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FOREWORD

A few years ago I had an occasion to go through the book Calculus by L V Terasov. It unravels intricacies
of the subject through a dialogue between Teacher and Student. I thoroughly enjoyed reading it. For me this
seemed to be one of the few books which teach a difficult subject through inquisition, and using programmed
concept for learning. After that book, Dr Harish Chandra Verma’s book on physics, CONCEPTS OF PHYSICS is
another such attempt, even though it is not directly in the dialogue form. I have thoroughly appreciated it. It
is clear that Dr Verma has spent considerable time in formulating the structure of the book, besides its contents.
I think he has been successful in this attempt. Dr Verma’s book has been divided into two parts because of the
size of the total manuscript. There have been several books on this subject, each one having its own flavour.
However, the present book is a totally different attempt to teach physics, and I am sure it will be extremely
useful to the undergraduate students. The exposition of each concept is extremely lucid. In carefully formatted
chapters, besides problems and short questions, a number of objective questions have also been included. This
book can certainly be extremely useful not only as a textbook, but also for preparation of various competitive
examinations.

Those who have followed Dr Verma’s scientific work always enjoyed the outstanding contributions he has
made in various research areas. He was an outstanding student of Physics Department of IIT Kanpur during
his academic career. An extremely methodical, sincere person as a student, he has devoted himself to the task
of educating young minds and inculcating scientific temper amongst them. The present venture in the form of
these two volumes is another attempt in that direction. I am sure that young minds who would like to learn
physics in an appropriate manner will find these volumes extremely useful.

I must heartily congratulate Dr Harish Chandra Verma for the magnificent job he has done.

          
                                                           Y R Waghmare
                                                           Professor of  Physics
                                                           IIT Kanpur.



P R E F A C E

Why a new book ?

Excellent books exist on physics at an introductory college level so why a new one ? Why so many books
exist at the same level, in the first place, and why each of them is highly appreciated ? It is because each of
these books has the privilege of having an author or authors who have experienced physics and have their own
method of communicating with the students. During my years as a physics teacher, I have developed a somewhat
different methodology of presenting physics to the students. Concepts of Physics is a translation of this
methodology into a textbook.

Prerequisites

The book presents a calculus-based physics course which makes free use of algebra, trigonometry and
co-ordinate geometry. The level of the latter three topics is quite simple and high school mathematics is sufficient.
Calculus is generally done at the introductory college level and I have assumed that the student is enrolled in
a concurrent first calculus course. The relevant portions of calculus have been discussed in Chapter 2 so that
the student may start using it from the beginning.

Almost no knowledge of physics is a prerequisite. I have attempted to start each topic from the zero level.
A receptive mind is all that is needed to use this book.

Basic philosophy of the book

The motto underlying the book is physics is enjoyable.
Being a description of the nature around us, physics is our best friend from the day of our existence. I have

extensively used this aspect of physics to introduce the physical principles starting with common day occurrences
and examples. The subject then appears to be friendly and enjoyable. I have taken care that numerical values
of different quantities used in problems correspond to real situations to further strengthen this approach.

Teaching and training

The basic aim of physics teaching has been to let the student know and understand the principles and
equations of physics and their applications in real life.

However, to be able to use these principles and equations correctly in a given physical situation, one needs
further training. A large number of questions and solved and unsolved problems are given for this purpose. Each
question or problem has a specific purpose. It may be there to bring out a subtle point which might have passed
unnoticed while doing the text portion. It may be a further elaboration of a concept developed in the text. It
may be there to make the student react when several concepts introduced in different chapters combine and
show up as a physical situation and so on. Such tools have been used to develop a culture: analyse the situation,
make a strategy to invoke correct principles and work it out.

Conventions

I have tried to use symbols, names, etc., which are popular nowadays. SI units have been consistently used
throughout the book. SI prefixes such as micro, milli, mega, etc., are used whenever they make the presentation
more readable. Thus, 20 µF is preferred over 20 × 10 − 6 F. Co-ordinate sign convention is used in geometrical
optics. Special emphasis has been given to dimensions of physical quantities. Numerical values of physical
quantities have been mentioned with the units even in equations to maintain dimensional consistency.

I have tried my best to keep errors out of this book. I shall be grateful to the readers who point out any
errors and/or make other constructive suggestions.

                                                               H C Verma
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TO THE STUDENTS

Here is a brief discussion on the organisation of the book which will help you in using the book most
effectively. The book contains 47 chapters divided in two volumes. Though I strongly believe in the underlying
unity of physics, a broad division may be made in the book as follows:

Chapters 1–14: Mechanics
15–17: Waves including wave optics
18–22: Optics 
23–28: Heat and thermodynamics
29–40: Electric and magnetic phenomena
41–47: Modern physics

Each chapter contains a description of the physical principles related to that chapter. It is well supported
by mathematical derivations of equations, descriptions of laboratory experiments, historical background, etc.
There are "in-text" solved examples. These examples explain the equation just derived or the concept just
discussed. These will help you in fixing the ideas firmly in your mind. Your teachers may use these in-text
examples in the classroom to encourage students to participate in discussions.

After the theory section, there is a section on Worked Out Examples. These numerical examples correspond
to various thinking levels and often use several concepts introduced in that chapter or even in previous chapters.
You should read the statement of a problem and try to solve it yourself. In case of difficulty, look at the solution
given in the book. Even if you solve the problem successfully, you should look into the solution to compare it
with your method of solution. You might have thought of a better method, but knowing more than one method
is always beneficial.

Then comes the part which tests your understanding as well as develops it further. Questions for Short
Answer generally touch very minute points of your understanding. It is not necessary that you answer these
questions in a single sitting. They have great potential to initiate very fruitful dicussions. So, freely discuss
these questions with your friends and see if they agree with your answer. Answers to these questions are not
given for the simple reason that the answers could have cut down the span of such discussions and that would
have sharply reduced the utility of these questions.

There are two sections on multiple-choice questions, namely OBJECTIVE I and OBJECTIVE II. There are
four options following each of these questions. Only one option is correct for OBJECTIVE I questions. Any number
of options, zero to four, may be correct for OBJECTIVE II questions. Answers to all these questions are provided.

Finally, a set of numerical problems are given for your practice. Answers to these problems are also provided.
The problems are generally arranged according to the sequence of the concepts developed in the chapter but
they are not grouped under section-headings. I don’t want to bias your ideas beforehand by telling you that this
problem belongs to that section and hence use that particular equation. You should yourself look into the problem
and decide which equations or which methods should be used to solve it. Many of the problems use several
concepts developed in different sections of the chapter. Many of them even use the concepts from the previous
chapters. Hence, you have to plan out the strategy after understanding the problem.

Remember, no problem is difficult. Once you understand the theory, each problem will become easy. So, don’t
jump to exercise problems before you have gone through the theory, the worked-out problems and the objectives.
Once you feel confident in theory, do the exercise problems. The exercise problems are so arranged that they
gradually require more thinking.

I hope you will enjoy Concepts of Physics.
                                                              H C Verma
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CHAPTER 1

INTRODUCTION TO PHYSICS

1.1 WHAT IS PHYSICS ?

The nature around us is colourful and diverse. It
contains phenomena of large varieties. The winds, the
sands, the waters, the planets, the rainbow, heating of
objects on rubbing, the function of a human body, the
energy coming from the sun and the nucleus …… there
are a large number of objects and events taking place
around us.

Physics is the study of nature and its laws. We
expect that all these different events in nature take
place according to some basic laws and revealing these
laws of nature from the observed events is physics. For
example, the orbiting of the moon around the earth,
falling of an apple from a tree and tides in a sea on a
full moon night can all be explained if we know the
Newton’s law of gravitation and Newton’s laws of
motion. Physics is concerned with the basic rules
which are applicable to all domains of life.
Understanding of physics, therefore, leads to
applications in many fields including bio and medical
sciences.

The great physicist Dr R. P. Feynman has given a
wonderful description of what is “understanding the
nature”. Suppose we do not know the rules of chess
but are allowed to watch the moves of the players. If
we watch the game for a long time, we may make out
some of the rules. With the knowledge of these rules
we may try to understand why a player played a
particular move. However, this may be a very difficult
task. Even if we know all the rules of chess, it is not
so simple to understand all the complications of a game
in a given situation and predict the correct move.
Knowing the basic rules is, however, the minimum
requirement if any progress is to be made.

One may guess at a wrong rule by partially
watching the game. The experienced player may make
use of a rule for the first time and the observer of the
game may get surprised. Because of the new move
some of the rules guessed at may prove to be wrong
and the observer will frame new rules.

Physics goes the same way. The nature around us
is like a big chess game played by Nature. The events
in the nature are like the moves of the great game.
We are allowed to watch the events of nature and
guess at the basic rules according to which the events
take place. We may come across new events which do
not follow the rules guessed earlier and we may have
to declare the old rules inapplicable or wrong and
discover new rules.

Since physics is the study of nature, it is real. No
one has been given the authority to frame the rules of
physics. We only discover the rules that are operating
in nature. Aryabhat, Newton, Einstein or Feynman are
great physicists because from the observations
available at that time, they could guess and frame the
laws of physics which explained these observations in
a convincing way. But there can be a new phenomenon
any day and if the rules discovered by the great
scientists are not able to explain this phenomenon, no
one will hesitate to change these rules.

1.2 PHYSICS AND MATHEMATICS

The description of nature becomes easy if we have
the freedom to use mathematics. To say that the
gravitational force between two masses is proportional
to the product of the masses and is inversely
proportional to the square of the distance apart, is
more difficult than to write

              F ∝ 
m1m2

r 2  ⋅ … (1.1)

Further, the techniques of mathematics such as
algebra, trigonometry and calculus can be used to
make predictions from the basic equations. Thus, if we
know the basic rule (1.1) about the force between two
particles, we can use the technique of integral calculus
to find what will be the force exerted by a uniform rod
on a particle placed on its perpendicular bisector.

Thus, mathematics is the language of physics.
Without knowledge of mathematics it would be much
more difficult to discover, understand and explain the



laws of nature. The importance of mathematics in
today’s world cannot be disputed. However,
mathematics itself is not physics. We use a language
to express our ideas. But the idea that we want to
express has the main attention. If we are poor at
grammar and vocabulary, it would be difficult for us
to communicate our feelings but while doing so our
basic interest is in the feeling that we want to express.
It is nice to board a deluxe coach to go from Delhi to
Agra, but the sweet memories of the deluxe coach and
the video film shown on way are next to the prime
goal of reaching Agra. “To understand nature” is
physics, and mathematics is the deluxe coach to take
us there comfortably. This relationship of physics and
mathematics must be clearly understood and kept in
mind while doing a physics course.

1.3  UNITS

Physics describes the laws of nature. This
description is quantitative and involves measurement
and comparison of physical quantities. To measure a
physical quantity we need some standard unit of that
quantity. An elephant is heavier than a goat but
exactly how many times ? This question can be easily
answered if we have chosen a standard mass calling
it a unit mass. If the elephant is 200 times the unit
mass and the goat is 20 times we know that the
elephant is 10 times heavier than the goat. If I have
the knowledge of the unit length and some one says
that Gandhi Maidan is 5 times the unit length from
here, I will have the idea whether I should walk down
to Gandhi Maidan or I should ride a rickshaw or I
should go by a bus. Thus, the physical quantities are
quantitatively expressed in terms of a unit of that
quantity. The measurement of the quantity is
mentioned in two parts, the first part gives how many
times of the standard unit and the second part gives
the name of the unit. Thus, suppose I have to study
for 2 hours. The numeric part 2 says that it is 2 times
of the unit of time and the second part hour says that
the unit chosen here is an hour.

Who Decides the Units ?

How is a standard unit chosen for a physical
quantity ? The first thing is that it should have
international acceptance. Otherwise, everyone will
choose his or her own unit for the quantity and it will
be difficult to communicate freely among the persons
distributed over the world. A body named Conférence
Générale des Poids et Mesures or CGPM also known
as General Conference on Weight and Measures in
English has been given the authority to decide the
units by international agreement. It holds its meetings

and any changes in standard units are communicated
through the publications of the Conference.

Fundamental and Derived Quantities

There are a large number of physical quantities
which are measured and every quantity needs a
definition of unit. However, not all the quantities are
independent of each other. As a simple example, if a
unit of length is defined, a unit of area is automatically
obtained. If we make a square with its length equal
to its breadth equal to the unit length, its area can be
called the unit area. All areas can then be compared
to this standard unit of area. Similarly, if a unit of
length and a unit of time interval are defined, a unit
of speed is automatically obtained. If a particle covers
a unit length in unit time interval, we say that it has
a unit speed. We can define a set of fundamental
quantities as follows :

(a) the fundamental quantities should be indepen-
dent of each other, and

(b) all other quantities may be expressed in terms
of the fundamental quantities.
It turns out that the number of fundamental quantities
is only seven. All the rest may be derived from these
quantities by multiplication and division. Many
different choices can be made for the fundamental
quantities. For example, one can take speed and time
as fundamental quantities. Length is then a derived
quantity. If something travels at unit speed, the
distance it covers in unit time interval will be called
a unit distance. One may also take length and time
interval as the fundamental quantities and then speed
will be a derived quantity. Several systems are in use
over the world and in  each system the fundamental
quantities are selected in a particular way. The units
defined for the fundamental quantities are called
fundamental units and those obtained for the derived
quantities are called the derived units.

Fundamental quantities are also called base
quantities.

SI Units

In 1971 CGPM held its meeting and decided a
system of units which is known as the International
System of Units. It is abbreviated as SI from the
French name Le Systéme International d′Unités. This
system is widely used throughout the world.

Table (1.1) gives the fundamental quantities and
their units in SI.
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Table 1.1 : Fundamental or Base Quantities

Quantity Name of the Unit Symbol

Length metre m
Mass kilogram kg
Time second s
Electric Current ampere A
Thermodynamic Temperature kelvin K
Amount of Substance mole mol
Luminous Intensity candela cd

Besides the seven fundamental units two
supplementary units are defined. They are for plane
angle and solid angle. The unit for plane angle is
radian with the symbol rad and the unit for the solid
angle is steradian with the symbol sr.

SI Prefixes

The magnitudes of physical quantities vary over a
wide range. We talk of separation between two
protons inside a nucleus which is about 10 – 15 m and
the distance of a quasar from the earth which is about

10 26 m. The mass of an electron is 9.1  10  31 kg and

that of our galaxy is about 2.2  10 41 kg. The
CGPM recommended standard prefixes for certain
powers of 10. Table (1.2) shows these prefixes.

Table 1.2 : SI prefixes

  Power of 10   Prefix          Symbol

  18 exa E
  15 peta P
  12 tera T
   9 giga G
   6 mega M
   3 kilo k
   2 hecto h
   1 deka da
 – 1 deci d
 – 2 centi c
 – 3 milli m

 – 6 micro 
 – 9 nano n
– 12 pico p
– 15 femto f
– 18 atto a

1.4 DEFINITIONS OF BASE UNITS

Any standard unit should have the following two
properties :

(a) Invariability : The standard unit must be
invariable. Thus, defining distance between the tip of
the middle finger and the elbow as a unit of length is
not invariable.

(b) Availability : The standard unit should be
easily made available for comparing with other
quantities.

CGPM decided in its 2018 meeting that all the SI
base quantities will be defined in terms of certain
universal constants and these constants will be
assigned fixed numerical values by definition. In this
case both the criteria of invariability and availability
are automatically satisfied. The new definitions
became operative since 20th May 2019. We give below
the definitions of the these quantities. The fixed values
given to the universal constants will appear in the
definitions only. The definitions carry certain physical
quantities and concepts that are beyond the scope of
this book but you need not worry about it.

Second

1 second is the time that makes the unperturbed
ground state hyperfine transition frequency Cs to be
9192631770 when expressed in the unit Hz which is
equal to s1.

Metre

1 metre is the length that makes the speed of light
in vacuum to be 299792458 when expressed in the unit
ms1, where the second is defined in terms of the
caesium frequency Cs.

Kilogram

1 kilogram is the mass that makes the Planck’s
constant h to be 6.62607015  1034 when expressed in
the unit Js which is equal to kgm2 s1, where the metre
and the second are defined in terms of c and Cs.

Ampere

1 ampere is the current which makes the
elementary charge e to be 1.602176634  1019 when
expressed in the unit C which is equal to As, where
the second is defined in terms of Cs.

Kelvin

1 kelvin is the temperature that makes the
Boltzmann constant to be 1.380649  1023 when
expressed in the unit JK1 which is equal to
kgm2s2K1, where kilogram, metre and second  are
defined in terms of h, c and Cs.
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Mole

1 mole of a substance is defined to contain exactly
6.02214076  1023 elementary entities. This number is
the fixed numerical value of the Avogadro constant
NA when expressed in the unit mol1 and is called
Avogadro number.

Candela

The candela is the SI unit of luminous intensity.
1 candela is the luminous intensity that makes the
luminous efficacy of monochromatic radiation of
frequency 540  1012 Hz, Kcd to be 683 when expressed

in the unit lmW1 which is equal to cdsrkg1m2s3,
where kilogram, metre and second are defined in terms
of h, c and Cs.

1.5 DIMENSION

All the physical quantities of interest can be
derived from the base quantities. When a quantity is
expressed in terms of the base quantities, it is written
as a product of different powers of the base quantities.
The exponent of a base quantity that enters into the
expression, is called the dimension of the quantity in
that base. To make it clear, consider the physical
quantity force. As we shall learn later, force is equal
to mass times acceleration. Acceleration is change in
velocity divided by time interval. Velocity is length
divided by time interval. Thus,

    force  mass  acceleration

        mass  
velocity

time

        mass  
length  time

time

           mass  length  time  2.  (1.2)

Thus, the dimensions of force are 1 in mass, 1 in
length and –2 in time. The dimensions in all other
base quantities are zero. Note that in this type of
calculation the magnitudes are not considered. It is
equality of the type of quantity that enters. Thus,
change in velocity, initial velocity, average velocity,
final velocity all are equivalent in this discussion, each
one is length/time.

For convenience the base quantities are
represented by one letter symbols. Generally, mass is
denoted by M, length by L, time by T and electric
current by I. The thermodynamic temperature, the
amount of substance and the luminous intensity are
denoted by the symbols of their units K, mol and cd
respectively. The physical quantity that is expressed
in terms of the base quantities is enclosed in square

brackets to remind that the equation is among the
dimensions and not among the magnitudes. Thus
equation (1.2) may be written as [force]  MLT  2.

Such an expression for a physical quantity in terms
of the base quantities is called the dimensional
formula.  Thus, the dimensional formula of force is
MLT  2. The two versions given below are equivalent
and are used interchangeably.

(a) The dimensional formula of force is MLT  2.

(b) The dimensions of force are 1 in mass, 1 in
length and –2 in time.

Example 1.1

   Calculate the dimensional formula of energy from the

equation  E  1
2
 mv 2.

Solution : Dimensionally, E  mass  velocity2, since 1
2
 is

a number and has no dimension.

  [E]  M  



L
T




 2

  ML2 T  2.

1.6 USES OF DIMENSION

A. Homogeneity of Dimensions in an Equation

An equation contains several terms which are
separated from each other by the symbols of equality,
plus or minus. The dimensions of all the terms in an
equation must be identical. This is another way of
saying that one can add or subtract similar physical
quantities. Thus, a velocity cannot be added to a force
or an electric current cannot be subtracted from the
thermodynamic temperature. This simple principle is
called the principle of homogeneity of dimensions in an
equation and is an extremely useful method to check
whether an equation may be correct or not. If the
dimensions of all the terms are not same, the equation
must be wrong. Let us check the equation
            x  ut  1

2
 at 2 

for the dimensional homogeneity. Here x is the distance
travelled by a particle in time t which starts at a speed
u and has an acceleration a along the direction of
motion.

 [x]  L

[ut]  velocity  time  
length
time

  time  L





1
2 at 2



  [at 2]  acceleration  time 2

    
velocity

time
  time 2  

length/time
time

  time 2  L

Thus, the equation is correct as far as the dimensions
are concerned.
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Limitation of the Method

Note that the dimension of 1
2
 at 2 is same as that

of at 2. Pure numbers are dimensionless. Dimension
does not depend on the magnitude. Due to this reason
the equation x = ut + at 2 is also dimensionally correct.
Thus, a dimensionally correct equation need not be
actually correct but a dimensionally wrong equation
must be wrong.

Example 1.2

   Test dimensionally if the formula t = 2 π √m
F/x

 may be

correct, where t is time period, m is mass, F is force and
x is distance.

Solution : The dimension of force is MLT − 2. Thus, the
dimension of the right-hand side is

       √M
MLT − 2 ⁄ L

 = √1
T − 2  = T ⋅

The left-hand side is time period and hence the
dimension is T. The dimensions of both sides are equal
and hence the formula may be correct.

B. Conversion of Units

When we choose to work with a different set of
units for the base quantities, the units of all the
derived quantities must be changed. Dimensions can
be useful in finding the conversion factor for the unit
of a derived physical quantity from one system to
other. Consider an example. When SI units are used,
the unit of pressure is 1 pascal. Suppose we choose
1 cm as the unit of length, 1 g as the unit of mass and
1 s as the unit of time (this system is still in wide use
and is called CGS system). The unit of pressure will
be different in this system. Let us call it for the time-
being 1 CGS pressure. Now, how many CGS pressure
is equal to 1 pascal ?

Let us first write the dimensional formula of
pressure.

We have             P = 
F
A

 ⋅

Thus,       [P] = 
[F]
[A]

 = 
MLT − 2

L2  = ML− 1 T − 2

so,         1  pascal = (1 kg) (1 m)− 1 (1 s)− 2

and    1 CGS pressure = (1 g) (1 cm)− 1 (1 s)− 2

Thus,  
1 pascal

1 CGS  pressure
 = 




1 kg
1 g




 




1 m
1 cm





 − 1



1 s
1 s





 − 2

                 = 
10 3

 
10 2

 
 − 1

 = 10
or,   1 pascal = 10  CGS  pressure.

Thus, knowing the conversion factors for the base
quantities, one can work out the conversion factor for
any derived quantity if the dimensional formula of the
derived quantity is known.

C. Deducing Relation among the Physical Quantities

Sometimes dimensions can be used to deduce a
relation between the physical quantities. If one knows
the quantities on which a particular physical quantity
depends and if one guesses that this dependence is of
product type, method of dimension may be helpful in
the derivation of the relation. Taking an example,
suppose we have to derive the expression for the time
period of a simple pendulum. The simple pendulum
has a bob, attached to a string, which oscillates under
the action of the force of gravity. Thus, the time period
may depend on the length of the string, the mass of
the bob and the acceleration due to gravity. We assume
that the dependence of  time period on these quantities
is of product type, that is,

           t = kl a m b g c … (1.3)
where k is a dimensionless constant and a, b and c
are exponents which we want to evaluate. Taking the
dimensions of both sides,

      T = La M b (LT − 2 ) c = La + c M b T − 2c.
Since the dimensions on both sides must be identical,
we have
          a + c = 0
              b = 0
    and          − 2c = 1

   giving  a = 1
2
 ,  b = 0  and  c = − 1

2
 ⋅

Putting these values in equation (1.3)

             t = k √ l
g ⋅ … (1.4)

Thus, by dimensional analysis we can deduce that
the time period of a simple pendulum is independent
of its mass, is proportional to the square root of the
length of the pendulum and is inversely proportional
to the square root of the acceleration due to gravity at
the place of observation.

Limitations of the Dimensional Method

Although dimensional analysis is very useful in
deducing certain relations, it cannot lead us too far.
First of all we have to know the quantities on which
a particular physical quantity depends. Even then the
method works only if the dependence is of the product
type. For example, the distance travelled by a
uniformly accelerated particle depends on the initial
velocity u, the acceleration a and the time t. But the
method of dimensions cannot lead us to the correct
expression for x because the expression is not of
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product type. It is equal to the sum of two terms as
             x = ut + 1

2
 at 2.

Secondly, the numerical constants having no
dimensions cannot be deduced by the method of
dimensions. In the example of time period of a simple
pendulum, an unknown constant k remains in equation
(1.4). One has to know from somewhere else that this
constant is 2π.

Thirdly, the method works only if there are as
many equations available as there are unknowns. In
mechanical quantities, only three base quantities
length, mass and time enter. So, dimensions of these
three may be equated in the guessed relation giving
at most three equations in the exponents. If a
particular quantity (in mechanics) depends on more
than three quantities we shall have more unknowns
and less equations. The exponents cannot be
determined uniquely in such a case. Similar
constraints are present for electrical or other
nonmechanical quantities.

1.7  ORDER OF MAGNITUDE

In physics, we come across quantities which vary
over a wide range. We talk of the size of a mountain
and the size of the tip of a pin. We talk of the mass
of our galaxy and the mass of a hydrogen atom. We
talk of the age of the universe and the time taken by
an electron to complete a circle around the proton in
a hydrogen atom. It becomes quite difficult to get a
feel of largeness or smallness of such quantities. To
express such widely varying numbers, one uses the
powers of ten method.

In this method, each number is expressed as
a × 10 b where 1 ≤ a < 10 and b is a positive or negative
integer. Thus the diameter of the sun is expressed as
1.39 × 10 9 m and the diameter of a hydrogen atom as

1.06 × 10 − 10 m. To get an approximate idea of the
number, one may round the number a to 1 if it is less
than or equal to 5 and to 10 if it is greater than 5.
The number can then be expressed approximately as
10 b. We then get the order of magnitude of that
number. Thus, the diameter of the sun is of the order
of 10 9 m and that of a hydrogen atom is of the order
of 10 − 10 m. More precisely, the exponent of 10 in such
a representation is called the order of magnitude of
that quantity. Thus, the diameter of the sun is 19
orders of magnitude larger than the diameter of a
hydrogen atom. This is because the order of magnitude
of 10 9 is 9 and of 10 − 10 is − 10.  The difference is
9 − (− 10) = 19.

To quickly get an approximate value of a quantity
in a given physical situation, one can make an order

of magnitude calculation. In this all numbers are
approximated to 10 b form and the calculation is made.

Let us estimate the number of persons that may
sit in a circular field of radius 800 m. The area of the
field is

    A = πr 2 = 3.14 × (800 m) 2 ≈ 10 6 m 2.

The average area one person occupies in sitting

≈ 50 cm × 50 cm = 0.25 m 2 = 2.5 × 10 − 1 m 2 ≈ 10 − 1 m 2.
The number of persons who can sit in the field is 

        N ≈ 
10 6 m 2

10 − 1 m 2
 = 10 7.

Thus of the order of 10 7 persons may sit in the
field.

1.8 THE STRUCTURE OF WORLD

Man has always been interested to find how the
world is structured. Long long ago scientists suggested
that the world is made up of certain indivisible small
particles. The number of particles in the world is large
but the varieties of particles are not many. Old Indian
philosopher Kanadi derives his name from this
proposition (In Sanskrit or Hindi Kana means a small
particle). After extensive experimental work people
arrived at the conclusion that the world is made up of
just three types of ultimate particles, the proton, the
neutron and the electron. All objects which we have
around us, are aggregation of atoms and molecules.
The molecules are composed of atoms and the atoms
have at their heart a nucleus containing protons and
neutrons. Electrons move around this nucleus in
special arrangements. It is the number of protons,
neutrons and electrons in an atom that decides all the
properties and behaviour of a material. Large number
of atoms combine to form an object of moderate or large
size. However, the laws that we generally deduce for
these macroscopic objects are not always applicable to
atoms, molecules, nuclei or the elementary particles.
These laws known as classical physics deal with large
size objects only. When we say a particle in classical
physics we mean an object which is small as compared
to other moderate or large size objects and for which
the classical physics is valid. It may still contain
millions and millions of atoms in it. Thus, a particle
of dust dealt in classical physics may contain about
10 18 atoms.

Twentieth century experiments have revealed
another aspect of the construction of world. There are
perhaps no ultimate indivisible particles. Hundreds of
elementary particles have been discovered and there
are free transformations from one such particle to the
other. Nature is seen to be a well-connected entity.
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Worked Out Examples

 1. Find the dimensional formulae of the following
quantities :
(a) the universal constant of gravitation G,
(b) the surface tension S, 
(c) the thermal conductivity k and
(d) the coefficient of viscosity . 
Some equations involving these quantities are

   F  
Gm1 m2

r 2
 ,        S  

 g r h

2
 ,

   Q  k 
A 2  1 t

d
   and  F    A 

v2  v1

x2  x1

 

where the symbols have their usual meanings.

Solution :  (a) F  G 
m1 m2

r 2  

or,         G  
Fr 2

m1m2

or,      [G]  
[F]L2

M 2   
MLT  2 . L2

M 2   M  1 L3 T  2.

(b)       S  
 g r h

2

or,       [S]  [] [g]L2  
M
L3  

L
T 2  L

2  MT  2.

(c)    Q  k 
A 2  1 t

d
     

or,     k  
Qd

A2  1 t
 

Here, Q is the heat energy having dimension
ML2 T  2, 2  1 is temperature, A is area, d is
thickness and t is time. Thus,

       [k]  
ML2 T  2 L

L2 KT
  MLT  3 K  1.

(d)      F    A 
v2  v1

x2  x1

or,  MLT  2  []L2 L/T
L

  []
L2

T
or,     []  ML 1 T  1.

 2. Find the dimensional formulae of 
(a) the charge Q, 
(b) the potential V,
(c) the capacitance C, and
(d) the resistance R.
Some of the equations containing these quantities are
      Q = It, U = VIt, Q = CV and V = RI;
where I denotes the electric current, t is time and U is
energy.

Solution : (a) Q  It.          Hence,  [Q]  IT.
(b)     U  VIt

or, ML2 T  2  [V]IT        or,  [V]  ML2 I  1 T  3.

(c)  Q  CV

or, IT  [C]ML2 I  1 T  3      or, [C]  M  1 L 2 I 2 T 4.

(d) V  RI

or, R  
V
I

      or,  [R]  
ML2 I  1 T  3

I
  ML2 I  2 T  3.

 3. The SI and CGS units of energy are joule and erg
respectively. How many ergs are equal to one joule ?

Solution : Dimensionally,   Energy  mass  velocity2

          mass  



length
time





 2

  ML2 T  2.

Thus, 1 joule  1 kg 1 m 2 1 s  2

and    1 erg  1 g 1 cm2 1 s  2

    
1 joule
1 erg

  



1 kg
1 g




 




1 m
1 cm





 2

 



1 s
1 s





  2

          



1000 g

1 g



 



100 cm
1 cm





2

  1000  10000  10 7.

So,    1 joule  10 7 erg.

 4. Young’s modulus of steel is 19  10 10 N/m 2. Express it

in dyne  cm 2. Here dyne is the CGS unit of force.

Solution : The unit of Young’s modulus is N/m 2.

This suggests that it has dimensions of 
Force

distance 2
 

Thus,    [Y]  
[F]
L2   

MLT  2

L2   ML 1 T  2.

N/m 2 is in SI units. 

So,        1 N/m 2  1 kg1 m  1 1 s  2

and    1 dyne/cm 2  1 g1 cm  11 s  2

so,     
1 N  m 2

1 dyne  cm 2
  



1 kg
1 g




 




1 m
1 cm





  1



1 s
1 s





  2

              1000  1
100

  1  10

or,       1 N/m 2  10 dyne/cm 2

or,  19  10 10 N/m 2  19  10 11 dyne/cm 2.

 5. If velocity, time and force were chosen as basic quantities,
find the dimensions of mass.

Solution : Dimensionally,  Force  mass  acceleration

              mass  
velocity

time

or,     mass  
force  time

velocity

or,     [mass]  FTV  1.
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 6. Test dimensionally if the equation v 2 = u 2 + 2ax may be
correct.

Solution : There are three terms in this equation v 2, u 2

and 2ax. The equation may be correct if the dimensions
of these three terms are equal.

        [v 2] = 



L
T





 2

 = L2 T − 2;

        [u 2] = 



L
T





 2

 = L2 T − 2;

and     [2ax] = [a] [x] = 




L
T 2




 L = L2 T − 2.

Thus, the equation may be correct.

 7. The distance covered by a particle in time t is given by
x = a + bt + ct 2 + dt 3; find the dimensions of a, b, c and d.

Solution : The equation contains five terms. All of them
should have the same dimensions. Since [x] = length,
each of the remaining four must have the dimension of
length.
Thus,  [a] = length = L

     [bt] = L,          or, [b] = LT − 1

    [ct 2] = L,          or, [c] = LT − 2

and  [dt 3] = L,          or, [d] = LT − 3.

 8. If the centripetal force is of the form m a v b r c, find the
values of a, b and c.

Solution : Dimensionally,

      Force = (Mass) a × (velocity) b × (length) c

or,   MLT − 2 = M a(Lb T − b) Lc = M a Lb + c T − b

Equating the exponents of similar quantities,
    a = 1,  b + c = 1,  − b = − 2

or,    a = 1,  b = 2,  c = −1    or, F = 
mv 2

r
 ⋅

 9. When a solid sphere moves through a liquid, the liquid
opposes the motion with a force F. The magnitude of F
depends on the coefficient of viscosity η of the liquid, the
radius r of the sphere and the speed v of the sphere.

Assuming that F is proportional to different powers of
these quantities, guess a formula for F using the method
of dimensions.

Solution : Suppose the formula is  F = k η a r b v c.

Then,  MLT − 2 = [ML− 1 T − 1] a Lb 



L
T





 c

          = M a L− a + b + c T − a − c.

Equating the exponents of M, L and T from both sides,

              a = 1

   − a + b + c = 1

     − a − c = − 2

Solving these, a = 1, b = 1, and c = 1. 
Thus, the formula for F is F = kηrv.

10. The heat produced in a wire carrying an electric current
depends on the current, the resistance and the time.
Assuming that the dependence is of the product of powers
type, guess an equation between these quantities using
dimensional analysis. The dimensional formula of
resistance is ML2 I − 2 T − 3 and heat is a form of energy.

Solution : Let the heat produced be H, the current through
the wire be I, the resistance be R and the time be t.
Since heat is a form of energy, its dimensional formula
is ML2 T − 2.

Let us assume that the required equation is

           H = kI a R b t c,
where k is a dimensionless constant. 
Writing dimensions of both sides,

        ML2 T − 2 = I a(ML2 I − 2 T − 3) b T  c

             = M b L 2b T − 3b + c I a − 2b

Equating the exponents,
        b = 1
       2b = 2
    − 3b + c = − 2
     a − 2b = 0

Solving these, we get, a = 2,  b = 1 and  c = 1.

Thus, the required equation is H = kI 2 Rt.

QUESTIONS FOR SHORT ANSWER

 1. The metre is defined as the distance travelled by light

in 1
299,792,458

 second. Why didn’t people choose some

easier number such as 1
300,000,000

 second ? Why not 1

second ?

 2. What are the dimensions of :
(a) volume of a cube of edge a,
(b) volume of a sphere of radius a,
(c) the ratio of the volume of a cube of edge a to the
volume of a sphere of radius a ?
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 3. Suppose you are told that the linear size of everything
in the universe has been doubled overnight. Can you
test this statement by measuring sizes with a metre
stick ? Can you test it by using the fact that the speed
of light is a universal constant and has not changed ?
What will happen if all the clocks in the universe also
start running at half the speed ?

 4. If all the terms in an equation have same units, is it
necessary that they have same dimensions ? If all the
terms in an equation have same dimensions, is it
necessary that they have same units ?

 5. If two quantities have same dimensions, do they
represent same physical content ?

 6. It is desirable that the standards of units be easily
available, invariable, indestructible and easily
reproducible. If we use foot of a person as a standard
unit of length, which of the above features are present
and which are not ?

 7. Suggest a way to measure :
(a) the thickness of a sheet of paper,
(b) the distance between the sun and the moon.

OBJECTIVE I

 1. Which of the following sets cannot enter into the list of
fundamental quantities in any system of units ?
(a) length, mass and velocity,
(b) length, time and velocity,
(c) mass, time and velocity,
(d) length, time and mass.

 2. A physical quantity is measured and the result is
expressed as nu where u is the unit used and n is the
numerical value.  If the result is expressed in various
units then
(a) n ∝ size of u    (b) n ∝ u 2

(c) n ∝ √u          (d) n ∝  
1
u

 ⋅

 3. Suppose a quantity x can be dimensionally represented

in terms of M, L and T, that is, [x] = M a Lb T c. The
quantity mass
(a) can always be dimensionally represented in terms of
L, T and x,
(b) can never be dimensoinally represented in terms of

L, T and x,
(c) may be represented in terms of L, T and x if a = 0,
(d) may be represented in terms of L, T and x if a ≠ 0.

 4. A dimensionless quantity
(a) never has a unit,    (b) always has a unit,
(c) may have a unit,     (d) does not exist.

 5. A unitless quantity
(a) never has a nonzero dimension,
(b) always has a nonzero dimension,
(c) may have a nonzero dimension,
(d) does not exist.

 6. ∫ dx

√2ax − x 2
 = a n sin – 1 


x
a

 − 1



 ⋅

The value of n is
(a) 0         (b) –1
(c) 1         (d) none of these.
You may use dimensional analysis to solve the problem.

OBJECTIVE II

 1. The dimensions ML– 1 T – 2 may correspond to
(a) work done by a force
(b) linear momentum
(c) pressure
(d) energy per unit volume.

 2. Choose the correct statement(s) :
(a) A dimensionally correct equation may be correct.
(b) A dimensionally correct equation may be incorrect.
(c) A dimensionally incorrect equation may be correct.
(d) A dimensionally incorrect equation may be incorrect.

 3. Choose the correct statement(s) :
(a) All quantities may be represented dimensionally in
terms of the base quantities.
(b) A base quantity cannot be represented dimensionally
in terms of the rest of the base quantities.
(c) The dimension of a base quantity in other base
quantities is always zero.
(d) The dimension of a derived quantity is never zero in
any base quantity.

EXERCISES

 1. Find the dimensions of
(a) linear momentum, 

     (b) frequency and  
     (c) pressure.

 2. Find the dimensions of 
(a) angular speed ω,       (b) angular acceleration α, 

     (c) torque Γ and        (d) moment of interia I. 
Some of the equations involving these quantities are
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ω = 
θ2 − θ1

t2 − t1

 ,   α = 
ω2 − ω1

t2 − t1

 ,   Γ = F.r  and  I = mr 2.

The symbols have standard meanings.
 3. Find the dimensions of 

(a) electric field E,      (b) magnetic field B  and
(c) magnetic permeability µ 0. 
The relevant equations are

F = qE,  F = qvB,  and  B = 
µ 0 I

2 π a
 ;

where F is force, q is charge, v is speed, I is current,
and a is distance.

 4. Find the dimensions of 
(a) electric dipole moment p and 
(b) magnetic dipole moment M.
The defining equations are p = q.d  and  M = IA;
where d is distance, A is area, q is charge and I is
current.

 5. Find the dimensions of Planck’s constant h from the
equation E = hν where E is the energy and ν is the
frequency.

 6. Find the dimensions of
(a) the specific heat capacity c,
(b) the coefficient of linear expansion α and
(c) the gas constant R. 
Some of the equations involving these quantities are
Q = mc(T2 − T1),  lt = l0[1 + α(T2 − T1)]  and  PV = nRT.

 7. Taking force, length and time to be the fundamental
quantities find the dimensions of
(a) density,         (b) pressure,
(c) momentum  and     (d) energy.

 8. Suppose the acceleration due to gravity at a place is
10 m/s 2. Find its value in cm/(minute) 2.

 9. The average speed of a snail is 0.020 miles/hour and
that of a leopard is 70 miles/hour. Convert these speeds
in SI units.

10. The height of mercury column in a barometer in a
Calcutta laboratory was recorded to be 75 cm. Calculate
this pressure in SI and CGS units using the following
data : Specific gravity of mercury = 13.6, Density of
water = 103 kg/m3, g = 9.8 m/s2 at Calcutta. Pressure
= hρg in usual symbols.

11. Express the power of a 100 watt bulb in CGS unit.

12. The normal duration of I.Sc. Physics practical period in
Indian colleges is 100 minutes. Express this period in
microcenturies. 1 microcentury = 10 – 6 × 100 years. How
many microcenturies did you sleep yesterday ?

13. The surface tension of water is 72 dyne/cm. Convert it
in SI unit.

14. The kinetic energy K of a rotating body depends on its
moment of inertia I and its angular speed ω. Assuming
the relation to be K = kI aωb where k is a dimensionless
constant, find a and b. Moment of inertia of a sphere

about its diameter is 2
5

 Mr 2.

15. Theory of relativity reveals that mass can be converted
into energy. The energy E so obtained is proportional to
certain powers of mass m and the speed c of light. Guess
a relation among the quantities using the method of
dimensions.

16. Let I = current through a conductor, R = its resistance
and V = potential difference across its ends. According
to Ohm’s law, product of two of these quantities equals
the third. Obtain Ohm’s law from dimensional analysis.
Dimensional formulae for R and V are ML2 I − 2 T − 3 and
ML2 T − 3 I − 1 respectively.

17. The frequency of vibration of a string depends on the
length L between the nodes, the tension F in the string
and its mass per unit length m. Guess the expression
for its frequency from dimensional analysis.

18. Test if the following equations are dimensionally
correct :

(a) h = 
2 S cosθ

ρrg
 ,        (b) v = √P

ρ
,

(c) V = 
π P r 4 t

8 η l
 ,          (d) ν = 

1
2 π

 √mgl
I

;

where h = height, S = surface tension, ρ = density, P =
pressure, V = volume, η = coefficient of viscosity, ν =
frequency and I = moment of inertia.

19. Let x and a stand for distance. Is ∫ 
dx

√a 2 − x 2

= 
1
a sin − 1 

a
x  dimensionally correct ?

