same door.
Compute his average speed and average velocity.

Solution : Total distance travelled in 50 minutes = 800 ft.

Average speed = % ft/min = 16 ft/min.

At 12°00 noon he is at the door and at 12'50 pm he is
again at the same door.

The displacement during the 50 min interval is zero.
Average velocity = zero.

. The position of a particle moving on X-axis is given by
x=At’+Bt*+Ct+D.
The numerical values of A, B, C, D are 1, 4, -2 and 5

respectively and SI units are used. Find (a) the
dimensions of A, B, C and D, (b) the velocity of the
particle at t = 4's, (¢c) the acceleration of the particle at
t =4s, (d) the average velocity during the interval t = 0
tot =4s, (e) the average acceleration during the interval
t=0 to t=4s.

Solution : (a) Dimensions of x, A¢°, Bt®, Ct and D must

be identical and in this case each is length. Thus,
[A¢°]=L, or, [A]=LT"*
[Bt’]=L, or, [B]=LT*
[Ct]=L, or, [C]=LT""

and [D]=L.

(b) x=At*+Bt*+Ct+D

or, v=d—x=3At2+ZBt+C.
dt

Thus, at ¢ = 4 s, the velocity
=31m/s*) (16s)) +2(4d m/s?) (4 s) + (- 2 m/s)
= (48 + 32 - 2) m/s = 78 m/s.

() v=38At*+2Bt+C

or, a=@=6At+2B.
dt

Att=4s,a=6(1m/s’) (4s) +24 m/s*) =32 m/s .

(d) x=At*+Bt*+Ct +D.

Position at ¢ =0isx =D =5m.

Position at t = 4 s is

(1m/s’) (64s’)+(@m/s?) (1657 - (2m/s) (4s)+5m
=(64+64-8+5)m=125m.
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Thus, the displacement during 0 to 4 s is
125m-5m=120 m.

120 m
4s

(e) v=3At"+2Bt +C.
Velocity at t =0 is C=-2m/s.
Velocity at ¢t = 4 s is = 78 m/s.

Average velocity = =30 m/s.

-0,

=20 m/s >,

Uy
Average acceleration =
2 U

4. From the velocity-time graph of a particle given in figure
(3-W1), describe the motion of the particle qualitatively
in the interval 0 to 4 s. Find (a) the distance travelled
during first two seconds, (b) during the time 2s to 4 s,
(¢) during the time 0 to 4s, (d) displacement during
0 to 4 s, (e) acceleration at t = 1/2 s and (f) acceleration
att = 2s.

v (m/s)
15+
o —A— S
5.
0 ) B D ) F

1 2N\ 3 /4 5 6\ t@s)
_5.
A0—————— R —
_15.

Figure 3-W1

Solution : Att = 0, the particle is at rest, say at the origin.
After that the velocity is positive, so that the particle
moves in the positive x direction. Its speed increases till
1 second when it starts decreasing. The particle
continues to move further in positive x direction. At
t=2s, its velocity is reduced to zero, it has moved
through a maximum positive x distance. Then it changes
its direction, velocity being negative, but increasing in
magnitude. At ¢ = 3 s velocity is maximum in the
negative x direction and then the magnitude starts
decreasing. It comes to rest at ¢ = 4 s.

(a) Distance during 0 to 2 s= Area of OAB
=%><2s><10m/s:10m.

(b) Distance during 2 to 4 s = Area of BCD = 10 m. The
particle has moved in negative x direction during this
period.

(c) The distance travelled during 0 to 4s =10 m + 10 m
=20 m.

(d) displacement during 0 to 4 s=10m + (- 10 m) =0.

(e) at ¢ = 1/2 s acceleration = slope of line OA = 10 m/s>.

(f) at¢=2s acceleration = slope of line ABC = — 10 m/s”.

Concepts of Physics

5. A particle starts from rest with a constant acceleration.
At a time t second, the speed is found to be 100 m/s and
one second later the speed becomes 150 m/s. Find (a) the
acceleration and (b) the distance travelled during the
(t+1)th second.

Solution : (a) Velocity at time ¢ second is

100 m/s = a.(t second) .. (D
and velocity at time (¢ + 1) second is
150 m/s = a.(¢ + 1) second. ... (2)

Subtracting (1) from (2), @ = 50 m/s”
(b) Consider the interval ¢ second to (¢ + 1) second,
time elapsed=1s
initial velocity = 100 m/s
final velocity = 150 m/s.
Thus, (150 m/s)*= (100 m/s) * + 2(50 m/s *) x

or, x=125m.

6. A boy stretches a stone against the rubber tape of a
catapult or ‘gulel’ (a device used to detach mangoes from
the tree by boys in Indian villages) through a distance
of 24 cm before leaving it. The tape returns to its normal
position accelerating the stone over the stretched length.
The stone leaves the gulel with a speed 2°2 m/s. Assuming
that the acceleration is constant while the stone was being
pushed by the tape, find its magnitude.

Solution : Consider the accelerated 24 cm motion of the
stone.
Initial velocity =0

Final velocity = 2:2 m/s

Distance travelled =24 cm =024 m
Using v *=u’+ 2ax,

484m?s’ 2
= 0 m =10"1m/s".
7. A police inspector in a jeep is chasing a pickpocket on a

straight road. The jeep is going at its maximum speed v
(assumed uniform). The pickpocket rides on the
motorcycle of a waiting friend when the jeep is at a
distance d away, and the motorcycle starts with a
constant acceleration a. Show that the pickpocket will be

caught if v>~2ad.

Solution : Suppose the pickpocket is caught at a time ¢
after the motorcycle starts. The distance travelled by the
motorcycle during this interval is

Figure 3-W2
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SZ%atZ. e (@
During this interval the jeep travels a distance
s+d =ut. .. (i)
By (i) and (ii),
1

Eat2—vt+d20

v £V = 2ad
t:7D

or,

The pickpocket will be caught if ¢ is real and positive.
This will be possible if

v’22d or, v=V2ad.

. A car is moving at a constant speed of 40 km/h along a
straight road which heads towards a large vertical wall
and makes a sharp 90° turn by the side of the wall. A
fly flying at a constant speed of 100 km/h, starts from
the wall towards the car at an instant when the car is
20 km away, flies until it reaches the glasspane of the
car and returns to the wall at the same speed. It continues
to fly between the car and the wall till the car makes the
90° turn. (a) What is the total distance the fly has
travelled during this period ? (b) How many trips has it
made between the car and the wall ?

Solution : (a) The time taken by the car to cover 20 km

. 20km _1
before the turn is 20 km/h - 2h. The fly moves at a
constant speed of 100 km/h during this time. Hence the

total distance coverd by it is 100 kTm X % h=50km.