ANSWERS

OBJECTIVE I

 1. (b)  2. (d)  3. (d)  4. (c)  5. (a)  6. (a)

OBJECTIVE II

 1. (c), (d)  2. (a), (b), (d)  3. (a), (b), (c)

EXERCISES

 1. (a) MLT − 1 (b) T − 1 (c) ML − 1 T − 2

 2. (a) T − 1 (b) T − 2 (c) ML2 T − 2 (d) ML2

 3. (a) MLT − 3 I − 1 (b) MT − 2 I − 1 (c) MLT − 2 I − 2

 4. (a) LTI (b) L2 I

 5. ML2 T − 1

 6. (a) L2 T − 2 K − 1 (b) K − 1 (c) ML2 T − 2 K − 1 (mol) − 1
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 7. (a) FL− 4 T 2 (b) FL− 2 (c) FT (d) FL

 8. 36 × 10 5  cm ⁄ (minute) 2

 9. 0.0089 m/s, 31 m/s

10. 10 × 10 4 N/m 2,   10 × 10 5 dyne/cm 2

11. 10 9 erg/s

12. 1.9 microcenturies

13. 0.072 N/m

14. a = 1,  b = 2

15. E = kmc 2

16. V = IR

17. 
k
L

 √F
m

18. all are dimensionally correct
19. no
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CHAPTER 2

PHYSICS AND MATHEMATICS

Mathematics is the language of physics. It becomes
easier to describe, understand and apply the physical
principles, if one has a good knowledge of mathematics.
In the present course we shall constantly be using the
techniques of algebra, trigonometry and geometry as
well as vector algebra, differential calculus and
integral calculus. In this chapter we shall discuss the
latter three topics. Errors in measurement and the
concept of significant digits are also introduced.

2.1 VECTORS AND SCALARS

Certain physical quantities are completely
described by a numerical value alone (with units
specified) and are added according to the ordinary
rules of algebra. As an example the mass of a system
is described by saying that it is 5 kg. If two bodies one
having a mass of 5 kg and the other having a mass of
2 kg are added together to make a composite system,
the total mass of the system becomes 5 kg + 2 kg
= 7 kg. Such quantities are called scalars.

The complete description of certain physical
quantities requires a numerical value (with units
specified) as well as a direction in space. Velocity of a
particle is an example of this kind. The magnitude of
velocity is represented by a number such as 5 m/s and
tells us how fast a particle is moving. But the
description of velocity becomes complete only when the
direction of velocity is also specified. We can represent
this velocity by drawing a line parallel to the velocity
and putting an arrow showing the direction of velocity.
We can decide beforehand a particular length to
represent 1 m/s and the length of the line representing

a velocity of 5 m/s may be taken as 5 times this unit
length. Figure (2.1) shows representations of several
velocities in this scheme. The front end (carrying the
arrow) is called the head and the rear end is called
the tail.

Further, if a particle is given two velocities
simultaneously its resultant velocity is different from
the two velocities and is obtained by using a special
rule. Suppose a small ball is moving inside a long tube
at a speed 3 m/s and the tube itself is moving in the
room at a speed 4 m/s along a direction perpendicular
to its length. In which direction and how fast is the
ball moving as seen from the room ?

Figure (2.2) shows the positions of the tube and
the ball at t = 0 and t = 1 s. Simple geometry shows
that the ball has moved 5 m in a direction  = 53 from
the tube. So the resultant velocity of the ball is 5 m/s
along this direction. The general rule for finding the
resultant of two velocities may be stated as follows.

Draw a line AB representing the first velocity with
B as the head. Draw another line BC representing the
second velocity with its tail B coinciding with the head
of the first line. The line AC with A as the tail and C
as the head represents the resultant velocity.
Figure (2.3) shows the construction.

The resultant is also called the sum of the two
velocities. We have added the two velocities AB and
BC and have obtained the sum AC. This rule of
addition is called the “triangle rule of addition”.

C

4 m

3 m

A B

t = 1s

t = 0

Figure 2.2
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��

����
��
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The physical quantities which have magnitude and
direction and which can be added according to the
triangle rule, are called vector quantities. Other
examples of vector quantities are force, linear
momentum, electric field, magnetic field etc.

The vectors are denoted by putting an arrow over

the symbols representing them. Thus, we write  AB 
→

,

BC 
→

 etc. Sometimes a vector is represented by a single

letter such as v
→
, F

→
 etc. Quite often in printed books

the vectors are represented by bold face letters like
AB, BC, v, f etc.

If a physical quantity has magnitude as well as
direction but does not add up according to the triangle
rule, it will not be called a vector quantity. Electric
current in a wire has both magnitude and direction
but there is no meaning of triangle rule there. Thus,
electric current is not a vector quantity.

2.2 EQUALITY OF VECTORS

Two vectors (representing two values of the same
physical quantity) are called equal if their magnitudes
and directions are same. Thus, a parallel translation
of a vector does not bring about any change in it.

2.3 ADDITION OF VECTORS

The  triangle  rule  of  vector  addition  is already
described above. If a

→
 and b

→
 are the two vectors to be

added, a diagram is drawn  in  which  the  tail of b
→

coincides with the head of  a
→

.  The vector joining the
tail of a

→
 with the head of b

→
 is the vector sum of a

→
 and

b
→
. Figure (2.4a) shows the construction. The same rule

may be stated in a slightly different way. We draw the
vectors a

→
 and b

→
 with both the tails coinciding

(figure 2.4b). Taking these two as the adjacent sides

we complete the parallelogram. The diagonal through
the common tails gives the sum of the two vectors.

Thus, in figure, (2.4b) AB 
→

 +  AC 
→

 =  AD 
→

.

Suppose the magnitude of a
→

 = a and that of b
→
 = b.

What  is  the  magnitude  of  a
→

 + b
→
  and  what  is  its

direction ? Suppose the angle between a
→

 and b
→
  is  θ. It

is easy to see from figure (2.5) that

      AD 2 = (AB + BE) 2 + (DE) 2

         = (a + b cosθ) 2 + (b sinθ) 2

         = a 2 + 2ab cosθ + b 2.

Thus, the magnitude of a
→

 + b
→
 is

         √a 2 + b 2 + 2ab cosθ . … (2.1)

Its angle with a
→

 is α where

        tanα = DE
AE

 = 
b sinθ

a + b cosθ
 ⋅ … (2.2)

Example 2.1

    Two vectors having equal magnitudes A make an angle
θ with each other. Find the magnitude and direction of
the resultant.

Solution : The magnitude of the resultant will be

      B = √A 2 + A 2 + 2AA cosθ

        = √2A 2(1 + cosθ)  = √4A 2cos 2 
θ
2

        = 2A cos 
θ
2

 ⋅

The resultant will make an angle α with the first vector
where

    tanα = 
A sinθ

A + A cosθ
 = 

2A sin
θ
2

 cos
θ
2

2A cos2 
θ
2

 = tan
θ
2

or,     α = 
θ
2

Thus, the resultant of two equal vectors bisects the angle
between them.

First velocity
A B

C

Second
velocity

Resultant
velocity

Figure 2.3

b

a + b

a

(a)

C

A B

D

(b)

b

a

a + b

Figure 2.4

A B

C D

a

ba + b

E

Figure 2.5
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2.4 MULTIPLICATION OF A VECTOR BY A NUMBER

Suppose a


 is a vector of magnitude a and k is a
number. We define the vector b


  k a


 as a vector of

magnitude  ka.  If  k  is  positive  the  direction  of
the vector b


  k a


 is same as that of a


. If k is negative,

the direction of b

 is opposite to a


. In particular,

multiplication by (–1) just inverts the direction of the
vector. The vectors a


 and – a


 have equal magnitudes

but opposite directions.

If  a


 is a vector of magnitude a and  u


 is a vector
of unit magnitude in the direction of a


, we can write

a


 = au


.

2.5 SUBTRACTION OF VECTORS

Let a


 and b

 be two vectors. We define a


  b


 as the

sum of the vector a


 and the vector  b

  . To subtract

b

 from a


, invert the direction of b


 and add to a


.

Figure (2.6) shows the process.

Example 2.2

   Two vectors of equal magnitude 5 unit have an angle
60 between them. Find the magnitude of (a) the sum of
the vectors and (b) the difference of the vectors.

Solution : Figure (2.7) shows the construction of the sum

A


  B


 and the difference A


  B


.

(a) A


  B


 is the sum of A


 and B


. Both have a magnitude
of 5 unit and the angle between them is 60. Thus, the
magnitude of the sum is

      A


  B


   5 2  5 2  2  5  5 cos60
            2  5 cos30  53 unit.

(b) A


  B


 is the sum of A


  and   B


 . As shown in the

figure, the angle between A


  and   B


  is 120. The

magnitudes of both A


  and   B


  is 5 unit. So,

     A


  B


   5 2  5 2  2  5  5 cos120

           2  5 cos60  5 unit.

2.6 RESOLUTION OF VECTORS

Figure (2.8) shows a vector a


  OA 


 in the X-Y
plane drawn from the origin O. The vector makes an
angle  with the X-axis and  with the Y-axis. Draw
perpendiculars AB and AC from A to the X and Y axes
respectively. The length OB is called the projection of

OA 


 on X-axis. Similarly OC is the projection of OA 


on Y-axis. According to the rules of vector addition

        a


  OA 


 OB 


 OC 


.

Thus, we have resolved the vector a


 into two parts,
one along OX and the other along OY. The magnitude
of the part along OX is OB  a cos and the magnitude

of the part along OY is OC  a cos. If i

 and j


 denote

vectors of unit magnitude along OX and OY
respectively, we get

     OB


  a cos i

  and  OC


  a cos j



so that     a


  a cos i

  a cos j


 .

If the vector a


 is not in the X-Y plane, it may have
nonzero projections along X,Y,Z axes and we can
resolve it into three parts i.e., along the X, Y and Z
axes. If , ,  be the angles made by the vector a


 with

the three axes respectively, we get

      a


  a cos i

  a cos j


  a cos k


 (2.3)

where i

,  j

 and k


 are the unit vectors along X, Y and

Z axes respectively. The magnitude (a cos) is  called
the component of a


 along X-axis, (a cos) is called the

component along Y-axis and (a cos) is called the
component along Z-axis. In general, the component of
a vector a


 along a direction making an angle  with it

a

–b

–b

a
–

b

Figure 2.6

Figure 2.7
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is a cos (figure 2.9) which is the projection of a


 along
the given direction.

Equation (2.3) shows that any vector can be expressed
as a linear combination of the three unit vectors i


,  j

 

and k

.

Example 2.3

     A force of 10.5 N acts on a particle along a direction
making an angle of 37 with the vertical. Find the
component of the force in the vertical direction.

Solution : The component of the force in the vertical
direction will be

       F  F cos  10.5 N cos37

           10.5 N4
5

  8.40 N.

We can easily add two or more vectors if we know
their components along the rectangular coordinate
axes. Let us have

          a


  ax i

  ay j


  az k



        b

  bx i


  by j


  bz k



and      c

  cx i


  cy j


  cz k



then

a


  b

  c


  ax  bx  cx i


  ay  by  cy j


  az  bz  cz k


.

If all the vectors are in the X-Y plane then all the z
components are zero and the resultant is simply

   a


  b

  c


  ax  bx  cx i


  ay  by  cy j


.

This is the sum of two mutually perpendicular vectors
of magnitude ax  bx  cx and ay  by  cy. The
resultant can easily be found to have a magnitude

     ax  bx  cx 
2  ay  by  cy 

2

making an angle  with the X-axis where

        tan  
ay  by  cy

ax  bx  cx
 

2.7 DOT PRODUCT OR SCALAR PRODUCT
   OF TWO VECTORS

The dot product (also called scalar product) of two
vectors a


 and b


 is defined as

            a


  b

  ab cos  (2.4)

where a and b are the magnitudes of a


 and b


respectively and  is the angle between them. The dot
product between two mutually perpendicular vectors
is zero as cos90 = 0.

The dot product is commutative and distributive.

           a


  b

  b


  a


        a


  b

  c


  a


  b

  a


  c

.

Example 2.4

   The work done by a force F


 during a displacement r

 is

given by F


  r

. Suppose a force of 12 N acts on a particle

in vertically upward direction and the particle is
displaced through 2.0 m in vertically downward
direction. Find the work done by the force during this
displacement.

Solution : The angle between the force F


 and the
displacement r


 is 180. Thus, the work done is

          W  F


  r


             Fr cos

             12 N2.0 mcos180

              24 Nm   24 J.

Dot Product of Two Vectors in terms of the
Components along the Coordinate Axes

Consider two vectors a


 and b

 represented in terms

of the unit vectors i

,  j


,  k


 along the coordinate axes

as
         a


  ax i


  ay j


  az k



and       b

  bx i


  by j


  bz k


.

Then

 a


  b

  ax i


  ay j


  az k


  bx i


  by j


  bz k




     ax bx i

  i

  ax by i


  j

  ax bz i


  k


       ay bx j

  i

  ay by j


  j

  ay bz j


  k


         az bx k

  i

  az by k


  j

  az bz k


  k


 (i)

Since, i

, j

 and k


 are mutually orthogonal,

a

a cos

Figure 2.9
�

�

Figure 2.10
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we have  i
→
 ⋅ j

→
 = i

→
 ⋅ k

→
 = j

→
 ⋅ i

→
 = j

→
 ⋅ k

→
 = k

→
 ⋅ i

→
 = k

→
 ⋅ j

→
 = 0.

Also,   i
→
 ⋅ i

→
 = 1 × 1 cos0 = 1.

Similarly,  j
→
 ⋅ j

→
 = k

→
 ⋅ k

→
 = 1.

Using these relations in equation (i) we get
      a

→
 ⋅ b

→
 = ax bx + ay by + az bz.

2.8 CROSS PRODUCT OR VECTOR PRODUCT
   OF TWO VECTORS

The cross product or vector product of two vectors
a
→

 and b
→
, denoted by a

→
 × b

→
 is itself a vector. The

magnitude of this vector is

          a
→

 × b
→
  = ab sinθ … (2.5)

where a and b are the magnitudes of a
→

 and b
→

respectively and θ is the smaller angle between the
two. When two vectors are drawn with both the tails
coinciding, two angles are formed between them
(figure 2.11). One of the angles is smaller than 180°

and the other is greater than 180° unless both are
equal to 180°. The angle θ used in equation (2.5) is the
smaller one. If both the angles are  equal to 180°,
sin θ = sin 180° = 0  and  hence  a

→
 × b

→
  = 0. Similarly

if θ = 0, sin θ = 0 and  a
→

 × b
→
  = 0. The cross product

of two parallel vectors is zero.

The direction  of  a
→

 × b
→
  is  perpendicular  to  both

a
→

 and b
→
. Thus, it is perpendicular to the plane formed

by a
→

 and b
→
. To determine the direction of arrow on

this perpendicular several rules are in use. In order to
avoid confusion we here describe just one rule.

Draw the two vectors a
→

 and b
→
 with both the tails

coinciding (figure 2.12). Now place your stretched right
palm perpendicular to the plane of a

→
 and b

→
 in such a

way that the fingers are along the vector a
→

 and when
the fingers are closed they go towards b

→
. The direction

of the thumb gives the direction of arrow to be put on
the vector a

→
 × b

→
.

This is known as the right hand thumb rule. The
left handers should be more careful in using this rule
as it must be practiced with right hand only.

Note that this rule makes the cross product
noncommutative. In fact

         a
→

 × b
→
 = − b

→
 × a

→
.

The cross product follows the distributive law

     a
→

 × ( b
→
 + c

→
 ) = a

→
 × b

→
 + a

→
 × c

→
.

It does not follow the associative law

     a
→

 × ( b
→
 × c

→
 ) ≠ ( a

→
 × b

→
 ) × c

→
.

When we choose a coordinate system any two
perpendicular lines may be chosen as X and Y axes.
However, once X and Y axes are chosen, there are two
possible choices of Z-axis. The Z-axis must be
perpendicular to the X-Y plane. But the positive
direction of Z-axis may be defined in two ways. We
choose the positive direction of Z-axis in such a way
that

          i
→
 × j

→
 = k

→
 .

Such a coordinate system is called a right handed
system. In such a system

       j
→
 × k

→
 = i

→
    and  k

→
 × i

→
 = j

→
.

Of course  i
→
 × i

→
 = j

→
 × j

→
 = k

→
 × k

→
 = 0.

Example 2.5

    The vector A
→

 has a magnitude of 5 unit, B
→

 has a

magnitude of 6 unit and the cross product of A
→

 and B
→

has a magnitude of 15 unit. Find the angle between A
→

and B
→

.

Solution : If the angle between A
→

 and B
→

 is θ, the cross
product will have a magnitude

          | A
→

 × B
→

 | = AB sinθ

or,               15 = 5 × 6 sinθ

or,             sinθ = 
1
2

 ⋅

Thus,             θ = 30°  or,  150°.

Cross Product of Two Vectors in terms of
the Components along the Coordinate Axes

Let           a
→

 = ax i
→
 + ay j

→
 + az k

→

and         b
→
 = bx i

→
 + by j

→
 + bz k

→
.

360°� 

Figure 2.11

a

b b

a

Figure 2.12
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Then a


  b

  ax i


  ay j


  az k


  bx i


  by j


  bz k




         axbx i

  i


  axby i


  j


  axbz i


  k



           aybx j

  i


  ayby j


  j


  aybz j


  k



           azbx k

  i


  azby k


  j


  azbz k


  k



         axby k

  axbz  j


   aybx  k


   aybz i


 

           azbx j

   azby i


 

         aybz  azby i

  azbx  axbz j



          axby  aybx k

.

Zero Vector

If we add two vectors A


 and B


, we get a vector.
Suppose the vectors A


 and B


 have equal magnitudes

but opposite directions. What is the vector A


 + B


 ? The
magnitude of this vector will be zero. For mathematical
consistency it is convenient to have a vector of zero
magnitude although it has little significance in
physics. This vector is called zero vector. The direction
of a zero vector is indeterminate. We can write this
vector as 0


. The concept of zero vector is also helpful

when we consider vector product of parallel vectors. If
A


|| B


, the vector A


  B


 is zero vector. For any vector A


,

            A


  0

  A



            A


  0

  0



and for any number ,

              0

  0


.

2.9 DIFFERENTIAL CALCULUS : 
dy
dx AS

   RATE MEASURER

Consider two quantities y and x interrelated in
such a way that for each value of x there is one and
only one value of y. Figure (2.13) represents the graph

of y versus x. The value of y at a particular x is
obtained by the height of the ordinate at that x. Let x
be changed by a small amount x, and the
corresponding change in y be y. We can define the
“rate of change” of y with respect to x in the following

way. When x changes by x, y changes by y so that

the rate of change seems to be equal to 
y

x
  If A be the

point (x, y) and B be the point x  x, y  y, the rate
y

x
 equals the slope of the line AB. We have

         
y
x

  
BC
AC

  tan.

However, this cannot be the precise definition of the
rate. Because the rate also varies between the points
A and B. The curve is steeper at B than at A. Thus,
to know the rate of change of y at a particular value
of x, say at A, we have to take x very small. However
small we take x, as long as it is not zero the rate
may vary within that small part of the curve. However,
if we go on drawing the point B closer to A and

everytime calculate 
y

x
  tan, we shall see that as x

is made smaller and smaller the slope tan of the line
AB approaches the slope of the tangent at A. This slope
of the tangent at A thus gives the rate of change of y

with respect to x at A. This rate is denoted by 
dy
dx

 

Thus,

          
dy
dx   lim

x  0
 
y
x 

For small changes x we can approximately write

           y  
dy
dx

 x.

Note that if the function y increases with an increase

in x at a point, 
dy
dx

 is positive there, because both y

and x are positive. If the function y decreases with
an increase in x, y is negative when x is positive.

Then 
y

x
 and hence 

dy
dx

 is negative.

Example 2.6

   From the curve given in figure (2.14) find 
dy
dx at x = 2,

6 and 10.

Solution : The tangent to the curve at x = 2 is AC. Its

slope is tan1  AB
BC

  
5
4

 

�

�

�

�

�������
�

�	

	

Figure 2.13
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Thus,    
dy
dx

  
5
4

 at x = 2.

The tangent to the curve at x = 6 is parallel to the X-axis.

Thus,    
dy
dx

  tan  0 at x = 6.

The tangent to the curve at x = 10 is DF. Its slope is

      tan2  
DE
EF    

5
4

 

Thus,    
dy
dx

   
5
4   at  x  10 

If we are given the graph of y versus x, we can

find 
dy
dx

 at any point of the curve by drawing the

tangent at that point and finding its slope. Even if the
graph is not drawn and the algebraic relation between
y and x is given in the form of an equation, we can

find 
dy
dx

 algebraically. Let us take an example.

The area A of a square of length L is A  L2.

If we change L to L + L, the area will change
from A to A + A (figure 2.15).

        A  A  L  L 2

               L2  2L L  L 2

or,          A  2LL  L 2

or,          
A
L

  2L  L.

Now if L is made smaller and smaller, 2L + L will
approach 2L.

Thus,     
dA
dL

  lim
L  0

 
 A
 L

  2L.

Table (2.1) gives the formulae for 
dy
dx

 for some of

the important functions. 
dy
dx

 is called the differential

coefficient or derivative of y with respect to x.

Table 2.1 : 
dy
dx

 for some common functions

y dy
dx

y dy
dx

  x n   nx n  1   sec x   sec x tan x

  sin x   cos x   cosec x – cosec x cot x

  cos x – sin x   ln x   
1
x

  tan x   sec 2 x   e x   e x

  cot x – cosec 2 x

Besides, there are certain rules for finding the
derivatives of composite functions.

(a) d
dx (cy) = c 

dy
dx     (c is a constant)

(b) d
dx (u + v) = du

dx  + dv
dx

(c) d
dx (uv) = u dv

dx + v du
dx

(d) d
dx 



u
v



  

v 
du
dx

  u 
dv
dx

v
 2

(e) 
dy
dx  

dy
du  

du
dx

With these rules and table 2.1 derivatives of almost
all the functions of practical interest may be evaluated.

Example 2.7

   Find 
dy
dx if y = e x sin x.

Solution : y  e x sin x.

So   
dy
dx  

d
dx e x sin x  e x d

dx sin x  sin x 
d
dx e x

        e x cos x  e x sin x  e x cos x  sin x.

2.10 MAXIMA AND MINIMA

Suppose a quantity y depends on another quantity
x in a manner shown in figure (2.16). It becomes
maximum at x1 and minimum at x2 .

AL

L

AL

L

Figure 2.15

���

�

��

Figure 2.16
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At these points the tangent to the curve is parallel
to the X-axis and hence its slope is tan θ = 0. But the

slope of the curve y-x equals the rate of change 
dy
dx

 ⋅

Thus, at a maximum or a minimum,

               
dy
dx

 = 0.

Just before the maximum the slope is positive, at
the maximum it is zero and just after the maximum

it is negative. Thus, 
dy
dx

 decreases at a maximum and

hence the rate of change of 
dy
dx

 is negative at a

maximum i.e.

      
d
dx

 




dy
dx




 < 0 at a maximum.

The quantity d
dx

 


dy
dx




 is the rate of change of the

slope. It is written as 
d

 2
y

dx
 2 ⋅ Thus, the condition of a

maximum is

          

dy
dx

 = 0

d
 2
y

dx
 2 < 0

 










 — maximum. … (2.6)

Similarly, at a minimum the slope changes from
negative to positive. The slope increases at such a point

and hence d
dx

 




dy
dx




 > 0. The condition of a minimum is

          

dy
dx

 = 0

d 2y

dx 2 > 0
 










 — minimum. … (2.7)

Quite often it is known from the physical situation
whether the quantity is a maximum or a minimum.

The test on 
d

 2
y

dx
 2  may then be omitted.

Example 2.8

   The height reached in time t by a particle thrown upward
with a speed u is given by

             h = ut − 1
2

 gt 2

where g = 9.8 m/s 2 is a constant. Find the time taken in
reaching the maximum height.

Solution : The height h is a function of time. Thus, h will

be maximum when 
dh
dt

 = 0. We have,

          h = ut − 
1
2

 gt 2

or,       
dh
dt

 = d
dt

 (ut) − 
d
dt

 



1
2

 gt 2




            = u 
dt
dt  − 

1
2 g d

dt (t 
2)

            = u − 
1
2 g(2t) = u − gt.

For maximum h,

         
dh
dt  = 0

or,       u − gt = 0    or,   t = 
u
g ⋅

2.11 INTEGRAL CALCULUS

Let PQ be a curve representing the relation
between two quantities x and y (figure 2.17). The point
P corresponds to x = a and Q corresponds to x = b.
Draw perpendiculars from P and Q on the X-axis so
as to cut it at A and B respectively. We are interested
in finding the area PABQ. Let us denote the value of
y at x by the symbol y = f(x).

Let us divide the length AB in N equal elements

each of length ∆x = b − a
N

 ⋅ From the ends of each small

length we draw lines parallel to the Y-axis. From the
points where these lines cut the given curve, we draw
short lines parallel to the X-axis. This constructs the
rectangular bars shown shaded in the figure. The sum
of the areas of these N rectangular bars is

I′ = f(a) ∆x + f(a + ∆x) ∆x + f(a + 2∆x) ∆x + …

               … + f [a + (N − 1) ∆x] ∆x .

This may be written as

             I′ = ∑ 

i = 1

N

f(xi)∆x … (2.8)

where xi takes the values a, a + ∆x, a + 2∆x,  .., b − ∆x.

This area differs slightly from the area PABQ. This
difference is the sum of the small triangles formed just
under the curve. Now the important point is the
following. As we increase the number of intervals N,
the vertices of the bars touch the curve PQ at more
points and the total area of the small triangles
decreases. As N tends to infinity (∆x tends to zero

Y

xO A B

P

Q

X

f (b)

f (a)

a
b

Figure 2.17
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because ∆x = b − a
N

) the vertices of the bars touch the

curve at infinite number of points and the total area
of the triangles tends to zero. In such a limit the sum
(2.8) becomes the area I of PABQ. Thus, we may write,

         I = lim
∆x → 0

 ∑ 

i = 1

N

f(xi)∆x.

The limit is taken as ∆x tends to zero or as N tends
to infinity. In mathematics this quantity is denoted as

         I = ∫ 
a

b

f(x) dx

and is read as the integral of f(x) with respect to x
within the limits x = a to x = b. Here a is called the
lower limit and b the upper limit of integration. The
integral is the sum of a large number of terms of the
type f(x) ∆x with x continuously varying from a to b
and the number of terms tending to infinity.

Let us use the above method to find the area of a
trapezium. Let us suppose the line PQ is represented
by the equation y = x.

The points A and B on the X-axis represent x = a
and x = b. We have to find the area of the trapezium
PABQ.

Let us divide the length AB in N equal intervals.

The length of each interval is  ∆x = b − a
N

 . The height

of the first shaded bar is y = x = a, of the second bar
is y = x = a + ∆x, that of the third bar is y = x
= a + 2 ∆x etc. The height of the N th bar is y = x
= a + (N − 1)∆x. The width of each bar is ∆x, so that
the total area of all the bars is

I′ = a∆x + (a + ∆x) ∆x + (a + 2∆x) ∆x + …

                  … + [a + (N − 1)∆x]∆x

    = [a + (a + ∆x) + (a + 2∆x) + …

             … + {a + (N − 1)∆x}]∆x … (2.9)

This sum can be written as

           I′ = ∑ 

i = 1

N

xi ∆x

where ∆ x = b − a
N

 and   xi = a,  a + ∆x, … b − ∆x.

As ∆x → 0 the total area of the bars becomes the
area of the shaded part PABQ.
   Thus, the required area is

            I = lim
∆x → 0

 ∑ 

i = 1

N

xi ∆x

              = ∫ 
a

b

xdx. … (i)

Now the terms making the series in the square
bracket in equation (2.9) are in arithmetic progression
so that this series may be summed up using the
formula S = n

2
 (a + l). Equation (2.9) thus becomes

        I′ = 
N
2

[a + {a + (N − 1)∆x}]∆x

          = 
N∆x

2
 [2a + N∆x − ∆x]

          = 
b − a

2
 [2a + b − a − ∆x]

         = 
b − a

2
 [a + b − ∆x].

Thus, the area PABQ is

       I = lim
∆x → 0

 



b − a

2




 [a + b − ∆x]

         = 
b − a

2
 (a + b)

           = 
1
2

 (b 2 − a 2). … (ii)

Thus, from (i) and (ii)

           ∫ 
a

b

x dx = 
1
2

 (b 2 − a 2).

In mathematics, special methods have been
developed to find the integration of various functions
f (x). A very useful method is as follows. Suppose we
wish to find

          ∫ 
a

b

f(x) dx = lim
∆x → 0

 ∑ 

i = 1

N

f(xi) ∆x

   where ∆x = 
b − a

N
 ;  xi = a,  a + ∆x , … b − ∆x.

Now look for a function F(x) such that the

derivative of F(x) is f(x) that is, dF(x)
dx

 = f(x). If you can

find such a function F(x), then

          ∫ 
a

b

f(x) dx = F(b) − F(a) ;

    F(b) − F(a) is also written as [F(x)]
 a

 b
.
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Figure 2.18
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F(x) is called the indefinite integration or the

antiderivative of f(x). We also write ∫ f(x) dx = F(x).
This may be treated as another way of writing
dF(x)

dx
 = f(x) ⋅

   For example, 
d
dx

 



1
2

 x 2



 = 

1
2

 
d
dx

 (x 2) = 
1
2

 ⋅ 2x = x.

Thus,    ∫ 
a

b

x dx = 



1
2

 x 2


 a

 b

               = 



1
2

 b 2



 − 




1
2

 a 2




            = 
1
2

 (b 2 − a 2)

as deduced above.
Table (2.2) lists some important integration

formulae. Many of them are essentially same as those
given in table (2.1).

Table 2.2 : Integration Formulae

f (x) F(x) = ∫ f(x) dx  f (x) F(x) = ∫ f(x) dx

sin x    – cos x x n(n ≠ − 1)   
x n + 1

n + 1

cos x     sin x 1
x

  ln x

sec 2 x     tan x 1
x 2 + a 2

   
1
a

 tan− 1 x
a

cosec 2 x    – cot x 1

√a 2 − x 2
  sin− 1 x

a

sec x tan x     sec x

cosec x cot x    – cosec x

Some useful rules for integration are as follows:

(a) ∫ c f(x) dx = c ∫ f(x) dx where c is a constant

(b) Let ∫ f(x) dx = F(x)

   then ∫ f(cx) dx = 
1
c

 F(cx).

(c) ∫ [ f(x) + g(x)] dx = ∫ f(x) dx + ∫ g(x) dx.

Example 2.9

   Evaluate  ∫ 
3

6

(2x 2 + 3x + 5) dx.

Solution : ∫ (2x 2 + 3x + 5) dx

           = ∫ 2x 2dx + ∫ 3x dx + ∫ 5 dx

           = 2∫ x 2dx + 3∫ x dx + 5∫ x 0dx

            = 2
x 3

3
 + 3

x 2

2
 + 5

x 1

1

            = 
2
3

 x 3 + 
3
2

 x 2 + 5x.

Thus, ∫ 
3

6

(2x 2 + 3x + 5) dx = 



2
3

 x 3 + 3
2

 x 2 + 5x


 3

 6

       = 
2
3

 (216 − 27) + 
3
2

 (36 − 9) + 5(6 − 3)

       = 126 + 40.5 + 15 = 181.5.

2.12 SIGNIFICANT DIGITS

When a measurement is made, a numerical value
is read generally from some calibrated scale. To
measure the length of a body we can place a metre
scale in contact with the body. One end of the body
may be made to coincide with the zero of the metre
scale and the reading just in front of the other end is
noted from the scale. When an electric current is
measured with an ammeter the reading of the pointer
on the graduation of the ammeter is noted. The value
noted down includes all the digits that can be directly
read from the scale and one doubtful digit at the end.
The doubtful digit corresponds to the eye estimation
within the smallest subdivision of the scale. This
smallest subdivision is known as the least count of the
instrument. In a metre scale, the major graduations
are at an interval of one centimetre and ten
subdivisions are made between two consecutive major
graduations. Thus, the smallest subdivision measures
a millimetre. If one end of the object coincides with
the zero of the metre scale, the other end may fall
between 10.4 cm and 10.5 cm mark of the scale
(figure 2.19). We can estimate the distance between
the 10.4 cm mark and the edge of the body as follows.

We mentally divide the 1 mm division in 10 equal parts
and guess on which part is the edge falling. We may
note down the reading as 10.46 cm. The digits 1, 0 and
4 are certain but 6 is doubtful. All these digits are
called significant digits. We say that the length is
measured up to four significant digits. The rightmost
or the doubtful digit is called the least significant digit
and the leftmost digit is called the most significant
digit.

1 8 9 10

0

11

Figure 2.19
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There may be some confusion if there are zeroes
at the right end of the number. For example, if a
measurement is quoted as 600 mm and we know
nothing about the least count of the scale we cannot
be sure whether the last zeros are significant or not.
If the scale had marking only at each metre then the
edge must be between the marks 0 m and 1 m and the
digit 6 is obtained only through the eye estimation.
Thus, 6 is the doubtful digit and the zeros after that
are insignificant. But if the scale had markings at
centimetres, the number read is 60 and these two
digits are significant, the last zero is insignificant. If
the scale used had markings at millimetres, all the
three digits 6, 0, 0 are significant. To avoid confusion
one may report only the significant digits and the
magnitude may be correctly described by proper
powers of 10. For example, if only 6 is significant in
600 mm we may write it as 6 × 10 2 mm. If 6 and the
first zero are significant we may write it as
6.0 × 10 2 mm and if all the three digits are significant
we may write it as 6.00 × 10 2 mm.

If the integer part is zero, any number of
continuous zeros just after the decimal part is
insignificant. Thus, the number of significant digits in
0.0023 is two and in 1.0023 is five.

2.13 SIGNIFICANT DIGITS IN CALCULATIONS

When two or more numbers are added, subtracted,
multiplied or divided, how to decide about the number
of significant digits in the answer ? For example,
suppose the mass of a body A is measured to be 12.0 kg
and of another body B to be 7.0 kg. What is the ratio
of the mass of A to the mass of B ? Arithmetic will
give this ratio as

          
12.0
7.0

 = 1.714285…

However, all the digits of this answer cannot be
significant. The zero of 12.0 is a doubtful digit and the
zero of 7.0 is also doubtful. The quotient cannot have
so many reliable digits. The rules for deciding the
number of significant digits in an arithmetic
calculation are listed below.

1. In a multiplication or division of two or more
quantities, the number of significant digits in the
answer is equal to the number of significant digits in
the quantity which has the minimum number of

significant digits. Thus, 12.0
7.0

 will have two significant

digits only.

The insignificant digits are dropped from the result
if they appear after the decimal point. They are
replaced by zeros if they appear to the left of the

decimal point. The least significant digit is rounded
according to the rules given below.

If the digit next to the one rounded is more than
5, the digit to be rounded is increased by 1. If the digit
next to the one rounded is less than 5, the digit to be
rounded is left unchanged. If the digit next to the one
rounded is 5, then the digit to be rounded is increased
by 1 if it is odd and is left unchanged if it is even.

2. For addition or subtraction write the numbers
one below the other with all the decimal points in one
line. Now locate the first column from left that has a
doubtful digit. All digits right to this column are
dropped from all the numbers and rounding is done to
this column. The addition or subtraction is now
performed to get the answer.

Example 2.10

   Round off the following numbers to three significant
digits (a) 15462, (b) 14.745, (c) 14.750 and (d) 14.650
× 10 12.

Solution : (a) The third significant digit is 4. This digit is
to be rounded. The digit next to it is 6 which is greater
than 5. The third digit should, therefore, be increased
by 1. The digits to be dropped should be replaced by
zeros because they appear to the left of the decimal.
Thus, 15462 becomes 15500 on rounding to three
significant digits.

(b) The third significant digit in 14.745 is 7. The number
next to it is less than 5. So 14.745 becomes 14.7 on
rounding to three significant digits.

(c) 14.750 will become 14.8 because the digit to be
rounded is odd and the digit next to it is 5.

(d) 14.650 × 10 12 will become 14.6 × 10 12 because the
digit to be rounded is even and the digit next to it is 5.

Example 2.11

   Evaluate 
25.2 × 1374

33.3
 ⋅  All the digits in this expression

are significant.

Solution : We have 
25.2 × 1374

33.3
 = 1039.7838....

Out of the three numbers given in the expression 25.2
and 33.3 have 3 significant digits and 1374 has four.
The answer should have three significant digits.
Rounding 1039.7838... to three significant digits, it
becomes 1040. Thus, we write

            
25.2 × 1374

33.3
 = 1040.

22 Concepts of Physics



Example 2.12

   Evaluate      24.36 + 0.0623 + 256.2.

Solution :

             
  24.36
    0.0623
256.2       _________

Now the first column where a doubtful digit occurs is
the one just next to the decimal point (256.2). All digits
right to this column must be dropped after proper
rounding. The table is rewritten and added below

             

  24.4
    0.1
256.2_____
280.7

The sum is 280.7.

2.14 ERRORS IN MEASUREMENT

While doing an experiment several errors can enter
into the results. Errors may be due to faulty
equipment, carelessness of the experimenter or
random causes. The first two types of errors can be
removed after detecting their cause but the random
errors still remain. No specific cause can be assigned
to such errors.

When an experiment is repeated many times, the
random errors are sometimes positive and sometimes
negative. Thus, the average of a large number of the
results of repeated experiments is close to the true
value. However, there is still some uncertainty about
the truth of this average. The uncertainty is estimated
by calculating the standard deviation described below.

Let x1,  x2,  x3,  …,  xN are the results of an
experiment repeated N times. The standard deviation
σ is defined as

        σ = √⎯⎯⎯⎯⎯⎯1
N

  ∑ 
i = 1

N
(xi − x

_
) 2

where x
_
 = 

1
N

 ∑ 
i

xi is the average of all the values of x.

The best value of x derived from these experiments is
x
_
 and the uncertainty is of the order of ± σ. In fact

x
_
 ± 1.96 σ is quite often taken as the interval in which

the true value should lie. It can be shown that there
is a 95% chance that the true value lies within

x
_
 ± 1.96 σ.

If one wishes to be more sure, one can use the
interval x

_
 ± 3 σ as the interval which will contain the

true value. The chances that the true value will be
within x

_
 ± 3 σ is more that 99%.

All this is true if the number of observations N is
large. In practice if N is greater than 8, the results
are reasonably correct.

Example 2.13

   The focal length of a concave mirror obtained by a
student in repeated experiments are given below. Find
the average focal length with uncertainty in ± σ limit.

No. of observation focal length in cm

 1    25.4
 2    25.2
 3    25.6
 4    25.1
 5    25.3
 6    25.2
 7    25.5
 8    25.4
 9    25.3
10    25.7

Solution : The average focal length f
_
 = 

1
10

 ∑ 

i = 1

10
fi

                       = 25.37 ≈ 25.4.

The calculation of σ is shown in the table below:

 i fi
cm

fi − f
_

 cm
( fi − f

_
 ) 2

 cm 2
Σ ( fi − f

_
 ) 2

  cm 2

 1 25.4   0.0  0.00

 2 25.2 – 0.2  0.04

 3 25.6   0.2  0.04

 4 25.1 – 0.3  0.09

 5 25.3 – 0.1  0.01  0.33

 6 25.2 – 0.2  0.04

 7 25.5   0.1  0.01

 8 25.4   0.0  0.00

 9 25.3 – 0.1  0.01

10 25.7   0.3  0.09

σ = √⎯⎯⎯⎯⎯⎯⎯1
10

 ∑ 
i
 ( fi − f

_
 ) 2  = √⎯⎯⎯⎯⎯⎯⎯⎯0.033 cm 2  = 0.18 cm

 ≅ 0.2 cm.

Thus, the focal length is likely to be within (25.4 ±
0.2 cm) and we write

           f = (25.4 ± 0.2) cm.
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Worked Out Examples

 1. A vector has component along the X-axis equal to 25 unit
and along the Y-axis equal to 60 unit. Find the
magnitude  and direction of the vector.

Solution : The given vector is the resultant of two
perpendicular vectors, one along the X-axis of magnitude
25 unit and the other along the Y-axis of magnitude
60 units. The resultant has a magnitude A given by

     A = √(25) 2 + (60) 2 + 2 × 25 × 60 cos90°

= √(25) 2 + (60) 2  = 65.

The angle α between this vector and the X-axis is given
by

              tanα = 
60
25

 ⋅

 2. Find the resultant of the three vectors shown in figure
(2-W1).

Solution : Take the axes as shown in the figure.

The x-component of the 5.0 m vector = 5.0 m cos37°

                         = 4.0 m,

the x-component of the 3.0 m vector = 3.0 m

and the x-component of the 2.0 m vector = 2.0 m cos90°

                           = 0.
Hence, the x-component of the resultant
      = 4.0 m + 3.0 m + 0 = 7.0 m.

The y-component of the 5.0 m vector = 5.0 m sin37°

                         = 3.0 m,

the y-component of the 3.0 m vector = 0
and the y-component of the 2.0 m vector = 2.0 m.

Hence, the y-component of the resultant

      = 3.0 m + 0 + 2.0 m = 5.0 m.
The magnitude of the resultant vector

      = √(7.0 m) 2 + (5.0 m) 2

      = 8.6 m.

If the angle made by the resultant with the X-axis is θ,
then

    tanθ = 
y−component
x−component

 = 
5.0
7.0

   or,  θ = 35.5°.

 3. The sum of the three vectors shown in figure (2-W2) is

zero. Find the magnitudes of the vectors OB 
→

 and OC 
→

.

Solution : Take the axes as shown in the figure

The x-component of OA 
→

= (OA)cos90° = 0.

The x-component of OB 
→

= (OB)cos0° = OB.

The x-component of OC 
→

= (OC)cos135° = − 
1

√2
 OC.

Hence, the x-component of the resultant

              = OB − 
1

√2
 OC. … (i)

It is given that the resultant is zero and hence its
x-component is also zero. From (i),

            OB = 
1

√2
 OC. … (ii)

The y-component of OA 
→

= OA cos180° = − OA.

The y-component of OB 
→

= OB cos90° = 0.

The y-component of OC 
→

= OC cos45° = 
1

√2
 OC.

Hence, the y-component of the resultant

                = 
1

√2
 OC − OA … (iii)

As the resultant is zero, so is its y-component. From (iii),

      
1

√2
 OC = OA,  or,  OC = √2 OA = 5√2 m.

From (ii), OB = 
1

√2
 OC = 5 m.

 4. The magnitudes of vectors OA 
→

, OB 
→

 and OC 
→

 in figure

(2-W3) are equal. Find the direction of OA 
→

+ OB 
→

– OC 
→

.

Y

X

37°

3.0 m

2.0 m

5.0 m

Figure 2-W1

C Y

X
B

A

O

5 m

45°

Figure 2-W2

C Y
A

X

B

30°

60°

45°

O

Figure 2-W3

24 Concepts of Physics



Solution : Let OA = OB = OC = F.

x-component of OA 
→

= F cos30° = F
√3
2

⋅

x-component of OB 
→

= F cos60° = 
F
2

⋅

x-component of OC 
→

= F cos135° = − 
F
√2

⋅

x-component of OA 
→

+ OB 
→

− OC 
→

         = 



F√3

2




 + 




F
2




 − 




− 

F
√2





         = 
F
2

 (√3 + 1 + √2).

y-component of  OA 
→

= F cos60° = 
F
2

 ⋅

y-component of OB 
→

= F cos150° = − 
F√3

2
 ⋅

y-component of OC 
→

= F cos45° = 
F
√2

 ⋅

y-component of OA 
→

+ OB 
→

− OC 
→

         = 


F
2




 + 




− 

F√3
2




 − 



F
√2





         = 
F
2

 (1 − √3 − √2).

Angle of OA 
→

+ OB 
→

− OC 
→

 with the X-axis

   = tan − 1 

F
2

 (1 − √3 − √2)

F
2

 (1 + √3 + √2)
 = tan − 1 

(1 − √3 − √2)
(1 + √3 + √2)

⋅

 5. Find the resultant of the three vectors OA 
→

, OB 
→

 and

OC 
→

shown in figure (2-W4). Radius of the circle is R.

Solution :  OA = OC.

OA 
→

+ OC 
→

 is along OB 
→

 (bisector) and its magnitude is
           2R cos45° = R√2.

( OA 
→

+ OC 
→

) + OB 
→

 is along OB 
→

and its magnitude is

           R√2 + R = R(1 + √2).

 6. The resultant of vectors OA 
→

 and OB 
→

 is perpendicular to

OA 
→

 (figure 2-W5). Find the angle AOB.

Solution : Take the dotted lines as X, Y axes.

x-component of OA 
→

= 4 m, x-component of

            OB 
→

= 6 m cosθ.

x-component of the resultant = (4 + 6 cosθ) m.

But it is given that the resultant is along Y-axis. Thus,
the x-component of the resultant = 0

4 + 6 cosθ = 0   or,   cosθ = − 2/3.

 7. Write the unit vector in the direction of A
→

 = 5 i
→
 + j

→
 − 2 k

→
.

Solution :    |A
→

| = √5 2 + 1 2 + (− 2) 2  = √30.

The required unit vector is 
A
→

| A
→

 |

        = 
5

√30
 i
→
 + 

1
√30

 j
→
 − 

2
√30

 k
→
.

 8. If |a
→

 + b
→
| = |a

→
 − b

→
| show that a

→
 ⊥ b

→
.

Solution : We have |a
→

 + b
→
| 2 = (a

→
 + b

→
) ⋅ (a

→
 + b

→
)

                 = a
→

 ⋅ a
→

 + a
→

 ⋅ b
→
 + b

→
 ⋅ a

→
 + b

→
 ⋅ b

→

                  = a 2 + b 2 + 2 a
→

 ⋅ b
→
.

Similarly, 

        |a
→

 − b
→
| 2 = (a

→
 − b

→
) ⋅ (a

→
 − b

→
)

              = a 2 + b 2 − 2 a
→

 ⋅ b
→
.

If        |a
→

 + b
→
| = |a

→
 − b

→
|,

   a 2 + b 2 + 2 a
→

 ⋅ b
→
 = a 2 + b 2 − 2 a

→
 ⋅ b

→

or,         a
→

 ⋅ b
→
 = 0

or,           a
→

 ⊥ b
→
.

 9. If a
→

 = 2 i
→
 + 3 j

→
 + 4 k

→
 and b

→
 = 4 i

→
 + 3 j

→
 + 2 k

→
, find the angle

between a
→

 and b
→
.

Solution : We have   a
→

 ⋅ b
→
 = ab cosθ

or,              cosθ = 
a
→

 ⋅ b
→

ab

where θ is the angle between a
→

 and b
→
.

Now       a
→

 ⋅ b
→
 = ax bx + ay by  + az bz

              = 2 × 4 + 3 × 3 + 4 × 2 = 25.

Also          a = √ax
 2 + ay

 2 + az
 2

             = √4 + 9 + 16  = √29

and         b = √bx
 2 + by

 2 + bz
 2  = √16 + 9 + 4  = √29 .

45°
45°

A
O

B

C

Figure 2-W4

B Y

AO
X

6 m

4 m

Figure 2-W5
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Thus,        cos  
25
29

or,              cos  1 

25
29




 

10. If   A


  2 i

  3 j


  7 k


,   B


  i


  2 k


   and   C


  j


  k


   find

A


   B


  C


 .

Solution : B


  C


   i

  2 k


    j


  k


 

           i

   j


  k


   2 k


   j


  k


 

           i

  j


  i


  k


  2 k


  j


  2 k


  k



           k

  j


  2 i


  0   2 i


  j


  k


.

  A


   B


  C


    2 i

  3 j


  7 k


     2 i


  j


  k


 

           2  2   3 1  7 1

           0.

11. The volume of a sphere is given by

             V  
4
3

  R 3

where R is the radius of the sphere. (a) Find the rate of
change of volume with respect to R. (b) Find the change
in volume of the sphere as the radius is increased from
20.0 cm to 20.1 cm. Assume that the rate does not
appreciably change between R = 20.0 cm to R = 20.1 cm.

Solution : (a)   V  
4
3

  R 3

or,        
dV
dR

  
4
3

  
d

dR
 R 3  

4
3

   3R 2  4  R 2.

(b) At R = 20 cm, the rate of change of volume with the
radius is

         
dV
dR

  4  R 2  4  400 cm 2

             1600  cm 2.

The change in volume as the radius changes from
20.0 cm to 20.1 cm is

         V  
dV
dR

 R

            1600  cm 2 0.1 cm

            160  cm 3.

12. Find the derivative of the following functions with respect

to x. (a) y  x 2 sin x, (b) y  
sin x

x
 and (c) y  sin x 2.

Solution :

(a)     y  x 2 sin x

      
dy
dx

  x 2 
d
dx

 sin x  sin x d
dx

 x 2

         x 2 cos x  sin x 2x
         x2sin x  xcos x.

(b)       y  
sin x

x

       
dy
dx

  

x 
d
dx

 sin x  sin x 



dx
dx





x 2

          
xcos x  sin x

x 2  

(c)      
dy
dx

  
d

dx 2 sin x 2  
dx 2

dx

          cos x 22x

         2x cos x 2.

13. Find the maximum or minimum values of the function

y  x  
1
x

 for x > 0.

Solution :       y  x  
1
x

             
dy
dx

  
d
dx

 x  
d
dx

 x  1 

               1   x  2

             1  
1
x 2 

For y to be maximum or minimum,

              
dy
dx

  0

or,            1  
1
x 2  0

Thus,            x  1   or   1.

For x > 0 the only possible maximum or minimum is at

x  1. At x  1, y  x  1
x
  2.

Near x  0, y  x  1
x
 is very large because of the term

1
x
  For very large x, again y is very large because of the

term x. Thus x = 1 must correspond to a minimum. Thus,
y has only a minimum for x > 0. This minimum occurs
at x = 1 and the minimum value of y is y = 2.

14. Figure (2-W6) shows the curve y  x 2. Find the area of
the shaded part between x = 0 and x = 6.

��� �

Figure 2-W6
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Solution :  The area can be divided into strips by drawing
ordinates between x = 0 and x = 6 at a regular interval
of dx. Consider the strip between the ordinates at x and
x  dx. The height of this strip is y  x 2. The area of this

strip is dA  y dx  x 2dx.

The total area of the shaded part is obtained by
summing up these strip-areas with x varying from 0 to
6. Thus

            A   
0

6

x 2 dx

              



x 3

3



 0

 6

  
216  0

3
  72.

15. Evaluate  
0

t

A sin t dt where A and  are constants.

Solution :      
0

t

A sin t dt

          A 



 cos t




 0

 t

  
A


 1  cos t

16. The velocity v and displacement x of a particle executing
simple harmonic motion are related as

           v 
dv
dx

    2 x.

At x  0,  v  v0 . Find the velocity v when the
displacement becomes x.

Solution :  We have

             v 
dv
dx

    2 x

or,             v dv    2 x dx

   or,             
v0

v

v dv   
0

x

  2 x dx  (i)

When summation is made on   2 x dx the quantity to
be varied is x. When summation is made on v dv the
quantity to be varied is v. As x varies from 0 to x the

velocity varies from v0 to v. Therefore, on the left the
limits of integration are from v0 to v and on the right
they are from 0 to x. Simiplifying (i),

          



1
2

 v 2
 v0

 v

    2 



x 2

2



 0

 x

or,        
1
2

 v 2  v 0
2    2 

x 2

2

or,              v 2  v 0
2   2 x 2

or,              v  v 0
2   2 x 2 

17. The charge flown through a circuit in the time interval

between t and t + dt is given by dq  e  t/ dt, where  is
a constant. Find the total charge flown through the
circuit between t  0 to t  .

Solution : The total charge flown is the sum of all the dq’s
for t varying from t = 0 to t  . Thus, the total charge
flown is

         Q   
0



e  t/ dt

            



e  t/

 1



 0

 

   



1  

1
e



 

18. Evaluate 21.6002  234  2732.10  13.

Solution :

       
  21.6002
 234         

2732.10    
   










      

  22
 234

2732
2988

The three numbers are arranged with their decimal
points aligned (shown on the left part above). The
column just left to the decimals has 4 as the doubtful
digit. Thus, all the numbers are rounded to this column.
The rounded numbers are shown on the right part above.
The required expression is 2988  13 = 38844. As 13 has
only two significant digits the product should be rounded
off after two significant digits. Thus the result is 39000.

QUESTIONS FOR SHORT ANSWER

 1. Is a vector necessarily changed if it is rotated through
an angle ?

 2. Is it possible to add two vectors of unequal magnitudes
and get zero ? Is it possible to add three vectors of equal
magnitudes and get zero ?

 3. Does the phrase “direction of zero vector” have physical
significance ? Discuss in terms of velocity, force etc.

 4. Can you add three unit vectors to get a unit vector ?
Does your answer change if two unit vectors are along
the coordinate axes ?
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 5. Can we have physical quantities having magnitude and
direction which are not vectors ?

 6. Which of the following two statements is more
appropriate ?

(a) Two forces are added using triangle rule because
force is  a vector quantity.
(b) Force is a vector quantity because two forces are
added using triangle rule.

 7. Can you add two vectors representing physical
quantities having different dimensions ? Can you
multiply two vectors representing physical quantities
having different dimensions ?

 8. Can a vector have zero component along a line and still
have nonzero magnitude ?

 9. Let ε1 and ε2 be the angles made by A
→

 and − A
→

 with the
positive X-axis. Show that tanε1 = tanε2. Thus, giving
tanε does not uniquely determine the direction of A

→
.

10. Is the vector sum of the unit vectors i
→
 and j

→
 a unit

vector ? If no, can you multiply this sum by a scalar
number to get a unit vector ?

11. Let A
→

 = 3 i
→
 + 4 j

→
. Write four vector B

→
 such that A

→
 ≠ B

→
 but

A = B.

12. Can you have A
→

 × B
→

 = A
→

 ⋅ B
→

 with A ≠ 0 and B ≠ 0 ? What
if one of the two vectors is zero ?

13. If A
→

 × B
→

 = 0, can you say that (a) A
→

 = B
→

, (b) A
→

 ≠ B
→

 ?

14. Let A
→

 = 5 i
→
 − 4 j

→
 and B

→
 = − 7.5 i

→
 + 6 j

→
. Do we have

B
→

 = k A
→

 ? Can we say 
B
→

A
→ = k ?

OBJECTIVE I

 1. A vector is not changed if
(a) it is rotated through an arbitrary angle
(b) it is multiplied by an arbitrary scalar
(c) it is cross multiplied by a unit vector
(d) it is slid parallel to itself.

 2. Which of the sets given below may represent the
magnitudes of three vectors adding to zero ?
(a) 2, 4, 8   (b) 4, 8, 16   (c) 1, 2, 1   (d) 0.5, 1, 2.

 3. The resultant of A
→

 and B
→

 makes an angle α with A
→

 and

β with B
→

,
(a) α < β           (b) α < β  if  A < B
(c) α < β  if  A > B      (d) α < β  if  A = B.

 4. The component of a vector is
(a) always less than its magnitude
(b) always greater than its magnitude
(c) always equal to its magnitude
(d) none of these.

 5. A vector A
→

 points vertically upward and B
→

 points

towards north. The vector product A
→

 × B
→

 is
(a) along west     (b) along east
(c) zero          (d) vertically downward.

 6. The radius of a circle is stated as 2.12 cm. Its area should
be written as
(a) 14 cm 2 (b) 14.1 cm 2 (c) 14.11 cm 2 (d) 14.1124 cm 2.

OBJECTIVE II

 1. A situation may be described by using different sets of
coordinate axes having different orientations. Which of
the following do not depend on the orientation of the
axes ?
(a) the value of a scalar  (b) component of a vector
(c) a vector           (d) the magnitude of a vector.

 2. Let C
→

 = A
→

 + B
→

.
(a) | C

→
 | is always greater than | A

→
 |

(b) It is possible to have | C
→

 | < | A
→

 | and

   | C
→

 | < | B
→

 |
(c) C is always equal to A + B 
(d) C is never equal to A + B.

 3. Let the angle between two nonzero vectors A
→

 and B
→

 be
120° and its resultant be C

→
.

(a) C must be equal to  A − B 
(b) C must be less than  A − B 
(c) C must be greater than  A − B 
(d) C may be equal to  A − B .

 4. The x-component of the resultant of several vectors
(a) is equal to the sum of the x-components of the vectors
(b) may be smaller than the sum of the magnitudes of
the vectors
(c) may be greater than the sum of the magnitudes of
the vectors
(d) may be equal to the sum of the magnitudes of the
vectors.

 5. The magnitude of the vector product of two vectors

| A
→

 | and | B
→

 |may be
(a) greater than AB       (b) equal to AB
(c) less than AB          (d) equal to zero.
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EXERCISES

 1. A vector A
→

 makes an angle of 20° and B
→

 makes an angle
of 110° with the X-axis. The magnitudes of these vectors
are 3 m and 4 m respectively. Find the resultant.

 2. Let A
→

 and B
→

 be the two vectors of magnitude 10 unit
each. If they are inclined to the X-axis at angles 30° and
60° respectively, find the resultant.

 3. Add vectors A
→

, B
→

 and C
→

 each having magnitude of 100
unit and inclined to the X-axis at angles 45°, 135° and
315° respectively.

 4. Let a
→

 = 4 i
→
 + 3 j

→
 and b

→
 = 3 i

→
 + 4 j

→
. (a) Find the magnitudes

of (a) a
→

, (b) b
→
, (c) a

→
 + b

→
 and (d) a

→
 − b

→
.

 5. Refer to figure (2-E1). Find (a) the magnitude, (b) x and
y components and (c) the angle with the X-axis of the

resultant of OA 
→

,  BC 
→

 and  DE 
→

.

 6. Two vectors have magnitudes 3 unit and 4 unit
respectively. What should be the angle between them if
the magnitude of the resultant is (a) 1 unit, (b) 5 unit
and (c) 7 unit.

 7. A spy report about a suspected car reads as follows. “The
car moved 2.00 km towards east, made a perpendicular
left turn, ran for 500 m, made a perpendicular right
turn, ran for 4.00 km and stopped”. Find the
displacement of the car.

 8. A carrom board (4 ft × 4 ft square) has the queen at the
centre. The queen, hit by the striker moves to the front
edge, rebounds and goes in the hole behind the striking
line. Find the magnitude of displacement of the queen
(a) from the centre to the front edge, (b) from the front
edge to the hole and (c) from the centre to the hole.

 9. A mosquito net over a 7 ft × 4 ft bed is 3 ft high. The
net has a hole at one corner of the bed through which
a mosquito enters the net. It flies and sits at the
diagonally opposite upper corner of the net. (a) Find the
magnitude of the displacement of the mosquito. (b)
Taking the hole as the origin, the length of the bed as
the X-axis, its width as the Y-axis, and vertically up as
the Z-axis, write the components of the displacement
vector.

10. Suppose a
→

 is a vector of magnitude 4.5 unit due north.
What is the vector (a) 3 a

→
, (b) – 4 a

→
 ?

11. Two vectors have magnitudes 2 m and 3 m. The angle
between them is 60°. Find (a) the scalar product of the
two vectors, (b) the magnitude of their vector product.

12. Let A1 A2 A3 A4 A5 A6 A1 be a regular hexagon. Write the
x-components of the vectors represented by the six sides
taken in order. Use the fact that the resultant of these
six vectors is zero, to prove that
cos0 + cosπ/3 + cos2π/3 + cos3π/3 + cos4π/3 + cos5π/3 = 0.
Use the known cosine values to verify the result.

13. Let a
→

 = 2 i
→
 + 3 j

→
 + 4 k

→
 and b

→
 = 3 i

→
 + 4 j

→
 + 5 k

→
. Find the

angle between them.

14. Prove that A
→

 ⋅ ( A
→

 × B
→

 ) = 0.

15. If A
→

 = 2 i
→
 + 3 j

→
 + 4 k

→
 and B

→
 = 4 i

→
 + 3 j

→
 + 2 k

→
, find A

→
 × B

→
.

16. If  A
→

,  B
→

,  C
→

  are  mutually  perpendicular,  show  that
C
→

 × ( A
→

 × B
→

 ) = 0. Is the converse true ?

17. A particle moves on a given straight line with a constant
speed v. At a certain time it is at a point P on its straight

line path. O is a fixed point. Show that OP 
→

 × v
→
 is

independent of the position P.

18. The  force  on  a  charged  particle  due  to electric and

magnetic fields is given by  F
→

 =  q E
→

 + q v
→
 × B

→
. Suppose

E
→

 is along the X-axis and B
→

 along the Y-axis. In what
direction and with what minimum speed v should a
positively charged particle be sent so that the net force
on it is zero ?

19. Give an example for which A
→

 ⋅ B
→

 = C
→

 ⋅ B
→

 but A
→

 ≠ C
→

.
20. Draw a graph from the following data. Draw tangents

at x = 2, 4, 6 and 8. Find the slopes of these tangents.
Verify that the curve drawn is y = 2x 2 and the slope of

tangent is tanθ = 
dy
dx

 = 4x.

  x   1   2    3    4    5    6    7     8     9    10 
  y   2   8   18   32   50   72   98   128   162   200
21. A curve is represented by y = sin x. If x is changed from

π
3

 to 
π
3

 + 
π

100
 , find approximately the change in y.

22. The electric current in a charging R–C circuit is given

by i = i0 e
 − t/RC where i0 , R and C are constant

parameters of the circuit and t is time. Find the rate of
change of current at (a) t = 0, (b) t = RC, (c) t = 10 RC.

23. The electric current in a discharging R–C circuit is given

by i = i0 e
 − t/RC where i0 , R and C are constant parameters

and t is time. Let i0 = 2.00 A, R = 6.00 × 10 5 Ω

O B
90°

60°30°

Y
A

C

D

2.0 m

1.0 m

1.5 m

E

X

Figure 2-E1

Y

X
60°

A1 A2

A3A6

A5
A4

Figure 2-E2
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and C = 0.500 µF. (a) Find the current at t = 0.3 s.
(b) Find the rate of change of current at t = 0.3 s.
(c) Find approximately the current at t = 0.31 s.

24. Find the area bounded under the curve y = 3x 2 + 6x + 7
and the X-axis with the ordinates at x = 5 and x = 10.

25. Find the area enclosed by the curve y = sin x and the
X-axis between x = 0 and x = π.

26. Find the area bounded by the curve y = e – x, the X-axis
and the Y-axis.

27. A rod of length L is placed along the X-axis between
x = 0 and x = L. The linear density (mass/length) ρ of
the rod varies with the distance x from the origin as
ρ = a + bx. (a) Find the SI units of a and b. (b) Find the
mass of the rod in terms of a, b and L.

28. The momentum p of a particle changes with time t

according to the relation 
dp
dt

 = (10 N) + (2 N/s)t. If the

momentum is zero at t = 0, what will the momentum be
at t = 10 s ?

29. The changes in a function y and the independent

variable x are related as 
dy
dx

 = x 2 . Find y as a function

of x.

30. Write the number of significant digits in (a) 1001,
(b) 100.1, (c) 100.10, (d) 0.001001.

31. A metre scale is graduated at every millimetre. How
many significant digits will be there in a length
measurement with this scale ?

32. Round the following numbers to 2 significant digits.
(a) 3472, (b) 84.16, (c) 2.55 and (d) 28.5.

33. The length and the radius of a cylinder measured with
a slide callipers are found to be 4.54 cm and 1.75 cm
respectively. Calculate the volume of the cylinder.

34. The thickness of a glass plate is measured to be
2.17 mm, 2.17 mm and 2.18 mm at three different
places. Find the average thickness of the plate from this
data.

35. The length of the string of a simple pendulum is
measured with a metre scale to be 90.0 cm. The radius
of the bob plus the length of the hook is calculated to
be 2.13 cm using measurements with a slide callipers.
What is the effective length of the pendulum ? (The
effective length is defined as the distance between the
point of suspension and the centre of the bob.)

ANSWERS

OBJECTIVE I

 1. (d)  2. (c)  3. (c)  4. (d)  5. (a)  6. (b)

OBJECTIVE II

 1. (a), (c), (d)  2. (b)  3. (c)  4. (a), (b), (d)
 5. (b), (c), (d)

EXERCISES

 1. 5 m at 73° with X-axis
 2. 20 cos15° unit at 45° with X-axis
 3. 100 unit at 45° with X-axis
 4. (a) 5     (b) 5     (c) 7√2     (d) √2
 5. (a) 1.6 m   (b) 0.98 m and 1.3 m respectively

   (c) tan− 1(1.32)
 6. (a) 180° (b) 90° (c) 0

 7. 6.02 km, tan− 1 
1
12

⋅

 8. (a) 2
3
 √10 ft (b) 4

3
 √10 ft (c) 2√2 ft

 9. (a) √74 ft (b) 7 ft, 4 ft, 3 ft
10. (a) 13.5 unit due north (b) 18 unit due south

11. (a) 3 m 2 (b) 3√3 m2

13. cos − 1 (38/√1450 )
15. − 6 i

→
 + 12 j

→
 − 6 k

→

16. no
18. along Z-axis with speed E/B
21. 0.0157

22. (a) 
−i0

RC
(b) 

−i0

RCe
(c) 

−i0

RCe 
10

23. (a) 2.00
e

 A (b) 
− 20
3e

 A/s (c) 5.8
3e

 A

24. 1135
25. 2
26. 1
27. (a) kg/m, kg/m 2 (b) aL + bL2/2
28. 200 kg–m/s

29. y = x 
3

3
 + C

30. (a) 4 (b) 4 (c) 5 (d) 4
31. 1, 2, 3 or 4
32. (a) 3500 (b) 84 (c) 2.6 (d) 28
33. 43.7 cm 3

34. 2.17 mm
35. 92.1 cm
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CHAPTER 3

REST AND MOTION : KINEMATICS

3.1 REST AND MOTION

When do we say that a body is at rest and when
do we say that it is in motion ? You may say that if a
body does not change its position as time passes it is
at rest. If a body changes its position with time, it is
said to be moving. But when do we say that it is not
changing its position ? A book placed on the table
remains on the table and we say that the book is at
rest. However, if we station ourselves on the moon (the
Appollo missions have made it possible), the whole
earth is found to be changing its position and so the
room, the table and the book are all continuously
changing their positions. The book is at rest if it is
viewed from the room, it is moving if it is viewed from
the moon.

Motion is a combined property of the object under
study and the observer. There is no meaning of rest
or motion without the viewer. Nothing is in absolute
rest or in absolute motion. The moon is moving with
respect to the book and the book moves with respect
to the moon. Take another example. A robber enters
a train moving at  great speed with respect to the
ground, brings out his pistol and says “Don’t move,
stand still”. The passengers stand still. The passengers
are at rest with respect to the robber but are moving
with respect to the rail track.

To locate the position of a particle we need a frame
of reference. A convenient way to fix up the frame of
reference is to choose three mutually perpendicular
axes and name them X-Y-Z axes. The coordinates, (x,
y, z) of the particle then specify the position of the

particle with respect to that frame. Add a clock into
the frame of  reference to measure the time. If all the
three coordinates x, y and z of the particle remain
unchanged as time passes, we say that  the particle is
at rest with respect to this frame. If any one or  more
coordinates change with time, we say that the body is
moving  with respect to this frame.

There is no rule or restriction on the choice of a
frame. We can choose a frame of reference according
to our convenience to describe the situation under
study. Thus, when we are in a train it is convenient
to choose a frame attached to our compartment. The
coordinates of a suitcase placed on the upper berth do
not change with time (unless the train gives a jerk)
and we say that the suitcase is at rest in the train-
frame. The different stations, electric poles, trees etc.
change their coordinates and we say that they are
moving in the train-frame. Thus, we say that “Bombay
is coming” and “Pune has already passed”.

In the following sections we shall assume that the
frame of reference is already chosen and we are
describing the motion of the objects in the chosen
frame. Sometimes the choice of the frame is clear from
the context and we do not mention it. Thus, when one
says the car is travelling and the rickshaw is not, it
is clear that all positions are measured from a frame
attached to the road.

3.2 DISTANCE AND DISPLACEMENT

Suppose a particle is at A at time t1 and at B at
time t2 with respect to a given frame (figure 3.2).

Figure 3.1

A
B

C

O X

Z

Y

Figure 3.2



During the time interval t1  to  t2 the particle moves
along the path ACB. The length of the path ACB is
called the distance travelled during the time interval
t1  to  t2. If we connect the initial position A with the
final position B by a straight line, we get the
displacement of the particle. The magnitude of the
displacement is the length of the straight line joining
the initial and the final position. The direction is from
the initial to the final position. The displacement has
both the magnitude as well as the direction. Further
the displacements add according to the triangle rule
of vector addition. Suppose a particle kept on a table
is displaced on the table and at the same time the
table is also displaced in the room. The net
displacement of the particle in the room is obtained by
the vector sum of the two displacements. Thus,
displacement is a vector quantity. In contrast the
distance covered has only a magnitude and is thus, a
scalar quantity.

Example 3.1

   An old person moves on a semi-circular track of radius
40.0 m during a morning walk. If he starts at one end
of the track and reaches at the other end, find the
distance covered and the displacement of the person.

Solution : The distance covered by the person equals the
length of the track. It is equal to πR = π × 40.0 m
= 126 m.
The displacement is equal to the diameter of the
semi-circular track joining the two ends. It is 2 R = 2

× 40.0 m = 80 m. The direction of this displacement is
from the initial point to the final point.

3.3 AVERAGE SPEED AND
    INSTANTANEOUS SPEED

The average speed of a particle in a time interval
is defined as the distance travelled by the particle
divided by the time interval. If the particle travels a
distance s in time t1  to  t2, the average speed is defined
as

            vav = 
s

t2 − t1
 ⋅ … (3.1)

The average speed gives the overall “rapidity” with which
the particle moves in this interval. In a one-day cricket
match, the average run rate is quoted as the total runs
divided by the total number of overs used to make these
runs. Some of the overs may be expensive and some may
be economical. Similarly, the average speed gives the
total effect in the given interval. The rapidity or slowness
may vary from instant to instant. When an athelete
starts running, he or she runs slowly and gradually

increases the rate. We define the instantaneous speed
at a time t as follows.

Let Δs be the distance travelled in the time interval
t to t + Δt. The average speed in this time interval is

              vav = 
Δs
Δt

 ⋅

Now make Δt vanishingly small and look for the value

of Δs
Δt

 ⋅ Remember Δs is the distance travelled in the

chosen time interval Δt. As Δt approaches 0, the

distance Δs also approaches zero but  the ratio Δs
Δt

 has

a finite limit.
The instantaneous speed at a time t is defined as

          v = lim
Δt → 0

 
Δs
Δt

 = 
ds
dt

… (3.2)

where s is the distance travelled in time t. The average
speed is defined for a time interval and the
instantaneous speed is defined at a particular instant.
Instantaneous speed is also called “speed”.

Example 3.2

   The distance travelled by a particle in time t is  given

by s = (2.5 m/s 2) t 2. Find (a) the average speed of the
particle during the time 0 to 5.0 s, and (b) the
instantaneous  speed at t = 5.0 s.

Solution : (a) The distance travelled during time 0 to

5.0 s is

       s = (2.5 m/s 2) (5.0 s) 2 = 62.5 m.
The average speed during this time is

         vav = 
62.5 m

5 s
 = 12.5 m/s.

(b)         s = (2.5 m/s 2) t 2

or,         
ds
dt

 = (2.5 m/s 2) (2 t) = (5.0 m/s 2) t.

At t = 5.0 s the speed is

          v = 
ds
dt

 = (5.0 m/s 2) (5.0 s) = 25 m/s.

If we plot the distance s as a function of time
(figure 3.4), the speed at a time t equals the slope of

� � � � � � � � 	 
 �
� 
 � � � � � �
� 
 � � � � � � � � � � � � � � � � � 	 	
� � � � � � � � � � � 
 � � � 
 � � � � �

Figure 3.3
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the tangent to the curve at the time t. The average
speed in a time interval t to t + t equals the slope of
the chord AB where A and B are the points on the
    

curve corresponding to the time t and t + t. As t
approaches zero, the chord AB becomes the tangent at

A and the average speed s
t

 becomes the slope of the

tangent which is ds
dt

 

If the speed of the particle at time t is v, the
distance ds travelled by it in the short time interval
t  to  t  dt is v dt. Thus, ds  vdt. The total distance
travelled by the particle in a finite time interval t1 to
t2 can be obtained by summing over these small
distances ds as time changes from t1  to  t2. Thus, the
distance travelled by a particle in the time interval
    

t1  to  t2 is

             s   
t1

t2

v dt.  (3.3)

If we plot a graph of the speed v versus time t, the
distance travelled by the particle can be obtained by
finding the area under the curve. Figure (3.5) shows
such a speed-time graph. To find the distance travelled
in the time interval t1  to  t2 we draw ordinates from
t  t1 and t  t2. The area bounded by the curve  v  t,
the X-axis and the two ordinates at t  t1 and t  t2

(shown shaded in the figure) gives the total distance
covered.

The dimension of speed is LT – 1 and its SI unit is
metre/second abbreviated as m/s.

Example 3.3

   Figure (3.6) shows the speed versus time graph for a
particle. Find the distance travelled by the particle
during the time t = 0 to t  3 s.

Solution : The distance travelled by the particle in the
time 0 to 3 s is equal to the area shaded in the figure.
This is a right angled triangle with height  6 m/s and

the base  3 s. The area is 1
2
 base height  1

2
  3 s

6 m/s  9 m. Thus, the particle covered a distance of
9 m during the time 0 to 3 s.

3.4 AVERAGE VELOCITY AND
    INSTANTANEOUS VELOCITY

The average velocity of a particle in a time interval
t1 to  t2 is defined as its displacement divided by the
time interval. If  the particle is at a point A (figure
3.7) at time t = t1 and at B at time t  t2, the

displacement in this time interval is the vector AB 


.
The average velocity in this time interval is then,

           v


av  
AB 


t2  t1
 

Like displacement, it is a vector quantity.
Position vector : If we join the origin to the position
of the particle by a straight line and put an arrow
towards the position of the particle, we get the position
vector of the particle. Thus, the position vector of the
particle shown in figure (3.7) at time t  t1 is OA 


 and

that at t  t2 is OB 


. The displacement of the particle
in the time interval t1 to t2 is

      AB 


 AO 


 OB 


 OB 


 OA 


 r


2  r


1 .
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The average velocity of a particle in the time interval
t1 to t2  can be written as

            v
→

av = 
r
→

2 − r
→

1

t2 − t1
 ⋅ … (3.4)

Note that only the positions of the particle at time
t = t1  and t = t2 are used in calculating the average
velocity. The positions in between t1 and t2 are not
needed, hence the actual path taken in going from A
to B is not important in calculating the average
velocity.

Example 3.4

   A table clock has its minute hand 4.0 cm long. Find the
average velocity of the tip of the minute hand (a) between
6.00 a.m. to 6.30 a.m. and (b) between 6.00 a.m. to
6.30 p.m.

Solution : At 6.00 a.m. the tip of the minute hand is at
12 mark and at  6.30 a.m. or 6.30 p.m. it is 180° away.
Thus, the straight line  distance between the initial and
final position of the tip is  equal to the diameter of the
clock.
Displacement = 2 R = 2 × 4.0 cm = 8.0 cm.

The displacement is from the 12 mark to the 6 mark on
the clock panel. This is also the direction of the average
velocity in both cases. 

(a) The time taken from 6.00 a.m. to 6.30 a.m. is 30
minutes = 1800 s. The average velocity is

   vav = 
Displacement

time
 = 

8.0 cm
1800 s

 = 4.4 × 10 − 3 cm/s.

 (b) The time taken from 6.00 a.m. to 6.30 p.m. is 12
hours and 30  minutes = 45000 s. The average velocity
is

  vav = 
Displacement

time
 = 

8.0 cm
45000 s

 = 1.8 × 10 − 4 cm/s.

The instantaneous velocity of a particle at a time
t is defined as follows. Let the average velocity of the
particle in a short time interval t to t + ∆t be v

→
av. This

average velocity can be written as

           v
→

av = 
∆r

→

∆t

where ∆r
→
 is the displacement in the time interval ∆t.

We now make ∆t vanishingly small and find the

limiting value of ∆r
→

∆t
 ⋅ This value is instantaneous

velocity v
→
 of the particle at time t.

          v
→
 = lim

∆t → 0
 
∆r

→

∆t
 = 

dr
→

dt
 ⋅ … (3.5)

For very small intervals the displacement ∆r
→
 is along

the line of  motion of the particle. Thus, the length

∆r equals the distance ∆s travelled in that interval. So
the magnitude of the velocity is

       v = 



 
dr

→

dt
 



 = 

|dr
→
 |

dt
 = 

ds
dt

… (3.6)

which is the instantaneous speed at time t.
Instantaneous velocity  is also called the “velocity”.

3.5 AVERAGE ACCELERATION AND
    INSTANTANEOUS ACCELERATION

If the velocity of a particle remains constant as
time passes, we say that it is moving with uniform
velocity. If the velocity changes with time, it is said to
be accelerated. The acceleration is the rate of change
of velocity. Velocity is a vector quantity hence a change
in its magnitude or direction or both will change the
velocity.

Suppose the velocity of a particle at time t1 is v
→

1

and at time t2 it is v
→

2. The change produced in time

interval t1 to t2 is v
→

2 − v
→

1. We define the average

acceleration a
→

av as the change in velocity divided by
the time interval. Thus,

            a
→

av = 
v
→

2 − v
→

1

t2 − t1
 ⋅ … (3.7)

Again the average acceleration depends only on the
velocities at time t1 and t2 . How the velocity changed
in between t1 and t2 is not important in defining the
average acceleration.

Instantaneous acceleration of a particle at time t
is defined as

          a
→

 = lim
∆t → 0

 
∆v

→

∆t
 = 

dv
→

dt
… (3.8)

where ∆v
→
 is the change in velocity between the time t

and t + ∆t. At time t the velocity is v
→
 and at time

t + ∆t it becomes v
→
 + ∆v

→
. 

∆v
→

∆t
 is the average acceleration

of the particle in the interval ∆t. As ∆t approaches zero,
this average acceleration becomes the instantaneous
acceleration. Instantaneous acceleration is also called
“acceleration”.

The dimension of acceleration is LT – 2 and its SI
unit is metre/second 2 abbreviated as m/s 2.

3.6 MOTION IN A STRAIGHT LINE

When a particle is constrained to move on a
straight line, the description becomes fairly simple. We
choose the line as the X-axis and a suitable time
instant as t = 0. Generally the origin is taken at the
point where the particle is situated at t = 0. The
position of the particle at time t is given by its
coordinate x at that time. The velocity is
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            v = 
dx
dt

… (3.9)

and the acceleration is a = 
dv
dt

… (3.10)

                 = 
d
dt

 



dx
dt




 = 

d 2x
dt 2

 ⋅ … (3.11)

If dx
dt

 is positive, the direction of the velocity is

along the positive X-axis and if dx
dt

 is negative, the

direction, is along the negative X-axis. Similarly if dv
dt

is positive, the acceleration is along the positive X-axis
and if dv

dt
 is negative, the acceleration is along the

negative X-axis. The magnitude of v is speed. If the
velocity and the acceleration are both positive, the
speed increases. If both of them are negative then also
the speed increases but if they have opposite signs, the
speed decreases. When the speed decreases, we say
that the particle is decelerating. Deceleration is
equivalent to negative acceleration. An acceleration of
2.0 m/s 2 towards east is same as a deceleration of
2.0 m/s 2 towards west.

Motion with Constant Acceleration

Suppose the acceleration of a particle is a and
remains constant. Let the velocity at time 0 be u and
the velocity at time t be v. Thus,

        
dv
dt

 = a,     or,     dv = a dt

or,      ∫ 
u

v

dv = ∫ 
0

t

a dt.

As time changes from 0 to t the velocity changes from
u to v. So on the left hand side the summation is made
over v from u to v whereas on the right hand side the
summation is made on time from 0 to t. Evaluating
the integrals we get,

           [v]u

v
 = a[t]

0

t

   or,        v − u = at
   or,          v = u + at. … (3.12)

Equation (3.12) may be written as

         
dx
dt

 = u + at

or,         dx = (u + at)dt

or,        ∫ 
0

x

dx = ∫ 
0

t

(u + at)dt.

At t = 0 the particle is at x = 0. As time changes
from 0 to t the position changes from 0 to x. So on the
left hand side the summation is made on position from

0 to x whereas on the right hand side the summation
is made on time from 0 to t. Evaluating the integrals,
the above equation becomes

         [x]
0

x
 = ∫ 

0

t

u dt + ∫ 
0

t

at dt

   or,       x = u∫ 
0

t

dt + a∫ 
0

t

t dt

           = u[t]
0

t
 + a




t 2

2



 0

 t

   or,      x = ut + 
1
2

 at 2 ⋅ … (3.13)

From equation (3.12),

        v 2 = (u + at) 2

or,         = u 2 + 2 uat + a 2t 2

or,         = u 2 + 2a



ut + 

1
2

 at 2




   or,         = u 2 + 2ax.  ... (3.14)

The three equations (3.12) to (3.14) are collected
below in table 3.1. They are very useful in solving the
problems of motion in a straight line with constant
acceleration.

Table 3.1

v = u + at

   x = ut + 
1
2

at 2

  v 2 = u 2 + 2ax

Remember that x represents the position of the
particle at time t and not (in general) the distance
travelled by it in time 0 to t. For example, if the
particle starts from the origin and goes upto x = 4 m,
then turns and is at x = 2 m at time t, the distance
travelled is 6 m but the position is still given by
x = 2 m.

The quantities u, v and a may take positive or
negative values depending on whether they are
directed along the positive or negative direction.
Similarly x may be positive or negative.

Example 3.5

   A particle starts with an initial velocity 2.5 m/s along
the positive x direction and it accelerates uniformly at
the rate 0.50 m/s 2. (a) Find the distance travelled by it
in the first two seconds. (b) How much time does it take
to reach the velocity 7.5 m/s ? (c) How much distance will
it cover in reaching the velocity 7.5 m/s ?
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Solution : (a) We have,

     x = ut + 
1
2

 at 2

     = (2.5 m/s) (2 s) + 1
2
 (0.50 m/s 2) (2 s) 2

     = 5.0 m + 1.0 m = 6.0 m.

Since the particle does not turn back it is also the
distance travelled.

(b) We have,

       v = u + at

or,  7.5 m/s = 2.5 m/s + (0.50 m/s 2) t

or,      t = 
7.5 m/s − 2.5 m/s

0.50 m/s 2  = 10 s

(c) We have,

        v 2 = u 2 + 2ax

or,  (7.5 m/s) 2 = (2.5 m/s) 2 + 2(0.50 m/s 2)x

or,       x = 
(7.5 m/s) 2 − (2.5 m/s) 2

2 × 0.50 m/s 2  = 50 m.

Example 3.6

   A particle having initial velocity u moves with a constant
acceleration a for a time t. (a) Find the displacement of
the particle in the last 1 second. (b) Evaluate it for
u = 5 m/s, a = 2 m/s 2 and t = 10 s.

Solution : (a) The position at time t is

      s = ut +  
1
2

 at 2

The position at time (t − 1 s) is

s′ = u(t − 1 s) + 
1
2

 a(t − 1 s) 2

= ut − u(1 s) + 
1
2

 at 2 − at(1 s) + 
1
2

 a(1 s) 2

Thus, the displacement in the last 1 s is

st = s − s′

= u(1 s) + at(1 s) − 
1
2

 a (1 s) 2

   or, st = u(1 s) + 
a
2

 (2 t − 1 s) (1 s). … (i)

(b) Putting the given values in (i)

st = 

5 

m
s




 (1 s) + 

1
2

 

2 

m
s 2




 (2 × 10 s − 1 s) (1 s)

= 5 m + 

1 

m
s 2




 (19 s) (1 s)

= 5 m + 19 m = 24 m.

Sometimes, we are not careful in writing the units
appearing with the numerical values of physical
quantities. If we forget to write the unit of second in
equation (i), we get,

            st = u + 
a
2

 (2 t − 1) .

This equation is often used to calculate the displacement
in the “tth second”. However, as you can verify, different
terms in this equation have different dimensions and
hence the above equation is dimensionally incorrect.
Equation (i) is the correct form which was used to solve
part (b).

Also note that this equation gives the displacement of
the particle in the last 1 second and not necessarily the
distance covered in that second.

Freely Falling Bodies

A common example of motion in a straight line
with constant acceleration is free fall of a body near
the earth’s surface. If air resistance is neglected and
a body is dropped near the surface of the earth, it falls
along a vertical straight line. The acceleration is in the
vertically downward direction and its magnitude is
almost constant if the height is small as compared with
the radius of the earth (6400 km). This magnitude is
approximately equal to 9.8 m/s 2 or 32 ft/s 2 and is
denoted by the letter g.