(b) Suppose the car is at a distance x away (at A) when
the fly is at the wall (at O). The fly hits the glasspane
at B, taking a time ¢. Then

AB = (40 km/h)t,
and OB = (100 km/h)t¢.
Thus, x=AB+ OB
= (140 km/h)¢
__ X _5
or, t_140km/h’0rOB_7x'

Figure 3-W3

The fly returns to the wall and during this period the
car moves the distance BC. The time taken by the fly
in this return path is

U 5x/7 E: x .
%100 km/hg 140 km/h
_40x _2
Thus, BC——140—7x
or, 0C=0B-BC=2x.

If at the beginning of the round trip (wall to the car and
back) the car is at a distance x away, it is %x away
when the next trip again starts.

Distance of the car at the beginning of the 1st
trip =20 km.

Distance of the car at the beginning of the 2nd trip
=2 x20km.

Distance of the car at the beginning of the 3rd trip
2
a
= %D x 20 km.
O
Distance of the car at the beginning of the 4th trip
3
g
= %D x 20 km.
O

Distance of the car at the beginning of the nth trip

n-1

O
= %D x 20 km.
0

Trips will go on till the car reaches the turn that is the
distance reduces to zero. This will be the case when n
becomes infinity. Hence the fly makes an infinite
number of trips before the car takes the turn.

. A ball is dropped from a height of 19°6 m above the

ground. It rebounds from the ground and raises itself up
to the same height. Take the starting point as the origin
and vertically downward as the positive X-axis. Draw
approximate plots of x versus t, v versus t and a versus
t. Neglect the small interval during which the ball was
in contact with the ground.

Solution : Since the acceleration of the ball during the

contact is different from %’, we have to treat the
downward motion and the upward motion separately.

For the downward motion : ¢ =g =98 m/s %,

x =ut +%at2 = (49 m/s?) .

The ball reaches the ground when x = 19:6 m. This gives
t = 2s. After that it moves up, x decreases and at

t =4 s, x becomes zero, the ball reaching the initial point.
We have at ¢ =0, x=0

t=1s, x=49m
t=2s, x=196m

t=3s, x=49m
t=4s, x=0.
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1 2 3 4 t(second)

Figure 3-W4

Velocity : During the first two seconds,
v=u+at=(98m/s’)

at t=0 v=0

at t=1s, v=98m/s

at t=2s, v =196 m/s.

During the next two seconds the ball goes upward,

velocity is negative, magnitude decreasing and at
t=4s, v=0. Thus,

at t =2s, v=-196 m/s
at t=3s, v=-98m/s
at t=4s, v=0.
\Y
20 m/sT
|
10 m/s+ |
|
O 1 I 1 1
} i }
1 2 3 4  t(second)
-10m/s t :
|
—20mist L
Figure 3-W5

At t =2 s there is an abrupt change in velocity from

196 m/s to — 196 m/s. In fact this change in velocity
takes place over a small interval during which the ball
remains in contact with the ground.

Acceleration : The acceleration is constant 9-8 m/s’
throughout the motion (except at ¢ = 2 s).

10 m/s? £

1 2 3 4t (second)

—-10 m/s2+

Figure 3-W6

10. A stone is dropped from a balloon going up with a

uniform velocity of 5°0 m/s. If the balloon was 50 m high
when the stone was dropped, find its height when the
stone hits the ground. Take g =10 m/s *.

Solution : At t = 0, the stone was going up with a velocity

of 5°0 m/s. After that it moved as a freely falling particle
with downward acceleration g. Take vertically upward

11.

as the positive X-axis. If it reaches the ground at
time ¢,

x=-50m, u=5m/s, a=-10m/s>.
We have x=ut+%at2
or, —50m:(5m/s).t+%><(—10m/sz)t2
. 7:_1i?/2£1
or, i
or, t=-2"7s or, 37s.

Negative ¢ has no significance in this problem. The stone
reaches the ground at ¢ = 3'7 s. During this time the
balloon has moved uniformly up. The distance covered
by it is

5m/s x3'7s=185m.

Hence, the height of the balloon when the stone reaches
the ground is 50 m + 185 m = 685 m.

A football is kicked with a velocity of 20 m/s at an angle
of 45° with the horizontal. (a) Find the time taken by the
ball to strike the ground. (b) Find the maximum height
it reaches. (¢) How far away from the kick does it hit the
ground ? Take g = 10 m/s”.

Solution : (a) Take the origin at the point where the ball

12.

is kicked, vertically upward as the Y-axis and the
horizontal in the plane of motion as the X-axis. The
initial velocity has the components

u, = (20 m/s) cos45° =10 V2 m/s
and u, = (20 m/s) sin45° = 10 V2 m/s.
When the ball reaches the ground, y = 0.

. _ 1 2
Using y=ut —Egt ,
0 = (10v2 m/s)t—%x(IOm/sz) x>
or, t=2V2s=28s.

Thus, it takes 2-8 s for the football to fall on the ground.
(b) At the highest point v, = 0. Using the equation

2 2
v, =u, —2g8y,
0=(10v2 m/s)* -2 x (10 m/s °) H
or, H=10m.

Thus, the maximum height reached is 10 m.
(c¢) The horizontal distance travelled before falling to the
ground is x = u,t

= (10V2 m/s) (2V2 s) =40 m.

A helicopter on flood relief mission, flying horizontally
with a speed u at an altitude H, has to drop a food packet
for a victim standing on the ground. At what distance
from the victim should the packet be dropped ? The victim
stands in the vertical plane of the helicopter’s motion.



Solution : The velocity of the food packet at the time of

13.
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release is u and is horizontal. The vertical velocity at
the time of release is zero.

[ D |
Figure 3-W7
Vertical motion : If ¢ be the time taken by the packet
to reach the victim, we have for vertical motion,

H=%gt2 or, t= 2H

O )

Horizontal motion : If D be the horizontal distance
travelled by the packet, we have D = ut. Putting ¢ from
(i)’

D=u 2H O
g
The distance between the victim and the packet at the
time of release is

=—+H?.

A particle is projected horizontally with a speed u from
the top of a plane inclined at an angle 0 with the
horizontal. How far from the point of projection will the
particle strike the plane ?

Solution : Take X,Y-axes as shown in figure (3-W8).

Suppose that the particle strikes the plane at a point P
with coordinates (x, y). Consider the motion between A
and P.

Figure 3-W8
Motion in x-direction :
Initial velocity = u
Acceleration = 0
x = ut. ..o (@)
Motion in y-direction :
Initial velocity =0
Acceleration =g

_1 .2 .
y—2gt . .. (1)

: Kinematics

Eliminating ¢ from (i) and (ii)

2
1. x
y_2gu2D
Also y =x tan®.
§ 2u *tan®
Thus, gxzzxtane giving x = 0, or,u—anD
u

Clearly the point P corresponds to x =

2u”tan’0
then y =x tan® -Z4 tan’® O

The distance AP =1=Vx > +y>

2u’

tan® V1 + tan *0

2
2u tand sech.

Alternatively : Take the axes as

Figure 3-W9

Motion along the X-axis :
Initial velocity = u cos®
Acceleration = g sinf

Displacement = AP.
Thus, AP = (u cos 6) ¢ + % (gsin6) ¢ 2

Motion along the Y-axis :
Initial velocity = — u sin®
Acceleration = g cosf

Displacement = 0.