If we take vertically upward as the positive Y-axis,
acceleration is along the negative Y-axis and we write
a = – g. The equation (3.12) to (3.14) may be written
in this case as

            v = u − gt

            y = ut − 
1
2

 gt 2

           v 2 = u 2 − 2gy.
Here y is the y-coordinate (that is the height above

the origin) at time t, u is the velocity in y direction at
t = 0 and v is the velocity in y direction at time t. The
position of the particle at t = 0 is y = 0.

Sometimes it is convenient to choose vertically
downward as the positive Y-axis. Then a = g and the
equations (3.12) to (3.14) become

             v = u + gt

             y = ut + 
1
2

 gt 2

            v 2 = u 2 + 2gy.

Example 3.7

   A ball is thrown up at a speed of 4.0 m/s. Find the
maximum height reached by the ball. Take g = 10 m/s 2.

Solution : Let us take vertically upward direction as the
positive Y-axis. We have u = 4.0 m/s and a = –10 m/s 2.
At the highest point the velocity becomes zero. Using
the formula.
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       v 2 = u 2 + 2ay,

       0 = (4.0 m/s) 2 + 2(− 10 m/s 2)y

or,      y = 
16 m 2/s 2

20 m/s 2  = 0.80 m.

3.7 MOTION IN A PLANE

If a particle is free to move in a plane, its position
can be located with two coordinates. We choose the
plane of motion as the X-Y plane. We choose a suitable
instant as t = 0 and choose the origin at the place
where the particle is situated at t = 0. Any two
convenient mutually perpendicular directions in the
X-Y plane are chosen as the X and Y-axes.

The position of the particle at a time t is completely
specified by its coordinates (x, y). The coordinates at
time t + ∆t are (x + ∆x, y + ∆y). Figure (3.8) shows the
positions at t and t + ∆t as A and B respectively. The
displacement during the time interval t to t + ∆t is

        ∆r
→
 = AB 

→
= AC 

→
+ CB 

→

           = ∆x i
→
 + ∆y j

→

or,       
∆r

→

∆t
 = 

∆x
∆t

 i
→
 + 

∆y
∆t

 j
→
.

Taking limits as ∆t → 0

          v
→
 = 

dx
dt

 i
→
 + 

dy
dt

 j
→
 . … (3.15)

Thus, we see that the x-component of the velocity is

            vx = 
dx
dt

… (3.16)

and the y-component is

            vy = 
dy
dt

 ⋅ … (3.17)

Differentiating (3.15) with respect to time,

         a
→

 = 
dv

→

dt
 = 

dvx

dt
 i
→
 + 

dvy

dt
 j
→

Thus, the acceleration has components

             ax = 
dvx

dt
… (3.18)

   and         ay = 
dvy

dt
 ⋅ … (3.19)

We see that the x-coordinate, the x-component of
velocity vx and the x-component of acceleration ax are
related by

        vx = 
dx
dt

    and    ax = 
dvx

dt
 ⋅

These equations are identical to equations (3.9)
and (3.10). Thus, if ax is constant, integrating these
equations we get

           

vx = ux + ax t

 x = uxt + 1
2
 axt 

2

vx
 2 = ux

 2 + 2axx

    










… (3.20)

where ux is the x-component of the velocity at t = 0.
Similarly we have

      vy = 
dy
dt

    and    ay = 
dvy

dt

and if ay is constant,

          

vy = uy + ayt

 y = uyt + 1
2
 ayt 

2

vy
 2 = uy

 2 + 2ayy

    










… (3.21)

The general scheme for the discussion of motion in
a plane is therefore simple. The x-coordinate, the
x-component of velocity and the x-component of
acceleration are related by equations of straight line
motion along the X-axis. Similarly the y-coordinate, the
y-component of velocity and the y-component of
acceleration are related by the equations of straight
line motion along the Y-axis. The problem of motion
in a plane is thus, broken up into two independent
problems of straight line motion, one along the X-axis
and the other along the Y-axis.

Example 3.8

   A particle moves in the X-Y plane with a constant
acceleration of 1.5 m/s2 in the direction making an angle
of 37° with the X-axis. At t = 0 the particle is at the
origin and its velocity is 8.0 m/s along the X-axis. Find
the velocity and the position of the particle at t = 4.0 s.

Y

X

A

B

C

x x +   x

y

y +   y

x

y

Figure 3.8

Y

X
37°

a = 1.5 m/s2

u = 8.0 m/s

Figure 3.9
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Solution :      ax = (1.5 m/s 2) (cos37°)

             = (1.5 m/s 2) × 
4
5

 = 1.2 m/s 2

and        ay = (1.5 m/s 2) (sin37°)

            = (1.5 m/s 2) × 
3
5

 = 0.90 m/s 2.

The initial velocity has components

          ux = 8.0 m/s

and        uy = 0

At t = 0, x = 0 and y = 0.

The x-component of the velocity at time t = 4.0 s is given
by
        vx = ux + axt

          = 8.0 m/s + (1.2 m/s 2) (4.0 s)

          = 8.0 m/s + 4.8 m/s = 12.8 m/s.

The y-component of velocity at t = 4.0 s is given by
          vy = uy + ay t

            = 0 + (0.90 m/s 2) (4.0 s) = 3.6 m/s.

The velocity of the particle at t = 4.0 s is

   v = √vx
 2 + vy

 2  = √(12.8 m/s) 2 + (3.6 m/s) 2

    = 13.3 m/s.

The velocity makes an angle θ with the X-axis where

        tanθ = 
vy

vx
 = 

3.6 m/s
12.8 m/s

 = 
9
32

 ⋅

The x-coordinate at t = 4.0 s is

       x = ux t + 1
2
 ax t 

2

        = (8.0 m/s) (4.0 s) + 1
2
 (1.2 m/s 2) (4.0 s) 2

        = 32 m + 9.6 m = 41.6 m.

The y-coordinate at t = 4.0 s is

             y = uy t + 1
2
 ay t 

2

              = 1
2
 (0.90 m/s 2) (4.0 s) 2

              = 7.2 m.

Thus, the particle is at (41.6 m, 7.2 m) at 4.0 s.

3.8 PROJECTILE MOTION

An important example of motion in a plane with
constant acceleration is the projectile motion. When a
particle is thrown obliquely near the earth’s surface,
it moves along a curved path. Such a particle is called
a projectile and its motion is called projectile motion.
We shall assume that the particle remains close to the
surface of the earth and the air resistance is negligible.
The acceleration of the particle is then almost

constant. It is in the vertically downward direction and
its magnitude is g which is about 9.8 m/s 2.

Let us first make ourselves familiar with certain
terms used in discussing projectile motion. Figure
(3.10) shows a particle projected from the point O with
an initial velocity u at an angle θ with the horizontal.
It goes through the highest point A and falls at B on
the horizontal surface through O. The point O is called
the point of projection, the angle θ is called the angle
of projection and the distance OB is called the
horizontal range or simply range. The total time taken
by the particle in describing the path OAB is called
the time of flight.

The motion of the projectile can be discussed
separately for the horizontal and vertical parts. We
take the origin at the point of projection. The instant

when the particle is projected is taken as t = 0. The
plane of motion is taken as the X-Y plane. The
horizontal line OX is taken as the X-axis and the
vertical line OY as the Y-axis. Vertically upward
direction is taken as the positive direction of the
Y-axis.

We have    ux = u cosθ ;    ax = 0
            uy = u sinθ ;    ay = − g.

Horizontal Motion

As      ax = 0, we have
           vx = ux + axt = ux = u cosθ

and      x = ux t + 1
2
 ax t 

2 = ux t = ut cosθ.

As indicated in figure (3.10), the x-component of
the velocity remains constant as the particle moves.

Vertical Motion

The acceleration of the particle is g in the
downward direction. Thus, ay = − g. The y-component
of the initial velocity is uy. Thus,

           vy = uy − gt

and          y = uy t − 
1
2

 gt 2.

Also we have,

           vy
 2 = uy

 2 − 2gy.

B
X

A

O u cos

Y

u

u
 s

in

Figure 3.10
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The vertical motion is identical to the motion of a
particle projected vertically upward with speed u sinθ.
The horizontal motion of the particle is identical to a
particle moving horizontally with uniform velocity
u cosθ.

Time of Flight

Consider the situation shown in figure (3.10). The
particle is projected from the point O and reaches the
same horizontal plane at the point B. The total time
taken to reach B is the time of flight.

Suppose the particle is at B at a time t. The
equation for horizontal motion gives

        OB = x = ut cosθ
The y-coordinate at the point B is zero. Thus, from

the equation of vertical motion,

          y = ut sinθ − 
1
2

 gt 2

or,         0 = ut sinθ − 
1
2

 gt 2

or,         t(u sinθ − 
1
2

 gt) = 0.

Thus, either t = 0   or,   t = 
2u sinθ

g
 ⋅

Now t = 0 corresponds to the position O of the
particle. The time at which it reaches B is thus,

             T = 
2u sinθ

g
 ⋅ … (3.22)

This is the time of flight.

Range

The distance OB is the horizontal range. It is the

distance travelled by the particle in time T = 
2u sinθ

g
 ⋅

By the equation of horizontal motion,
        x = (ucosθ)t

   or,       OB = (u cosθ) 



2u sinθ

g





            = 
2u 2sinθ cosθ

g

            = 
u 2sin2θ

g
 ⋅              … (3.23)

Maximum Height Reached

At the maximum height (A in figure 3.10) the
velocity of the particle is horizontal. The vertical
component of velocity is thus, zero at the highest point.
The maximum height is the y-coordinate of the particle
when the vertical component of velocity becomes zero.

We have,
            vy = uy − gt

           = u sinθ − gt.

At the maximum height

          0 = u sinθ − gt

   or,         t = 
u sinθ

g
 ⋅ … (3.24)

The maximum height is 

       H = uyt − 1
2
 gt 2

        = (u sinθ) 



u sinθ

g




 − 

1
2

 g 



u sinθ

g





 2

         = 
u 2sin 2θ

g
 − 

1
2

 
u 2sin 2θ

g

           = 
u 2sin 2θ

2 g
 ⋅ … (3.25)

Equation (3.24) gives the time taken in reaching
the maximum height. Comparison with equation (3.22)
shows that it is exactly half the time of the flight.
Thus, the time taken in ascending the maximum
height equals the time taken in descending back to the
same horizontal plane.

Example 3.9

   A ball is thrown from a field with a speed of 12.0 m/s
at an angle of 45° with the horizontal. At what distance
will it hit the field again ? Take g = 10.0 m/s 2.

Solution : The horizontal range = 
u 2sin2θ

g

                    = 
(12 m/s) 2 × sin(2 × 45°)

10 m/s 2

                    = 
144 m 2/s 2

10.0 m/s 2  = 14.4 m.

Thus, the ball hits the field at 14.4 m from the point of
projection.

3.9 CHANGE OF FRAME

So far we have discussed the motion of a particle
with respect to a given frame of reference. The frame
can be chosen according to the convenience of the
problem. The position r

→
, the velocity v

→
 and the

acceleration a
→

 of a particle depend on the frame
chosen. Let us see how can we relate the position,
velocity and acceleration of a particle measured in two
different frames.

Consider two frames of reference S and S′ and
suppose a particle P is observed from both the frames.
The frames may be moving with respect to each other.
Figure (3.11) shows the situation.

Rest and Motion : Kinematics 39



The position vector of the particle P with respect

to the frame S is r
→

P, S = OP 
→

. The position vector of the

particle with respect to the frame S′ is r
→

P, S′ = O′P 
→

. The
position of the frame S′ (the origin of frame S′ in fact)
with respect to the frame S  is  OO′.

It is clear that

     OP 
→

= OO′ 
→

+ O′P 
→

= O′P 
→

+ OO′ 
→

   or,   r
→

P, S = r
→

P, S ′ + r
→

S ′, S . … (3.26)

The position of the particle with respect to S is
equal to the position of the particle with respect to
S′ plus the position of S′ with respect to S.

If we differentiate equation (3.26) with respect to
time, we get

     
d
dt

 ( r
→

P, S) = 
d
dt

 ( r
→

P, S′) + 
d
dt

 ( r
→

S′, S)

   or,       v
→

P, S = v
→

P, S′ + v
→

S′, S … (3.27)

where v
→

P, S is the velocity of the particle with respect

to S, v
→

P, S′ is the velocity of the particle with respect to

S′ and v
→

S′, S is the velocity of the frame S′ with respect
to S. The velocity of the particle with respect to S is
equal to the velocity of the particle with respect to
S′ plus the velocity of S′ with respect to S.

It is assumed that the meaning of time is same in
both the frames. Similarly it is assumed that d

dt
 has

same meaning in both the frames. These assumptions
are not correct if the velocity of one frame with respect
to the other is so large that it is comparable to
3 × 10 8 m/s, or if one frame rotates with respect to the
other. If the frames only translate with respect to each
other with small velocity, the above assumptions are
correct.

Equation (3.27) may be rewritten as

            v
→

P, S′ = v
→

P, S − v
→

S′, S . … (3.28)

Thus, if the velocities of two bodies (here the particle
and the frame S′) are known with respect to a common
frame (here S) we can find the velocity of one body
with respect to the other body. The velocity of body 1

with respect to the body 2 is obtained by subtracting
the velocity of body 2 from the velocity of body 1.

When we say that the muzzle velocity of a bullet
is 60 m/s we mean the velocity of the bullet with
respect to the gun. If the gun is mounted in a train
moving with a speed of 20 m/s with respect to the
ground and the bullet is fired in the direction of the
train’s motion, its velocity with respect to the ground
will be 80 m/s. Similarly, when we say that a swimmer
can swim at a speed of 5 km/h we mean the velocity
of the swimmer with respect to the water. If the water
itself is flowing at 3 km/h with respect to the ground
and the swimmer swims in the direction of the current,
he or she will move at the speed of 8 km/h with respect
to the ground.

Example 3.10

   A swimmer can swim in still water at a rate 4.0 km/h.
If he swims in a river flowing at 3.0 km/h and keeps his
direction (with respect to water) perpendicular to the
current, find his velocity with respect to the ground.

Solution : The velocity of the swimmer with respect to

water is v
→

S, R = 4.0 km/h in the direction perpendicular to
the river. The velocity of river with respect to the ground

is v
→

R, G = 3.0 km/h along the length of the river. The
velocity of the swimmer with respect to the ground is
v
→

S, G where

            v
→

S, G = v
→

S, R + v
→

R, G .

Figure (3.12) shows the velocities. It is clear that,

      vS, G = √(4.0 km/h) 2 + (3.0 km/h) 2

        = 5.0 km/h

The angle θ made with the direction of flow is

     tanθ = 
4.0 km/h
3.0 km/h

 = 
4
3

 ⋅

Example 3.11

   A man is walking on a level road at a speed of 3.0 km/h.
Rain drops fall vertically with a speed of 4.0 km/h. Find
the velocity of the raindrops with respect to the man.
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Solution : We have to find the velocity of raindrops with
respect to the man. The velocity of the rain as well as
the velocity of the man are given with respect to the
street. We have

       v
→

rain, man = v
→

rain, street − v
→

man, street .

Figure (3.13) shows the velocities.

It is clear from the figure that

    vrain, man = √(4.0 km/h) 2 + (3.0 km/h) 2

          = 5.0 km/h.
The angle with the vertical is θ, where

          tanθ = 
3.0 km/h
4.0 km/h

 = 
3
4

 ⋅

Thus, the rain appears to fall at an angle tan− 1 (3/4)
with the speed 5.0 km/h as viewed by the man.

The relation between the accelerations measured
from two frames can be obtained by differentiating
equation (3.27) with respect to time.

We have,

      
d
dt

 ( v
→

P, S) = 
d
dt

 ( v
→

P, S′) + 
d
dt

 ( v
→

S′, S)

   or,       a
→

P, S = a
→

P, S′ + a
→

S′, S . … (3.29)

If S′ moves with respect to S at a uniform velocity,
a
→

S′, S = 0 and so

            a
→

P, S = a
→

P, S′ .

If two frames are moving with respect to each
other with uniform velocity, acceleration of a body is
same in both the frames.

Worked Out Examples

 1. A man walks at a speed of 6 km/hr for 1 km and 8 km/hr
for the next 1 km. What is his average speed for the walk
of 2 km ?

Solution : Distance travelled is 2 km.

Time taken   = 
1 km

6 km/hr
 + 

1 km
8 km/hr

          = 



1
6

 + 
1
8




 hr = 

7
24

 hr.

Average speed = 
2 km × 24

7 hr
 = 

48
7

 km/hr

          ≈ 7 km/hr.

 2. The I.Sc. lecture theatre of a college is 40 ft wide and
has a door at a corner. A teacher enters at 12.00 noon
through the door and makes 10 rounds along the 40 ft
wall back and forth during the period and finally leaves
the class-room at 12.50 p.m. through the same door.
Compute his average speed and average velocity.

Solution : Total distance travelled in 50 minutes = 800 ft.

Average speed = 800
50

 ft/min = 16 ft/min.

At 12.00 noon he is at the door and at 12.50 pm he is
again at the same door.
The displacement during the 50 min interval is zero. 
Average velocity = zero.

 3. The position of a particle moving on X-axis is given by
          x = At 3 + Bt 2 + Ct + D.
The numerical values of A, B, C, D are 1, 4, –2 and 5

respectively and SI units are used. Find (a) the
dimensions of A, B, C and D, (b) the velocity of the
particle at t = 4 s, (c) the acceleration of the particle at

t = 4 s, (d) the average velocity during the interval t = 0

to t = 4 s, (e) the average acceleration during the interval

t = 0  to  t = 4 s.

Solution : (a) Dimensions of x,  At 3,  Bt 2,  Ct and D must
be identical and in this case each is length. Thus,

        [At 3] = L,   or,  [A] = LT − 3

   [Bt 2] = L,   or,  [B] = LT − 2

    [Ct] = L,   or,  [C] = LT − 1

and  [D] = L.

(b) x = At 3 + Bt 2 + Ct + D

or,  v = 
dx
dt

 = 3At 2 + 2Bt + C.

Thus, at t = 4 s, the velocity

  = 3(1 m/s 3) (16 s 2) + 2(4 m/s 2) (4 s) + (− 2 m/s)
  = (48 + 32 − 2) m/s = 78 m/s.

(c)  v = 3At 2 + 2Bt + C

or, a = 
dv
dt

 = 6 At + 2 B.

At t = 4 s, a = 6(1 m/s 3) (4 s) + 2(4 m/s 2) = 32 m/s 2.

(d) x = At 3 + Bt 2 + Ct + D.
Position at t = 0 is x = D = 5 m.
Position at t = 4 s is

(1 m/s 3) (64 s 3) + (4 m/s 2) (16 s 2) − (2 m/s) (4 s) + 5 m
   = (64 + 64 − 8 + 5) m = 125 m.

�vman,street man,streetv                = 3.0 km/h

v ra
in

,m
an

rain,streetv               = 4.0 km/h

Figure 3.13
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Thus, the displacement during 0 to 4 s is
   125 m − 5 m = 120 m.

Average velocity = 
120 m

4 s
 = 30 m/s.

(e) v = 3At 2 + 2Bt + C.

Velocity at t = 0  is  C = − 2 m/s.

Velocity at t = 4 s is = 78 m/s.

Average acceleration = 
v2 − v1

t2 − t1

 = 20 m/s 2.

 4. From the velocity-time graph of a particle given in figure
(3-W1), describe the motion of the particle qualitatively
in the interval 0 to 4 s. Find (a) the distance travelled
during first two seconds, (b) during the time 2 s to 4 s,
(c) during the time 0 to 4 s, (d) displacement during
0  to  4 s, (e) acceleration at t = 1/2 s and (f) acceleration
at t = 2 s.

Solution : At t = 0, the particle is at rest, say at the origin.
After that the velocity is positive, so that the particle
moves in the positive x direction. Its speed increases till
1 second when it starts decreasing. The particle
continues to move further in positive x direction. At
t = 2 s, its velocity is reduced to zero, it has moved
through a maximum positive x distance. Then it changes
its direction, velocity being negative, but increasing in
magnitude. At t = 3 s velocity is maximum in the
negative x direction and then the magnitude starts
decreasing. It comes to rest at t = 4 s.

(a) Distance during 0  to  2 s =  Area  of  OAB

                     = 1
2
 × 2 s × 10 m/s = 10 m.

(b) Distance during 2 to 4 s = Area of BCD = 10 m. The
particle has moved in negative x direction during this
period.

(c) The distance travelled during 0 to 4s = 10 m + 10 m

                           = 20 m.

(d) displacement during 0  to  4 s = 10 m + (− 10 m) = 0.

(e) at t = 1/2 s acceleration = slope of line OA = 10 m/s 2.

(f) at t = 2 s acceleration = slope of line ABC = – 10 m/s 2.

 5. A particle starts from rest with a constant acceleration.
At a time t second, the speed is found to be 100 m/s and
one second later the speed becomes 150 m/s. Find (a) the
acceleration and (b) the distance travelled during the
(t+1)th second.

Solution : (a) Velocity at time t second is

   100 m/s = a.(t second) … (1)
and velocity at time (t + 1) second is

   150 m/s = a.(t + 1) second. … (2)
Subtracting (1) from (2), a = 50 m/s 2

(b) Consider the interval t second to (t + 1) second,

    time  elapsed = 1 s

   initial velocity = 100 m/s

    final velocity = 150 m/s.

 Thus, (150 m/s) 2 = (100 m/s) 2 + 2(50 m/s 2) x

or, x = 125 m.

 6. A boy stretches a stone against the rubber tape of a
catapult or ‘gulel’ (a device used to detach mangoes from
the tree by boys in Indian villages) through a distance
of 24 cm before leaving it. The tape returns to its normal
position accelerating the stone over the stretched length.
The stone leaves the gulel with a speed 2.2 m/s. Assuming
that the acceleration is constant while the stone was being
pushed by the tape, find its magnitude.

Solution : Consider the accelerated 24 cm motion of the
stone.
   Initial  velocity = 0

    Final  velocity = 2.2 m/s

 Distance  travelled = 24 cm = 0.24 m

Using v 2 = u 2 + 2ax,  

     a = 
4.84 m 2/s 2

2 × 0.24 m
 = 10.1 m/s 2.

 7. A police inspector in a jeep is chasing a pickpocket on a
straight road. The jeep is going at its maximum speed v
(assumed uniform). The pickpocket rides on the
motorcycle of a waiting friend when the jeep is at a
distance d away, and the motorcycle starts with a
constant acceleration a. Show that the pickpocket will be
caught if v ≥ √⎯⎯⎯⎯2ad .

Solution : Suppose the pickpocket is caught at a time t
after the motorcycle starts. The distance travelled by the
motorcycle during this interval is
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               s = 1
2
 at 2. … (i)

During this interval the jeep travels a distance
             s + d = vt. … (ii)

By (i) and (ii),

     1
2
 at 2 − vt + d = 0

or,          t = 
v ± √v 2 − 2ad

a
 ⋅

The pickpocket will be caught if t is real and positive.
This will be possible if

          v 2 ≥ 2ad    or,  v ≥ √2ad .

 8. A car is moving at a constant speed of 40 km/h along a
straight road which heads towards a large vertical wall
and makes a sharp 90° turn by the side of the wall. A
fly flying at a constant speed of 100 km/h, starts from
the wall towards the car at an instant when the car is
20 km away, flies until it reaches the glasspane of the
car and returns to the wall at the same speed. It continues
to fly between the car and the wall till the car makes the
90° turn. (a) What is the total distance the fly has
travelled during this period ? (b) How many trips has it
made between the car and the wall ?

Solution : (a) The time taken by the car to cover 20 km

before the turn is 20 km
40 km/h

 = 
1
2

 h. The fly moves at a

constant speed of 100 km/h during this time. Hence the

total distance coverd by it is 100 
km
h

 × 
1
2

 h = 50 km.

(b) Suppose the car is at a distance x away (at A) when
the fly is at the wall (at O). The fly hits the glasspane
at B, taking a time t. Then

         AB = (40 km/h)t,

and OB = (100 km/h)t.

Thus,   x = AB + OB

   = (140 km/h)t

or,       t = 
x

140 km/h
 ,  or  OB = 

5
7

 x.

The fly returns to the wall and during this period the
car moves the distance BC. The time taken by the fly
in this return path is

      




5 x/7
100 km/h




 = 

x
140 km/h

 ⋅

Thus,        BC = 
40 x
140

 = 
2
7

 x

or,          OC = OB − BC = 3
7
 x.

If at the beginning of the round trip (wall to the car and

back) the car is at a distance x away, it is 3
7
 x away

when the next trip again starts.

Distance of the car at the beginning of the 1st
trip = 20 km.

Distance of the car at the beginning of the 2nd trip

            = 3
7
 × 20 km.

Distance of the car at the beginning of the 3rd trip

             = 



3
7





 2

 × 20 km.

Distance of the car at the beginning of the 4th trip

= 



3
7





 3

 × 20 km.

Distance of the car at the beginning of the nth trip

= 



3
7





 n – 1

 × 20 km.

Trips will go on till the car reaches the turn that is the
distance reduces to zero. This will be the case when n
becomes infinity. Hence the fly makes an infinite
number of trips before the car takes the turn.

 9. A ball is dropped from a height of 19.6 m above the
ground. It rebounds from the ground and raises itself up
to the same height. Take the starting point as the origin
and vertically downward as the positive X-axis. Draw
approximate plots of x versus t, v versus t and a versus
t. Neglect the small interval during which the ball was
in contact with the ground.

Solution : Since the acceleration of the ball during the
contact is different from ‘g’, we have to treat the
downward motion and the upward motion separately.

For the downward motion : a = g = 9.8 m/s 2,

x = ut + 1
2
 at 2 = (4.9 m/s 2)t 2.

The ball reaches the ground when x = 19.6 m. This gives
t = 2 s. After that it moves up, x decreases and at
t = 4 s, x becomes zero, the ball reaching the initial point.
We have at t = 0,           x = 0

        t = 1 s,         x = 4.9 m

        t = 2 s,         x = 19.6 m

        t = 3 s,         x = 4.9 m
        t = 4 s,         x = 0.

A B C
O

x
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Velocity : During the first two seconds,

  v = u + at = (9.8 m/s 2)t
at  t = 0           v = 0

at  t = 1 s,        v = 9.8 m/s

at  t = 2 s,        v = 19.6 m/s.
During the next two seconds the ball goes upward,
velocity is negative, magnitude decreasing and at
t = 4 s, v = 0. Thus,

at t = 2 s,       v = − 19.6 m/s

at t = 3 s,       v = − 9.8 m/s
at t = 4 s,       v = 0.

At t = 2 s there is an abrupt change in velocity from

19.6 m/s to – 19.6 m/s. In fact this change in velocity
takes place over a small interval during which the ball
remains in contact with the ground.

Acceleration : The acceleration is constant 9.8 m/s 2

throughout the motion (except at t = 2 s).

10. A stone is dropped from a balloon going up with a
uniform velocity of 5.0 m/s. If the balloon was 50 m high
when the stone was dropped, find its height when the
stone hits the ground. Take g = 10 m/s 2.

Solution : At t = 0, the stone was going up with a velocity
of 5.0 m/s. After that it moved as a freely falling particle
with downward acceleration g. Take vertically upward

as the positive X-axis. If it reaches the ground at
time t,

       x = − 50 m,    u = 5 m/s,    a = − 10 m/s 2.

 We have      x = ut + 1
2
 at 2

or,        − 50 m = (5 m/s).t + 1
2
 × (− 10 m/s 2)t 2

or,           t = 
1 ± √41

2
 s.

or,           t = − 2.7 s      or,   3.7 s.

Negative t has no significance in this problem. The stone
reaches the ground at t = 3.7 s. During this time the
balloon has moved uniformly up. The distance covered
by it is

           5 m/s × 3.7 s = 18.5 m.

Hence, the height of the balloon when the stone reaches
the ground is 50 m + 18.5 m = 68.5 m.

11. A football is kicked with a velocity of 20 m/s at an angle
of 45° with the horizontal. (a) Find the time taken by the
ball to strike the ground. (b) Find the maximum height
it reaches. (c) How far away from the kick does it hit the
ground ? Take g = 10 m/s 2.

Solution : (a) Take the origin at the point where the ball
is kicked, vertically upward as the Y-axis and the
horizontal in the plane of motion as the X-axis. The
initial velocity has the components

       ux = (20 m/s) cos45° = 10 √2 m/s

and uy = (20 m/s) sin45° = 10 √2 m/s.

When the ball reaches the ground, y = 0.

Using    y = uyt − 1
2
 gt 2,

       0 = (10√2 m/s) t − 1
2
 × (10 m/s 2) × t 2

or,      t = 2√2 s = 2.8 s.

Thus, it takes 2.8 s for the football to fall on the ground.

(b) At the highest point vy = 0. Using the equation

      vy
 2 = uy

 2 − 2 gy,

       0 = (10√2 m/s) 2 − 2 × (10 m/s 2) H

or,     H = 10 m.

Thus, the maximum height reached is 10 m.

(c) The horizontal distance travelled before falling to the
ground is x = uxt

        = (10√2 m/s) (2√2 s) = 40 m.

12. A helicopter on flood relief mission, flying horizontally
with a speed u at an altitude H, has to drop a food packet
for a victim standing on the ground. At what distance
from the victim should the packet be dropped ? The victim
stands in the vertical plane of the helicopter’s motion.
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Solution : The velocity of the food packet at the time of
release is u and is horizontal. The vertical velocity at
the time of release is zero.

Vertical motion : If t be the time taken by the packet
to reach the victim, we have for vertical motion,

         H = 1
2
 gt 2  or,   t = √2H

g
 ⋅ … (i)

Horizontal motion : If D be the horizontal distance
travelled by the packet, we have D = ut. Putting t from
(i),

           D = u√2H
g

 ⋅

The distance between the victim and the packet at the
time of release is

     √D 2 + H 2 = √2u 2H
g

 + H 2 .

13. A particle is projected horizontally with a speed u from
the top of a plane inclined at an angle θ with the
horizontal. How far from the point of projection will the
particle strike the plane ?

Solution : Take X,Y-axes as shown in figure (3-W8).
Suppose that the particle strikes the plane at a point P
with coordinates (x, y). Consider the motion between A
and P.

Motion in x-direction :
          Initial velocity = u
           Acceleration = 0

                     x = ut. … (i)

Motion in y-direction :
         Initial velocity = 0
           Acceleration = g

                  y = 1
2
 gt 2. … (ii)

Eliminating t from (i) and (ii)

              y = 1
2
 g 

x 2

u 2 ⋅ 

Also            y = x tanθ.

Thus, 
gx 2

2u 2 = x tanθ giving x = 0, or, 
2u 2tanθ

g
 ⋅

Clearly the point P corresponds to x = 
2u 2 tanθ

g
 ,

then y = x tanθ = 
2u 2 tan 2θ

g
 ⋅

The distance AP = l = √x 2 + y 2

                 = 
2u 2

g
 tanθ √1 + tan 2θ

               = 
2u 2

g
 tanθ secθ.

Alternatively : Take the axes as shown in
figure 3-W9. Consider the motion between A and P.

Motion along the X-axis :

         Initial velocity = u cosθ

           Acceleration = g sinθ

          Displacement = AP.

   Thus, AP = (u cos θ) t + 1
2
 (g sin θ) t 2. … (i)

Motion along the Y-axis :

        Initial  velocity = − u sinθ
          Acceleration = g cosθ

         Displacement = 0.

   Thus,       0 = − ut sinθ + 1
2
 gt 2cosθ

or,          t = 0,    
2u sinθ
g cosθ

 ⋅

Clearly, the point P corresponds to t = 
2u sinθ
g cosθ

⋅

Putting this value of t in (i),

    AP = (u cosθ) 




2u sinθ
g cosθ




 + 

g sinθ
2

 




2u sinθ
g cosθ





 2

       = 
2u 2 sinθ

g
 + 

2u 2 sinθ tan2 θ
g

       = 
2u 2

g
 sinθ sec 2θ = 2u 2

g
 tanθ secθ.

 D 

H
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14. A projectile is fired with a speed u at an angle θ with
the horizontal. Find its speed when its direction of motion
makes an angle α with the horizontal.

Solution : Let the speed be v when it makes an angle α
with the horizontal. As the horizontal component of
velocity remains constant,

           v cosα = u cosθ

or,             v = u cosθ secα.

15. A bullet is fired horizontally aiming at an object which
starts falling at the instant the bullet is fired. Show that
the bullet will hit the object.

Solution : The situation is shown in figure (3-W10). The
object starts falling from the point B. Draw a vertical
line BC through B. Suppose the bullet reaches the line
BC at a point D and it takes a time t in doing so.

Consider the vertical motion of the bullet. The initial
vertical velocity = 0. The distance travelled vertically

= BD = 1
2
 gt 2⋅ In time t the object also travels a distance

1
2
 gt 2 = BD. Hence at time t, the object will also be at

the same point D. Thus, the bullet hits the object at
point D.

16. A man can swim in still water at a speed of 3 km/h. He
wants to cross a river that flows at 2 km/h and reach
the point directly opposite to his starting point. (a) In
which direction should he try to swim (that is, find the
angle his body makes with the river flow) ? (b) How much
time will he take to cross the river if the river is 500 m
wide ?

Solution : (a) The situation is shown in figure (3-W11).
The X-axis is chosen along the river flow and the origin
at the starting position of the man. The direction of the
velocity of man with respect to ground is along the Y-axis
(perpendicular to the river). We have to find the
direction of velocity of the man with respect to water.

Let  v
→

r, g = velocity of the river with respect to the 
        ground

       = 2 km/h along the X-axis

    v
→

m, r = velocity of the man with respect to the river

       = 3 km/h making an angle θ with the Y-axis

and v
→

m, g = velocity of the man with respect to the    
       ground along the Y-axis.

We have
      v

→
m, g = v

→
m, r + v

→
r, g .  … (i)

Taking components along the X-axis

        0 = − (3 km/h)sinθ + 2 km/h

or,     sinθ = 
2
3

 ⋅

(b) Taking components in equation (i) along the Y-axis,

         vm, g = (3 km/h) cosθ + 0

or,        vm, g = √5 km/h.

         Time = 
Displacement in y direction

Velocity in y direction

            = 
0.5 km

√5 km/h
 = 

√5
10

 h.

17. A man can swim at a speed of 3 km/h in still water. He
wants to cross a 500 m wide river flowing at 2 km/h. He
keeps himself always at an angle of 120° with the river
flow while swimming.
(a) Find the time he takes to cross the river. (b) At what
point on the opposite bank will he arrive ? 

Solution : The situation is shown in figure (3-W12).

Here v
→

r, g = velocity of the river with respect to the ground

    v
→

m, r =  velocity of the man with respect to the river

   v
→

m, g =  velocity of the man with respect to the ground.
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(a) We have,

             v
→

m, g = v
→

m, r + v
→

r, g … (i)
Hence, the velocity with respect to the ground is along
AC. Taking y-components in equation (i),

v
→

m, g sinθ = 3 km/h cos30° + 2 km/h cos90° = 
3√3
2

 km/h.

Time taken to cross the river

       = 
displacement along the Y−axis

velocity along the Y−axis
 

        = 
1/2 km

3√3/2 km/h
 = 

1
3/3

 h.

(b) Taking x-components in equation (i),

    v
→

m, g cosθ = − 3 km/h sin30° + 2 km/h

           = 
1
2

 km/h.

Displacement along the X-axis as the man crosses the
river
      = (velocity along the X−axis) ⋅ (time)

      = 



1 km
2 h




 × 





1
3√3 

 h



 = 

1
6√3

 km.

18. A man standing on a road has to hold his umbrella at
30° with the vertical to keep the rain away. He throws
the umbrella and starts running at 10 km/h. He finds
that raindrops are hitting his head vertically. Find the
speed of raindrops with respect to (a) the road, (b) the
moving man.

Solution : When the man is at rest with respect to the
ground, the rain comes to him at an angle 30° with the
vertical. This is the direction of the velocity of raindrops
with respect to the ground. The situation when the man
runs is shown in the figure (3-W13b).

Here v
→

r, g = velocity of the rain with respect to the ground

v
→

m, g  = velocity of the man with respect to the ground

and v
→

r, m = velocity of the rain with respect to the man.

   We have,      v
→

r, g = v
→

r, m + v
→

m, g . … (i)

Taking horizontal components, equation (i) gives

vr, g sin30° = vm, g = 10 km/h

or, vr, g = 
10 km/h
sin30°

 = 20 km/h,

Taking vertical components, equation (i) gives

         vr, g cos30° = vr, m

or,            vr, m = (20 km/h) 
√3
2

                = 10√3 km/h.

19. A man running on a horizontal road at 8 km/h finds the
rain falling vertically. He increases his speed to 12 km/h
and finds that the drops make angle 30° with the vertical.
Find the speed and direction of the rain with respect to
the road.

Solution :

   We have    v
→

rain, road = v
→

rain, man + v
→

man, road … (i)

The two situations given in the problem may be
represented by the following figure.

vrain, road is same in magnitude and direction in both the
figures.

Taking horizontal components in equation (i) for figure
(3-W14a),

             vrain, road sinα = 8 km/h. … (ii)

Now consider figure (3-W14b). Draw a line
OA ⊥ vrain, man as shown.

Taking components in equation (i) along the line OA.
      vrain, road sin(30° + α) = 12 km/h cos30°. … (iii)

From (ii) and (iii),

             
sin(30° + α)

sinα
 = 

12 × √3
8 × 2

or,       
sin30°cosα + cos30°sinα

sinα
 = 

3√3
4

or,             
1
2

 cotα + 
√3
2

 = 
3√3
4

or,                  cotα = 
√3
2

 

or,                    α = cot− 1 
√3
2

 ⋅

From (ii),           vrain, road = 
8 km/h

sinα
 = 4√7 km/h.

20. Three particles A, B and C are situated at the vertices
of an equilateral triangle ABC of side d at t = 0. Each

30°

(a)                                  (b)                                    (c)

30°

v

r, gv v

m, g

r, m

Figure 3-W13

O

30°

man, road = 12 km/h

rain, road

v

ra
in

, m
an

v

(b)

vman, road

rain, road

(a)

8 km/h

ra
in

, 
 m

a
n

v

v

v

30°

A

Figure 3-W14

Rest and Motion : Kinematics 47



of the particles moves with constant speed v. A always
has its velocity along AB, B along BC and C along CA.
At what time will the particles meet each other ?

Solution : The motion of the particles is roughly sketched
in figure (3-W15). By symmetry they will meet at the
    

centroid O of the triangle. At any instant the particles
will form an equilateral triangle ABC with the same
centriod O. Concentrate on the motion of any one

particle, say A. At any instant its velocity makes angle
30° with AO.
The component of this velocity along AO is v cos30°. This
component is the rate of decrease of the distance AO.
Initially,

          AO = 
2
3

 √d 2 − 



d
2





 2

 = 
d
√3

 ⋅

Therefore, the time taken for AO to become zero

         = 
d/√3

v cos30°
 = 

2d
√3 v × √3

 = 2d
3v

 ⋅

Alternative : Velocity of A is v along AB. The velocity
of B is along BC. Its component along BA is v cos 60°
= v/2. Thus, the separation AB decreases at the rate

             v + 
v
2

 = 3v
2

 ⋅ 

Since this rate is constant, the time taken in reducing
the separation AB from d to zero is

             t = 
d
3v
2

 = 
2d
3v

 ⋅ 

QUESTIONS FOR SHORT ANSWER

 1. Galileo was punished by the Church for teaching that
the sun is stationary and the earth moves around it. His
opponents held the view that the earth is stationary and
the sun moves around it. If the absolute motion has no
meaning, are the two viewpoints not equally correct or
equally wrong ?

 2. When a particle moves with constant velocity, its
average velocity, its instantaneous velocity and its speed
are all equal. Comment on this statement.

 3. A car travels at a speed of 60 km/hr due north and the
other at a speed of 60 km/hr due east. Are the velocities
equal ? If no, which one is greater ? If you find any of
the questions irrelevant, explain.

 4. A ball is thrown vertically upward with a speed of 20
m/s. Draw a graph showing the velocity of the ball as a
function of time as it goes up and then comes back.

 5. The velocity of a particle is towards west at an instant.
Its acceleration is not towards west, not towards east,
not towards north and not towards south. Give an
example of this type of motion. 

 6. At which point on its path a projectile has the smallest
speed ?

 7. Two particles A and B start from rest and move for equal
time on a straight line. The particle A has an
acceleration a for the first half of the total time and 2a
for the second half. The particle B has an acceleration

2a for the first half and a for the second half. Which
particle has covered larger distance ?

 8. If a particle is accelerating, it is either speeding up or
speeding down. Do you agree with this statement ?

 9. A food packet is dropped from a plane going at an
altitude of 100 m. What is the path of the packet as
seen from the plane ? What is the path as seen from the
ground ? If someone asks “what is the actual path”, what
will you answer ?

10. Give examples where (a) the velocity of a particle is zero
but its acceleration is not zero, (b) the velocity is opposite
in direction to the acceleration, (c) the velocity is
perpendicular to the acceleration.

11. Figure (3-Q1) shows the x coordinate of a particle as a
function of time. Find the signs of vx and ax at t = t1 ,
t = t2  and  t = t3.

O

A

B C

1

3

A

A

A

B

B
B C

C

C

1

1

2

2

2
3

3
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12. A player hits a baseball at some angle. The ball goes
high up in space. The player runs and catches the ball
before it hits the ground. Which of the two (the player
or the ball) has greater displacement ?

13. The increase in the speed of a car is proportional to the
additional petrol put into the engine. Is it possible to

accelerate a car without putting more petrol or less
petrol into the engine ?

14. Rain is falling vertically. A man running on the road
keeps his umbrella tilted but a man standing on the
street keeps his umbrella vertical to protect himself from
the rain. But both of them keep their umbrella vertical
to avoid the vertical sun-rays. Explain.

OBJECTIVE I

 1. A motor car is going due north at a speed of 50 km/h.
It makes a 90° left turn without changing the speed.
The change in the velocity of the car is about
(a) 50 km/h towards west
(b) 70 km/h towards south-west
(c) 70 km/h towards north-west 
(d) zero.

 2. Figure (3-Q2) shows the displacement-time graph of a
particle moving on the X-axis.

   (a) the particle is continuously going in positive x
direction
(b) the particle is at rest
(c) the velocity increases up to a time t0, and then
becomes constant
(d) the particle moves at a constant velocity up to a time
t0 , and then stops.

 3. A particle has a velocity u towards east at t = 0. Its
acceleration is towards west and is constant. Let xA and
xB be the magnitude of displacements in the first 10
seconds and the next 10 seconds
(a) xA < xB     (b) xA = xB      (c) xA > xB

(d) the information is insufficient to decide the relation
of xA with xB.

 4. A person travelling on a straight line moves with a
uniform velocity v1 for some time and with uniform
velocity v2   for the next equal time. The average velocity
v is given by

(a) v = 
v1 + v2

2
          (b) v = √v1v2

(c) 
2
v

 = 1
v1

 + 1
v2

          (d) 
1
v

 = 1
v1

 + 1
v2

 ⋅

 5. A person travelling on a straight line moves with a
uniform velocity v1 for a distance x and with a uniform
velocity v2 for the next equal distance. The average
velocity v is given by

(a) v = 
v1 + v2

2
        (b) v = √v1v2

(c) 
2
v

 = 1
v1

 + 1
v2

        (d) 
1
v

 = 1
v1

 + 1
v2

 ⋅

 6. A stone is released from an elevator going up with an
acceleration a. The acceleration of the stone after the
release is
(a) a upward         (b) (g − a) upward
(c) (g − a) downward    (d) g downward.

 7. A person standing near the edge of the top of a building
throws two balls A and B. The ball A is thrown vertically
upward and B is thrown vertically downward with the
same speed. The ball A hits the ground with a speed vA

and the ball B hits the ground with a speed vB. We have
(a) vA > vB, (b) vA  < vB (c) vA = vB 
(d) the relation between vA and vB depends on height of
the building above the ground.

 8. In a projectile motion the velocity
(a) is always perpendicular to the acceleration
(b) is never perpendicular to the acceleration
(c) is perpendicular to the acceleration for one instant
only
(d) is perpendicular to the acceleration for two instants.

 9. Two bullets are fired simultaneously, horizontally and
with different speeds from the same place. Which bullet
will hit the ground first ?
(a)  the faster one         (b) the slower one
(c) both will reach simultaneously 
(d) depends on the masses.

10. The range of a projectile fired at an angle of 15° is
50 m. If it is fired with the same speed at an angle of
45°, its range will be
(a) 25 m     (b) 37 m     (c) 50 m     (d) 100 m.

11. Two projectiles A and B are projected with angle of
projection 15° for the projectile A and 45° for the
projectile B. If RA and RB be the horizontal range for the
two projectiles, then
(a) RA < RB (b) RA = RB (c) RA > RB

(d) the information is insufficient to decide the relation
of RA with RB .

12. A river is flowing from west to east at a speed of 5
metres per minute. A man on the south bank of the
river, capable of swimming at 10 metres per minute in
still water, wants to swim across the river in the shortest
time. He should swim in a direction

t t0

x

Figure 3-Q2
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(a) due north        (b) 30° east of north
(c) 30° north of west   (d) 60° east of north.

13. In the arrangement shown in figure (3-Q3), the ends P
and Q of an inextensible string move downwards with
uniform speed u. Pulleys A and B are fixed. The mass
M moves upwards with a speed
(a) 2u cosθ   (b) u/cosθ   (c) 2u/cosθ   (d) ucosθ.

OBJECTIVE II

 1. Consider the motion of the tip of the minute hand of a
clock. In one hour
(a) the displacement is zero
(b) the distance covered is zero
(c) the average speed is zero
(d) the average velocity is zero

 2. A particle moves along the X-axis as
       x = u(t – 2 s) + a(t – 2 s) 2.
(a) the initial velocity of the particle is u
(b) the acceleration of the particle is a
(c) the acceleration of the particle is 2a
(d) at t = 2 s particle is at the origin.

 3. Pick the correct statements :
(a) Average speed of a particle in a given time is never
less than the magnitude of the average velocity.

(b) It is possible to have a situation in which 



dv

→

dt
 



 ≠ 0

but 
d
dt

 v
→
  = 0.

(c) The average velocity of a particle is zero in a time
interval. It is possible that the instantaneous velocity is
never zero in the interval.

(d) The average velocity of a particle moving on a
straight line is zero in a time interval. It is possible that
the instantaneous velocity is never zero in the interval.
(Infinite accelerations are not allowed.)

 4. An object may have
(a) varying speed without having varying velocity
(b) varying velocity without having varying speed
(c) nonzero acceleration without having varying velocity
(d) nonzero acceleration without having varying speed.

 5. Mark the correct statements for a particle going on a
straight line :
(a) If the velocity and acceleration have opposite sign,
the object is slowing down.
(b) If the position and velocity have opposite sign, the
particle is moving towards the origin.
(c) If the velocity is zero at an instant, the acceleration
should also be zero at that instant.
(d) If the velocity is zero for a time interval, the
acceleration is zero at any instant within the time
interval.

 6. The velocity of a particle is zero at t = 0.
(a) The acceleration at t = 0 must be zero.
(b) The acceleration at t = 0 may be zero.
(c) If the acceleration is zero from t = 0 to t = 10 s, the
speed is also zero in this interval.
(d) If the speed is zero from t = 0 to t = 10 s the
acceleration is also zero in this interval.

 7. Mark the correct statements :
(a) The magnitude of the velocity of a particle is equal
to its speed.
(b) The magnitude of average velocity in an interval is
equal to its average speed in that interval.
(c) It is possible to have a situation in which the speed
of a particle is always zero but the average speed is not
zero.
(d) It is possible to have a situation in which the speed
of the particle is never zero but the average speed in an
interval is zero.

 8. The velocity-time plot for a particle moving on a straight
line is shown in the figure (3-Q4).

      (a) The particle has a constant acceleration.
(b) The particle has never turned around.
(c) The particle has zero displacement.
(d) The average speed in the interval 0 to 10 s is the
same as the average speed in the interval 10 s to 20 s.

 9. Figure (3-Q5) shows the position of a particle moving on
the X-axis as a function of time.
(a) The particle has come to rest 6 times.
(b) The maximum speed is at t = 6 s.
(c) The velocity remains positive for t = 0 to t = 6 s.
(d) The average velocity for the total period shown is
negative.

A B

P Q
M

Figure 3-Q3
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10. The accelerations of a particle as seen from two frames
S1 and S2 have equal magnitude 4 m/s 2.
(a) The frames must be at rest with respect to each
other.
(b) The frames may be moving with respect to each other
but neither should be accelerated with respect to the
other.
(c) The acceleration of S2 with respect to S1 may either
be zero or 8 m/s 2.
(d) The acceleration of S2 with respect to S1 may be
anything between zero and 8 m/s2.

EXERCISES

 1. A man has to go 50 m due north, 40 m due east and
20 m due south to reach a field. (a) What distance he
has to walk to reach the field ? (b) What is his
displacement from his house to the field ?

 2. A particle starts from the origin, goes along the X-axis
to the point (20 m, 0) and then returns along the same
line to the point (–20 m, 0). Find the distance and
displacement of the particle during the trip.

 3. It is 260 km from Patna to Ranchi by air and 320 km
by road. An aeroplane takes 30 minutes to go from Patna
to Ranchi whereas a delux bus takes 8 hours. (a) Find
the average speed of the plane. (b) Find the average
speed of the bus. (c) Find the average velocity of the
plane. (d) Find the average velocity of the bus.

 4. When a person leaves his home for sightseeing by his
car, the meter reads 12352 km. When he returns home
after two hours the reading is 12416 km. (a) What is the
average speed of the car during this period ? (b) What
is the average velocity ?

 5. An athelete takes 2.0 s to reach his maximum speed of
18.0 km/h. What is the magnitude of his average
acceleration ?

 6. The speed of a car as a function of time is shown in
figure (3-E1). Find the distance travelled by the car in
8 seconds and its acceleration.

 7. The acceleration of a cart started at t  0, varies with
time as shown in figure (3-E2). Find the distance
travelled in 30 seconds and draw the position-time graph.

 8. Figure (3-E3) shows the graph of velocity versus time
for a particle going along the X-axis. Find (a) the

acceleration, (b) the distance travelled in 0 to 10 s and
(c) the displacement in 0 to 10 s.

 9. Figure (3-E4) shows the graph of the x-coordinate of a
particle going along the X-axis as a function of time.
Find (a) the average velocity during 0 to 10 s,
(b) instantaneous velocity at 2, 5, 8 and 12s.

10. From the velocity–time plot shown in figure (3-E5), find
the distance travelled by the particle during the first 40
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seconds. Also find the average velocity during this
period.

11. Figure (3-E6) shows x-t graph of a particle. Find the
time t such that the average velocity of the particle
during the period 0 to t is zero.

12. A particle starts from a point A and travels along the
solid curve shown in figure (3-E7). Find approximately
the position B of the particle such that the average
velocity between the positions A and B has the same
direction as the instantaneous velocity at B.

13. An object having a velocity 4.0 m/s is accelerated at the
rate of 1.2 m/s2 for 5.0 s. Find the distance travelled
during the period of acceleration.

14. A person travelling at 43.2 km/h applies the brake giving
a deceleration of 6.0 m/s 2 to his scooter. How far will it
travel before stopping ?

15. A train starts from rest and moves with a constant
acceleration of 2.0 m/s 2 for half a minute. The brakes
are then applied and the train comes to rest in one
minute. Find (a) the total distance moved by the train,
(b) the maximum speed attained by the train and (c) the
position(s) of the train at half the maximum speed.

16. A bullet travelling with a velocity of 16 m/s penetrates
a tree trunk and comes to rest in 0.4 m. Find the time
taken during the retardation.

17. A bullet going with speed 350 m/s enters a concrete wall
and penetrates a distance of 5.0 cm before coming to
rest. Find the deceleration.

18. A particle starting from rest moves with constant
acceleration. If it takes 5.0 s to reach the speed 18.0
km/h find (a) the average velocity during this period,
and (b) the distance travelled by the particle during this
period.

19. A driver takes 0.20 s to apply the brakes after he sees
a need for it. This is called the reaction time of the
driver. If he is driving a car at a speed of 54 km/h and
the brakes cause a deceleration of 6.0 m/s 2, find the
distance travelled by the car after he sees the need to
put the brakes on.

20. Complete the following table :

Car Model
    Driver X
Reaction time 0.20 s

   Driver Y
Reaction time 0.30 s

A (deceleration
on hard braking
= 6.0 m/s 2)

Speed = 54 km/h
Braking distance
a = ............................
Total stopping
distance       
b = ............................

Speed = 72 km/h
Braking distance
c = ...........................
Total stopping
distance      
d = ...........................
.

B (deceleration
on hard braking
= 7.5 m/s 2)

Speed = 54 km/h
Braking distance
e = ............................
Total stopping
distance      
f = ............................

Speed = 72km/h
Braking distance
g = ...........................
Total stopping
distance      
h = ..........................

21. A police jeep is chasing a culprit going on a motorbike.
The motorbike crosses a turning at a speed of 72 km/h.
The jeep follows it at a speed of 90 km/h, crossing the
turning ten seconds later than the bike. Assuming that
they travel at constant speeds, how far from the turning
will the jeep catch up with the bike ?

22. A car travelling at 60 km/h overtakes another car
travelling at 42 km/h. Assuming each car to be 5.0 m
long, find the time taken during the overtake and the
total road distance used for the overtake.

23. A ball is projected vertically upward with a speed of
50 m/s. Find (a) the maximum height, (b) the time to
reach the maximum height, (c) the speed at half the
maximum height. Take g = 10 m/s 2.

24. A ball is dropped from a balloon going up at a speed of
7 m/s. If the balloon was at a height 60 m at the time
of dropping the ball, how long will the ball take in
reaching the ground ?

25. A stone is thrown vertically upward with a speed of
28 m/s. (a) Find the maximum height reached by the
stone. (b) Find its velocity one second before it reaches
the maximum height. (c) Does the answer of part
(b) change if the initial speed is more than 28 m/s such
as 40 m/s or 80 m/s ?

26. A person sitting on the top of a tall building is dropping
balls at regular intervals of one second. Find the
positions of the 3rd, 4th and 5th ball when the 6th ball
is being dropped.
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27. A healthy youngman standing at a distance of 7 m from
a 11.8 m high building sees a kid slipping from the top
floor. With what speed (assumed uniform) should he run
to catch the kid at the arms height (1.8 m) ?

28. An NCC parade is going at a uniform speed of 6 km/h
through a place under a berry tree on which a bird is
sitting at a height of 12.1 m. At a particular instant the
bird drops a berry. Which cadet (give the distance from
the tree at the instant) will receive the berry on his
uniform ?

29. A ball is dropped from a height. If it takes 0.200 s to
cross the last 6.00 m before hitting the ground, find the
height from which it was dropped. Take g = 10 m/s 2.

30. A ball is dropped from a height of 5 m onto a sandy floor
and penetrates the sand up to 10 cm before coming to
rest. Find the retardation of the ball in sand assuming
it to be uniform.

31. An elevator is descending with uniform acceleration. To
measure the acceleration, a person in the elevator drops
a coin at the moment the elevator starts. The coin is 6
ft above the floor of the elevator at the time it is dropped.
The person observes that the coin strikes the floor in 1
second. Calculate from these data the acceleration of the
elevator.

32. A ball is thrown horizontally from a point 100 m above
the ground with a speed of 20 m/s. Find (a) the time it
takes to reach the ground, (b) the horizontal distance it
travels before reaching the ground, (c) the velocity
(direction and magnitude) with which it strikes the
ground.

33. A ball is thrown at a speed of 40 m/s at an angle of 60
with the horizontal. Find (a) the maximum height
reached and (b) the range of the ball. Take g = 10 m/s 2.

34. In a soccer practice session the football is kept at the
centre of the field 40 yards from the 10 ft high goalposts.
A goal is attempted by kicking the football at a speed
of 64 ft/s at an angle of 45 to the horizontal. Will the
ball reach the goal post ?

35. A popular game in Indian villages is goli which is played
with small glass balls called golis. The goli of one player
is situated at a distance of 2.0 m from the goli of the
second player. This second player has to project his goli
by keeping the thumb of the left hand at the place of
his goli, holding the goli between his two middle fingers
and making the throw. If the projected goli hits the goli
of the first player, the second player wins. If the height
from which the goli is projected is 19.6 cm from the
ground and the goli is to be projected horizontally, with
what speed should it be projected so that it directly hits
the stationary goli without falling on the ground earlier ?

36. Figure (3-E8) shows a 11.7 ft wide ditch with the
approach roads at an angle of 15 with the horizontal.
With what minimum speed should a motorbike be
moving on the road so that it safely crosses the ditch ?

Assume that the length of the bike is 5 ft, and it leaves
the road when the front part runs out of the approach
road.

37. A person standing on the top of a cliff 171 ft high has
to throw a packet to his friend standing on the ground
228 ft horizontally away. If he throws the packet directly
aiming at the friend with a speed of 15.0 ft/s, how short
will the packet fall ?

38. A ball is projected from a point on the floor with a speed
of 15 m/s at an angle of 60 with the horizontal. Will it
hit a vertical wall 5 m away from the point of projection
and perpendicular to the plane of projection without
hitting the floor ? Will the answer differ if the wall is
22 m away ?

39. Find the average velocity of a projectile between the
instants it crosses half the maximum height. It is
projected with a speed u at an angle  with the
horizontal.

40. A bomb is dropped from a plane flying horizontally with
uniform speed. Show that the bomb will explode
vertically below the plane. Is the statement true if the
plane flies with uniform speed but not horizontally ?

41. A boy standing on a long railroad car throws a ball
straight upwards. The car is moving on the horizontal
road with an acceleration of 1 m/s 2 and the projection
velocity in the vertical direction is 9.8 m/s. How far
behind the boy will the ball fall on the car ?

42. A staircase contains three steps each 10 cm high and
20 cm wide (figure 3-E9). What should be the minimum
horizontal velocity of a ball rolling off the uppermost
plane so as to hit directly the lowest plane ?

43. A person is standing on a truck moving with a constant
velocity of 14.7 m/s on a horizontal road. The man throws
a ball in such a way that it returns to the truck after
the truck has moved 58.8 m. Find the speed and the
angle of projection (a) as seen from the truck, (b) as seen
from the road.

44. The benches of a gallery in a cricket stadium are 1 m
wide and 1 m high. A batsman strikes the ball at a level
one metre above the ground and hits a mammoth sixer.
The ball starts at 35 m/s at an angle of 53 with the
horizontal. The benches are perpendicular to the plane
of motion and the first bench is 110 m from the batsman.
On which bench will the ball hit ?

45. A man is sitting on the shore of a river. He is in the
line of a 1.0 m long boat and is 5.5 m away from the
centre of the boat. He wishes to throw an apple into the
boat. If he can throw the apple only with a speed of 10
m/s, find the minimum and maximum angles of
projection for successful shot. Assume that the point of

15º

11.7 ft

15º

Figure 3-E8

Figure 3-E9
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projection and the edge of the boat are in the same
horizontal level.

46. A river 400 m wide is flowing at a rate of 2.0 m/s. A
boat is sailing at a velocity of 10 m/s with respect to the
water, in a direction perpendicular to the river. (a) Find
the time taken by the boat to reach the opposite bank.
(b) How far from the point directly opposite to the
starting point does the boat reach the opposite bank ?

47. A swimmer wishes to cross a 500 m wide river flowing
at 5 km/h. His speed with respect to water is 3 km/h.
(a) If he heads in a direction making an angle θ with
the flow, find the time he takes to cross the river.
(b) Find the shortest possible time to cross the river.

48. Consider the situation of the previous problem. The man
has to reach the other shore at the point directly
opposite to his starting point. If he reaches the other
shore somewhere else, he has to walk down to this point.
Find the minimum distance that he has to walk.

49. An aeroplane has to go from a point A to another point
B, 500 km away due 30° east of north. A wind is blowing
due north at a speed of 20 m/s. The air-speed of the
plane is 150 m/s. (a) Find the direction in which the

pilot should head the plane to reach the point B. (b) Find
the time taken by the plane to go from A to B.

50. Two friends A and B are standing a distance x apart in
an open field and wind is blowing from A to B. A beats
a drum and B hears the sound t1 time after he sees the
event. A and B interchange their positions and the
experiment is repeated. This time B hears the drum t2

time after he sees the event. Calculate the velocity of
sound in still air v and the velocity of wind u. Neglect
the time light takes in travelling between the friends.

51. Suppose A and B in the previous problem change their
positions in such a way that the line joining them
becomes perpendicular to the direction of wind while
maintaining the separation x. What will be the time lag
B finds between seeing and hearing the drum beating
by A ?

52. Six particles situated at the corners of a regular hexagon
of side a move at a constant speed v. Each particle
maintains a direction towards the particle at the next
corner. Calculate the time the particles will take to meet
each other.

ANSWERS

OBJECTIVE I

 1. (b)  2. (d)  3. (d)  4. (a)  5. (c)  6. (d)
 7. (c)  8. (c)  9. (c) 10. (d) 11. (d) 12. (a)
13. (b)

OBJECTIVE II

 1. (a), (d)  2. (c), (d)  3. (a), (b), (c)
 4. (b), (d)  5. (a), (b), (d)  6. (b), (c), (d)
 7. (a)  8. (a), (d)  9. (a)
10. (d)

EXERCISES

 1. (a) 110 m (b) 50 m, tan − 1 3/4 north to east
 2. 60 m, 20 m in the negative direction
 3. (a) 520 km/h (b) 40 km/h
   (c) 520 km/h Patna to Ranchi
   (d) 32.5 km/h Patna to Ranchi
 4. 32 km/h (b) zero
 5. 2.5 m/s 2

 6. 80 m, 2.5 m/s 2

 7. 1000 ft
 8. (a) 0.6 m/s 2 (b) 50 m (c) 50 m
 9. (a) 10 m/s (b) 20 m/s, zero, 20 m/s, – 20 m/s
10. 100 m, zero
11. 12 s
12. x = 5 m, y = 3 m

13. 35 m
14. 12 m
15. (a) 2.7 km (b) 60 m/s     (c) 225 m and 2.25 km
16. 0.05 s
17. 12.2 × 10 5 m/s 2

18. (a) 2.5 m/s (b) 12.5 m
19. 22 m
20. (a) 19 m     (b) 22 m    (c) 33 m    (d) 39 m
   (e) 15 m    (f) 18 m    (g) 27 m     (h) 33 m
21. 1.0 km
22. 2 s, 38 m
23. (a) 125 m (b) 5 s (c) 35 m/s
24. 4.3 s
25. (a) 40 m (b) 9.8 m/s (c) No
26. 44.1 m, 19.6 m and 4.9 m below the top
27. 4.9 m/s
28. 2.62 m
29. 48 m
30. 490 m/s 2

31. 20 ft/s 2

32. (a) 4.5 s  (b) 90 m  (c) 49 m/s, θ = 66° with horizontal

33. (a) 60 m   (b) 80√3 m
34. Yes
35. 10 m/s
36. 32 ft/s
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37. 192 ft
38. Yes, Yes
39. u cosθ, horizontal in the plane of projection

41. 2 m
42. 2 m/s
43. (a) 19.6 m/s upward
   (b) 24.5 m/s at 53° with horizontal
44. Sixth
45. Minimum angle 15°, maximum angle 75° but there is

an interval of 53° between 15° and 75°, which is not
allowed for successful shot

46. (a) 40 s (b) 80 m

47. (a) 
10 minutes

sinθ
(b) 10 minutes

48. 2/3 km

49. (a) sin – 1 (1/15) east of the line AB  (b) 50 min

50. 
x
2

 



1
t1

 + 1
t2




 , x

2
 



1
t1

 − 
1
t2





51. 
x

√v 2 − u 2
 

52. 2 a/v.

Rest and Motion : Kinematics 55



CHAPTER 4

THE FORCES

4.1 INTRODUCTION

Force is a word which we have all heard about.
When you push or pull some object you exert a force
on it. If you push a body you exert a force away from
yourself; when you pull, you exert a force toward
yourself. When you hold a heavy block in your hand
you exert a large force; when you hold a light block,
you exert a small force.

Can nonliving bodies exert a force ? Yes, they can.
If we stand in a great storm, we feel that the wind is
exerting a force on us. When we suspend a heavy block
from a rope, the rope holds the block just as a man
can hold it in air. When we comb our dry hair and
bring the comb close to small pieces of paper, the
pieces jump to the comb. The comb has attracted the
paper pieces i.e. the comb has exerted force on the
pieces. When a cork is dipped in water it comes to the
surface; if we want to keep it inside water, we have
to push it downward. We say that water exerts a force
on the cork in the upward direction.

The SI unit for measuring the force is called a
newton. Approximately, it is the force needed to hold
a body of mass 102 g near the earth’s surface. An
accurate quantitative definition can be framed using
Newton’s laws of motion to be studied in the next
chapter.

Force is an interaction between two objects. Force
is exerted by an object A on another object B. For any
force you may ask two questions, (i) who exerted this
force and (ii) on which object was this force exerted ?
Thus, when a block is kept on a table, the table exerts
a force on the block to hold it.

Force is a vector quantity and if more than one
forces act on a particle we can find the resultant force
using the laws of vector addition. Note that in all the
examples quoted above, if a body A exerts a force on
B, the body B also exerts a force on A. Thus, the table
exerts a force on the block to hold it and the block
exerts a force on the table to press it down. When a
heavy block is suspended by a rope, the rope exerts a

force on the block to hold it and the block exerts a
force on the rope to make it tight and stretched. In
fact these are a few examples of Newton’s third law of
motion which may be stated as follows.

Newton’s Third Law of Motion

If a body A exerts a force  F
→

  on another body B,

then B exerts a force − F
→

 on A, the two forces acting
along the line joining the bodies.

The two forces F
→

 and − F
→

 connected by Newton’s
third law are called action-reaction pair. Any one may
be called ‘action’ and the other ‘reaction’.

We shall discuss this law in greater detail in the
next chapter.

The various types of forces in nature can be
grouped in four categories :

(a) Gravitational,   (b) Electromagnetic,
(c) Nuclear    and  (d) Weak.

4.2 GRAVITATIONAL FORCE

Any two bodies attract each other by virtue of their
masses. The force of attraction between two point

masses is F = G 
m1 m2

r 
2

, where m1 and m2 are the masses

of the particles and r is the distance between them. G
is a universal constant having the value

6.67 × 10 − 11 N−m 2/kg 2. To find the gravitational force
on an extended body by another such body, we have
to write the force on each particle of the 1st body by
all the particles of the second body and then we have
to sum up vectorially all the forces acting on the first
body. For  example, suppose  each  body  contains just

three particles, and let F
→

ij denote the force on the i th
particle of the first body due to the j th particle of the
second body. To find the resultant force on the first
body (figure 4.1), we have to add the following 9 forces :

   F
→

11,  F
→

12,  F
→

13,  F
→

21,  F
→

22,  F
→

23,  F
→

31,  F
→

32,  F
→

33 .



For large bodies having a large number of particles,
we have to add quite a large number of forces. If the
bodies are assumed continuous (a good approximation
in our course), one has to go through the integration
process for the infinite summation involved. However,
the integration yields a particularly simple result for
a special case which is of great practical importance
and we quote it below. The proof of this result will be
given in a later chapter.

The gravitational force exerted by a spherically
symmetric body of mass m1 on another such body of

mass m2 kept outside the first body is G 
m1m2

r 
2  , where

r is the distance between the centres of the two bodies.
Thus, for the calculation of gravitational force between
two spherically symmetric bodies, they can be treated
as point masses placed at their centres.

Gravitational Force on Small Bodies by the Earth

The force of attraction exerted by the earth on
other objects is called gravity. Consider the earth to
be a homogeneous sphere of radius R and mass M.
The values of R and M are roughly 6400 km and
6 × 10 24 kg respectively. Assuming that the earth is
spherically symmetric, the force it exerts on a particle
of mass m kept near its surface is by the previous
result, F = G Mm

R 
2 . The direction of this force is towards

the centre of the earth which is called the vertically
downward direction.

The same formula is valid to a good approximation
even if we have a body of some other shape instead of
a particle, provided the body is very small in size as
compared to the earth. The quantity G M

R 
2 is a constant

and has the dimensions of acceleration. It is called the
acceleration due to gravity, and is denoted by the letter
g (a quantity much different from G). Its value is
approximately 9.8 m/s 2. For simplicity of calculations
we shall often use g = 10 m/s 2. We shall find in the
next chapter that all bodies falling towards earth
(remaining all the time close to the earth’s surface)
have this particular value of acceleration and hence
the name acceleration due to gravity. Thus, the force
exerted by the earth on a small body of mass m, kept

near the earth’s surface is mg in the vertically
downward direction.

The gravitational constant G is so small that the
gravitational force becomes appreciable only if at least
one of the two bodies has a large mass. To have an
idea of the magnitude of gravitational forces in
practical life, consider two small bodies of mass 10 kg
each, separated by 0.5 m. The gravitational force is

    F = 
6.7 × 10 − 11 N−m 2/kg 2 × 10 2 kg 2

0.25 m 2

       = 2.7 × 10 − 8 N

a force needed to hold about 3 microgram. In many of
the situations we encounter, it is a good approximation
to neglect all the gravitational forces other than that
exerted by the earth.

4.3 ELECTROMAGNETIC (EM) FORCE

Over and above the gravitational force G 
m1m2

r 
2  , the

particles may exert upon each other electromagnetic
forces. If two particles having charges q1 and q2 are at
rest with respect to the observer, the force between
them has a magnitude

          F = 
1

4πε0
 
q1q2

r 2
 

where ε = 8.85419 × 10 − 12 C 2/N−m 2 is a constant. The

quantity 
1

4πε0
 is 9.0 × 10 9 

N−m 2

C2  ⋅

This is called Coulomb force and it acts along the
line joining the particles. If q1 and q2 are of same
nature (both positive or both negative), the force is
repulsive otherwise it is attractive. It is this force
which is responsible for the attraction of small paper
pieces when brought near a recently used comb. The
electromagnetic force between moving charged
paritcles is comparatively more complicated and
contains terms other than the Coulomb force.

Ordinary matter is composed of electrons, protons

and neutrons. Each electron has 1.6 × 10 − 19 coulomb
of negative charge and each proton has an equal
amount of positive charge. In atoms, the electrons are
bound by the electromagnetic force acting on them due
to the protons. The atoms combine to form molecules
due to the electromagnetic forces. A lot of atomic and
molecular phenomena result from electromagnetic
forces between the subatomic particles (electrons,
protons, charged mesons, etc.).

Apart from the atomic and molecular phenomena,
the electromagnetic forces show up in many forms in

1

2

3

1

2

3

F12

F11

F13
F21

F23 F31
F32

F33

F22

Figure 4.1
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daily experience. Some examples having practical
importance given below.

(a) Forces between Two Surfaces in Contact

When we put two bodies in contact with each other,
the atoms at the two surfaces come close to each other.
The charged constituents of the atoms of the two
bodies exert great forces on each other and a
measurable force results out of it. We say that the two
bodies in contact exert forces on each other. When you
place a book on a table, the table exerts an upward
force on the book to hold it. This force comes from the
electromagnetic forces acting between the atoms and
molecules of the surface of the book and of the table.

Generally, the forces between the two objects in
contact are along the common normal (perpendicular)
to the surfaces of contact and is that of a push or
repulsion. Thus, the table pushes the book away from
it (i.e., upward) and the book pushes the table
downward (again away from it).

However, the forces between the two bodies in
contact may have a component parallel to the surface
of contact. This component is known as friction. We
assume existence of frictionless surfaces which can
exert forces only along the direction perpendicular to
them. The bodies with smooth surfaces can exert only
small amount of forces parallel to the surface and
hence are close to frictionless surface. Thus, it is
difficult to stay on a smooth metallic lamp-post,
because it cannot exert enough vertical force and so it
will not hold you there. The same is not true if you
try to stay on the trunk of a tree which is quite rough.
We shall often use the word smooth to mean
frictionless.

The contact forces obey Newton’s third law. Thus
the book in figure (4.2) exerts a downward force F on
the table to press it down and the table exerts an equal
upward force F on the book to hold it there. When you
stay on the trunk of a tree, it exerts a frictional upward
force (frictional force because it is parallel to the
surface of the tree) on you to hold you there, and you
exert an equal frictional downward force on the tree.

(b) Tension in a String or a Rope

In a tug of war, two persons hold the two ends of
a rope and try to pull the rope on their respective sides.
The rope becomes tight and its length is slightly
increased. In many situations this increase is very
small and goes undetected. Such a stretched rope is
said to be in a state of tension.

Similarly, if a heavy block hangs from a ceiling by
a string, the string is in a state of tension. The
electrons and protons of the string near the lower end
exert forces on the electrons and protons of the block
and the resultant of these forces is the force exerted
by the string on the block. It is the resultant of these
electromagnetic forces which supports the block and
prevents it from falling. A string or rope under tension
exerts electromagnetic forces on the bodies attached at
the two ends to pull them.

(c) Force due to a Spring

When a metallic wire is coiled it becomes a spring.
The straight line distance between the ends of a spring
is called its length. If a spring is placed on a horizontal
surface with no horizontal force on it, its length is
called the natural length. Every spring has its own
natural length. The spring can be stretched to increase
its length and it can be compressed to decrease its
length. When a spring is stretched, it pulls the bodies
attached to its ends and when compressed, it pushes
the bodies attached to its ends. If the extension or the
compression is not too large, the force exerted by the
spring is proportional to the change in its length. Thus,
if the spring has a length x and its natural length is
x0 the magnitude of the force exerted by it will be

        F = kx − x0 = k∆x.

If the spring is extended, the force will be directed
towards its centre and if compressed, it will be directed
away from the centre. The proportionality constant k,
which is the force per unit extension or compression,
is called the spring constant of the spring. This force
again comes into picture due to the electromagnetic
forces between the atoms of the material.

The macroscopic bodies which we have to generally
deal with are electrically neutral. Hence two bodies
not in contact do not exert appreciable electromagnetic
forces. The forces between the charged particles of the
first body and those of the second body have both
attractive and repulsive nature and hence they largely
cancel each other. This is not the case with
gravitational forces. The gravitational forces between
the particles of one body and those of the other body
are all attractive and hence they add to give an
appreciable gravitational force in many cases. Thus,
the gravitational force between the earth and a 1 kg

F

F

Figure 4.2
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block kept 100 m above the earth’s surface is about
9.8 N whereas the electromagnetic force between the
earth and this block is almost zero even though both
these bodies contain a very large number of charged
particles, the electrons and the protons.

Example 4.1

   Suppose the exact charge neutrality does not hold in a
world and the electron has a charge 1% less in magnitude
than the proton. Calculate the Coulomb force acting
between two blocks of iron each of mass 1 kg separated
by a distance of 1 m. Number of protons in an iron atom
= 26 and 58 kg of iron contains 6 × 10 26 atoms.

Solution : Each atom of iron will have a net positive charge

26 × 0.01 × 1.6 × 10 − 19 C on it in the assumed world. The
total positive charge on a 1 kg block would be

           
6 × 10 26

58
 × 26 × 1.6 × 10 − 21 C

        = 4.3 × 10 5 C.
The Coulomb force between the two blocks is

 = 
1

4πε0

 
q1q2

r 2
 = 

9.0 × 10 9 N−m 2/C 2 × (4.3 × 10 5 C) 2

(1 m) 2

        = 9 × 10 9 × 18.49 × 10 10 N

        = 1.7 × 10 21 N.

A tremendous force indeed !

4.4 NUCLEAR FORCES

Each atom contains a certain number of protons
and neutrons in its nucleus. The nucleus occupies a
volume of about 10 – 44 m 3 whereas the atom itself has
a volume of about 10 – 23 m 3. Thus, the nucleus occupies
only 1/10 21 of the volume of the atom. Yet it contains
about 99.98% of the mass of the atom. The atomic
nucleus of a non-radioactive element is a stable
particle. For example, if both the electrons are removed
from a helium atom, we get the bare nucleus of helium
which is called an alpha particle. The alpha particle
is a stable object and once created it can remain intact
until it is not made to interact with other objects.

An alpha particle contains two protons and two
neutrons. The protons will repel each other due to the
Coulomb force and will try to break the nucleus.
Neutrons will be silent spectators in this electro-
magnetic drama (Remember, neutron is an uncharged
particle). Then, why does the Coulomb force fail to
break the nucleus ? Can it be the gravitational
attractive force which keeps the nucleus bound ? All
the protons and the neutrons will take part in this
attraction, but if calculated, the gravitational

attraction will turn out to be totally negligible as
compared to the Coulomb repulsion.

In fact, a third kind of force, altogether different
and over and above the gravitational and
electromagnetic force, is operating here. These forces
are called Nuclear forces and are exerted only if the
interacting particles are protons or neutrons or both.
(There are some more cases where this force operates
but we shall not deal with them.) These forces are
largely attractive, but are short ranged. The forces are
much weaker than the Coulomb force if the separation
between the particles is more than say 10 − 14 m. But

for smaller separation (≈ 10 − 15 m) the nuclear force is
much stronger than the Coulomb force and being
attractive it holds the nucleus stable.

Being short ranged, these forces come into picture
only if the changes within the nucleus are discussed.
As bare nuclei are less frequently encountered in daily
life, one is generally unaware of these forces.
Radioactivity, nuclear energy (fission, fusion) etc.
result from nuclear forces.

4.5 WEAK FORCES

Yet another kind of forces is encountered when
reactions involving protons, electrons and neutrons
take place. A neutron can change itself into a proton
and simultaneously emit an electron and a particle
called antinutrino. This is called β− decay. Never think
that a neutron is made up of a proton, an electron and
an antineutrino. A proton can also change into neutron
and simultaneously emit a positron (and a neutrino).
This is called β+ decay. The forces responsible for these
changes are different from gravitational, electro-
magnetic or nuclear forces. Such forces are called weak
forces. The range of weak forces is very small, in fact
much smaller than the size of a proton or a neutron.
Thus, its effect is experienced inside such particles
only.

4.6 SCOPE OF CLASSICAL PHYSICS

The behaviour of all the bodies of linear sizes
greater than 10 – 6 m are adequately described on the
basis of relatively a small number of very simple laws
of nature. These laws are the Newton’s laws of motion,
Newton’s law of gravitation, Maxwell’s electro-
magnetism, Laws of thermodynamics and the Lorentz
force. The principles of physics based on them is called
the classical physics. The formulation of classical
physics is quite accurate for heavenly bodies like the
sun, the earth, the moon etc. and is equally good for
the behaviour of grains of sand and the raindrops.
However, for the subatomic particles much smaller
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than 10 – 6 m (such as atoms, nuclei etc.) these rules do
not work well. The behaviour of such particles is
governed by quantum physics. In fact, at such short
dimensions the very concept of “particle” breaks down.
The perception of the nature is altogether different at
this scale. The validity of classical physics also depends
on the velocities involved. The classical mechanics as
formulated by Newton has to be considerably changed
when velocities comparable to 3  10 8 m/s are
involved. This is the speed of light in vacuum and is
the upper limit of speed which material particle can
ever reach. No matter how great and how long you
apply a force, you can never get a particle going with
a speed greater than 3  10 8 m/s. The mechanics of
particles moving with these large velocities is known
as relativistic mechanics and was formulated by
Einstein in 1905.

Thus, classical physics is a good description of the
nature if we are concerned with the particles of linear

size > 10 – 6 m moving with velocities < 10 8 m/s. In a
major part of this book, we shall work within these
restrictions and hence learn the techniques of classical
physics. The size restriction automatically excludes
any appreciable effects of nuclear or weak forces and
we need to consider only the gravitational and electro-
magnetic forces. We might consider the subatomic
particles here and there but shall assume the existence
of gravitational and electromagnetic forces only and
that classical physics is valid for these particles. The
results arrived at by our analysis may only be
approximately true because we shall be applying the
laws which are not correct in that domain. But even
that may play an important role in the understanding
of nature. We shall also assume that the Newton’s
third law is valid for the forces which we shall be
dealing with. In the final chapters we shall briefly
discuss quantum physics and some of its important
consequences.

Worked Out Examples

 1. Figure (4-W1) shows two hydrogen atoms. Show on a
separate diagram all the electric forces acting on different
particles of the system.

Solution : Each particle exerts electric forces on the
remaining three particles. Thus there exist 4  3  12
forces in all. Figure (4-W2) shows them.

 2. Figure (4-W3) shows two rods each of length l placed
side by side, with their facing ends separated by a
distance a. Charges + q, – q reside on the rods as shown.
Calculate the electric force on the rod A due to the rod
B. Discuss the cases when l>>a, a>>l.

Solution : The force on the rod A due to the charge +q of
the rod B

         
q 2

4  0 l  a 2
  

q 2

4  0 a
 2 

towards  right.  The  force  on  this  rod  due  to  the
charge – q

        
q 2

4  0 2l  a 2  
q 2

4  0 l  a 2
 

towards right.

The resultant force on the rod is

F  
q 2

4  0

 

 

1
a 2  

2
l  a 2

  
1

2l  a 2



 towards right.

If l >> a, the last two terms in the square bracket are
negligible as compared to the first term. Then,

         F  
q 2

4   a
 2 

If a >> l

           F  
q 2

4  
 


1
a 2  

2
a 2  1

a 2 



  0 

��

Figure 4-W1

Figure 4-W2

A

+q +q –q

B

a

–q

Figure 4-W3
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Two neutral objects placed far away exert only negligible
force on each other but when they are placed closer they
may exert appreciable force.

 3. Calculate the ratio of electric to gravitational force
between two electrons.

Solution : The electric force = 
e 2

4 π ε0 r 2 

and the gravitational force = 
G(m e) 

2

r 2  ⋅

The ratio is 
e 2

4 π ε0 G (m e)
 2 

= 
9 × 10 9 

N−m 2

C 2  × (1.6 × 10 − 19 C)
 2

6.67 × 10 − 11 
N−m 2

kg 2  × (9.1 × 10 − 31 kg) 2

 = 4.17 × 10 42 .

QUESTIONS FOR SHORT ANSWER

 1. A body of mass m is placed on a table. The earth is
pulling the body with a force mg. Taking this force to
be the action what is the reaction ?

 2. A boy is sitting on a chair placed on the floor of a room.
Write as many action-reaction pairs of forces as you can.

 3. A lawyer alleges in court that the police has forced his
client to issue a statement of confession. What kind of
force is this ?

 4. When you hold a pen and write on your notebook, what
kind of force is exerted by you on the pen ? By the pen
on the notebook ? By you on the notebook ?

 5. Is it true that the reaction of a gravitational force is
always gravitational, of an electromagnetic force is
always electromagnetic and so on ?

 6. Suppose the magnitude of Nuclear force between two
protons varies with the distance between them as shown
in figure (4-Q1). Estimate the ratio “Nuclear
force/Coulomb force” for (a) x = 8 fm (b) x = 4 fm,
(c) x = 2 fm and (d) x = 1 fm (1 fm = 10 – 15 m).

 7. List all the forces acting on the block B in figure (4-Q2).
 8. List all the forces acting on (a) the pulley A, (b) the boy

and (c) the block C in figure (4-Q3).

 9. Figure (4-Q4) shows a boy pulling a wagon on a road.
List as many forces as you can which are relevant with
this figure. Find the pairs of forces connected by
Newton’s third law of motion.

10. Figure (4-Q5) shows a cart. Complete the table shown
below.
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1 0

1 0

1 0
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 Force on  Force by   Nature of the force  Direction

Cart 1
2
3
:

Horse 1
2
3
:

Driver 1
2
3
:

 OBJECTIVE I

 1. When Neils Bohr shook hand with Werner Heisenberg,
what kind of force they exerted ?
(a) Gravitational    (b) Electromagnetic
(c) Nuclear        (d) Weak.

 2. Let E, G and N represent the magnitudes of
electromagnetic, gravitational and nuclear forces
between two electrons at a given separation. Then
(a) N>E>G   (b) E>N>G   (c) G>N>E   (d) E>G>N.

 3. The sum of all electromagnetic forces between different
particles of a system of charged particles is zero

(a) only if all the particles are positively charged
(b) only if all the particles are negatively charged
(c) only if half the particles are positively charged and
half are negatively charged
(d) irrespective of the signs of the charges.