Thus, 0 =-ut sinb + égt *cosO
ou si
or, [ = u sinB 0
g cosB
. 2u sin
Clearly, the point P corresponds to t =———[1
g cosB

Putting this value of ¢ in (i),

2
Bu sinfd g sinB Bu singU
AP:(ucose)Dusm D_'_gsm Py sind
OgcosOB] 2 [geosb
_2u2sin9+2u2sin9tan26
8 8

2 2
= 2; sin6 sec ’0 = 2u

tan0 secb.

2u ® tanb

shown
figure 3-W9. Consider the motion between A and P.

45

in

)



46

Concepts of Physics

14. A projectile is fired with a speed u at an angle 6 with

the horizontal. Find its speed when its direction of motion
makes an angle o with the horizontal.

Solution : Let the speed be v when it makes an angle o

with the horizontal. As the horizontal component of
velocity remains constant,

v cosO = u cosO

or, v = u cosB secd.

15. A bullet is fired horizontally aiming at an object which

starts falling at the instant the bullet is fired. Show that
the bullet will hit the object.

Solution : The situation is shown in figure (3-W10). The

object starts falling from the point B. Draw a vertical
line BC through B. Suppose the bullet reaches the line
BC at a point D and it takes a time ¢ in doing so.

Ae——— B

Figure 3-W10

Consider the vertical motion of the bullet. The initial
vertical velocity = 0. The distance travelled vertically

=BD = %gt ’[In time ¢ the object also travels a distance

é gt >=BD. Hence at time ¢, the object will also be at

the same point D. Thus, the bullet hits the object at
point D.

16. A man can swim in still water at a speed of 3 km/h. He

wants to cross a river that flows at 2 km/h and reach
the point directly opposite to his starting point. (a) In
which direction should he try to swim (that is, find the
angle his body makes with the river flow) ? (b) How much
time will he take to cross the river if the river is 500 m
wide ?

Solution : (a) The situation is shown in figure (3-W11).

The X-axis is chosen along the river flow and the origin
at the starting position of the man. The direction of the
velocity of man with respect to ground is along the Y-axis
(perpendicular to the river). We have to find the
direction of velocity of the man with respect to water.

Let v,

» ¢ = velocity of the river with respect to the

ground
=2 km/h along the X-axis

17.

m, g

Vi, = 3 km/h

> X
vy, g= 2 km/h

Figure 3-W11

Jm,r = velocity of the man with respect to the river

=3 km/h making an angle 6 with the Y-axis

and zjm ¢ = velocity of the man with respect to the
ground along the Y-axis.
We have
Vg = Uy + U g - .o ()

TakingcomponentsalongtheX-axis

0 = - (3 km/h)sin® + 2 km/h
o =2
or, sin® = 3 a

(b) Taking components in equation (i) along the Y-axis,
Up, ¢ = (3 km/h) cos8 + 0
or, Uy, ¢ = V5 km/h.

_ Displacement in y direction

Time = Velocity in y direction
_05km _V5 h
" V5km/h 10

A man can swim at a speed of 3 km/h in still water. He
wants to cross a 500 m wide river flowing at 2 km/h. He
keeps himself always at an angle of 120° with the river
flow while swimming.

(a) Find the time he takes to cross the river. (b) At what
point on the opposite bank will he arrive ?

Solution : The situation is shown in figure (3-W12).

Vi, g= 2 km/h

Figure 3-W12

Here 17,’ . = velocity of the river with respect to the ground
Jm,r = velocity of the man with respect to the river
Jm, ¢ = velocity of the man with respect to the ground.
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(a) We have,

— — —

Vg = Um,r ¥ Uy g o @
Hence, the velocity with respect to the ground is along
AC. Taking y-components in equation (i),

- 3v3
U, ¢ Sin6 = 3 km/h €0s30° + 2 km/h cos90° = N km/h.

Time taken to cross the river
_ displacement along the Y-axis

velocity along the Y-axis
__12km _ 1 h
3v8/2km/h 3/3

(b) Taking x-components in equation (i),
Uy, ¢ €080 = — 3 km/h 5in30° + 2 km/h

_1
—ka/h.

Displacement along the X-axis as the man crosses the
river
= (velocity along the X-axis) [{time)

Okmd 01 0O 1
=Eon 3 Bvs P evg

18. A man standing on a road has to hold his umbrella at
30° with the vertical to keep the rain away. He throws
the umbrella and starts running at 10 km/h. He finds
that raindrops are hitting his head vertically. Find the
speed of raindrops with respect to (a) the road, (b) the
moving man.

Solution : When the man is at rest with respect to the
ground, the rain comes to him at an angle 30° with the
vertical. This is the direction of the velocity of raindrops
with respect to the ground. The situation when the man
runs is shown in the figure (3-W13b).

.
30
Lo v Y 30°
‘ |
Vi m Vr, g
(a) (b) (c)
Figure 3-W13
Here ljr’ ¢ = velocity of the rain with respect to the ground

zjm, ¢ = velocity of the man with respect to the ground

and v}m = velocity of the rain with respect to the man.

We have, Uy g = Jrvm + Jm,g . .. @)
Taking horizontal components, equation (i) gives
v, . 8in30° =v,, , =10 km/h

_10km/h
"8 sin30°

=20 km/h,

or, v
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Taking vertical components, equation (i) gives

v, . c0s30° =v, ,,
or, Uy, m = (20 km/h) \/?3

=10v3 km/h.

19. A man running on a horizontal road at 8 km/h finds the
rain falling vertically. He increases his speed to 12 km/h
and finds that the drops make angle 30° with the vertical.
Find the speed and direction of the rain with respect to

the road.
Solution :
We have Umin, road = Umin, man + vman, road e (1)

The two situations given in the problem may be
represented by the following figure.

\Y
man, road O Vman, road = 12 km/h
‘ 8 km/h '

o Ny
< \, 'rain, road
& X
g X
>

\

(a)
Figure 3-W14

Urgin, road 1S Same in magnitude and direction in both the
figures.

Taking horizontal components in equation (i) for figure
(3-W14a),

Uyrain, road SN0 = 8 km/h. .. (1)
Now consider figure (3-W14b). Draw a line
OA O,y man s shown.
Taking components in equation (i) along the line OA.
Urgin, roaa SIN(30° + 0) = 12 km/h c0s30°. .. (i)

From (ii) and (iii),
sin(30° +a) 12 x+3

sina 8§x2
sin30°cosa + cos30°sina _ 3V3
’ sina T4
1, Y8 33
o 2T Ty
T ota = ﬁ
or, cotar =3
1 V3
— 1 YO
or, a =cot 9 a
. 8k
From (ii), Vrain, road =~ = 4V7 km/h.

20. Three particles A, B and C are situated at the vertices

of an equilateral triangle ABC of side d at t = 0. Each



48

Concepts of Physics

of the particles moves with constant speed v. A always
has its velocity along AB, B along BC and C along CA.
At what time will the particles meet each other ?