 4. A 60 kg man pushes a 40 kg man by a force of 60 N.
The 40 kg man has pushed the other man with a force
of
(a) 40 N    (b) 0    (c) 60 N    (d) 20 N.

OBJECTIVE II

 1. A neutron exerts a force on a proton which is
(a) gravitational   (b) electromagnetic
(c) nuclear       (d) weak.

 2. A proton exerts a force on a proton which is
(a) gravitational   (b) electromagnetic
(c) nuclear       (d) weak.

 3. Mark the correct statements :
(a) The nuclear force between two protons is always
greater than the electromagnetic force between them.
(b) The electromagnetic force between two protons is
always greater than the gravitational force between
them.
(c) The gravitational force between two protons may be
greater than the nuclear force between them.
(d) Electromagnetic force between two protons may be
greater than the nuclear force acting between them.

 4. If all matter were made of electrically neutral particles
such as neutrons,
(a) there would be no force of friction
(b) there would be no tension in the string
(c) it would not be possible to sit on a chair
(d) the earth could not move around the sun.

 5. Which of the following systems may be adequately
described by classical physics ?

   (a) motion of a cricket ball
(b) motion of a dust particle
(c) a hydrogen atom
(d) a neutron changing to a proton.

 6. The two ends of a spring are displaced along the length
of the spring. All displacements have equal
mangnitudes. In which case or cases the tension or
compression in the spring will have a maximum
magnitude ?
(a) the right end is displaced towards right and the left
end towards left
(b) both ends are displaced towards right
(c) both ends are displaced towards left
(d) the right end is displaced towards left and the left
end towards right.

 7. Action and reaction
(a) act on two different objects
(b) have equal magnitude
(c) have opposite directions
(d) have resultant zero.

Figure 4-Q5
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EXERCISES

 1. The gravitational force acting on a particle of 1 g due
to a similar particle is equal to 6.67 × 10 – 17 N. Calculate
the separation between the particles.

 2. Calculate the force with which you attract the earth.

 3. At what distance should two charges, each equal to 1 C,
be placed so that the force between them equals your
weight ?

 4. Two spherical bodies, each of mass 50 kg, are placed at
a separation of 20 cm. Equal charges are placed on the
bodies and it is found that the force of Coulomb repulsion
equals the gravitational attraction in  magnitude. Find
the magnitude of the charge placed on either body.

 5. A monkey is sitting on a tree limb. The limb exerts a
normal force of 48 N and a frictional force of 20 N. Find
the magnitude of the total force exerted by the limb on
the monkey.

 6. A body builder exerts a force of 150 N against a
bullworker and compresses it by 20 cm. Calculate the
spring constant of the spring in the bullworker.

 7. A satellite is projected vertically upwards from an earth
station. At what height above the earth’s surface will
the force on the satellite due to the earth be reduced to
half its value at the earth station ? (Radius of the earth
is 6400 km.)

 8. Two charged particles placed at a separation of 20 cm
exert 20 N of Coulomb force on each other. What will
be the force if the separation is increased to 25 cm ?

 9. The force with which the earth attracts an object is
called the weight of the object. Calculate the weight of
the moon from the following data : The universal

constant of gravitation G = 6.67 × 10 – 11 N−m 2/kg 2, mass

of the moon = 7.36 × 10 22 kg, mass of the earth
= 6 × 10 24 kg and the distance between the earth and the

moon = 3.8 × 10 5 km.

10. Find the ratio of the magnitude of the electric force to
the gravitational force acting between two protons.

11. The average separation between the proton and the
electron in a hydrogen atom in ground state is

5.3 × 10 – 11 m. (a) Calculate the Coulomb force between
them at this separation. (b) When the atom goes into its
first excited state the average separation between the
proton and the electron increases to four times its value
in the ground state. What is the Coulomb force in this
state ?

12. The geostationary orbit of the earth is at a distance of
about 36000 km from the earth’s surface. Find the
weight of a 120-kg equipment placed in a geostationary
satellite. The radius of the earth is 6400 km.

ANSWERS

OBJECTIVE I

 1. (b) 2. (d)  3. (d)  4. (c)

OBJECTIVE II

 1. (a), (c)  2. (a), (b), (c)  3. (b), (c), (d)

 4. (a), (b), (c)  5. (a), (b)  6. (a), (d)

 7. (a), (b), (c), (d)

EXERCISES

 1. 1 m

 4. 4.3 × 10 – 9 C

 5. 52 N
 6. 750 N/m
 7. 2650 km
 8. 13 N

 9. 2 × 10 20 N

10. 1.24 × 10 36

11. (a) 8.2 × 10 – 8 N,(b) 5.1 × 10 – 9 N

12. 27 N
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CHAPTER 5

NEWTON’S LAWS OF MOTION

Newton’s laws of motion are of central importance
in classical physics. A large number of principles and
results may be derived from Newton’s laws. The first
two laws relate to the type of motion of a system that
results from a given set of forces. These laws may be
interpreted in a variety of ways and it is slightly
uninteresting and annoying at the outset to go into the
technical details of the interpretation. The precise
definitions of mass, force and acceleration should be
given before we relate them. And these definitions
themselves need use of Newton’s laws. Thus, these
laws turn out to be definitions to some extent. We shall
assume that we know how to assign mass to a body,
how to assign the magnitude and direction to a force
and how to measure the acceleration with respect to
a given frame of reference. Some discussions of these
aspects were given in the previous chapters. The
development here does not follow the historical track
these laws have gone through, but are explained to
make them simple to apply.

5.1 FIRST LAW OF MOTION

If the (vector) sum of all the forces acting on a
particle is zero then and only then the particle remains
unaccelerated (i.e., remains at rest or moves with
constant velocity).

If the sum of all the  forces on a given particle is

F
→

 and its acceleration is a
→

, the above statement may
also be written as

“ a
→

 = 0 if and only if F
→

 = 0 ”.

Thus, if the sum of the forces acting on a particle
is known to be zero, we can be sure that the particle
is unaccelerated, or if we know that a particle is
unaccelerated, we can be sure that the sum of the
forces acting on the particle is zero.

However, the concept of rest, motion or
acceleration is meaningful only when a frame of
reference is specified. Also the acceleration of the

particle is, in general, different when measured from
different frames. Is it possible then, that the first law
is valid in all frames of reference ?

Let us consider the situation shown in figure (5.1).
An elevator cabin falls down after the cable breaks.
The cabin and all the bodies fixed in the cabin are
accelerated with respect to the earth and the
acceleration is about 9.8 m/s 2 in the downward
direction.

Consider the lamp in the cabin. The forces acting
on the lamp are (a) the gravitational force W by the
earth and (b) the electromagnetic force T (tension) by
the rope. The direction of W is downward and the
directon of T is upward. The sum is (W – T ) downward.

Measure the acceleration of the lamp from the
frame of reference of the cabin. The lamp is at rest.
The acceleration of the lamp is zero. The person A who
measured this acceleration is a learned one and uses
Newton’s first law to conclude that the sum of the
forces acting on the particle is zero, i.e.,

        W – T = 0 or, W = T.
Instead, if we measure the acceleration from the

ground, the lamp has an acceleration of 9.8 m/s 2. Thus,
a ≠ 0 and hence the person B who measured this
acceleration, concludes from Newton’s first law that
the sum of the forces is not zero. Thus, W – T ≠ 0 or
W ≠ T. If A measures acceleration and applies the first

2a = 9.8 m/s

A

B

Figure 5.1



law he gets W = T. If B measures acceleration and
applies the same first law, he gets W ≠ T.  Βoth of
them cannot be correct simultaneously as W and T can
be either equal or unequal. At least one of the two
frames is a bad frame and one should not apply the
first law in that frame.

There are some frames of reference in which
Newton’s first law is valid. Measure acceleration from
such a frame and you are allowed to say that “ a

→
 = 0

if and only if F
→

 = 0 ”. But there are frames in which
Newton’s first law is not valid. You may find that even
if the sum of the forces is not zero, the acceleration is
still zero. Or you may find that the sum of the forces
is zero, yet the particle is accelerated. So the validity
of Newton’s first law depends on the frame of reference
from which the observer measures the state of rest,
motion and acceleration of the particle.

A frame of reference in which Newton’s first law
is valid is called an inertial frame of reference. A frame
in which Newton’s first law is not valid is called a
noninertial frame of reference.

 Newton’s first law, thus, reduces to a definition
of inertial frame. Why do we call it a law then ?
Suppose after going through this lesson, you keep the
book on your table fixed rigidly with the earth
(figure 5.2).

The book is at rest with respect to the earth. The
acceleration of the book with respect to the earth is
zero. The forces on the book are (a) the gravitational
force W

→
 exerted by the earth and (b) the contact force

N     
→

by the table. Is the sum of W
→

 and N    
→

zero ? A
very accurate measurement will give the answer “No”.
The sum of the forces is not zero although the book is
at rest. The earth is not strictly an inertial frame.
However, the sum is not too different from zero and
we can say that the earth is an inertial frame of
reference to a good approximation. Thus, for routine
affairs, “a

→
 = 0 if and only if F

→
 = 0” is true in the earth

frame of reference. This fact was identified and
formulated by Newton and is known as Newton’s first
law. If we restrict that all measurements will be made
from the earth frame, indeed it becomes a law. If we
try to universalise this to different frames, it becomes
a definition. We shall assume that unless stated
otherwise, we are working from an inertial frame of
reference.

Example 5.1

   A heavy particle of mass 0.50 kg is hanging from a string
fixed with the roof. Find the force exerted by the string
on the particle (Figure 5.3). Take g = 9.8 m/s 2.

Solution : The forces acting on the particle are
(a) pull of the earth, 0.50 kg × 9.8 m/s 2 = 4.9 N, vertically
downward

(b) pull of the string, T vertically upward.

The particle is at rest with respect to the earth (which
we assume to be an inertial frame). Hence, the sum of
the forces should be zero. Therefore, T is 4.9 N acting
vertically upward.

Inertial Frames other than Earth

Suppose S is an inertial frame and S′ a frame
moving uniformly with respect to S. Consider a particle
P having acceleration a

→
P, S with respect to S and a

→
P, S′

with respect to S′.
We know that,
           a

→
P, S = a

→
P, S′ + a

→
S′, S .

As S′ moves uniformly with respect to S,

          a
→

S′, S = 0.

Thus,         a
→

P, S = a
→

P, S′ … (i)

Now  S  is  an  inertial  frame.  So  from  definition,
a
→

P, S = 0 ,  if  and  only  if F
→

 = 0  and  hence,  from  (i),

a
→

P, S′ = 0 if and only if F
→

 = 0.

Thus, S′ is also an inertial frame. We arrive at an
important result : All frames moving uniformly with
respect to an inertial frame are themselves inertial.
Thus, a train moving with uniform velocity with
respect to the ground, a plane flying with uniform
velocity with respect to a highway, etc., are examples
of inertial frames. The sum of the forces acting on a
suitcase kept on the shelf of a ship sailing smoothly
and uniformly on a calm sea is zero.

5.2 SECOND LAW OF MOTION

The acceleration of a particle as measured from an
inertial frame is given by the (vector) sum of all the
forces acting on the particle divided by its mass.

Figure 5.2

Figure 5.3
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In symbols : a
→

 = F
→

/m      or,  F
→

 = m a
→

. … (5.2)

The  inertial  frame  is  already  defined  by  the
first law of motion. A force F

→
 acting on a particle of

mass m produces an acceleration F
→

/m in it with
respect to an inertial frame. This is a law of nature.
If the force ceases to act at some instant, the
acceleration  becomes  zero  at  the  same  instant. In
equation (5.2) a

→
 and F

→
 are measured at the same

instant of time.

5.3 WORKING WITH NEWTON’S
   FIRST AND SECOND LAW

Newton’s laws refer to a particle and relate the
forces acting on the particle with its acceleration and
its mass. Before attempting to write an equation from
Newton’s law, we should very clearly understand
which particle we are considering. In any practical
situation, we deal with extended bodies which are
collection of a large number of particles. The laws as
stated above may be used even if the object under
consideration is an extended body, provided each part
of this body has the same acceleration (in magnitude
and direction). A systematic algorithm for writing
equations from Newton’s laws is as follows :

Step 1 : Decide the System

The first step is to decide the system on which the
laws of motion are to be applied. The system may be
a single particle, a block, a combination of two blocks
one kept over the other, two blocks connected by a
string, a piece of string etc. The only restriction is that
all parts of the system should have identical
acceleration.

Consider the situation shown in figure (5.4). The
block B does not slip over A, the disc D slides over the
string and all parts of the string are tight.

A and B move together. C is not in contact with A
or B. But as the length of the string between A and
C does not change, the distance moved by C in any

time interval is same as that by A. The same is true
for G. The distance moved by G in any time interval
is same as that by A, B or C. The direction of motion
is also the same for A, B, C and G. They have identical
accelerations. We can take any of these blocks as a
system or any combination of the blocks from these as
a system. Some of the examples are (A), (B), (A + B),
(B + C), (A + B + C), (C + G), (A + C + G), (A + B +
C + G) etc. The distance covered by E is also the same
as the distance covered by G but their directions are
different. E moves in a vertical line whereas G in a
horizontal line. (E + G) should not be taken as a
system. At least at this stage we are unable to apply
Newton’s law treating E + G as a single particle. As
the disc D slides over the string the distance covered
by D is not equal to that by E in the same time
interval. We should not treat D + E as a system. Think
carefully.

Step 2 : Identify the Forces

Once the system is decided, make a list of the
forces acting on the system due to all the objects other
than the system. Any force applied by the system
should not be included in the list of the forces.

Consider the situation shown in figure (5.5). The
boy stands on the floor balancing a heavy load on his
head. The load presses the boy, the boy pushes the
load upward the boy presses the floor downward, the
floor pushes the boy upward, the earth attracts the
load downward, the load attracts the earth upward,
the boy attracts the earth upward and the earth
attracts the boy downward. There are many forces
operating in this world. Which of these forces should
we include in the list of forces ?

We cannot answer this question. Not because we
do not know, but because we have not yet specified
the system. Which is the body under consideration ?
Do not try to identify forces before you have decided
the system. Suppose we concentrate on the state of
motion of the boy. We should then concentrate on the
forces acting on the boy. The forces are listed in the
upper half of table (5.1). Instead, if we take the load
as the system and discuss the equilibrium of the load,

A

B C

D

E

G

Figure 5.4

Figure 5.5
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the list of the forces will be different. These forces
appear in the lower half of table (5.1).

Table 5.1

System Force
exerted by

Magnitude
of the
force

Direction
of the force

Nature of the
force

Earth W Downward Gravitational

Boy Floor N Upward Electro-
magnetic

Load N 1 Downward    ,,

Earth W Downward Gravitational

Load

Boy N 1 Upward Electro-
magnetic

One may furnish as much information as one has
about the magnitude and direction of the forces. The
contact forces may have directions other than normal
to the contact surface if the surfaces are rough. We
shall discuss more about it under the heading of
friction.

Step 3 : Make a Free Body Diagram

Now, represent the system by a point in a separate
diagram and draw vectors representing the forces
acting on the system with this point as the common
origin. The forces may lie along a line, may be
distributed in a plane (coplanar) or may be distributed
in the space (non-planar). We shall rarely encounter
situations dealing with non-planar forces. For coplanar
forces the plane of diagram represents the plane of the
forces acting on the system. Indicate the magnitudes
and directions of the forces in this diagram. This is
called a free body diagram. The free body diagram for
the example discussed above with the boy as the
system and with the load as the system are shown in
figure (5.6).

Step 4 : Choose Axes and Write Equations

Any three mutually perpendicular directions may
be chosen as the X-Y-Z axes. We give below some
suggestions for choosing the axes to solve problems.

If the forces are coplanar, only two axes, say X and
Y, taken in the plane of forces are needed. Choose the
X-axis along the direction in which the system is
known to have or is likely to have the acceleration. A
direction perpendicular to it may be chosen as the
Y-axis. If the system is in equilibrium, any mutually
perpendicular directions in the plane of the diagram
may be chosen as the axes. Write the components of
all the forces along the X-axis and equate their sum
to the product of the mass of the system and its
acceleration. This gives you one equation. Write the
components of the forces along the Y-axis and equate
the sum to zero. This gives you another equation. If
the forces are collinear, this second equation is not
needed.

If necessary you can go to step 1, choose another
object as the system, repeat steps 2, 3 and 4 to get
more equations. These are called equations of motion.
Use mathematical techniques to get the unknown
quantities out of these equations. This completes the
algorithm.

The magnitudes of acceleration of different objects
in a given situation are often related through
kinematics. This should be properly foreseen and used
together with the equations of motion. For example in
figure (5.4) the accelerations of C and E have same
magnitudes. Equations of motion for C and for E
should use the same variable a for acceleration. 

Example 5.2

   A block of mass M is pulled on a smooth horizontal table
by a string making an angle  with the horizontal as
shown in figure (5.7). If the acceleration of the block is
a, find the force applied by the string and by the table
on the block.

Solution : Let us consider the block as the system.
The forces on the block are
(a) pull of the earth, Mg, vertically downward,
(b) contact force by the table, N , vertically upward,
(c) pull of the string, T, along the string.
The free body diagram for the block is shown in
figure (5.8).

The acceleration of the block is horizontal and towards
the right. Take this direction as the X-axis and vertically
upward direction as the Y-axis. We have,

Figure 5.6

�

Figure 5.7
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component of Mg along the X-axis = 0
component  of N  along the X-axis = 0
component  of  T  along the X-axis = T cosθ.

Hence the total force along the  X-axis = T cosθ.
Using Newton’s law, T cosθ = Ma. … (i)

Component of Mg along the Y-axis = − Mg

component of N  along the Y-axis = N

component of T along the Y-axis = T sinθ.

Total force along the Y-axis = N  + T sinθ − Mg.

Using Newton’s law, N  + T sinθ − Mg = 0. … (ii)

From equation (i), T = 
Ma
cosθ

 ⋅ Putting this in equation (ii)

N  = Mg − Ma tanθ.

5.4 NEWTON’S THIRD LAW OF MOTION

Newton’s third law has already been introduced in
chapter  4. “If  a  body  A  exerts  a  force  F

→
 on  another

body B, then B exerts a force − F
→

 on A.”
Thus, the force exerted by A on B and that by B

on A are equal in magnitude but opposite in direction.
This law connects the forces exerted by two bodies on
one another. The forces connected by the third law act
on two different bodies and hence will never appear
together in the list of forces at step 2 of applying
Newton’s first or second law.

For example, suppose a table exerts an upward
force N  on a block placed on it. This force should be
accounted if we consider the block as the system. The
block pushes the table down with an equal force N .
But this force acts on the table and should be
considered only if we take the table as the system.
Thus, only one of the two forces connected by the third
law may appear in the equation of motion depending
on the system chosen. The force exerted by the earth
on a particle of mass M is Mg downward and therefore,
by the particle on the earth is Mg upward. These two
forces will not cancel each other. The downward force
on the particle will cause acceleration of the particle
and that on the earth will cause acceleration (how
large ?) of the earth.

 Newton’s third law of motion is not strictly correct
when interaction between two bodies separated by a
large distance is considered. We come across such
deviations when we study electric and magnetic forces.

Working with the Tension in a String

The idea of tension was qualitatively introduced in
chapter 4. Suppose a block of mass M is hanging
through a string from the ceiling (figure 5.9).

Consider a cross-section of the string at A. The
cross-section divides the string in two parts, lower part
and the upper part. The two parts are in physical
contact at the cross-section at A. The lower part of the
string will exert an electromagnetic force on the upper
part and the upper part will exert an electromagnetic
force on the lower part. According to the third law,
these two forces will have equal magnitude. The lower
part pulls down the upper part with a force T and the
upper part pulls up the lower part with equal force T.
The common magnitude of the forces exerted by the
two parts of the string on each other is called the
tension in the string at A. What is the tension in the
string at the lower end ? The block and the string are
in contact at this end and exert electromagnetic forces
on each other. The common magnitude of these forces
is the tension in the string at the lower end. What is
the tension in the string at the upper end ? At this
end, the string and the ceiling meet. The string pulls
the ceiling down and the ceiling pulls the string up.
The common magnitude of these forces is the tension
in the string at the upper end.

Example 5.3

   The mass of the part of the string below A in figure (5.9)
is m. Find the tension of the string at the lower end and
at A.

Solution : To get the tension at the lower end we need the
force exerted by the string on the block.
Take the block as the system. The forces on it are

(a) pull of the string, T, upward,

(b) pull of the earth, Mg, downward,

The free body diagram for the block is shown in figure
(5.10a). As the acceleration of the block is zero, these
forces should add to zero. Hence the tension at the lower
end is T = Mg.

T

Mg

N

Figure 5.8

A

M

Figure 5.9
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To get the tension T at A we need the force exerted by
the upper part of the string on the lower part of the
string. For this we may write the equation of motion for
the lower part of the string. So take the string below A
as the system. The forces acting on this part are

(a) T′, upward, by the upper part of the string
(b) mg, downward, by the earth
(c) T, downward, by the block.

Note that in (c) we have written T for the force by the
block on the string. We have already used the symbol T
for the force by the string on the block. We have used
Newton’s third law here. The force exerted by the block
on the string is equal in magnitude to the force exerted
by the string on the block.

The free body diagram for this part is shown in figure
(5.10b). As the system under consideration (the lower
part of the string) is in equilibrium, Newton’s first law
gives

            T′ = T + mg

But T = Mg hence, T′ = (M + m)g.

Example 5.4

   The block shown in figure (5.11) has a mass M and
descends with an acceleration a. The mass of the string
below the point A is m. Find the tension of the string at
the point A and at the lower end.

Solution : Consider “the block + the part of the string
below A” as the system. Let the tension at A be T. The
forces acting on this system are
(a) (M + m)g, downward, by the earth
(b) T, upward, by the upper part of the string.

The first is gravitational and the second is
electromagnetic. We do not have to write the force by
the string on the block. This electromagnetic force is by
one part of the system on the other part. Only the forces
acting on the system by the objects other than the
system are to be included.

The system is descending with an acceleration a. Taking
the downward direction as the X-axis, the total force
along the X-axis is (M + m)g – T. Using Newton’s law

      (M + m)g − T = (M + m)a.

   or,             T = (M + m) (g − a). … (i)

We have omitted the free body diagram. This you can
do if you can draw the free body diagram in your mind
and write the equations correctly.

To get the tension T′ at the lower end we can put
m = 0 in (i).

Effectively, we take the point A at the lower end. Thus,
we get T′ = M(g − a).

Suppose the string in Example 5.3 or 5.4 is very light
so that we can neglect the mass of the string. Then
T′ = T. The tension is then the same throughout the
string. This result is of general nature. The tension at
all the points in a string or a spring is the same
provided it is assumed massless and no massive
particle or body is connected in between.

If the string in figure (5.12) is light, the tension T1

of the string is same at all the points between the
block A and the pulley B. The tension T 2 is same at
all the points between the pulley B and the block C.
The tension T 3 is same at all the points between the
block C and the block D. The three tensions T 1, T 2

and T 3 may be different from each other. If the pulley
B is also light, then T 1 = T 2.

5.5 PSEUDO FORCES

In this section we discuss the techniques of solving
the motion of a body with respect to a noninertial
frame of reference.

Consider the situation shown in figure (5.13).
Suppose  the  frame  of  reference   S′   moves  with  a

T

TMg

mg

T

(a) (b)

Figure 5.10
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M
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constant acceleration a


0 with respect to an inertial
frame  S. The  acceleration  of  a  particle  P  measured

with respect to S is a


P, S  a


 and that with respect to
S is a


P, S . The acceleration of S with respect to S is

a


S, S  a


0 .

Since S is translating with respect to S we have,

       a


P, S  a


P, S  a


S, S  a


P, S  a


S, S

or,       a


  a


P, S  a


0

or,      m a


  m a


P, S  m a


0

where m is the mass of the particle P. Since S is an
inertial frame m a


P, S is equal to the sum of all the

forces acting on P. Writing this sum as F


, we get

         m a


  F


  m a


0

   or,        a


  
F


  m a


0

m
   (5.3)

This equation relates the acceleration of the particle
and the forces acting on it. Compare it with
equation (5.2) which relates the acceleration and the
force when the acceleration is measured with respect
to an inertial frame. The acceleration of the frame
(with respect to an inertial frame) comes into the
equation of a particle. Newton’s second law a


  F


/m is

not valid in such a noninertial frame. An extra term
 m a


0 has to be added to the sum of all the forces

acting on the particle before writing the equation
a


  F


/m. Note that in this extra term, m  is the mass
of the particle under consideration and a


0 is the

acceleration of the working frame of reference with
respect to some inertial frame.

However, we people spend most of our lifetime on
the earth which is an (approximate) inertial frame. We
are so familiar with the Newton’s laws that we would
still like to use the terminology of Newton’s laws even
when we use a noninertial frame. This can be done if
we agree to call ( m a


0) a force acting on the particle.

Then while preparing the list of the forces acting on
the particle P, we include all the (real) forces acting
on P by all other objects and also include an imaginary

force  m a


0 . Applying Newton’s second law will then
lead to equation (5.3). Such correction terms  m a0 in
the list of forces are called pseudo forces. This so-called
force is to be included in the list only because we are
discussing the motion from a noninertial frame and
still want to use Newton’s second law as “total force
equals mass times acceleration”. If we work from an
inertial frame, the acceleration a


0 of the frame is zero

and no pseudo force is needed. The pseudo forces are
also called inertial forces although their need arises
because of the use of noninertial frames.

Example 5.5

   A pendulum is hanging from the ceiling of a car having
an acceleration a0 with respect to the road. Find the angle
made by the string with the vertical.

Solution : The situation is shown in figure (5.14a).
Suppose the mass of the bob is m and the string makes
an angle  with the vertical. We shall work from the car
frame. This frame is noninertial as it has an acceleration
a


0 with respect to an inertial frame (the road). Hence,
if we use Newton’s second law we shall have to include
a pseudo force.

Take the bob as the system.

The forces are :

(a) T along the string, by the string
(b) mg downward, by the earth
(c) ma0 towards left (pseudo force).

The free body diagram is shown in figure (5.14b). As the
bob is at rest (remember we are discussing the motion
with respect to the car) the force in (a), (b) and (c) should
add to zero. Take X-axis along the forward horizontal
direction and Y-axis along the upward vertical direction.
The components of the forces along the X-axis give

   T sin  m a0  0    or,    T sin  m a0  (i)

and the components along the Y-axis give

   T cos  mg  0    or,    T cos  mg.  (ii)

Dividing (i) by (ii) tan  a0 /g.

Thus, the string makes an angle tan  1 a0 /g with the
vertical.

Figure 5.13
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70 Concepts of Physics



5.6 THE HORSE AND THE CART

A good example which illustrates the ideas
discussed in this chapter is the motion of a cart pulled
by a horse. Suppose the cart is at rest when the driver
whips the horse. The horse pulls the cart and the cart
accelerates forward. The question posed is as follows.
The horse pulls the cart by a force F1 in the forward
direction. From the third law of motion the cart pulls
the horse by an equal force F2 = F1 in the backward
direction. The sum of these forces is, therefore, zero
(figure 5.15). Why should then the cart accelerate
forward ?

Try to locate the mistake in the argument.
According to our scheme, we should first decide the
system. We can take the horse as the system or the
cart as the system or the cart and the horse taken
together as the system. Suppose you take the cart as
the system. Then the forces on the cart should be listed
and the forces on the horse should not enter the
discussion. The force on the cart is F1 in the forward
direction and the acceleration of the cart is also in the
forward direction. How much is this acceleration ?
Take the mass of the cart to be MC . Is the acceleration
of the cart a = F1 /MC in forward direction ? Think
carefully. We shall return to this question.

Let us now try to understand the motion of the
horse. This time we have to consider the forces on the
horse. The forward force F1 by the horse acts on the
cart and it should not be taken into account when we
discuss the motion of the horse. The force on the horse
by the cart is F2 in the backward direction. Why does
the horse go in the forward direction when whipped ?
The horse exerts a force on the cart in the forward
direction and hence the cart is accelerated forward.
But the cart exerts an equal force on the horse in the
backward direction. Why is the horse not accelerated
in backward direction ? (Imagine this situation. If the
cart is accelerated forward and the horse backward,
the horse will sit on the cart kicking out the driver
and the passengers.) Where are we wrong ? We have
not considered all the forces acting on the horse. The

road pushes the horse by a force P which has a forward
component. This force acts on the horse and we must
add this force when we discuss the motion of the horse.
The horse accelerates forward if the forward
component f of the force P exceeds  F2 (Figure 5.16).
The acceleration of the horse is (f − F2)/Mh. We should
make sure that all the forces acting on the system are
added. Note that the force of gravity acting on the
horse has no forward component.

Going back to the previous paragraph the
acceleration of the cart may not be F1 /MC. The road
exerts a force Q on the cart which may have a
backward component f ′. The total force on the cart is
F1 − f ′. The acceleration of the cart is then

a = 
F1 − f ′

MC
 in the forward direction.

The forces f and f ′ are self adjustable and they so

adjust their values that 
F1 − f ′

MC
 = 

f − F2

Mh
 ⋅ The

acceleration of the horse and that of the cart are equal
in magnitude and direction and hence they move
together.

So, once again we remind you that only the forces
on the system are to be considered to discuss the
motion of the system and all the forces acting on the
system are to be considered. Only then apply F

→
 = ma

→
.

5.7 INERTIA

A particle is accelerated (in an inertial frame) if
and only if a resultant force acts on it. Loosely
speaking, the particle does not change its state of rest
or of uniform motion along a straight line unless it is
forced to do this. This unwillingness of a particle to
change its state of rest or of uniform motion along a
straight line is called as inertia. We can understand
the property of inertia in more precise terms as follows.
If equal forces are applied on two particles, in general,
the acceleration of the particles will be different. The
property of a particle to allow a smaller acceleration
is called inertia. It is clear that larger the mass of the
particle, smaller will be the acceleration and hence
larger will be the inertia.

F

F

1

2

F  : Force on the cart by the horse

F  : Force on the horse by the cart

F  =  F  =  F

1

2

1 2

Figure 5.15
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Worked Out Examples

 1. A body of mass m is suspended by two strings making
angles  and  with the horizontal. Find the tensions in
the strings.

Solution : Take the body of mass m as the system. The
forces acting on the system are
(i) mg downwards (by the earth),

(ii) T1 along the first string (by the first string) and
(iii) T2 along the second string (by the second string).

These forces are shown in figure (5-W1). As the body is
in  equilibrium, these forces must add to zero. Taking
horizontal components,

    T1 cos  T2 cos  mg cos 

2

  0

   or,                T1 cos  T2 cos.  ... (i)

Taking vertical components,

   T1 sin  T2 sin  mg  0.  ... (ii)

Eliminating T 2 from (i) and (ii),

    T1 sin   T1 
cos 
cos 

 sin   mg

or,   T1  
mg

sin   
cos 
cos 

 sin 
  

mg cos 
sin   

 

From (i), T2  
mg cos 

sin   
 

 2. Two bodies of masses m1 and m2 are connected by a light
string  going over a smooth light pulley at the end of an
incline. The mass m1 lies on the incline and m2 hangs
vertically. The system is  at rest. Find the angle of the
incline and the force exerted by  the incline on the body
of mass m1 (figure 5-W2).

Solution : Figure (5-W3) shows the situation with the
forces on m1 and m2 shown. Take the body of mass m2

as the system. The forces acting on it are

(i) m2 g vertically downward (by the earth),
(ii) T vertically upward (by the string).
As the system is at rest, these forces should add to zero.

   This gives        T  m2 g. ... (i)

Next, consider the body of mass m1 as the system. The
forces acting on this system are
(i) m1 g vertically downward (by the earth),

(ii) T along the string up the incline (by the string),
(iii) N  normal to the incline (by the incline).

As the string and the pulley are all light and smooth,
the tension in the string is uniform everywhere. Hence,
same T is used for the  equations of m1 and m2. As the
system is in equilibrium, these forces should add to zero.

Taking components parallel to the incline,

        T  m1 g cos 





2

  



  m1 g sin .  ... (ii)

Taking components along the normal to the incline,

              N   m1 g cos.  ... (iii)

Eliminating T from (i) and (ii),

           m2 g  m1 g sin

or,          sin  m2 /m1

giving            sin  1 m2 /m1.

From (iii)  N   m1 g 1  m2 /m1 
2 .

 3. A bullet moving at 250 m/s penetrates 5 cm into a tree
limb before coming to rest. Assuming that the force
exerted by  the tree limb is uniform, find its magnitude.
Mass of the bullet is 10 g.

Solution : The tree limb exerts a force on the bullet in the
direction  opposite to its velocity. This force causes
deceleration and  hence the velocity decreases from
250 m/s to zero in 5 cm. We have to find the force
exerted by the tree limb on the bullet. If a be the
deceleration of the bullet, we have,

       u  250 m/s ,  v  0 ,  x  5 cm  0.05 m

� �� �

��

Figure 5-W1

�

�

�

�

Figure 5-W2
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T

m gm g
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giving,    a = 
(250 m/s) 2 − 0 2

2 × 0.05 m
 = 625000 m/s 2.

The force on the bullet is F = ma = 6250 N.

 4. The force on a particle of mass 10 g is ( i
→
 10 + j

→
 5) N. If

it starts from rest what would be its position at time
t = 5 s ? 

Solution : We have Fx = 10 N giving

ax = 
Fx

m
 = 

10 N
0.01 kg

 = 1000 m/s 2.

As this is a case of constant acceleration in x-direction,

        x = ux t + 1
2
 ax t 

2 = 1
2
 × 1000 m/s 2 × (5 s) 2

         = 12500 m

Similarly, ay = 
Fy

m
 = 

5 N
0.01 kg

 = 500 m/s 2

and         y = 6250 m.
Thus, the position of the particle at t = 5 s is,

  r
→
 = (i

→
 12500 + j

→
 6250 ) m.

 5. With what acceleration ‘a’ should the box of figure (5-W4)
descend so that the block of mass M exerts a force
Mg/4 on the  floor of the box ?

Solution : The block is at rest with respect to the box
which is  accelerated with respect to the ground. Hence,
the acceleration  of the block with respect to the ground
is ‘a’ downward. The forces on the block are
(i) Mg downward (by the earth) and

(ii) N  upward (by the floor).

The equation of motion of the block is, therefore
              Mg − N  = Ma.
If N  = Mg/4, the above equation gives a = 3 g/4. The
block and hence  the box should descend with an
acceleration 3 g/4.

 6. A block ‘A’ of mass m is tied to a fixed point C on a
horizontal table through a string passing round a
massless smooth pulley B (figure 5-W5). A force F is
applied by the experimenter to the pulley. Show that if
the pulley is displaced by a distance x, the block will be
displaced by 2x. Find the acceleration of the block and
the pulley.

Solution : Suppose the pulley is displaced to B′ and the
block to A′ (figure 5-W6). The length of the string is
CB + BA and is also equal to CB + BB′ + B′B + BA′.
Hence, CB + BA′ + A′A = CB + BB′ + B′B + BA′
or, A′A = 2 BB′.

The displacement of A is, therefore, twice the
displacement of B in any given time interval.
Diffrentiating twice, we find that the acceleration of A
is twice the acceleration of B.

To find the acceleration of the block we will need the
tension in the string. That can be obtained by
considering the pulley as the system.

The forces acting on the pulley are
(i) F towards right by the experimenter,

(ii) T towards left by the portion BC of the string and
(iii) T towards left by the portion BA of the string.
The vertical forces, if any, add to zero as there is no
vertical motion.

As the mass of the pulley is zero, the equation of motion
is

F − 2T = 0 giving T = F/2.

Now consider the block as the system. The only
horizontal force acting on the block is the tension T
towards right. The acceleration of the block is, therefore,

a = T/m = 
F

2 m
 ⋅ The acceleration of the pulley is

a/2 = F
4 m

 ⋅

 7. A smooth ring A of mass m can slide on a fixed horizontal
rod. A string tied to the ring passes over a fixed pulley
B and carries a block C of mass M ( = 2 m) as shown in
figure (5-W7). At an instant the string between the ring
and the pulley makes an angle θ with the rod. (a) Show
that, if the ring slides with a  speed v, the block descends
with speed v cos θ. (b) With what acceleration will the
ring start moving if the system is released from rest with
θ = 30° ?

a
M

Figure 5-W4

C B

F
A m

Figure 5-W5

C

B B
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Solution : (a) Suppose in a small time interval ∆t the ring
is displaced from A to A′ (figure 5-W8) and the block
from C to C′. Drop a perpendicular A′P from A′ to AB.
For small displacement A′B ≈ PB. Since the length of the
string is constant, we have

           AB + BC = A′B + BC′

or,      AP + PB + BC = A′B + BC′

or,      AP = BC′ − BC = CC′    (as  A′B ≈ PB)

or,          AA′ cos θ = CC′

or,          
AA′ cos θ

∆t
 = 

CC′
∆t

or, (velocity of the ring) cos θ = (velocity of the block).

(b) If the initial acceleration of the ring is a, that of the
block will be a cos θ. Let T be the tension in the string
at this instant. Consider the block as the system. The
forces acting on the block are
(i) Mg downward due to the earth, and

(ii) T upward due to the string.
The equation of motion of the block is

              Mg − T = Ma cosθ. … (i)

Now consider the ring as the system. The forces on the
ring are
(i) Mg downward due to gravity,

(ii) N  upward due to the rod,
(iii) T along the string due to the string.
Taking components along the rod, the equation of motion
of the ring is

                T cosθ = ma. … (ii)

From (i) and (ii)

         Mg − 
ma
cosθ

 = M a cosθ

or,                a = 
M g cosθ

m + M cos 2θ
 ⋅

Putting θ = 30°, M = 2 m and g = 9.8 m/s 2; therefore

           a = 6.78 m/s 2.

 8. A light rope fixed at one end of a wooden clamp on the
ground passes over a tree branch and hangs on the other
side (figure 5-W9). It makes an angle of 30° with the
ground. A  man weighing (60 kg) wants to climb up the
rope. The wooden clamp can  come out of the ground if

an upward force greater than 360 N is  applied to it.
Find the maximum acceleration in the upward  direction
with which the man can climb safely. Neglect  friction
at the tree branch. Take g = 10 m/s 2.

Solution : Let T be the tension in the rope. The upward
force on the  clamp is T sin 30° = T/2. The maximum
tension that will not detach the clamp from the ground
is, therefore, given by

              
T
2

 = 360 N

or,  T = 720 N.

If the acceleration of the man in the upward direction
is a, the equation of motion of the man is

T − 600 N = (60 kg) a

The maximum acceleration of the man for safe climbing
is, therefore

           a = 
720 N − 600 N

60 kg
 = 2 m/s 2.

 9. Three blocks of masses m1 , m2  and  m3 are connected as
shown in the figure (5–W10). All the surfaces are
frictionless and the  string and the pulleys are light. Find
the acceleration of m1 .

Solution : Suppose the acceleration of m1 is a0 towards
right. That  will also be the downward acceleration of
the pulley B because the string connecting m1 and B is
constant in length. Also the string connecting
m2 and m3 has a constant  length. This implies that the
decrease in the separation  between m2 and B equals
the increase in the separation between  m3 and B. So,
the upward acceleration of m2 with respect to B equals
the downward acceleration of m3 with respect to B. Let
this  acceleration be a.
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The acceleration of m2 with respect to the ground
= a0 − a (downward) and the acceleration of m3 with
respect to the ground  = a0 + a (downward).

These accelerations will be used in Newton’s laws. Let
the  tension be T in the upper string and T ′ in the lower
string. Consider the motion of the pulley B.

The forces on this light pulley are
(a) T upwards by the upper string and
(b) 2 T ′ downwards by the lower string.
As the mass of the pulley is negligible,

            2 T ′ − T = 0

giving
                T ′ = T/2. … (i)

Motion of m1 :

The acceleration is a0 in the horizontal direction. The
forces  on m1 are

(a) T by the string (horizontal).

(b) m1 g by the earth (vertically downwards) and

(c) N  by the table (vertically upwards).

In the horizontal direction, the equation is
                 T = m1 a0. … (ii)

Motion of m2 : acceleration is a0 − a in the downward
direction. The forces on m2 are

(a) m2 g downward by the earth  and
(b) T ′ = T/2 upward by the string.

   Thus,      m2 g − T⁄2 = m2 (a0 − a) ... (iii)

Motion of m3 : The acceleration is (a0 + a) downward. The
forces on m3 are

(a) m3 g downward by the earth  and
(b) T ′ = T/2 upward by the string. Thus,

            m3 g − T⁄2 = m3 (a0 + a). ... (iv)

We want to calculate a0 , so we shall eliminate T and a
from (ii), (iii)  and (iv).

Putting T from (ii) in (iii) and (iv),

        a0 − a = 
m2 g − m1 a0 /2

m2

 = g −  
m1 a0

2 m2

and a0 + a = 
m3 g − m1 a0 /2

m3

 = g −  
m1 a0

2 m3

 ⋅

Adding,    2a0 = 2g −  
m1 a0

2
 


1
m2

 + 
1

m3





or,        a0 = g − 
m1 a0

4
 


1
m2

 + 
1

m3





or,         a0 



1 + 

m1

4
 


1
m2

 + 
1

m3




 



 = g

or,     a0 = 
g

1 + 
m1

4
 


1
m2

 + 
1

m3





 ⋅

10. A particle slides down a smooth inclined plane of
elevation  θ, fixed in an elevator going up with an
acceleration a0 (figure 5-W12). The base of the incline has
a length L. Find the time taken  by the particle to reach
the bottom.

Solution : Let us work in the elevator frame. A pseudo
force ma0 in the downward direction is to be applied on
the particle of mass m  together with the real forces.
Thus, the forces on m are (figure  5-W13) 
(i) N  normal force,

(ii) mg downward (by the earth),
(iii) ma0 downward (pseudo).

Let a be the acceleration of the particle with respect to
the incline. Taking components of the forces parallel to
the incline and applying Newton’s law,
       m g sinθ + ma0 sinθ = m a
or,                 a = (g + a0) sinθ.
This is the acceleration with respect to the elevator. In
this frame,  the distance travelled by the particle is
L/cosθ. Hence,

          
L

cosθ
 = 

1
2

 (g + a0) sinθ.t 2

or,       t = 


2 L
( g + a0 ) sinθ cosθ





 1/2

⋅

a0

m

1

2

3

m

m

A

T

T

B

a  � a

a  + a

0

0

Figure 5-W11
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11. All the surfaces shown in figure (5-W14) are assumed to
be frictionless.  The block of mass m slides on the prism
which in turn  slides backward on the horizontal surface.
Find the acceleration of the smaller block with respect to
the prism.

Solution : Let the acceleration of the prism be a0 in the
backward  direction. Consider the motion of the smaller
block from the  frame of the prism.

The forces on the block are (figure 5-W15a)
(i) N  normal force,

(ii) mg downward (gravity),
(iii) ma0 forward (pseudo).

The block slides down the plane. Components of the

forces parallel to the incline give

         ma0 cos  mg sin  ma

   or,                 a  a0 cos  g sin.  (i)

Components of the force perpendicular to the incline give

            N   ma0 sin  mg cos.  (ii)

Now consider the motion of the prism from the lab

frame. No pseudo force is needed as the frame used is

inertial. The forces are (figure 5-W15b)

(i) Mg downward,
(ii) N  normal to the incline (by the block),

(iii) N  upward (by the horizontal surface).

Horizontal components give,

         N  sin  Ma0    or,  N   Ma0/sin.  (iii)

Putting in (ii)

      
Ma0

sin
  ma0 sin  mg cos

or,             a0  
m g sin cos
M  m sin 2

 

From (i),          a  
m g sin cos 2
M  m sin 2

  g sin

                 
M  m g sin
M  m sin 2

 

QUESTIONS FOR SHORT ANSWER

 1. The apparent weight of an object increases in an elevator
while accelerating upward. A moongphaliwala sells his
moongphali using a beam balance in an elevator. Will
he gain more if the elevator is accelerating up ?

 2. A boy puts a heavy box of mass M on his head and
jumps down from the top of a multistoried building to
the ground. How much is the force exerted by the box
on his head during his free fall ? Does the force greatly
increase during the period he balances himself after
striking the ground ?

 3. A person drops a coin. Describe the path of the coin as
seen by the person if he is in (a) a car moving at constant
velocity and (b) in a freely falling elevator.

 4. Is it possible for a particle to describe a curved path if
no force acts on it ? Does your answer depend on the
frame of reference chosen to view the particle ?

 5. You are riding in a car. The driver suddenly applies the
brakes and you are pushed forward. Who pushed you
forward ?

 6. It is sometimes heard that inertial frame of reference is
only an ideal concept and no such inertial frame actually
exists. Comment.

 7. An object is placed far away from all the objects that
can exert force on it. A frame of reference is constructed
by taking the origin and axes fixed in this object. Will
the frame be necessarily inertial ?

 8. Figure (5-Q1) shows a light spring balance connected to
two blocks of mass 20 kg each. The graduations in the
balance measure the tension in the spring. (a) What is
the reading of the balance? (b) Will the reading change
if the balance is heavy, say 2.0 kg ? (c) What will happen
if the spring is light but the blocks have unequal
masses ?
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 9. The acceleration of a particle is zero as measured from
an inertial frame of reference. Can we conclude that no
force acts on the particle ?

10. Suppose you are running fast in a field when you
suddendly find a snake in front of you. You stop quickly.
Which force is responsible for your deceleration ?

11. If you jump barefooted on a hard surface, your legs get
injured. But they are not injured if you jump on a soft
surface like sand or pillow. Explain.

12. According to Newton’s third law each team pulls the
opposite team with equal force in a tug of war. Why
then one team wins and the other loses ?

13. A spy jumps from an airplane with his parachute. The
spy accelerates downward for some time when the
parachute opens. The acceleration is suddenly checked
and the spy slowly falls on the ground. Explain the
action of parachute in checking the acceleration.

14. Consider a book lying on a table. The weight of the book
and  the normal force by the table on the book are equal
in magnitude and opposite in direction. Is this an
example of Newton’s third law ?

15. Two blocks of unequal masses are tied by a spring. The
blocks are pulled stretching the spring slightly and the

system is  released on a frictionless horizontal platform.
Are the forces due to the spring on the two blocks equal
and opposite ? If yes, is it an example of Newton’s third
law ?

16. When a train starts, the head of a standing passenger
seems to be pushed backward. Analyse the situation
from the ground frame. Does it really go backward ?
Coming back to the train frame, how do you explain the
backward movement of the head on the basis of Newton’s
laws ?

17. A plumb bob is hung from the ceiling of a train
compartment. If the train moves with an acceleration ‘a’
along a straight horizontal track, the string supporting
the bob makes an angle tan − 1 (a/g) with the normal to
the ceiling. Suppose the train moves on an inclined
straight track with uniform velocity. If the angle of
incline is tan − 1 (a/g), the string again makes the same
angle with the normal to the ceiling. Can a person sitting
inside the  compartment tell by looking at the plumb
line whether the train is accelerated on a horizontal
straight track or it is going on an incline ? If yes, how ?
If no, suggest a method to do so.

OBJECTIVE I

 1. A body of weight w1 is suspended from the ceiling of a
room through a chain of weight w2 . The ceiling pulls
the chain by a force

(a) w1     (b) w2     (c) w1 + w2     (d) 
w1 + w2

2
 ⋅

 2. When a horse pulls a cart, the force that helps the horse
to move forward is the force exerted by
(a) the cart on the horse   (b) the ground on the horse
(c) the ground on the cart    (d) the horse on the ground.

 3. A car accelerates on a horizontal road due to the force
exerted by
(a) the engine of the car    (b) the driver of the car
(c) the earth                (d) the road.

 4. A block of mass 10 kg is suspended through two light
spring balances as shown in figure (5-Q2).

    (a) Both the scales will read 10 kg.
(b) Both the scales will read 5 kg.
(c) The upper scale will read 10 kg and the lower zero.
(d) The readings may be anything but their sum will be
10 kg.

 5. A block of mass m is placed on a smooth inclined plane
of inclination θ  with the horizontal. The force exerted
by the plane on the block  has a magnitude
(a) mg    (b) mg/cosθ    (c) mg cosθ    (d) mg tanθ.

 6. A block of mass m is placed on a smooth wedge of
inclination θ. The whole system is accelerated
horizontally so that the block does not slip on the wedge.
The force exerted by the wedge on the block has a
magnitude
(a) mg    (b) mg/cosθ    (c) mg cosθ    (d) mg tanθ.

 7. Neglect the effect of rotation of the earth. Suppose the
earth suddenly stops attracting objects placed near its
surface. A  person standing on the surface of the earth
will
(a) fly up       (b) slip along the surface
(c) fly along a tangent to the earth’s surface
(d) remain standing.

 8. Three rigid rods are joined to form an equilateral triangle
ABC of side 1 m. Three particles carrying charges
20 µC each are attached to the vertices of the triangle.
The whole system is at rest in an inertial frame. The
resultant force on the charged  particle at A has the
magnitude
(a) zero     (b) 3.6 N     (c) 3.6√3 N     (d) 7.2 N.

10 kg

Figure 5-Q2
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 9. A force F1 acts on a particle so as to accelerate it from
rest to a velocity v. The force F1 is then replaced by F2

which decelerates it to rest.
(a) F1 must be equal to F2   (b) F1 may be equal to F2

(c) F1 must be unequal to F2  (d) none of these.

10. Two objects A and B are thrown upward simultaneously
with the same speed. The mass of A is greater than the
mass of B. Suppose the air exerts a constant and equal
force of resistance on the two bodies.
(a) The two bodies will reach the same height.
(b) A will go higher than B.
(c) B will go higher than A.
(d) Any of the above three may happen depending on
the speed with which the objects are thrown.

11. A smooth wedge A is fitted in a chamber hanging from
a fixed ceiling near the earth’s surface. A block B placed
at the top of the wedge takes a time T to slide down
the length of the wedge. If the block is placed at the top
of the wedge and the cable supporting the chamber is
broken at the same instant, the block will
(a) take a time longer than T to slide down the wedge
(b) take a time shorter than T to slide down the wedge
(c) remain at the top of the wedge
(d) jump off the wedge.

12. In an imaginary atmosphere, the air exerts a small force
F on any particle in the direction of the particle’s motion.
A particle of mass m projected upward takes a time t1

in reaching the maximum height and t2 in the return
journey to the original point. Then
(a) t1 < t2  (b) t1 > t2  (c) t1 = t2  (d) the relation between
t1 and t2 depends on the mass of the particle.

13. A person standing on the floor of an elevator drops a
coin.  The coin reaches the floor of the elevator in a time
t1 if the  elevator is stationary and in time t2 if it is
moving uniformly. Then
(a) t1 = t2 (b) t1 < t2 (c) t1 > t2 (d) t1 < t2 or t1 > t2 depending
on whether the lift is going up or down.

14. A free 238U nucleus kept in a train emits an alpha
particle. When the train is stationary, a nucleus decays
and a passenger measures that the separation between
the alpha particle and the recoiling nucleus becomes x
at time t after the decay. If the decay takes place while
the train is moving at a uniform velocity v, the distance
between the alpha particle and the recoiling nucleus at
a  time t after the decay as measured by the passenger
is
(a) x + v t      (b) x − v t      (c) x
(d) depends on the direction of the train.

OBJECTIVE II

 1. A reference frame attached to the earth
(a) is an inertial frame by definition
(b) cannot be an inertial frame because the earth is
revolving around the sun
(c) is an inertial frame because Newton’s laws are
applicable in this frame
(d) cannot be an inertial frame because the earth is
rotating about its axis.

 2. A particle stays at rest as seen in a frame. We can
conclude that
(a) the frame is inertial
(b) resultant force on the particle is zero
(c) the frame may be inertial but the resultant force on
the particle is zero
(d) the frame may be noninertial but there is a nonzero
resultant force.

 3. A particle is found to be at rest when seen from a frame
S1 and moving with a constant velocity when seen from
another frame S2 . Mark out the possible options.
(a) Both the frames are inertial.
(b) Both the frames are noninertial.
(c) S1 is inertial and S2 is noninertial.
(d) S1 is noninertial and S2 is inertial.

 4. Figure (5-Q3) shows the displacement of a particle going
along the X-axis as a function of time. The force acting
on the particle is zero in the region

    (a) AB      (b) BC      (c) CD      (d) DE.

 5. Figure (5-Q4) shows a heavy block kept on a frictionless
surface and being pulled by two ropes of equal mass m.
At t = 0, the force on the left rope is withdrawn but the
force on the right end continues to act. Let F1 and F2 be
the magnitudes of the forces by the right rope and the
left rope on the block respectively.

   (a) F1 = F2 = F   for   t < 0
(b) F1 = F2 = F + mg   for   t < 0
(c) F1 = F,   F2 = F   for   t > 0
(d) F1 < F,   F2 = F   for   t > 0.

x

t

A

B C

D

E

Figure 5-Q3
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 6. The force exerted by the floor of an elevator on the foot
of a person standing there is more than the weight of
the person if the elevator is
(a) going up and slowing down
(b) going up and speeding up
(c) going down and slowing down
(d) going down and speeding up.

 7. If the tension in the cable supporting an elevator is equal
to the weight of the elevator, the elevator may be
(a) going up with increasing speed
(b) going down with increasing speed
(c) going up with uniform speed
(d) going down with uniform speed.

 8. A particle is observed from two frames S1 and S2 . The
frame S2 moves with respect to S1 with an acceleration

a. Let F1 and F2 be the pseudo forces on the particle

when seen from S1 and S2 respectively. Which of the

following are not possible ?
(a) F1  0,   F2  0          (b) F1  0,   F2  0

(c) F1  0,   F2  0         (d) F1  0,   F2  0.

 9. A person says that he measured the acceleration of a
particle  to be nonzero while no force was acting on the
particle.
(a) He is a liar.
(b) His clock might have run slow.
(c) His meter scale might have been longer than the
standard.
(d) He might have used noninertial frame.

EXERCISES

 1. A block of mass 2 kg placed on a long frictionless
horizontal table is pulled horizontally by a constant force
F. It is found to move 10 m in the first two seconds.
Find the magnitude of F.

 2. A car moving at 40 km/h is to be stopped by applying
brakes in the next 4.0 m. If the car weighs 2000 kg,
what average force must be applied on it ?

 3. In a TV picture tube electrons are ejected from the
cathode  with negligible speed and reach a velocity of
5  10 6 m/s  in  travelling  one  centimeter.  Assuming
straight line motion, find the constant force exerted on
the electron. The mass of the electron is 9.1  10 – 31 kg.

 4. A block of mass 0.2 kg is suspended from the ceiling by
a light string. A second block of mass 0.3 kg is suspended
from the first block through another string. Find the
tensions in the two strings. Take g  10 m/s 2.

 5. Two blocks of equal mass m are tied to each other
through a light string and placed on a smooth horizontal
table. One of the blocks is pulled along the line joining
them with a constant force F. Find the tension in the
string joining the blocks.

 6. A particle of mass 50 g moves on a straight line. The
variation of speed with time is shown in figure (5-E1). Find
the force acting on the particle at t  2, 4 and 6 seconds.

 7. Two blocks  A and B of mass mA and mB respectively
are kept in contact on a frictionless table. The
experimenter pushes the block A from behind so that

the blocks accelerate. If the block A exerts a force F on
the block B, what is the force exerted by the
experimenter on A ?

 8. Raindrops of radius 1 mm and mass 4 mg are falling
with a speed of 30 m/s on the head of a bald person.
The drops splash on the head and come to rest.
Assuming equivalently that the drops cover a distance
equal to their radii on the head, estimate the force
exerted by each drop on the head.

 9. A particle of mass 0.3 kg is subjected to a force
F   k x with k  15 N/m. What will be its initial
acceleration if it is released from a point x  20 cm ?

10. Both the springs shown in figure (5-E2) are unstretched.
If the block is displaced by a distance x and released,
what will be the initial acceleration?

11. A small block B is placed on another block A of mass
5 kg and length 20 cm. Initially the block B is near the
right end of block A (figure 5-E3). A constant horizontal
force of 10 N is applied to the block A. All the surfaces
are assumed frictionless. Find the time elapsed before
the block B separates from A.

12. A man has fallen into a ditch of width d and two of his
friends are slowly pulling him out using a light rope and
two fixed pulleys as shown in figure (5-E4). Show that

Figure 5-E1

��

�
��

Figure 5-E2

�

�

��	


Figure 5-E3

Newton’s Laws of Motion 79



the force (assumed equal for both the friends) exerted
by each friend on the rope increases as the man moves
up. Find the force when the man is at a depth h.

13. The elevator shown in figure (5-E5) is descending with
an acceleration of 2 m/s 2 . The mass of the block A is
0.5 kg. What force is exerted by the block A on the
block B ?

14. A pendulum bob of mass 50 g is suspended from the
ceiling of an elevator. Find the tension in the string if
the elevator (a) goes up with acceleration 1.2 m/s 2,
(b) goes up with deceleration 1.2 m/s 2, (c) goes up with
uniform velocity, (d) goes  down with acceleration
1.2 m/s 2, (e) goes down with deceleration 1.2 m/s 2  and
(f) goes down with uniform velocity.

15. A person is standing on a weighing machine placed on
the floor of an elevator. The elevator starts going up
with some acceleration, moves with uniform velocity for
a while and finally decelerates to stop. The maximum
and the minimum weights recorded are 72 kg and 60 kg.
Assuming that the magnitudes of the acceleration and
the deceleration are the same, find (a) the true weight
of the person and (b) the magnitude of the acceleration.
Take g  9.9 m/s 2.

16. Find the reading of the spring balance shown in figure
(5-E6). The elevator is going up with an acceleration of
g/10, the pulley and the string are light and the pulley
is smooth.

17. A block of 2 kg is suspended from the ceiling through a
massless spring of spring constant k  100 N/m. What is
the elongation of the spring ? If another 1 kg is added
to the block, what would be the further elongation ?

18. Suppose the ceiling in the previous problem is that of
an elevator which is going up with an acceleration of
2.0 m/s 2. Find the elongations.

19. The force of buoyancy exerted by the atmosphere on a
balloon is B in the upward direction and remains
constant. The force of air resistance on the balloon acts
opposite to the direction of velocity and is proportional
to it. The balloon carries a mass M and is found to fall
down near the earth’s surface with a constant velocity
v. How much mass should be removed from the balloon
so that it may rise with a constant velocity v ?

20. An empty plastic box of mass m is found to accelerate
up at the rate of g/6 when placed deep inside water.
How much sand should be put inside the box so that it
may accelerate down at the rate of g/6 ?

21. A force F


  v

  A


 is exerted on a particle in addition to

the force of gravity, where v

 is the velocity of the particle

and A


 is a constant vector in the horizontal direction.
With what  minimum speed a particle of mass m be
projected so that it  continues to move undeflected with
a constant velocity ?

22. In a simple Atwood machine, two unequal masses m1

and m2 are connected by a string going over a clamped
light smooth pulley. In a typical arrangement
(figure 5-E7) m1  300 g and m2  600 g. The system is
released from rest. (a) Find the distance travelled  by
the first block in the first two seconds. (b) Find the
tension in the string. (c) Find the force exerted by the
clamp on the pulley.

23. Consider the Atwood machine of the previous problem.
The larger mass is stopped for a moment 2.0 s after the
system is set into motion. Find the time elapsed before
the string is tight again.

24. Figure (5-E8) shows a uniform rod of length 30 cm
having a mass of 3.0 kg. The strings shown in the figure
are pulled by constant forces of 20 N and 32 N. Find
the force exerted by the 20 cm part of the rod on the
10 cm part. All the surfaces are smooth and the strings
and the pulleys are light.
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25. Consider the situation shown in figure (5-E9). All the
surfaces are frictionless and the string and the pulley
are  light. Find the magnitude of the acceleration of the
two blocks.

26. A constant force F  m2 g/2 is applied on the block of
mass m1 as shown in figure (5-E10). The string and the
pulley are light and the surface of the table is smooth.
Find the acceleration of m1 .

27. In figure (5-E11) m1  5 kg,  m2  2 kg  and F  1 N. Find
the acceleration of either block. Describe the motion of
m1 if the string breaks but F continues to act.

28. Let m1  1 kg, m2  2 kg and m3  3 kg in figure (5-E12).
Find the accelerations of m1 ,  m2  and  m3 . The string
from the upper pulley to m1 is 20 cm when the system
is released from rest. How long will it take before m1

strikes the pulley ?

29. In the previous problem, suppose m2  2.0 kg and
m3  3.0 kg. What should be the mass m so that it
remains at rest ?

30. Calculate the tension in the string shown in figure
(5-E13). The pulley and the string are light and all
surfaces are frictionless. Take g  10 m/s 2.

31. Consider the situation shown in figure (5-E14). Both the
pulleys and the string are light and all the surfaces are
frictionless. (a) Find the acceleration of the mass M.
(b) Find the tension in the string. (c) Calculate the force
exerted by the clamp on the pulley A in the figure.

32. Find the acceleration of the block of mass M in the
situation shown in figure (5-E15). All the surfaces are
frictionless and the pulleys and the string are light.

����

����

����	 ����	

Figure 5-E8

�
���� �
����
��	


�	

��	

Figure 5-E9

�

	�

	�

Figure 5-E10

	�

	�
�

�

Figure 5-E11

	�

	�

	�

Figure 5-E12

����

����

Figure 5-E13

2M B A

M

Figure 5-E14

M

30°

2M

Figure 5-E15

Newton’s Laws of Motion 81



33. Find the mass M of the hanging block in figure (5-E16)
which will prevent the smaller block from slipping over
the triangular block. All the surfaces are frictionless and
the strings and the pulleys are light.

34. Find the acceleration of the blocks A and B in the three
situations shown in figure (5-E17).

35. Find the acceleration of the 500 g block in figure (5-E18).

36. A monkey of mass 15 kg is climbing on a rope with one
end fixed to the ceiling. If it wishes to go up with an
acceleration of 1 m/s 2, how much force should it apply
to the rope ? If the rope is 5 m long and the monkey
starts from rest, how much time will it take to reach
the ceiling ?

37. A monkey is climbing on a rope that goes over a smooth
light pulley and supports a block of equal mass at the
other end (figure 5-E19). Show that whatever force the
monkey exerts on the rope, the monkey and the block

move in the same direction with equal acceleration. If
initially both were at rest, their separation will not
change as time passes.

38. The monkey B shown in figure (5-E20) is holding on to
the tail of the monkey A which is climbing up a rope.
The masses of the monkeys A and B are 5 kg and 2 kg
respectively. If A can tolerate a tension of 30 N in its
tail, what force should it apply on the rope in order to
carry the monkey B with it ? Take g = 10 m/s 2.

39. Figure (5-E21) shows a man of mass 60 kg standing on
a light weighing machine kept in a box of mass 30 kg.
The box is hanging from a pulley fixed to the ceiling
through a light rope, the other end of which is held by
the man himself. If the man manages to keep the box
at rest, what is the weight shown by the machine ? What
force should he exert on the rope to get his correct weight
on the machine ?

m

M

M

Figure 5-E16
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40. A block A can slide on a frictionless incline of angle θ
and length l, kept inside an elevator going up with
uniform velocity v (figure 5-E22). Find the time taken
by the block to slide down the length of the incline if it
is released from the top of the incline.

41. A car is speeding up on a horizontal road with an
acceleration a. Consider the following situations in the
car. (i) A ball is  suspended from the ceiling through a
string and is maintaining a constant angle with the
vertical. Find this angle. (ii) A block  is kept on a smooth
incline and does not slip on the incline.  Find the angle
of the incline with the horizontal.

42. A block is kept on the floor of an elevator at rest. The
elevator starts descending with an acceleration of
12 m/s 2. Find the  displacement of the block during the
first 0.2 s after the start. Take g = 10 m/s 2.

ANSWERS

OBJECTIVE I

 1. (c)  2. (b)  3. (d)  4. (a)  5. (c)  6. (b)
 7. (d)  8. (a)  9. (b) 10. (b) 11. (c) 12. (b)
13. (a) 14. (c)

OBJECTIVE II

 1. (b), (d)  2. (c), (d)  3. (a), (b)
 4. (a), (c)  5. (a)  6. (b), (c)
 7. (c), (d)  8. (d)  9. (d)

EXERCISES

 1. 10 N

 2. 3.1 × 10 4 N

 3. 1.1 × 10 – 15 N

 4. 5 N   and   3 N

 5. F/2
 6. 0.25 N along the motion, zero and 0.25 N opposite to
    the motion.

 7. F 



1 + 

mA

mB





 8. 1.8 N

 9. 10 m/s 2

10. (k1 + k2) 
x
m

 opposite to the displacement. 

11. 0.45 s.

12. 
mg
4 h

  √d 2 + 4 h 2

13. 4 N
14. (a) 0.55 N (b) 0.43 N (c) 0.49 N
   (d) 0.43 N (e) 0.55 N (f) 0.49 N

15. 66 kg  and  0.9 m/s 2

16. 4.4 kg
17. 0.2 m, 0.1 m
18. 0.24 m, 0.12 m

19. 2 



M − 

B
g





20. 2 m/5
21. mg/A

22. (a) 6.5 m (b) 3.9 N (c) 7.8 N
23. 2/3 s
24. 24 N
25. g/10

26. 
m2 g

2(m1 + m2)
  towards right

27. 4.3 m/s 2, moves downward with acceleration        

    g + 0.2 m/s 2

Figure 5-E21

A

v

Figure 5-E22
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28. 
19
29

 g (up) ,  17
29

 g (down) ,  21
29

 g (down) ,  0.25 s

29. 4.8 kg

30. 5 N

31. (a) 2 g/3 (b) Mg/3 

   (c) √2 Mg/3 at an angle  of 45° with the horizontal

32. g/3 up the plane

33. 
M′ + m
cotθ − 1

34. (a) 
2
7

 g downward, 
g
7

 upward

    (b) 
10
13

 g forward, 
5
13

 g downward

    (c) 
2
3

 g downward, 
g
3

 upward

35. 
8
13

 g downward

36. 165 N,  √10 s
38. between 70 N and 105 N
39. 15 kg, 1800 N

40. √2 l
g sin θ

41. tan – 1 (a/g) in each case
42. 20 cm
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CHAPTER 6

FRICTION

6.1 FRICTION AS THE COMPONENT OF
   CONTACT FORCE

When two bodies are kept in contact, electro-
magnetic forces act between the charged particles at
the surfaces of the bodies. As a result, each body exerts
a contact force on the other. The magnitudes of the
contact forces acting on the two bodies are equal but
their directions are opposite and hence the contact
forces obey Newton’s third law.

The direction of the contact force acting on a
particular body is not necessarily perpendicular to the
contact surface. We can resolve this contact force into
two components, one perpendicular to the contact
surface and the other parallel to it (Figure 6.1). The
perpendicular component is called the normal contact
force or normal force and the parallel component is
called friction.

Example 6.1

   A body of mass 400 g slides on a rough horizontal
surface. If the frictional force is 3.0 N, find (a) the angle
made by the contact force on the body with the vertical
and (b) the magnitude of the contact force. Take
g = 10 m/s 2.

Solution : Let the contact force on the block by the surface
be F which makes an angle θ with the vertical
(figure 6.2). 

The component of F perpendicular to the contact surface
is the normal force N  and the component of F parallel
to the surface is the friction f. As the surface is
horizontal, N  is vertically upward. For vertical
equilibrium,

       N  = Mg = (0.400 kg) (10 m/s 2) = 4.0 N.

The frictional force is f = 3.0 N.

(a)      tan θ = 
 f 

N  = 
3
4

or,    θ = tan − 1 (3/4) = 37°.

(b) The magnitude of the contact force is

     F = √N 2 + f 2

      = √(4.0 N) 2 + (3.0 N) 2  = 5.0 N.

Friction can operate between a given pair of solids,
between a solid and a fluid or between a pair of fluids.
Frictional force exerted by fluids is called viscous force
and we shall study it in a later chapter. Here we shall
study about the frictional forces operating between a
pair of solid surfaces.

When two solid bodies slip over each other, the
force of friction is called kinetic friction. When two
bodies do not slip on each other, the force of friction
is called static friction.

It is difficult to work out a reliable theory of
friction starting from the electromagnetic interaction
between the particles at the surface. However, a wide
range of observations can be summarized in a small
number of laws of friction which we shall discuss.

f = friction

F = contact force
N = normal force

Figure 6.1
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f

N
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6.2 KINETIC FRICTION

When two bodies in contact move with respect to
each other, rubbing the surfaces in contact, the friction
between them is called kinetic friction. The directions
of the frictional forces are such that the relative
slipping is opposed by the friction.

Suppose a body A placed in contact with B is
moved with respect to it as shown in figure (6.3). The
force of friction acting on A due to B will be opposite
to the velocity of A with respect to B. In figure (6.3)
this force is shown towards left. The force of friction
on B due to A is opposite to the velocity of B with
respect to A. In figure (6.3) this force is shown towards
right. The force of kinetic friction opposes the relative
motion. We can formulate the rules for finding the
direction and magnitude of kinetic friction as follows :

(a) Direction of Kinetic Friction

The kinetic friction on a body A slipping against
another body B is opposite to the velocity of A with
respect to B.

It should be carefully noted that the velocity
coming into picture is with respect to the body applying
the force of friction.

As another example, suppose we have a long box
having wheels and moving on a horizontal road
(figure 6.4). A small block is placed on the box which
slips on the box to fall from the rear end. As seen from
the road, both the box and the block are moving
towards right, of course the velocity of the block is
smaller than that of the box. What is the direction of
the kinetic friction acting on the block due to the box ?
The velocity of the block as seen from the box is
towards left. Thus, the friction on the block is towards
right. The friction acting on the box due to the block
is towards left.

(b) Magnitude of the Kinetic Friction

The magnitude of the kinetic friction is proportional
to the normal force acting between the two bodies. We
can write

               fk  k N   (6.1)

where N  is the normal force. The proportionality
constant k is called the coefficient of kinetic friction
and its value depends on the nature of the two surfaces
in contact. If the surfaces are smooth k will be small,
if the surfaces are rough k will be large. It also
depends on the materials of the two bodies in contact.

According to equation (6.1) the coefficient of kinetic
friction does not depend on the speed of the sliding
bodies. Once the bodies slip on each other the frictional
force is k N , whatever be the speed. This is
approximately true for relative speeds not too large
(say for speeds < 10 m/s).

We also see from equation (6.1) that as long as the
normal force N  is same, the frictional force is
independent of the area of the surface in contact. For
example, if a rectangular slab is slid over a table, the
frictional force is same whether the slab lies flat on
the table or it stands on its face of smaller area
(figure 6.5)

Example 6.2

   A heavy box of mass 20 kg is pulled on a  horizontal
surface by applying a horizontal force. If the  coefficient
of kinetic friction between the box and the  horizontal
surface is 0.25, find the force of friction exerted by  the
horizontal surface on the box.

Solution : The situation is shown in figure (6.6). In the
vertical direction there is no acceleration, so
              N   Mg.

As the box slides on the horizontal surface, the surface
exerts kinetic friction on the box. The magnitude of the
kinetic friction is
     fk  k N   k Mg

        0.25  20 kg  9.8 m/s 2  49 N.
This force acts in the direction opposite to the pull.
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6.3 STATIC FRICTION

Frictional forces can also act between two bodies
which are in contact but are not sliding with respect
to each other. The friction in such cases is called static
friction. For example, suppose several labourers are
trying to push a heavy almirah on the floor to take it
out of a room (figure 6.7).

The almirah is heavy and even the most sincere
effort by them is not able to slide it on the floor even
by a millimeter. As the almirah is at rest the resultant
force on the almirah should be zero. Thus, something
is exerting a force on the almirah in the opposite
direction. In this case, it is the floor which exerts a
frictional force on the almirah. The labourers push the
almirah towards left in figure (6.7) and the floor exerts
a frictional force on the almirah towards right. This is
an example of static friction.

How strong is this frictional force ? Suppose the
almirah is pushed with a small force in the beginning
and the force is gradually increased. It does not slide
until the force applied is greater than a minimum
value say F. The force of static friction is equal and
opposite to the force exerted by the labourers as long
as the almirah is at rest. This means that the
magnitude of static friction adjusts its value according
to the applied force. As the applied force increases, the
frictional force also increases. The static friction is
thus, self adjustable. It adjusts its magnitude (and
direction) in such a way that together with other forces
applied on the body, it maintains ‘relative rest’
between the two surfaces. However, the frictional force
cannot go beyond a maximum. When the applied force
exceeds this maximum, friction fails to increase its
value and slipping starts. The maximum static friction
that a body can exert on the other body in contact with
it, is called limiting friction. This limiting friction is
proportional to the normal contact force between the
two bodies. We can write
             fmax = µs N … (6.2)

where fmax is the maximum possible force of static
friction and N  is the normal force. The constant of
proportionality is called the coefficient of static friction
and its value again depends on the material and
roughness of the two surfaces in contact. In general,
µs is slightly greater than µk . As long as the normal

force is constant, the maximum possible friction does
not depend on the area of the surfaces in contact.

Once again we emphasise that µs N  is the
maximum possible force of static friction that can act
between the bodies. The actual force of static friction
may be smaller than µs N  and its value depends on
other forces acting on the body. The magnitude of
frictional force is equal to that required to keep the
body at relative rest. Thus,

            fs ≤ fmax = µs N . … (6.3)

Example 6.3

   A boy (30 kg) sitting on his horse whips it. The horse
speeds up at an average acceleration of 2.0 m/s 2. (a) If
the boy does not slide back, what is the force of friction
exerted by the horse on the boy ? (b) If the boy slides back
during the acceleration, what can be said about the
coefficient of static friction between the horse and the boy.
Take g = 10 m/s 2.

Solution : (a) The forces acting on the boy are

(i) the weight Mg.
(ii) the normal contact force N and

(iii) the static friction fs .

As the boy does not slide back, its acceleration a is equal
to the acceleration of the horse. As friction is the only
horizontal force, it must act along the acceleration and
its magnitude is given by Newton’s second law

     fs = Ma = (30 kg) (2.0 m/s 2) = 60 N.

(b) If the boy slides back, the horse could not exert a
friction of 60 N on the boy. The maximum force of static
friction that the horse may exert on the boy is

        fs = µs N  = µs Mg

           = µs (30 kg) (10 m/s 2) = µs 300 N

where µs is the coefficient of static friction. Thus,

               µs (300 N) < 60 N

or,              µs < 
60
300

 = 0.20.

Figure 6.7
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Finding the Direction of Static Friction

The direction of static friction on a body is such
that the total force acting on it keeps it at rest with
respect to the body in contact. Newton’s first or second
law can often be used to find the direction of static
friction. Figure (6.9) shows a block A placed on another
block B which is placed on a horizontal table.

The block B is pulled by a force F towards right.
Suppose the force is small and the blocks do not move.
Let us focus our attention on the upper block. The
upper block is at rest with respect to the ground which
is assumed to be inertial. Thus, the resultant force on
the upper block is zero (Newton’s first law). As no other
external force acts on the upper block the friction
acting on the upper block due to the lower block, must
be zero. If the force F is increased, the two blocks move
together towards right, with some acceleration. As the
upper block accelerates towards right the resultant
force on it must be towards right. As friction is the
only horizontal force on the upper block it must be
towards right.

Notice that it is the friction on the upper block
which accelerates it towards right. It is a general
misconception that friction always opposes the motion.
It is not really true. In many cases friction causes the
motion. A vehicle accelerates on the road only because
the frictional force on the vehicle due to the road drives
it. It is not possible to accelerate a vehicle on a
frictionless road. Friction opposes the relative motion
between the bodies in contact.

Another way to find the direction of static friction
is as follows. For a moment consider the surfaces to
be frictionless. In absence of friction the bodies will
start slipping against each other. One should then find
the direction of friction as opposite to the velocity with
respect to the body applying the friction.

6.4 LAWS OF FRICTION

We can summarise the laws of friction between two
bodies in contact as follows :

(1) If the bodies slip over each other, the force of
friction is given by

            fk = µk N

where N  is the normal contact force and µk is the
coefficient of kinetic friction between the surfaces.

(2) The direction of kinetic friction on a body is
opposite to the velocity of this body with respect to the
body applying the force of friction.

(3) If the bodies do not slip over each other, the
force of friction is given by

            fs ≤ µs N

where µs is the coefficient of static friction between the
bodies and N  is the normal force between them. The
direction and magnitude of static friction are such that
the condition of no slipping between the bodies is
ensured.

(4) The frictional force fk or fs does not depend on
the area of contact as long as the normal force N  is
same.

Table (6.1) gives a rough estimate of the values of
coefficient of static friction between certain pairs of
materials. The actual value depends on the degree of
smoothness and other environmental factors. For
example, wood may be prepared at various degrees of
smoothness and the friction coefficient will varry.

Table 6.1 : The Friction Coefficients

Material µs Material µs

Steel and steel  0.58 Copper and copper  1.60

Steel and brass  0.35 Teflon and teflon  0.04

Glass and glass  1.00 Rubber tyre on dry
concrete road

 1.0

Wood and wood  0.35

Wood and metal  0.40 Rubber tyre on wet
concrete road

 0.7

Ice and ice  0.10

Dust, impurities, surface oxidation etc. have a
great role in determining the friction coefficient.
Suppose we take two blocks of pure copper, clean them
carefully to remove any oxide or dust layer at the
surfaces, heat them to push out any dissolved gases
and keep them in contact with each other in an
evacuated chamber at a very low pressure of air. The
blocks stick to each other and a large force is needed
to slide one over the  other. The friction coefficient as
defined above, becomes much larger than one. If a
small amount of air is allowed to go into the chamber
so that some oxidation takes place at the surface, the
friction coefficient reduces to usual values.

6.5 UNDERSTANDING FRICTION
   AT ATOMIC LEVEL

It has already been pointed out that friction
appears because of the interaction between the charged
particles of the two bodies near the surfaces of contact.
Any macroscopic object like a steel plate or a wood
piece has irregular surface at atomic scale. A polished
steel surface may look plane to naked eyes but if seen

A
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Figure 6.9
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under a powerful microscope, its surface is found to be
quite irregular. Figure (6.10) shows qualitatively how
an apparently plane surface may be at the atomic
scale.

When two bodies are kept one over the other, the
real area in contact is much smaller than the total
surface area of the bodies (figure 6.11) The distance
between the particles of the two bodies becomes very
small at these actual points of contact and the
molecular forces start operating across the surface.
Molecular bonds are formed at these contact points.
When one of the two bodies is pulled over the other,
these bonds are broken, the materials under the bond
is deformed and new bonds are formed. The local
deformation of the bodies send vibration waves into
the bodies. These vibrations finally damp out and the
energy appears as the increased random motion of the
particles of the bodies. The bodies thus, become heated.
A force is, therefore, needed to start the motion or to
maintain the motion.

6.6 A LABORATORY METHOD TO
   MEASURE FRICTION COEFFICIENT

(a) Horizontal Table Method

Figure (6.12) shows the apparatus. A wooden plank
A is fixed on a wooden frame kept on a table. A
frictionless pulley is fixed to one end of the plank. A
block B is kept on the plank and is attached to a
hanger H by a string which passes over the pulley.

The plank is kept in a horizontal position. The
friction coefficient between the block B and the plank
A can be obtained by using this apparatus.

The weights of the block B and the hanger H are
measured. Standard weights are kept on the hanger.
The weights are gradually increased and the minimum
weight needed to just slide the block is noted.

Suppose the weight of the block is W1 and the
weight of the hanger together with the standard
weights is W2 when the block just starts to slide. The
tension in the string is W2 and same is the force of
friction on the block by the plank. Thus, the maximum
force of static friction on the block is fmax = W2. The
normal force on the block by the plank is equal to the
weight of the block itself as the block is in vertical
equilibrium. Thus, the normal force is N  = W1.

The coefficient of static friction is

          µs = 
 fmax 
N  = 

W2

W1
 ⋅

To obtain the coefficient of kinetic friction, the
weight on the hanger is slightly reduced and the block
is gently pushed with a finger to move it on the plank.
The weight on the hanger is so adjusted that once
pushed, the block continues to move on the plank with
uniform speed. In this case, the tension in the string
equals the force of kinetic friction. As the hanger also
moves with uniform velocity, the tension equals the
weight of the hanger plus the standard weights kept
in it. For vertical equilibrium of the block, the normal
force on the block equals the weight of the block. Thus,
if W1 is the weight of the block and W2′ is the weight
of the hanger plus the standard weights, the coefficient
of kinetic friction is

          µk = 
 fk 
N   = 

W2′
W1

 ⋅

One can put certain standard weights on the block
to increase the normal force and repeat the
experiment. It can be verified that the force of friction
also increases and fk /N  comes out to be the same as
it should be because the nature of the surfaces is same.
If the block is kept on the plank on some other face,
the area of contact is changed. It can be verified by
repeating the above experiment that the force of
friction does not depend on the area of contact for a
given value of normal contact force.

(b) Inclined Table Method

In this method no pulley is needed. A wooden
plank A is fixed on a wooden frame. One end of the
plank is fixed to the frame on a hinge and the other
end can be moved vertically and can be fixed at the
desired position. Thus, the plank can be fixed in an
inclined position and the angle of incline can
be adjusted. A schematic diagram is shown in
figure (6.13).

Figure 6.10

Figure 6.11
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Block B is placed on the incline and the angle of
the incline is gradually increased. The angle of the
incline is so adjusted that the block just starts to slide.
The height h and the horizontal distance D between
the two ends of the plank are measured. The angle of
incline θ satisfies

           tanθ = h/D.

Let m be the mass of the block. The forces on the
block in case of limiting equilibrium are (figure 6.14) 

(i) weight of the block mg,
(ii) the normal contact force N , and

(iii) the force of static friction fs.

Taking components along the incline and applying
Newton’s first law,

           fs = mg sinθ.

Taking components along the normal to the incline,
           N  = mg cosθ.

Thus, the coefficient of static friction between the
block and the plank is

     µs = 
 fs 
N 

 = 
mg sinθ
mg cosθ

 = tanθ = 
h
D

 ⋅

To obtain the kinetic friction, the inclination is
reduced slightly and the block is made to move on the
plank by gently pushing it with a finger. The
inclination is so adjusted that once started, the block
continues with uniform velocity on the plank. The
height h′ and the distance D′ are noted. An identical
analysis shows that the force of kinetic friction is

           fk = mg sinθ
and the normal contact force is
           N  = mg cosθ

so that the coefficient of kinetic friction between the
block and the plank is

           µk = 
 fk 
N   = tanθ = h′/D′.

Example 6.4

   A wooden block is kept on a polished wooden plank and
the inclination of the plank is gradually increased. It is
found that the block starts slipping when the plank
makes an angle of 18° with the horizontal. However, once
started the block can continue with uniform speed if the
inclination is reduced to 15°. Find the coefficients of
static and kinetic friction between the block and the
plank.

Solution : The coefficient of static friction is
           µs = tan 18°
and the coefficient of kinetic friction is
           µk = tan 15°

Rolling Friction

It is quite difficult to pull a heavy iron box on a
rough floor. However, if the box is provided with four
wheels, also made of iron, it becomes easier to move
the box on the same floor.

The wheel does not slide on the floor rather it rolls
on the floor. The surfaces at contact do not rub each
other. The velocity of the point of contact of the wheel
with respect to the floor remains zero all the time
although the centre of the wheel moves forward. The
friction in the case of rolling is quite small as compared
to kinetic friction. Quite often the rolling friction is
negligible in comparison to the static or kinetic
friction which may be present simultaneously. To
reduce the wear and tear and energy loss against
friction, small steel balls are kept between the rotating
parts of machines which are known as ball bearings
(figure 6.16).
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As one part moves with respect to the other, the
balls roll on the two parts. No kinetic friction is involed

and rolling friction being very small causes much less
energy loss.

Worked Out Examples

 1. The coefficient of static friction between a block of mass
m and an incline is µs = 0.3. (a) What can be the
maximum angle θ of the incline with the horizontal so
that the block does not slip on the plane ? (b) If the incline
makes an angle θ/2 with the horizontal, find the
frictional force on the block.

Solution : The situation is shown in figure (6-W1).
(a) the forces on the block are
(i) the weight mg downward by the earth,

(ii) the normal contact force N  by the incline, and
(iii) the friction f parallel to the incline up the plane, by

the incline.