Solution : The motion of the particles is roughly sketched

in figure (3-W15). By symmetry they will meet at the

A

Figure 3-W15

centroid O of the triangle. At any instant the particles
will form an equilateral triangle ABC with the same
centriod O. Concentrate on the motion of any one

particle, say A. At any instant its velocity makes angle
30° with AO.

The component of this velocity along AO is v cos30°. This
component is the rate of decrease of the distance AO.
Initially,

2
_2 : _HE _d
AO = 3 d %E =73 0
Therefore, the time taken for AO to become zero
d/V3 _  2d _2d

T 0 c0s30° V3uxv3  3v

Alternative : Velocity of A is v along AB. The velocity
of B is along BC. Its component along BA is v cos 60°
= v/2. Thus, the separation AB decreases at the rate

Since this rate is constant, the time taken in reducing
the separation AB from d to zero is

_d _2d
t= 55 30
2

QUESTIONS FOR SHORT ANSWER

. Galileo was punished by the Church for teaching that

the sun is stationary and the earth moves around it. His
opponents held the view that the earth is stationary and
the sun moves around it. If the absolute motion has no
meaning, are the two viewpoints not equally correct or
equally wrong ?

. When a particle moves with constant velocity, its

average velocity, its instantaneous velocity and its speed
are all equal. Comment on this statement.

A car travels at a speed of 60 km/hr due north and the
other at a speed of 60 km/hr due east. Are the velocities
equal ? If no, which one is greater ? If you find any of
the questions irrelevant, explain.

A ball is thrown vertically upward with a speed of 20
m/s. Draw a graph showing the velocity of the ball as a
function of time as it goes up and then comes back.

The velocity of a particle is towards west at an instant.
Its acceleration is not towards west, not towards east,
not towards north and not towards south. Give an
example of this type of motion.

At which point on its path a projectile has the smallest
speed ?

Two particles A and B start from rest and move for equal
time on a straight line. The particle A has an
acceleration a for the first half of the total time and 2a
for the second half. The particle B has an acceleration

10.

11.

2a for the first half and a for the second half. Which
particle has covered larger distance ?

If a particle is accelerating, it is either speeding up or
speeding down. Do you agree with this statement ?

A food packet is dropped from a plane going at an
altitude of 100 m. What is the path of the packet as
seen from the plane ? What is the path as seen from the
ground ? If someone asks “what is the actual path”, what
will you answer ?

Give examples where (a) the velocity of a particle is zero
but its acceleration is not zero, (b) the velocity is opposite
in direction to the acceleration, (c) the velocity is
perpendicular to the acceleration.

Figure (3-Q1) shows the x coordinate of a particle as a
function of time. Find the signs of v, and a, at ¢ = ¢,
t=t, and t=t,.

t tr t3

Figure 3-Q1
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A player hits a baseball at some angle. The ball goes
high up in space. The player runs and catches the ball
before it hits the ground. Which of the two (the player
or the ball) has greater displacement ?

The increase in the speed of a car is proportional to the
additional petrol put into the engine. Is it possible to

14.

accelerate a car without putting more petrol or less
petrol into the engine ?

Rain is falling vertically. A man running on the road
keeps his umbrella tilted but a man standing on the
street keeps his umbrella vertical to protect himself from
the rain. But both of them keep their umbrella vertical
to avoid the vertical sun-rays. Explain.

OBJECTIVE 1

. A motor car is going due north at a speed of 50 km/h.

It makes a 90° left turn without changing the speed.
The change in the velocity of the car is about

(a) 50 km/h towards west

(b) 70 km/h towards south-west

(¢) 70 km/h towards north-west

(d) zero.

. Figure (3-Q2) shows the displacement-time graph of a

particle moving on the X-axis.

X

to t

Figure 3-Q2

(a) the particle is continuously going in positive x
direction

(b) the particle is at rest

(c) the velocity increases up to a time f,, and then
becomes constant

(d) the particle moves at a constant velocity up to a time
t,, and then stops.

. A particle has a velocity u towards east at ¢ = 0. Its

acceleration is towards west and is constant. Let x, and
x5 be the magnitude of displacements in the first 10
seconds and the next 10 seconds

(a) x, < xp (b) x, = a3 (c) x4 > xp

(d) the information is insufficient to decide the relation
of x, with x;.

. A person travelling on a straight line moves with a

uniform velocity v, for some time and with uniform
velocity v, for the next equal time. The average velocity
v is given by

v, + 0,

(a)v= 2 (b) v =Vu 0,
©2-1,1 @l-l,1g
v, U, vov, U

. A person travelling on a straight line moves with a

uniform velocity v, for a distance x and with a uniform
velocity v, for the next equal distance. The average
velocity v is given by

10.

11.

12,

v, tu,

(a)v= 2 (®) v=Vv,v,
(c)z:l+l (d)l:l+l|:|
v ov, U, vov, U,

A stone is released from an elevator going up with an
acceleration a. The acceleration of the stone after the
release is

(a) a upward

(¢) (g —a) downward

(b) (g —a) upward
(d) g downward.

A person standing near the edge of the top of a building
throws two balls A and B. The ball A is thrown vertically
upward and B is thrown vertically downward with the
same speed. The ball A hits the ground with a speed v,
and the ball B hits the ground with a speed v,. We have
(a) vy > vy, (b) vy < vy (C) vy =y

(d) the relation between v, and v, depends on height of
the building above the ground.

In a projectile motion the velocity

(a) is always perpendicular to the acceleration

(b) is never perpendicular to the acceleration

(¢) is perpendicular to the acceleration for one instant
only

(d) is perpendicular to the acceleration for two instants.

Two bullets are fired simultaneously, horizontally and
with different speeds from the same place. Which bullet
will hit the ground first ?

(a) the faster one (b) the slower one

(c) both will reach simultaneously

(d) depends on the masses.

The range of a projectile fired at an angle of 15° is
50 m. If it is fired with the same speed at an angle of
45°, its range will be

(a) 25 m (b) 37 m (¢) 50 m (d) 100 m.

Two projectiles A and B are projected with angle of
projection 15° for the projectile A and 45° for the
projectile B. If R, and Rj be the horizontal range for the
two projectiles, then

(@R, <Ry;(b)R,=R;(c)R, >R,

(d) the information is insufficient to decide the relation
of R, with R.

A river is flowing from west to east at a speed of 5
metres per minute. A man on the south bank of the
river, capable of swimming at 10 metres per minute in
still water, wants to swim across the river in the shortest
time. He should swim in a direction



50

13.

Concepts of Physics

(a) due north (b) 30° east of north
(¢) 30° north of west (d) 60° east of north.

In the arrangement shown in figure (3-Q3), the ends P
and @ of an inextensible string move downwards with
uniform speed u. Pulleys A and B are fixed. The mass
M moves upwards with a speed

(a) 2u cosBb (b) u/cosB (c) 2u/cosO (d) ucos®.

Figure 3-Q3

OBJECTIVE 1II

. Consider the motion of the tip of the minute hand of a

clock. In one hour

(a) the displacement is zero
(b) the distance covered is zero
(c) the average speed is zero
(d) the average velocity is zero

. A particle moves along the X-axis as

x=u(t—2s)+alt—-2s)"
(a) the initial velocity of the particle is u
(b) the acceleration of the particle is a
(c) the acceleration of the particle is 2a
(d) at ¢t = 2 s particle is at the origin.

. Pick the correct statements :

(a) Average speed of a particle in a given time is never
less than the magnitude of the average velocity.

—

o o O D

(b) It is possible to have a situation in which y E# 0
d ~-_

but 7 H=0.

(c) The average velocity of a particle is zero in a time
interval. It is possible that the instantaneous velocity is
never zero in the interval.

(d) The average velocity of a particle moving on a
straight line is zero in a time interval. It is possible that
the instantaneous velocity is never zero in the interval.
(Infinite accelerations are not allowed.)

. An object may have

(a) varying speed without having varying velocity
(b) varying velocity without having varying speed
(c) nonzero acceleration without having varying velocity
(d) nonzero acceleration without having varying speed.

. Mark the correct statements for a particle going on a

straight line :

(a) If the velocity and acceleration have opposite sign,
the object is slowing down.

(b) If the position and velocity have opposite sign, the
particle is moving towards the origin.

(c) If the velocity is zero at an instant, the acceleration
should also be zero at that instant.

(d) If the velocity is zero for a time interval, the
acceleration is zero at any instant within the time
interval.

6. The velocity of a particle is zero at ¢t = 0.
(a) The acceleration at #+ = 0 must be zero.
(b) The acceleration at ¢ = 0 may be zero.
(c) If the acceleration is zero from ¢ = 0 to ¢ = 10 s, the
speed is also zero in this interval.
(d) If the speed is zero from ¢ = 0 to ¢
acceleration is also zero in this interval.

10 s the

7. Mark the correct statements :
(a) The magnitude of the velocity of a particle is equal
to its speed.
(b) The magnitude of average velocity in an interval is
equal to its average speed in that interval.
(c) It is possible to have a situation in which the speed
of a particle is always zero but the average speed is not
Zero.
(d) It is possible to have a situation in which the speed
of the particle is never zero but the average speed in an
interval is zero.

8. The velocity-time plot for a particle moving on a straight
line is shown in the figure (3-Q4).

v (m/s)
10 \
0
10 20 30 t(s)
-10
-20
Figure 3-Q4

(a) The particle has a constant acceleration.

(b) The particle has never turned around.

(c) The particle has zero displacement.

(d) The average speed in the interval 0 to 10 s is the
same as the average speed in the interval 10 s to 20 s.

9. Figure (3-Q5) shows the position of a particle moving on
the X-axis as a function of time.
(a) The particle has come to rest 6 times.
(b) The maximum speed is at ¢ = 6 s.
(c) The velocity remains positive for ¢ = 0 to ¢ = 6 s.
(d) The average velocity for the total period shown is
negative.
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10

2 4 6 t(s)

Figure 3-Q5

10. The accelerations of a particle as seen from two frames
S, and S, have equal magnitude 4 m/s”.
(a) The frames must be at rest with respect to each
other.
(b) The frames may be moving with respect to each other
but neither should be accelerated with respect to the
other.
(¢) The acceleration of S, with respect to S, may either
be zero or 8 m/s”.
(d) The acceleration of S, with respect to S, may be
anything between zero and 8 m/s”.

EXERCISES

. A man has to go 50 m due north, 40 m due east and
20 m due south to reach a field. (a) What distance he
has to walk to reach the field? (b) What is his
displacement from his house to the field ?

. A particle starts from the origin, goes along the X-axis
to the point (20 m, 0) and then returns along the same
line to the point (<20 m, 0). Find the distance and
displacement of the particle during the trip.

. It is 260 km from Patna to Ranchi by air and 320 km
by road. An aeroplane takes 30 minutes to go from Patna
to Ranchi whereas a delux bus takes 8 hours. (a) Find
the average speed of the plane. (b) Find the average
speed of the bus. (c) Find the average velocity of the
plane. (d) Find the average velocity of the bus.

. When a person leaves his home for sightseeing by his
car, the meter reads 12352 km. When he returns home
after two hours the reading is 12416 km. (a) What is the
average speed of the car during this period ? (b) What
is the average velocity ?

. An athelete takes 2'0 s to reach his maximum speed of
18'0 km/h. What is the magnitude of his average
acceleration ?

. The speed of a car as a function of time is shown in
figure (3-E1). Find the distance travelled by the car in
8 seconds and its acceleration.

N
o

-
o

Speed in m/s

0 2 4 6 8 10
Time in second

Figure 3-E1

. The acceleration of a cart started at ¢ =0, varies with
time as shown in figure (3-E2). Find the distance
travelled in 30 seconds and draw the position-time graph.

. Figure (3-E3) shows the graph of velocity versus time
for a particle going along the X-axis. Find (a) the

o 50

2

2

£

c

k] 0

® 10 20 30 Time in second
e

S

<-5.0+

Figure 3-E2

acceleration, (b) the distance travelled in 0 to 10 s and
(c) the displacement in 0 to 10 s.

v (in m/s)

N O

0 5 10 t(second)

Figure 3-E3

9. Figure (3-E4) shows the graph of the x-coordinate of a
particle going along the X-axis as a function of time.
Find (a) the average velocity during 0 to 10s,
(b) instantaneous velocity at 2, 5, 8 and 12s.

X (m)

100

Time (second)

75 100 125 150

Figure 3-E4

10. From the velocity—time plot shown in figure (3-E5), find
the distance travelled by the particle during the first 40
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11.

12.

13.

14.

15.

16.
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seconds. Also find the average velocity during this
period.

5m/sf——

0
20\/40 t(s)
Smlsp—————————— Y

Figure 3-E5

Figure (3-E6) shows x-t graph of a particle. Find the
time ¢ such that the average velocity of the particle
during the period 0 to ¢ is zero.

xinm
20
10
T T
of 10 20
tin second
Figure 3-E6

A particle starts from a point A and travels along the
solid curve shown in figure (3-E7). Find approximately
the position B of the particle such that the average
velocity between the positions A and B has the same
direction as the instantaneous velocity at B.

y

4dm+

2m+

2m  4m  6m
Figure 3-E7

An object having a velocity 4'0 m/s is accelerated at the
rate of 1'2m/s’ for 5:0s. Find the distance travelled
during the period of acceleration.

A person travelling at 43-2 km/h applies the brake giving
a deceleration of 6:0 m/s” to his scooter. How far will it
travel before stopping ?

A train starts from rest and moves with a constant
acceleration of 2:0 m/s” for half a minute. The brakes
are then applied and the train comes to rest in one
minute. Find (a) the total distance moved by the train,
(b) the maximum speed attained by the train and (c) the
position(s) of the train at half the maximum speed.

A Dbullet travelling with a velocity of 16 m/s penetrates
a tree trunk and comes to rest in 04 m. Find the time
taken during the retardation.

17.

18.

19.

A bullet going with speed 350 m/s enters a concrete wall
and penetrates a distance of 50 cm before coming to
rest. Find the deceleration.

A particle starting from rest moves with constant
acceleration. If it takes 50s to reach the speed 180
km/h find (a) the average velocity during this period,
and (b) the distance travelled by the particle during this
period.

A driver takes 020 s to apply the brakes after he sees
a need for it. This is called the reaction time of the
driver. If he is driving a car at a speed of 54 km/h and
the brakes cause a deceleration of 6:0 m/s®, find the
distance travelled by the car after he sees the need to
put the brakes on.

20. Complete the following table :
Driver X Driver Y
Car Model Reaction time 0'20 s | Reaction time 0°30 s

A (deceleration
on hard braking
=60m/s”)

Speed = 54 km/h
Braking distance

Speed = 72 km/h
Braking distance

Q= e C = eoeeneeeeeeeene
Total stopping Total stopping
distance distance

b= e d = e,

B (deceleration
on hard braking

Speed = 72km/h
Braking distance

Speed = 54 km/h
Braking distance

= 75 m/s?) € = e € = oo
Total stopping Total stopping
distance distance
Fm oo Bom e

21. A police jeep is chasing a culprit going on a motorbike.

22.

23.

24,

25.

26.

The motorbike crosses a turning at a speed of 72 km/h.
The jeep follows it at a speed of 90 km/h, crossing the
turning ten seconds later than the bike. Assuming that
they travel at constant speeds, how far from the turning
will the jeep catch up with the bike ?

A car travelling at 60 km/h overtakes another car
travelling at 42 km/h. Assuming each car to be 50 m
long, find the time taken during the overtake and the
total road distance used for the overtake.

A ball is projected vertically upward with a speed of
50 m/s. Find (a) the maximum height, (b) the time to
reach the maximum height, (¢) the speed at half the
maximum height. Take g = 10 m/s”.

A ball is dropped from a balloon going up at a speed of
7 m/s. If the balloon was at a height 60 m at the time
of dropping the ball, how long will the ball take in
reaching the ground ?

A stone is thrown vertically upward with a speed of
28 m/s. (a) Find the maximum height reached by the
stone. (b) Find its velocity one second before it reaches
the maximum height. (¢) Does the answer of part
(b) change if the initial speed is more than 28 m/s such
as 40 m/s or 80 m/s ?

A person sitting on the top of a tall building is dropping
balls at regular intervals of one second. Find the
positions of the 3rd, 4th and 5th ball when the 6th ball
is being dropped.
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28.

29.

30.

31.

32.

33.

34.

35.

36.
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A healthy youngman standing at a distance of 7 m from
a 11'8 m high building sees a kid slipping from the top
floor. With what speed (assumed uniform) should he run
to catch the kid at the arms height (1'8 m) ?

An NCC parade is going at a uniform speed of 6 km/h
through a place under a berry tree on which a bird is
sitting at a height of 12:1 m. At a particular instant the
bird drops a berry. Which cadet (give the distance from
the tree at the instant) will receive the berry on his
uniform ?

A ball is dropped from a height. If it takes 0200 s to
cross the last 6:00 m before hitting the ground, find the
height from which it was dropped. Take g = 10 m/s”.

A ball is dropped from a height of 5 m onto a sandy floor
and penetrates the sand up to 10 cm before coming to
rest. Find the retardation of the ball in sand assuming
it to be uniform.

An elevator is descending with uniform acceleration. To
measure the acceleration, a person in the elevator drops
a coin at the moment the elevator starts. The coin is 6
ft above the floor of the elevator at the time it is dropped.
The person observes that the coin strikes the floor in 1
second. Calculate from these data the acceleration of the
elevator.

A ball is thrown horizontally from a point 100 m above
the ground with a speed of 20 m/s. Find (a) the time it
takes to reach the ground, (b) the horizontal distance it
travels before reaching the ground, (c¢) the velocity
(direction and magnitude) with which it strikes the
ground.

A ball is thrown at a speed of 40 m/s at an angle of 60°
with the horizontal. Find (a) the maximum height
reached and (b) the range of the ball. Take g = 10 m/s °.

In a soccer practice session the football is kept at the
centre of the field 40 yards from the 10 ft high goalposts.
A goal is attempted by kicking the football at a speed
of 64 ft/s at an angle of 45° to the horizontal. Will the
ball reach the goal post ?

A popular game in Indian villages is goli which is played
with small glass balls called golis. The goli of one player
is situated at a distance of 20 m from the goli of the
second player. This second player has to project his goli
by keeping the thumb of the left hand at the place of
his goli, holding the goli between his two middle fingers
and making the throw. If the projected goli hits the goli
of the first player, the second player wins. If the height
from which the goli is projected is 196 cm from the
ground and the goli is to be projected horizontally, with
what speed should it be projected so that it directly hits
the stationary goli without falling on the ground earlier ?

Figure (3-E8) shows a 117 ft wide ditch with the
approach roads at an angle of 15° with the horizontal.
With what minimum speed should a motorbike be
moving on the road so that it safely crosses the ditch ?

1.7t

15° 15°

Figure 3-E8

317.

38.

39.

40.

41.

42.

43.

44,

45.

Assume that the length of the bike is 5 ft, and it leaves
the road when the front part runs out of the approach
road.

A person standing on the top of a cliff 171 ft high has
to throw a packet to his friend standing on the ground
228 ft horizontally away. If he throws the packet directly
aiming at the friend with a speed of 150 ft/s, how short
will the packet fall ?

A ball is projected from a point on the floor with a speed
of 15 m/s at an angle of 60° with the horizontal. Will it
hit a vertical wall 5 m away from the point of projection
and perpendicular to the plane of projection without
hitting the floor ? Will the answer differ if the wall is
22 m away ?

Find the average velocity of a projectile between the
instants it crosses half the maximum height. It is
projected with a speed u at an angle 6 with the
horizontal.

A bomb is dropped from a plane flying horizontally with
uniform speed. Show that the bomb will explode
vertically below the plane. Is the statement true if the
plane flies with uniform speed but not horizontally ?

A Dboy standing on a long railroad car throws a ball
straight upwards. The car is moving on the horizontal
road with an acceleration of 1 m/s” and the projection
velocity in the vertical direction is 9'8 m/s. How far
behind the boy will the ball fall on the car ?

A staircase contains three steps each 10 cm high and
20 cm wide (figure 3-E9). What should be the minimum
horizontal velocity of a ball rolling off the uppermost
plane so as to hit directly the lowest plane ?

Figure 3-E9

A person is standing on a truck moving with a constant
velocity of 14°7 m/s on a horizontal road. The man throws
a ball in such a way that it returns to the truck after
the truck has moved 588 m. Find the speed and the
angle of projection (a) as seen from the truck, (b) as seen
from the road.

The benches of a gallery in a cricket stadium are 1 m
wide and 1 m high. A batsman strikes the ball at a level
one metre above the ground and hits a mammoth sixer.
The ball starts at 35 m/s at an angle of 53° with the
horizontal. The benches are perpendicular to the plane
of motion and the first bench is 110 m from the batsman.
On which bench will the ball hit ?

A man is sitting on the shore of a river. He is in the
line of a 1'0 m long boat and is 5°5 m away from the
centre of the boat. He wishes to throw an apple into the
boat. If he can throw the apple only with a speed of 10
m/s, find the minimum and maximum angles of
projection for successful shot. Assume that the point of
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projection and the edge of the boat are in the same pilot should head the plane to reach the point B. (b) Find
horizontal level. the time taken by the plane to go from A to B.

46. A river 400 m wide is flowing at a rate of 20 m/s. A 50. Two friends A and B are standing a distance x apart in
boat is sailing at a velocity of 10 m/s with respect to the an open field and wind is blowing from A to B. A beats
Water.', in a direction perpendicular to the river.. (a) Find a drum and B hears the sound ¢, time after he sees the
the time taken by the boat to reach the opposite bank. event. A and B interchange their positions and the
(b) HOW fE'lI' from the point directly oppoglte to t};e experiment is repeated. This time B hears the drum ¢,
startl.ng p01nt.does the boat reach the f)ppo§1te bank. ) time after he sees the event. Calculate the velocity of

47. A swimmer WlSheS to Cross a 500 m wide river flowing sound in still air v and the velocity of wind u. Neglect
at 5 km/h. His speed with respect to water is 3 km/h. the time light takes in travelling between the friends.
(a) If he heads in a direction making an angle 6 with A 0 th . ! h hei
the flow, find the time he takes to cross the river. 5L S“PP_Ose 'andB in the previous prob em 'c.a'nge their
(b) Find the shortest possible time to cross the river. positions in such a way that the line joining them

48. Consider the situation of the previous problem. The man bec.ome.s 'perpendlcular .to the d1rect19n of Wm(.i while

. . maintaining the separation x. What will be the time lag
has to reach the other shore at the point directly B finds b ; d heari he d beati
opposite to his starting point. If he reaches the other m?s etween seeing and hearing the drum beating
shore somewhere else, he has to walk down to this point. by A?

Find the minimum distance that he has to walk. 52. Six particles situated at the corners of a regular hexagon

49. An aeroplane has to go from a point A to another point of side a move at a constant speed v. Each particle
B, 500 km away due 30° east of north. A wind is blowing maintains a direction towards the particle at the next
due north at a speed of 20 m/s. The air-speed of the corner. Calculate the time the particles will take to meet
plane is 150 m/s. (a) Find the direction in which the each other.

ANSWERS
OBJECTIVE 1 13. 35 m
Lk 2@ 3@ 4@ 5@ 6@ o (12)1;‘71{ ) 60 ) 295 m and 295 k
7.0 8 9.( 10.(d) 1L.(d) 12 (a) ” 0?05 m S ¢ “fom an m
13. (b) ‘ S,
17. 122 x 10° m/s
OBJECTIVE II 18. (@) 25m/s  (b) 125m
1. (a), (D) 2. (c), (d) 3. (a), (b), (c) 19. 22m
4. (b), (d) 5. (a), (b), (d) 6. (b), (o), (d) 20. (a) 19m (b) 22 m (c) 33m (d) 39 m
7. (a) 8. (a), (d) 9. (a) (e) 15 m (f) 18 m (g) 27m (h) 33 m
10. (d) 21. 10 km
EXERCISES 22. 28, 38 m
. 23. (a) 125 m (b)5s  (c) 35m/s
1. (a) 110 m (b) 50 m, tan ~ 3/4 north to east 2. 43 s
2. ?O)m, 2(1){2/}1? t}(lg)negi‘i;}el direction 25. (a) 40 m (b) 9-8 m/s (¢) No
3. (a) 520 40
26. 44°1 19 4 1 h
(¢) 520 km/h Patna to Ranchi 6 ) m, 196 m and 49 m below the top
(d) 32'5 km/h Patna to Ranchi 27. 49 m/s
4. 32 km/h (b) zero 28. 262 m
6. 80 m, 25 m/s” 30. 490 m/s”
7.1000 ft 31. 20 ft/s®
8. (a) 06 m/s” (b) 50 m (c) 50 m 32.(a) 45s (b) 90m (c) 49 m/s, 6 = 66° with horizontal
9. (a) 10 m/s (b) 20 m/s, zero, 20 m/s, — 20 m/s 33. (a) 60m (b) 80v3 m

10. 100 m, zero 34. Yes

11. 12 35. 10 m/s

12. x=5m,y =3m 36. 32 ft/s
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38.
39.
41.
42.
43.

44.
45.
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192 ft

Yes, Yes

u cosB, horizontal in the plane of projection
2m

2 m/s

(a) 196 m/s upward

(b) 24-5 m/s at 53° with horizontal
Sixth
Minimum angle 15°, maximum angle 75° but there is

an interval of 53° between 15° and 75°, which is not
allowed for successful shot

46.
47.

48.
49.

50.

51.

52.

(a) 40 s (b) 80 m
(a)

2/3 km
(a) sin™' (1/15) east of the line AB

0 0
E%J,lm,i%_lm
20, LO23 40O

X

SErE
2alv.

10 minutes

- (b) 10 minutes
sin®

(b) 50 min
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CHAPTER 4

THE FORCES

4.1 INTRODUCTION

Force is a word which we have all heard about.
When you push or pull some object you exert a force
on it. If you push a body you exert a force away from
yourself; when you pull, you exert a force toward
yourself. When you hold a heavy block in your hand
you exert a large force; when you hold a light block,
you exert a small force.

Can nonliving bodies exert a force ? Yes, they can.
If we stand in a great storm, we feel that the wind is
exerting a force on us. When we suspend a heavy block
from a rope, the rope holds the block just as a man
can hold it in air. When we comb our dry hair and
bring the comb close to small pieces of paper, the
pieces jump to the comb. The comb has attracted the
paper pieces i.e. the comb has exerted force on the
pieces. When a cork is dipped in water it comes to the
surface; if we want to keep it inside water, we have
to push it downward. We say that water exerts a force
on the cork in the upward direction.

The SI unit for measuring the force is called a
newton. Approximately, it is the force needed to hold
a body of mass 102 g near the earth’s surface. An
accurate quantitative definition can be framed using
Newton’s laws of motion to be studied in the next
chapter.

Force is an interaction between two objects. Force
is exerted by an object A on another object B. For any
force you may ask two questions, (i) who exerted this
force and (ii) on which object was this force exerted ?
Thus, when a block is kept on a table, the table exerts
a force on the block to hold it.

Force is a vector quantity and if more than one
forces act on a particle we can find the resultant force
using the laws of vector addition. Note that in all the
examples quoted above, if a body A exerts a force on
B, the body B also exerts a force on A. Thus, the table
exerts a force on the block to hold it and the block
exerts a force on the table to press it down. When a
heavy block is suspended by a rope, the rope exerts a

force on the block to hold it and the block exerts a
force on the rope to make it tight and stretched. In
fact these are a few examples of Newton’s third law of
motion which may be stated as follows.

Newton’s Third Law of Motion

If a body A exerts a force F on another body B,

then B exerts a force -F on A, the two forces acting
along the line joining the bodies.

The two forces F and - F connected by Newton’s
third law are called action-reaction pair. Any one may
be called ‘action’ and the other ‘reaction’.

We shall discuss this law in greater detail in the
next chapter.

The various types of forces in nature can be
grouped in four categories :

(a) Gravitational, (b) Electromagnetic,

(¢) Nuclear and (d) Weak.

4.2 GRAVITATIONAL FORCE

Any two bodies attract each other by virtue of their

masses. The force of attraction between two point
m,my
2
-
of the particles and r is the distance between them. G

is a universal constant having the value

6:67 x 10 "' N-m 2/kg ?_ To find the gravitational force
on an extended body by another such body, we have
to write the force on each particle of the 1st body by
all the particles of the second body and then we have
to sum up vectorially all the forces acting on the first
body. For example, suppose each body contains just

masses is F =G » where m, and m, are the masses

three particles, and let F;; denote the force on the i th
particle of the first body due to the j th particle of the
second body. To find the resultant force on the first
body (figure 4.1), we have to add the following 9 forces :

Flla F127 F13’ FZI’ F227 F237 F31’ F32’ F33'
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Figure 4.1

For large bodies having a large number of particles,
we have to add quite a large number of forces. If the
bodies are assumed continuous (a good approximation
in our course), one has to go through the integration
process for the infinite summation involved. However,
the integration yields a particularly simple result for
a special case which is of great practical importance
and we quote it below. The proof of this result will be
given in a later chapter.

The gravitational force exerted by a spherically
symmetric body of mass m; on another such body of
m,m,

= where

mass m, kept outside the first body is G

r
r is the distance between the centres of the two bodies.
Thus, for the calculation of gravitational force between
two spherically symmetric bodies, they can be treated
as point masses placed at their centres.

Gravitational Force on Small Bodies by the Earth

The force of attraction exerted by the earth on
other objects is called gravity. Consider the earth to
be a homogeneous sphere of radius R and mass M.
The values of R and M are roughly 6400 km and
6 x 10 kg respectively. Assuming that the earth is
spherically symmetric, the force it exerts on a particle
of mass m kept near its surface is by the previous

result, F =G Mm The direction of this force is towards
R

P

the centre of the earth which is called the vertically
downward direction.

The same formula is valid to a good approximation
even if we have a body of some other shape instead of
a particle, provided the body is very small in size as
compared to the earth. The quantity G % is a constant
and has the dimensions of acceleration. It is called the
acceleration due to gravity, and is denoted by the letter
g (a quantity much different from G). Its value is
approximately 9'8 m/s ®. For simplicity of calculations
we shall often use g = 10 m/s . We shall find in the
next chapter that all bodies falling towards earth
(remaining all the time close to the earth’s surface)
have this particular value of acceleration and hence
the name acceleration due to gravity. Thus, the force
exerted by the earth on a small body of mass m, kept

near the earth’s surface is mg in the vertically
downward direction.

The gravitational constant G is so small that the
gravitational force becomes appreciable only if at least
one of the two bodies has a large mass. To have an
idea of the magnitude of gravitational forces in
practical life, consider two small bodies of mass 10 kg
each, separated by 0'5 m. The gravitational force is

P 8T 10 "'N-m kg *x 10 * kg
025m”
=27x10 °N

a force needed to hold about 3 microgram. In many of
the situations we encounter, it is a good approximation
to neglect all the gravitational forces other than that
exerted by the earth.

4.3 ELECTROMAGNETIC (EM) FORCE

mym,
2
r
particles may exert upon each other electromagnetic
forces. If two particles having charges ¢; and g, are at
rest with respect to the observer, the force between

them has a magnitude

Over and above the gravitational force G > the

1 g9

F=
4Te,

where € =885419 x 10> C /N-m ” is a constant. The

2
is 90x10° N0y
C

. 1
quantity I,
This is called Coulomb force and it acts along the
line joining the particles. If g; and g, are of same
nature (both positive or both negative), the force is
repulsive otherwise it is attractive. It is this force
which is responsible for the attraction of small paper
pieces when brought near a recently used comb. The
electromagnetic force between moving charged
paritcles is comparatively more complicated and
contains terms other than the Coulomb force.

Ordinary matter is composed of electrons, protons

and neutrons. Each electron has 1:6 x 10~ coulomb
of negative charge and each proton has an equal
amount of positive charge. In atoms, the electrons are
bound by the electromagnetic force acting on them due
to the protons. The atoms combine to form molecules
due to the electromagnetic forces. A lot of atomic and
molecular phenomena result from electromagnetic
forces between the subatomic particles (electrons,
protons, charged mesons, etc.).

Apart from the atomic and molecular phenomena,
the electromagnetic forces show up in many forms in
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daily experience. Some examples having practical
importance given below.

(a) Forces between Two Surfaces in Contact

When we put two bodies in contact with each other,
the atoms at the two surfaces come close to each other.
The charged constituents of the atoms of the two
bodies exert great forces on each other and a
measurable force results out of it. We say that the two
bodies in contact exert forces on each other. When you
place a book on a table, the table exerts an upward
force on the book to hold it. This force comes from the
electromagnetic forces acting between the atoms and
molecules of the surface of the book and of the table.

F

L/
I

Figure 4.2

Generally, the forces between the two objects in
contact are along the common normal (perpendicular)
to the surfaces of contact and is that of a push or
repulsion. Thus, the table pushes the book away from
it (i.e., upward) and the book pushes the table
downward (again away from it).

However, the forces between the two bodies in
contact may have a component parallel to the surface
of contact. This component is known as friction. We
assume existence of frictionless surfaces which can
exert forces only along the direction perpendicular to
them. The bodies with smooth surfaces can exert only
small amount of forces parallel to the surface and
hence are close to frictionless surface. Thus, it is
difficult to stay on a smooth metallic lamp-post,
because it cannot exert enough vertical force and so it
will not hold you there. The same is not true if you
try to stay on the trunk of a tree which is quite rough.
We shall often use the word smooth to mean
frictionless.

The contact forces obey Newton’s third law. Thus
the book in figure (4.2) exerts a downward force F on
the table to press it down and the table exerts an equal
upward force F on the book to hold it there. When you
stay on the trunk of a tree, it exerts a frictional upward
force (frictional force because it is parallel to the
surface of the tree) on you to hold you there, and you
exert an equal frictiona