As the block is at rest, these forces should add up to
zero. Also, since θ is the maximum angle to prevent
slipping, this is a case of limiting equilibrium and so
f = µs N .

Taking components prependicular to the incline,

       N  − mg cosθ = 0

   or,            N  = mg cosθ. … (i) 

Taking components parallel to the incline,

       f − mg sinθ = 0

or,             f = mg sinθ
   or,         µs N  = mg sinθ. … (ii)

Dividing (ii) by (i) µs = tanθ

or,        θ = tan − 1 µs = tan − 1 (0.3).

(b) If the angle of incline is reduced to θ/2, the
equilibrium is not limiting, and hence the force of static
friction f is less than µs N . To know the value of f, we
proceed as in part (a) and get the equations

            N  = mg cos(θ/2)

and            f = mg sin(θ/2).

Thus, the force of friction is mg sin(θ/2).

 2. A horizontal force of 20 N is applied to a block of mass
4 kg resting on a rough horizontal table. If the block does

not move on the table, how much frictional force the table
is applying on the block ? What can be said about the
coefficient of static friction between the block and the
table ? Take g = 10 m/s 2.

Solution : The situation is shown in figure (6-W2). The
forces on the block are

(a) 4 kg × 10 m/s 2 = 40 N downward by the earth,

(b) N  upward by the table,

(c) 20 N towards right by the experimenter and

(d) f towards left by the table (friction).

As the block is at rest, these forces should add up to
zero. Taking horizontal and vertical components,

        f = 20 N  and  N  = 40 N.

Thus, the table exerts a frictional (static) force of 20 N
on the block in the direction opposite to the applied force.
Since it is a case of static friction,

    f ≤ µs N ,   or,   µs ≥ f/N   or,   µs ≥ 0.5.

 3. The coefficient of static friction between the block of 2 kg
and the table shown in figure (6-W3) is µs = 0.2. What
should be the maximum value of m so that the blocks do
not move ? Take g = 10 m/s 2. The string and the pulley
are light and smooth.

Solution : Consider the equilibrium of the block of mass
m. The forces on this block are

mg

fN
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(a) mg downward by the earth and

(b) T upward by the string.
   Hence,      T − mg = 0   or,   T = mg. … (i)

Now consider the equilibrium of the 2 kg block. The
forces on this block are

(a) T towards right by the string,

(b) f towards left (friction) by the table,

(c) 20 N downward (weight) by the earth and

(d) N upward (normal force) by the table.

For vertical equilibrium of this block,
               N = 20 N. … (ii)

As m is the largest mass which can be used without
moving the system, the friction is limiting.

   Thus,          f = µs N . … (iii)

For horizontal equilibrium of the 2 kg block,
                f = T. … (iv)

Using equations (i), (iii) and (iv)

            µs N  = mg

or,        0.2 × 20 N = mg

or, m = 
0.2 × 20

10
 kg = 0.4 kg.

 4. The coefficient of static friction between the two blocks
shown in figure (6-W4) is µ and the table is smooth. What
maximum horizontal force F can be applied to the block
of mass M so that the blocks move together ?

Solution : When the maximum force F is applied, both the
blocks move together towards right. The only horizontal
force on the upper block of mass m is that due to the
friction by the lower block of mass M. Hence this force
on m should be towards right. The force of friction on
M by m should be towards left by Newton’s third law.
As we are talking of the maximum possible force F that
can be applied, the friction is limiting and hence
f = µ N , where N  is the normal force between the
blocks.
Consider the motion of m. The forces on m are
(figure 6-W5),

(a) mg downward by the earth (gravity),
(b) N upward by the block M (normal force) and
(c) f = µ N (friction) towards right by the block M.
In the vertical direction, there is no acceleration. This
gives

                 N  = mg. … (i)

In the horizontal direction, let the acceleration be a, then

             µ N  = m a

or,           µ mg = ma

   or,             a = µ g. … (ii)

Next, consider the motion of M (figure 6-W6).

The forces on M are

(a) Mg downward by the earth (gravity),

(b) N 1 upward by the table (normal force),

(c) N downward by m (normal force),

(d) f = µ N (friction) towards left by m and

(e) F (applied force) by the experimenter.

The equation of motion is

          F − µ N  = M a

or,         F − µ mg = M µ g  [Using (i) and (ii)]

or,             F = µ g (M + m).

 5. A block slides down an incline of angle 30° with an
acceleration g/4. Find the kinetic friction coeffcient.

Solution : Let the mass of the block be m. The forces on
the block are (Figure 6-W7),

(a) mg downward by the earth (gravity),
(b) N  normal force by the incline and
(c) f up the plane, (friction) by the incline.

Taking components parallel to the incline and writing
Newton’s second law,

           mg sin 30° − f = mg/4

or,                  f = mg/4.
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There is no acceleration perpendicular to the incline.
Hence,

        N  = mg cos 30° = mg ⋅ 
√3
2

 ⋅

As the block is slipping on the incline, friction is
f = µk N .

So,       µk = 
f
N = 

mg
4 mg √3/2

 = 
1

2 √3
 ⋅

 6. A block of mass 2.5 kg is kept on a rough horizontal
surface. It is found that the block does not slide if a
horizontal force less than 15 N is applied to it. Also it
is found that it takes 5 seconds to slide through the first
10 m if a horizontal force of 15 N is applied and the
block is gently pushed to start the motion. Taking
g = 10 m/s 2, calculate the coefficients of static and kinetic
friction between the block and the surface.

Solution : The forces acting on the block are shown in
figure (6-W8). Here M = 2.5 kg and F = 15 N.

When F = 15 N is applied to the block, the block remains
in limiting equilibrium. The force of friction is thus
f = µs N  . Applying Newton’s first law,

        f = µs N   and   N  = mg

so that    F = µs Mg

or,       µs = 
F

mg
 = 

15 N
(2.5 kg) (10 m/s 2)

 = 0.60.

When the block is gently pushed to start the motion,
kinetic friction acts between the block and the surface.
Since the block takes 5 second to slide through the first
10 m, the acceleration a is given by

          10 m = 
1
2

 a (5 s) 2

or,            a = 
20
25

 m/s 2 = 0.8 m/s 2.

The frictional force is
            f = µk N = µk Mg.

Applying Newton’s second law

       F − µk Mg = Ma

or,           µk = 
F − Ma

Mg

               = 
15 N − (2.5 kg) (0.8 m/s 2)

(2.5 kg) (10 m/s 2)
 = 0.52 .

 7. A block placed on a horizontal surface is being pushed
by a force F making an angle θ with the vertical. If the
friction coefficient is µ , how much force is needed to get
the block just started. Discuss the situation when
tanθ < µ.

Solution : The situation is shown in figure (6-W9). In the
limiting equilibrium the frictional force f will be equal
to µ N . For horizontal equilibrium
             F sinθ = µ N

For vertical equilibrium 
            F cosθ + mg = N .
Eliminating N  from these equations,
         F sinθ = µ F cosθ + µ mg

or,           F = 
µ mg

sinθ − µ cosθ
 ⋅

If tanθ < µ we have (sinθ − µ cosθ) < 0 and then F is

negative. So for angles less than tan − 1 µ, one cannot push
the block ahead, however large the force may be.

 8. Find the maximum value of M/m in the situation shown
in figure (6-W10) so that the system remains at rest.
Friction coefficient at both the contacts is µ . Discuss the
situation when tanθ < µ.

Solution : Figure (6-W11) shows the forces acting on the
two blocks. As we are looking for the maximum value
of M/m, the equilibrium is limiting. Hence, the frictional
forces are equal to µ times the corresponding normal
forces.
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Equilibrium of the block m gives

T = µ N 1   and   N 1 = mg

which gives
                T = µ mg. … (i)

Next, consider the equilibrium of the block M. Taking
components parallel to the incline

          T + µ N 2 = Mg sinθ.

Taking components normal to the incline 

           N 2 = Mg cosθ.

   These give       T = Mg (sinθ − µ cosθ). … (ii)

From (i) and (ii), µ mg = Mg (sinθ − µ cosθ)

or,          M/m = 
µ

sinθ − µ cosθ

If tanθ < µ , (sinθ − µ cosθ) < 0 and the system will not
slide for any value of M/m.

 9. Consider the situation shown in figure (6-W12). The
horizontal surface below the bigger block is smooth. The
coefficient of friction between the blocks is µ. Find the
minimum and the maximum force F that can be applied
in order to keep the smaller block at rest with respect to
the bigger block.

Solution : If no force is applied, the block A will slip on C
towards right and the block B will move downward.
Suppose the minimum force needed to prevent slipping
is F. Taking A + B + C as the system, the only external
horizontal force on the system is F. Hence the
acceleration of the system is

                a = 
F

M + 2m
 ⋅ … (i)

Now take the block A as the system. The forces on A
are (figure 6-W13),

             

(i) tension T by the string towards right,
(ii) friction f by the block C towards left,

(iii) weight mg downward and
(iv) normal force N  upward.

For vertical equilibrium N  = mg.

As the minimum force needed to prevent slipping is
applied, the friction is limiting. Thus,
            f = µ N  = µ mg.

As the block moves towards right with an acceleration
a,

               T − f = ma

   or,           T − µ mg = ma. … (ii) 

Now take the block B as the system. The forces are
(figure 6-W14),
(i) tension T upward,

(ii) weight mg downward,
(iii) normal force N ′ towards right, and
(iv) friction f ′ upward.

As the block moves towards right with an acceleration a,
             N ′ = ma.
As the friction is limiting, f ′ = µ N ′ = µ ma.
For vertical equilibrium
              T + f ′ = mg

   or,           T + µ ma = mg. … (iii)

Eliminating T from (ii) and (iii)

            amin = 
1 − µ
1 + µ

 g .

When a large force is applied the block A slips on C
towards left and the block B slips on C in the upward
direction. The friction on A is towards right and that on
B is downwards. Solving as above, the acceleration in
this case is

            amax = 
1 + µ
1 − µ

 g .

Thus, a lies between 
1 − µ
1 + µ

 g and 
1 + µ
1 − µ

 g.

From (i) the force F should be between

        
1 − µ
1 + µ

 (M + 2m) g and 
1 + µ
1 − µ

 (M + 2m) g.

10. Figure (6-W15) shows two blocks connected by a light
string placed on the two inclined parts of a triangular
structure. The coefficients of static and kinetic friction
are 0.28 and 0.25 respectively at each of the surfaces. (a)
Find the minimum and maximum values of m for which
the system remains at rest. (b) Find the acceleration of
either block if m is given the minimum value calculated
in the first part and is gently pushed up the incline for
a short while.

m

m
F

A

BC

Figure 6-W12

Tf

mg

N
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T

mg

f N
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m 2 kg

45° 45°
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Solution : (a) Take the 2 kg block as the system. The forces
on this block are shown in figure (6-W16) with M = 2 kg.
It is assumed that m has its minimum value so that the
2 kg block has a tendency to slip down. As the block is
in equilibrium, the resultant force should be zero.

                 

Taking components ⊥ to the incline

          N  = Mg cos 45° = Mg/√2.

Taking components | | to the incline

         T + f = Mg sin 45° = Mg/√2

or,          T = Mg/√2 − f.

As it is a case of limiting equilibrium,

        f = μs N

   or,      T = 
Mg
√2

 − μs 
Mg
√2

 = 
Mg
√2

 (1 − μs). … (i)

Now consider the other block as the system. The forces
acting on this block are shown in figure (6-W17).

Taking components ⊥ to the incline,

         N ′ = mg cos 45° = mg/√2.

Taking  components | | to  the  incline

        T = mg sin 45° + f ′ = 
mg
√2

 + f ′.

As it is the case of limiting equilibrium 

          f ′ = μs N ′ = μs 
mg
√2

 ⋅

   Thus,       T = 
mg
√2

 (1 + μs). … (ii)

From (i) and (ii)
           m(1 + μs) = M (1 − μs) … (iii)

or,           m = 
(1 − μs)
(1 + μs)

 M = 
1 − 0.28
1 + 0.28

 × 2 kg

              = 
9
8

 kg.

When maximum possible value of m is supplied, the
directions of friction are reversed because m has the
tendency to slip down and 2 kg block to slip up. Thus,
the maximum value of m can be obtained from (iii) by

putting μ = − 0.28. Thus, the maximum value of m is

           m = 
1 + 0.28
1 − 0.28

 × 2 kg

             = 
32
9

 kg.

(b) If m = 9/8 kg and the system is gently pushed,
kinetic friction will operate. Thus,

      f = μk ⋅ 
Mg
√2

    and    f ′ = 
μk mg

√2
 ,

where μk = 0.25. If the acceleration is a, Newton’s second
law for M gives (figure 6-W16).

         Mg sin 45° − T − f = Ma

   or,         
Mg
√2

 − T − 
μk Mg

√2
 = Ma. … (iv)

Applying Newton’s second law m (figure 6-W17),

         T − mg sin 45° − f ′ = ma

   or,         T − 
mg
√2

 − 
μk mg

√2
 = ma. … (v)

Adding (iv) and (v)

Mg
√2

 (1 − μk) − 
mg
√2

 (1 + μk) = (M + m) a

or,             a = 
M(1 − μk) − m (1 + μk)

√2 (M + m)
 g

                 = 
2 × 0.75 − 9/8 × 1.25

√2 (2 + 9/8)
 g

                 = 0.31 m/s 2.

QUESTIONS FOR SHORT ANSWER

 1. For most of the surfaces used in daily life, the friction
coefficient is less than 1. Is it always necessary that the
friction coefficient is less than 1 ?

 2. Why is it easier to push a heavy block from behind than
to press it on the top and push ?

 3. What is the average friction force when a person has a
usual 1 km walk ?

 4. Why is it difficult to walk on solid ice ?

 5. Can you accelerate a car on a frictionless horizontal road
by putting more petrol in the engine ? Can you stop a
car going on a frictionless horizontal road by applying
brakes ?

 6. Spring fitted doors close by themselves when released.
You want to keep the door open for a long time, say for
an hour. If you put a half kg stone in front of the open
door, it does not help. The stone slides with the door
and the door gets closed. However, if you sandwitch a

�

�

��

�
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N

Figure 6-W17
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20 g piece of wood in the small gap between the door
and the floor, the door stays open. Explain why a much
lighter piece of wood is able to keep the door open while
the heavy stone fails.

 7. A classroom demonstration of Newton’s first law is as
follows : A glass is covered with a plastic card and a
coin is placed on the card. The card is given a quick
strike and the coin falls in the glass. (a) Should the
friction coefficient between the card and the coin be
small or large ? (b) Should the coin be light or heavy ?
(c) Why does the experiment fail if the card is gently
pushed ?

 8. Can a tug of war be ever won on a frictionless surface ?

 9. Why do tyres have a better grip of the road while going
on a level road than while going on an incline ?

10. You are standing with your bag in your hands, on the
ice in the middle of a pond. The ice is so slippery that
it can offer no friction. How can you come out of the ice ?

11. When two surfaces are polished, the friction coefficient
between them decreases. But the friction coefficient
increases and becomes very large if the surfaces are
made highly smooth. Explain.

OBJECTIVE I

 1. In a situation the contact force by a rough horizontal
surface on a body placed on it has constant magnitude.
If the angle between this force and the vertical is
decreased, the frictional force between the surface and
the body will
(a) increase          (b) decrease
(c) remain the same     (d) may increase or decrease.

 2. While walking on ice, one should take small steps to
avoid slipping. This is because smaller steps ensure
(a) larger friction      (b) smaller friction
(c) larger normal force    (d) smaller normal force.

 3. A body of mass M is kept on a rough horizontal surface
(friction coefficient = µ). A person is trying to pull the
body by applying a horizontal force but the body is not
moving. The force by the surface on A is F, where
(a) F = Mg           (b) F = µ Mg

(c) Mg ≤ F ≤ Mg √1 + µ 2   (d) Mg ≥ F ≥ Mg √1 − µ 2 .

 4. A scooter starting from rest moves with a constant
acceleration for a time ∆t1, then with a constant velocity
for the next ∆t2 and finally with a constant deceleration
for the next ∆t3 to come to rest. A 500 N man sitting on
the scooter behind the driver manages to stay at rest
with respect to the scooter without touching any other
part. The force exerted by the seat on the man is
(a) 500 N throughout the journey
(b) less than 500 N throughout the journey
(c) more than 500 N throughout the journey
(d) > 500 N for time ∆t1 and ∆t3 and 500 N for ∆t2 .

 5. Consider the situation shown in figure (6-Q1). The wall
is smooth but the surfaces of A and B in contact are
rough. The friction on B due to A in equilibrium

   (a) is upward     (b) is downward      (c) is zero
(d) the system cannot remain in equilibrium.

 6. Suppose all the surfaces in the previous problem are
rough. The direction of friction on B due to A
(a) is upward     (b) is downward      (c) is zero
(d) depends on the masses of A and B.

 7. Two cars of unequal masses use similar tyres. If they
are moving at the same initial speed, the minimum
stopping distance
(a) is smaller for the heavier car
(b) is smaller for the lighter car
(c) is same for both cars
(d) depends on the volume of the car.

 8. In order to stop a car in shortest distance on a horizontal
road, one should
(a) apply the brakes very hard so that the wheels stop
rotating
(b) apply the brakes hard enough to just prevent slipping
(c) pump the brakes (press and release)
(d) shut the engine off and not apply brakes.

 9. A block A kept on an inclined surface just begins to slide
if the inclination is 30°. The block is replaced by another
block B and it is found that it just begins to slide if the
inclination is 40°.
(a) mass of A > mass of B (b) mass of A < mass of B
(c) mass of A = mass of B (d) all the three are possible.

10. A boy of mass M is applying a horizontal force to slide
a box of mass M ′ on a rough horizontal surface. The
coefficient of friction between the shoes of the boy and
the floor is µ and that between the box and the floor is
µ′. In which of the following cases it is certainly not
possible to slide the box ?
(a) µ < µ′ ,  M < M ′       (b) µ > µ′ ,  M < M ′
(c) µ < µ′ ,  M > M ′       (d) µ > µ′ ,  M > M ′.

A B F

Figure 6-Q1
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OBJECTIVE II

 1. Let F, FN and f denote the magnitudes of the contact
force, normal force and the friction exerted by one
surface on the other kept in contact. If none of these is
zero,
(a) F > FN  (b) F > f  (c) FN > f  (d) FN − f < F < FN + f.

 2. The contact force exerted by a body A on another body
B is equal to the normal force between the bodies. We
conclude that
(a) the surfaces must be frictionless
(b) the force of friction between the bodies is zero
(c) the magnitude of normal force equals that of friction
(d) the bodies may be rough but they don’t slip on each
other.

 3. Mark the correct statements about the friction between
two bodies.
(a) Static friction is always greater than the kinetic
friction.
(b) Coefficient of static friction is always greater than
the coefficient of kinetic friction.

(c) Limiting friction is always greater than the kinetic
friction.
(d) Limiting friction is never less than static friction.

 4. A block is placed on a rough floor and a horizontal force
F is applied on it. The force of friction f by the floor on
the block is measured for different values of F and a
graph is plotted between them.
(a) The graph is a straight line of slope 45°.
(b) The graph is a straight line parallel to the F-axis.
(c) The graph is a straight line of slope 45° for small F
and a straight line parallel to the F-axis for large F.
(d) There is a small kink on the graph.

 5. Consider a vehicle going on a horizontal road towards
east. Neglect any force by the air. The frictional forces
on the vehicle by the road
(a) is towards east if the vehicle is accelerating
(b) is zero if the vehicle is moving with a uniform velocity
(c) must be towards east
(d) must be towards west.

EXERCISES

 1. A body slipping on a rough horizontal plane moves with
a deceleration of 4.0 m/s 2. What is the coefficient of
kinetic friction between the block and the plane ?

 2. A block is projected along a rough horizontal road with
a speed of 10 m/s. If the coefficient of kinetic friction is
0.10, how far will it travel before coming to rest ?

 3. A block of mass m is kept on a horizontal table. If the
static friction coefficient is µ, find the frictional force
acting on the block.

 4. A block slides down an inclined surface of inclination
30° with the horizontal. Starting from rest it covers 8 m
in the first two seconds. Find the coefficient of kinetic
friction between the two.

 5. Suppose the block of the previous problem is pushed
down the incline with a force of 4 N. How far will the
block move in the first two seconds after starting from
rest ? The mass of the block is 4 kg.

 6. A body of mass 2 kg is lying on a rough inclined plane
of inclination 30°. Find the magnitude of the force
parallel to the incline needed to make the block move
(a) up the incline (b) down the incline. Coefficient of
static friction = 0.2.

 7. Repeat part (a) of problem 6 if the push is applied
horizontally and not parallel to the incline.

 8. In a children-park an inclined plane is constructed with
an angle of incline 45° in the middle part (figure 6-E1).
Find the acceleration of a boy sliding on it if the friction
coefficient between the cloth of the boy and the incline
is 0.6 and g = 10 m/s 2.

 9. A body starts slipping down an incline and moves half
meter in half second. How long will it take to move the
next half meter ?

10. The angle between the resultant contact force and the
normal force exerted by a body on the other is called the
angle of friction. Show that, if λ be the angle of friction
and µ the coefficient of static friction, λ ≤ tan − 1 µ.

11. Consider the situation shown in figure (6-E2). Calculate
(a) the acceleration of the 1.0 kg blocks, (b) the tension
in the string connecting the 1.0 kg blocks and (c) the
tension in the string attached to 0.50 kg.

45°

Figure 6-E1

0.5 kg

1.0 kg 1.0 kg

Figure 6-E2
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12. If the tension in the string in figure (6-E3) is 16 N and
the acceleration of each block is 0.5 m/s 2, find the friction
coefficients at the two contacts with the blocks.

13. The friction coefficient between the table and the block
shown in figure (6-E4) is 0.2. Find the tensions in the
two strings.

14. The friction coefficient between a road and the tyre of a
vehicle is 4/3. Find the maximum incline the road may
have so that once hard brakes are applied and the wheel
starts skidding, the vehicle going down at a speed of
36 km/hr is stopped within 5 m.

15. The friction coefficient between an athelete’s shoes and
the ground is 0.90. Suppose a superman wears these
shoes and races for 50 m. There is no upper limit on his
capacity of running at high speeds. (a) Find the
minimum time that he will have to take in completing
the 50 m starting from rest. (b) Suppose he takes exactly
this minimum time to complete the 50 m, what
minimum time will he take to stop ?

16. A car is going at a speed of 21.6 km/hr when it
encounters a 12.8 m long slope of angle 30° (figure 6-E5).
The friction coefficient between the road and the tyre is
1/2√3. Show that no matter how hard the driver applies
the brakes, the car will reach the bottom with a speed
greater than 36 km/hr. Take g = 10 m/s 2.

17. A car starts from rest on a half kilometer long bridge.
The coefficient of friction between the tyre and the road
is 1.0. Show that one cannot drive through the bridge
in less than 10 s.

18. Figure (6-E6) shows two blocks in contact sliding down
an inclined surface of inclination 30°. The friction
coefficient between the block of mass 2.0 kg and the
incline is µ1, and that between the block of mass 4.0 kg

and the incline is µ2. Calculate the acceleration of the
2.0 kg block if (a) µ1 = 0.20 and µ2 = 0.30, (b) µ1 = 0.30
and µ2 = 0.20. Take g = 10 m/s 2.

19. Two masses M1  and  M2 are connected by a light rod
and the system is slipping down a rough incline of angle
θ with the horizontal. The friction coefficient at both the
contacts is µ. Find the acceleration of the system and
the force by the rod on one of the blocks.

20. A block of mass M is kept on a rough horizontal surface.
The coefficient of static friction between the block and
the surface is µ. The block is to be pulled by applying
a force to it. What minimum force is needed to slide the
block ? In which direction should this force act ?

21. The friction coefficient between the board and the floor
shown in figure (6-E7) is µ. Find the maximum force
that the man can exert on the rope so that the board
does not slip on the floor.

22. A 2 kg block is placed over a 4 kg block and both are
placed on a smooth horizontal surface. The coefficient of
friction between the blocks is 0.20. Find the acceleration
of the two blocks if a horizontal force of 12 N is applied
to (a) the upper block, (b) the lower block. Take
g = 10 m/s 2.

23. Find the accelerations a1 ,  a2 ,  a3 of the three blocks
shown in figure (6-E8) if a horizontal force of 10 N is
applied on (a) 2 kg block, (b) 3 kg block, (c) 7 kg block.
Take g = 10 m/s 2.

24. The friction coefficient between the two blocks shown in
figure (6-E9) is µ but the floor is smooth. (a) What
maximum horizontal force F can be applied without
disturbing the equilibrium of the system ? (b) Suppose
the horizontal force applied is double of that found in
part (a). Find the accelerations of the two masses.
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25. Suppose the entire system of the previous question is
kept inside an elevator which is coming down with an
acceleration a < g. Repeat parts (a) and (b).

26. Consider the situation shown in figure (6-E9). Suppose
a small electric field E exists in the space in the
vertically upward direction and the upper block carries
a positive charge Q on its top surface. The friction
coefficient between the two blocks is  but the floor is
smooth. What maximum horizontal force F can be
applied without disturbing the equilibrium ?
[Hint : The force on a charge Q by the electric field E
is F  QE in the direction of E.]

27. A block of mass m slips on a rough horizontal table
under the action of a horizontal force applied to it. The
coefficient of friction between the block and the table is
. The table does not move on the floor. Find the total
frictional force applied by the floor on the legs of the
table. Do you need the friction coefficient between the
table and the floor or the mass of the table ?

28. Find the acceleration of the block of mass M in the
situation of figure (6-E10). The coefficient of friction
between the two blocks is 1 and that between the bigger
block and the ground is 2.

29. A block of mass 2 kg is pushed against a rough vertical
wall with a force of 40 N, coefficient of static friction
being 0.5. Another horizontal force of 15 N, is applied
on the block in a direction parallel to the wall. Will the
block move ? If yes, in which direction ? If no, find the
frictional force exerted by the wall on the block.

30. A person (40 kg) is managing to be at rest between two
vertical walls by pressing one wall A by his hands and
feet and the other wall B by his back (figure 6-E11).
Assume that the friction coefficient between his body
and the walls is 0.8 and that limiting friction acts at all
the contacts. (a) Show that the person pushes the two
walls with equal force. (b) Find the normal force exerted
by either wall on the person. Take g  10 m/s 2.

31. Figure (6-E12) shows a small block of mass m kept at
the left end of a larger block of mass M and length l.
The system can slide on a horizontal road. The system
is started towards right with an initial velocity v. The
friction coefficient between the road and the bigger block
is  and that between the block is /2. Find the time
elapsed before the smaller blocks separates from the
bigger block.

ANSWERS

OBJECTIVE I

 1. (b)  2. (b)  3. (c)  4. (d)  5. (d)  6. (a)
 7. (c)  8. (b)  9. (d) 10. (a)

OBJECTIVE II

 1. (a), (b), (d)  2. (b), (d)  3. (b), (c), (d)
 4. (c), (d)  5. (a), (b)

EXERCISES

 1. 0.4

 2. 50 m

 3. zero

 4. 0.11

 5. 10 m

 6. (a) 13 N (b) zero
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 7. 17.5 N
 8. 2√2 m/s 2

 9. 0.21 s
11. (a) 0.4 m/s 2 (b) 2.4 N (c) 4.8 N

12. µ1 = 0.75, µ2 = 0.06

13. 96 N in the left string and 68 N in the right
14. 16°

15. (a) 
10
3

 s (b) 
10
3

 s

18. 2.7  m/s 2, 2.4  m/s 2

19. a = g (sin θ − µ cos θ), zero

20. 
µ mg

√1 + µ 2
 at an angle tan − 1 µ with the horizontal

21. 
µ (M + m) g

1 + µ
22. (a) upper block 4 m/s 2, lower block 1 m/s 2

   (b) both blocks 2 m/s 2

23. (a) a1 = 3 m/s 2,  a2 = a3 = 0.4 m/s 2

   (b) a1 = a2 = a3 = 5
6
 m/s 2 (c) same as (b)

24. (a) 2 µ mg (b) 
2 µ mg
M + m

 in opposite directions

25. (a) 2 µ m (g − a) (b) 
2 µ m (g − a)

m + M

26. 2µ (mg − QE)

27. µ mg

28. 
[2 m − µ2 (M + m)] g

M + m [5 + 2 (µ1 − µ2)]

29. it will move at an angle of 53° with the 15 N force

30. (b) 250 N

31. √4 M l
(M + m) µ g
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CHAPTER 7

CIRCULAR MOTION

7.1 ANGULAR VARIABLES

Suppose a particle P is moving in a circle of radius
r (figure 7.1). Let O be the centre of the circle. Let O
be the origin and OX the X-axis. The position of the
particle P at a given instant may be described by the
angle θ between OP and OX. We call θ the angular
position of the particle. As the particle moves on the
circle, its angular position θ changes. Suppose the
particle goes to a nearby point P′ in time ∆t so that θ
increases to θ + ∆θ. The rate of change of angular
position is called angular velocity. Thus, the angular
velocity is

         ω = lim
∆t → 0

 
∆θ
∆t

 = 
dθ
dt

 ⋅

The rate of change of angular velocity is called angular
acceleration. Thus, the angular acceleration is

         α = 
dω
dt

 = 
d 2θ
dt 2

 ⋅

If the angular acceleration α is constant, we have

            θ = ω0 t + 1
2
 α t 2 … (7.1)

   ω = ω0 + α t … (7.2)

and         ω 2 = ω0
 2 + 2α θ … (7.3)

where ω0 and ω are the angular velocities at t = 0 and
at time t and θ is the angular position at time t. The
linear distance PP′ travelled by the particle in time
∆t is

           ∆s = r ∆θ

   or,          
∆s
∆t

 = r 
∆θ
∆t

   or,           v = r ω … (7.4)

where v is the linear speed of the particle.
Differentiating equation (7.4) with respect to time, the
rate of change of speed is

          at = 
dv
dt

 = r 
dω
dt

   or,         at = r α. … (7.5)

Remember that at = 
dv
dt

 is the rate of change of

speed and is not the rate of the change of velocity. It
is, therefore, not equal to the net acceleration.

We shall show that at is the component of
acceleration along the tangent and hence we have used
the suffix t. It is called the tangential acceleration.

Example 7.1

   A particle moves in a circle of radius 20 cm with a linear
speed of 10 m/s. Find the angular velocity.

Solution : The angular velocity is

         ω = 
v
r
 = 

10 m/s
20 cm

 = 50 rad/s.

Example 7.2

   A particle travels in a circle of radius 20 cm at a speed
that uniformly increases. If the speed changes from
5.0 m/s to 6.0 m/s in 2.0 s, find the angular acceleration.

Solution : The tangential acceleration is given by

              at = 
dv
dt

 = 
v2 − v1

t2 − t1

              = 
6.0 − 5.0

2.0
 m/s 2 = 0.5 m/s 2.

The angular acceleration is α = at /r

         = 
0.5 m/s 2

20 cm
 = 2.5 rad/s 2.

P P

O X

Figure 7.1



7.2 UNIT VECTORS ALONG THE RADIUS
   AND THE TANGENT

Consider a particle moving in a circle. Suppose the
particle is at a point P in the circle at a given instant
(figure 7.2). Take the centre of the circle to be the
origin, a line OX as the X-axis and a perpendicular
radius OY as the Y-axis. The angular position of the
particle at this instant is θ.

Draw a unit vector PA 
→

= er
→

 along the outward

radius and a unit vector PB 
→

= et
→

 along the tangent in

the direction of increasing θ. We call er
→

 the radial unit

vector and et
→

 the tangential unit vector. Draw PX ′
parallel to the X-axis and PY ′ parallel to the Y-axis.
From the figure,

      PA 
→

= i
→
 PA cosθ + j

→
  PA sinθ

   or,     er
→

 = i
→
 cosθ + j

→
 sinθ, … (7.6)

where i
→
 and j

→
 are the unit vectors along the X and Y

axes respectively. Similarly,

      PB 
→

= − i
→
 PB sinθ + j

→
 PB cosθ

   or,      et
→

 = − i
→
 sinθ + j

→
 cosθ. … (7.7)

7.3 ACCELERATION IN CIRCULAR MOTION

Consider the situation shown in figure (7.2). It is
clear from the figure that the position vector of the
particle at time t is

      r
→
 = OP 

→
= OP er

→

          = r (i
→
 cosθ + j

→
 sinθ). … (i)

Differentiating equation (i) with respect to time, the
velocity of the particle at time t is

    v
→
 = 

dr
→

dt
 = 

d
dt

 [r (i
→
 cosθ + j

→
 sinθ)]

        = r 



i
→
  




− sinθ 

dθ
dt




 + j

→
  




 cosθ 

dθ
dt









          = r ω[− i
→
 sinθ + j

→
 cosθ]. … (ii)

The term r ω is the speed of the particle at time t
(equation 7.4) and the vector in the square bracket is
the unit vector e

→
t along the tangent. Thus, the velocity

of the particle at any instant is along the tangent to
the circle and its magnitude is v = r ω.

The acceleration of the particle at time t is

a→ = dv
→

dt
 ⋅ From (ii),

  a
→

 = r 



 ω 

d
dt

 [− i
→
 sinθ + j

→
 cosθ] + 

dω
dt

 [− i
→
 sinθ + j

→
 cosθ]





   = ωr 



− i

→
 cosθ 

dθ
dt

 − j
→
 sinθ 

dθ
dt




 + r 

dω
dt

 et
→

   = − ω 2r [i
→
 cosθ + j

→
 sinθ] + r 

dω
dt

 et
→

   = − ω 2r er
→

 + 
dv
dt

 et
→

 , … (7.8)

where er
→

 and et
→

 are the unit vectors along the radial
and tangential directions respectively and v is the
speed of the particle at time t. We have used

        r 
dω
dt

 = 
d
dt

 (r ω) = 
dv
dt

 ⋅

Uniform Circular Motion

If the particle moves in the circle with a uniform
speed, we call it a uniform circular motion. In this
case, dv

dt
 = 0 and equation (7.8) gives

           a
→

 = − ω 2r er
→

.

Thus, the acceleration of the particle is in the
direction of − e

→
r, that is, towards the centre. The

magnitude of the acceleration is

          ar = ω 2r

               = 
v 2

r 2  r = 
v 2

r
 ⋅ … (7.9)

Thus, if a particle moves in a circle of radius r with a
constant speed v, its acceleration is v 2/r directed
towards the centre. This acceleration is called
centripetal acceleration. Note that the speed remains
constant, the direction continuously changes and hence
the “velocity” changes and there is an acceleration
during the motion.

Example 7.3

   Find the magnitude of the linear acceleration of a
particle moving in a circle of radius 10 cm with uniform
speed completing the circle in 4 s.

Solution : The distance covered in completing the circle is
2π r = 2π × 10 cm. The linear speed is
         v = 2π r/t

P

e

e

O X

X

Y

Y

A
B

r

t

Figure 7.2
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         = 
2π × 10 cm

4 s
 = 5π cm/s.

The linear acceleration is

      a = 
v 2

r
 = 

(5π cm/s) 2

10 cm
 = 2.5 π 2 cm/s 2.

This acceleration is directed towards the centre of the
circle.

Nonuniform Circular Motion

If the speed of the particle moving in a circle is
not constant, the acceleration has both the radial and
the tangential components. According to equation (7.8),
the radial and the tangential accelerations are

   
and    

 
ar = − ω 2r = − v 2/r

at = 
dv
dt

   






⋅ … (7.10)

Thus, the component of the acceleration towards
the centre is ω 2r = v 2/r and the component along the
tangent (along the direction of motion) is dv/dt. The
magnitude of the acceleration is

     a = √ar
2 + at

2  = √


v 2

r




 2

 + 



dv
dt





 2

⋅

The direction of this resultant acceleration makes
an angle α with the radius (figure 7.3) where

         tanα = 


dv
dt




/




v 2

r



 ⋅

Example 7.4

   A particle moves in a circle of radius 20 cm. Its linear
speed is given by v = 2 t, where t is in second and v in
metre/second. Find the radial and tangential
acceleration at t = 3 s.

Solution : The linear speed at t = 3 s is

        v = 2 t = 6 m/s.

The radial acceleration at t = 3 s is

        ar = v 2/r = 
36 m2/s 2

0.20 m
 = 180 m/s 2.

The tangential acceleration is

       at = 
dv
dt

 = 
d (2t)

dt
 = 2 m/s 2.

7.4 DYNAMICS OF CIRCULAR MOTION

If a particle moves in a circle as seen from an
inertial frame, a resultant nonzero force must act on
the particle. That is because a particle moving in a
circle is accelerated and acceleration can be produced
in an inertial frame only if a resultant force acts on
it. If the speed of the particle remains constant, the
acceleration of the particle is towards the centre and
its magnitude is v 2/r. Here v is the speed of the
particle and r is the radius of the circle. The resultant
force must act towards the centre and its magnitude
F must satisfy

           a = 
F
m

or, 
v 2

r
 = 

F
m

   or, F = 
mv 2

r
 ⋅ … (7.11)

Since this resultant force is directed towards the
centre, it is called centripetal force. Thus, a centripetal
force of magnitude mv

 2/r is needed to keep the particle
in uniform circular motion.

It should be clearly understood that “centripetal
force” is another word for “force towards the centre”.
This force must originate from some external source
such as gravitation, tension, friction, coulomb force,
etc. Centripetal force is not a new kind of force, just
as an “upward force” or a “downward force” is not a
new kind of force.

Example 7.5

   A small block of mass 100 g moves with uniform speed
in a horizontal circular groove, with vertical side walls,
of radius 25 cm. If the block takes 2.0 s to complete one
round, find the normal contact force by the side wall of
the groove.

Solution : The speed of the block is

        v = 
2π × (25 cm)

2.0 s
 = 0.785 m/s .

The acceleration of the block is

 a = 
v 2

r
 = 

(0.785 m/s) 2

0.25 m
 = 2.5 m/s 2

towards the centre. The only force in this direction is
the normal contact force due to the side walls. Thus,
from Newton’s second law, this force is

        N  = ma = (0.100 kg) (2.5 m/s 2) = 0.25 N.

2

a

O

v
r

dv
dt

Figure 7.3
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7.5 CIRCULAR TURNINGS AND
   BANKING OF ROADS

When vehicles go through turnings, they travel
along a nearly circular arc. There must be some force
which will produce the required acceleration. If the
vehicle goes in a horizontal circular path, this
resultant force is also horizontal. Consider the
situation as shown in figure (7.4). A vehicle of mass
M moving at a speed v is making a turn on the circular
path of radius r. The external forces acting on the
vehicle are

(i) weight Mg

(ii) Normal contact force N  and

(iii) friction fs.

If the road is horizontal, the normal force N  is
vertically upward. The only horizontal force that can
act towards the centre is the friction fs. This is static
friction and is self adjustable. The tyres get a tendency
to skid outward and the frictional force which opposes
this skidding acts towards the centre. Thus, for a safe
turn we must have

           
v 2

r
  

fs

M

or,             fs  
Mv 2

r
 

However, there is a limit to the magnitude of the
frictional force. If s is the coefficient of static friction
between the tyres and the road, the magnitude of
friction fs cannot exceed s N. For vertical equilibrium
N   Mg, so that

            fs   s Mg.

Thus, for a safe turn

            
Mv 2

r
   s Mg

   or,          s   
v 2

rg
   (7.12)

Friction is not always reliable at circular turns if
high speeds and sharp turns are involved. To avoid
dependence on friction, the roads are banked at the
turn so that the outer part of the road is somewhat
lifted up as compared to the inner part (figure 7.5).

The surface of the road makes an angle  with the
horizontal throughout the turn. The normal force N  
makes an angle  with the vertical. At the correct
speed, the horizontal component of N  is sufficient to
produce the acceleration towards the centre and the
self adjustable frictional force keeps its value zero.
Applying Newton’s second law along the radius and
the first law in the vertical direction,

          N  sin  
Mv 2

r

and        N  cos  Mg.

These equations give

              tan  
v 2

rg
   (7.13)

The angle  depends on the speed of the vehicle as
well as on the radius of the turn. Roads are banked
for the average expected speed of the vehicles. If the
speed of a particular vehicle is a little less or a little
more than the correct speed, the self adjustable static
friction operates between the tyres and the road and
the vehicle does not skid or slip. If the speed is too
different from that given by equation (7.13), even the
maximum friction cannot prevent a skid or a slip.

Example 7.6

   The road at a circular turn of radius 10 m is banked by
an angle of 10. With what speed should a vehicle move
on the turn so that the normal contact force is able to
provide the necessary centripetal force ?

Solution : If v is the correct speed,

               tan  
v 2

rg

Figure 7.4
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or,      v  rg tan 

       10 m 9.8 m/s 2 tan 10   4.2 m/s.

7.6 CENTRIFUGAL FORCE

We discussed in chapter 5 that Newton’s laws of
motion are not valid if one is working from a
noninertial frame. If the frame translates with respect
to an inertial frame with an acceleration a0 

 , one must
assume the existence of a pseudo force  ma0 

 , acting
on a particle of mass m. Once this pseudo force is
included, one can use Newton’s laws in their usual
form. What pseudo force is needed if the frame of
reference rotates at a constant angular velocity  with
respect to an inertial frame ?

Suppose the observer is sitting in a closed cabin
which is made to rotate about the vertical Z-axis at a
uniform angular velocity  (figure 7.6). The X and Y
axes are fixed in the cabin. Consider a heavy box of
mass m kept on the floor at a distance r from the
Z-axis. Suppose the floor and the box are rough and
the box does not slip on the floor as the cabin rotates.
The box is at rest with respect to the cabin and hence
is rotating with respect to the ground at an angular
velocity . Let us first analyse the motion of the box
from the ground frame. In this frame (which is inertial)
the box is moving in a circle of radius r. It, therefore,
has an acceleration v2/r  2r towards the centre. The
resultant force on the box must be towards the centre
and its magnitude must be m2r. The forces on the
box are

(a) weight mg

(b) normal force N  by the floor

(c) friction f by the floor.

Figure (7.6b) shows the free body diagram for the box.
Since the resultant is towards the centre and its
magnitude is m2r, we should have

            f  m2r.

The floor exerts a force of static friction f  m2r
towards the origin.

Now consider the same box when observed from
the frame of the rotating cabin. The observer there
finds that the box is at rest. If he or she applies
Newton’s laws, the resultant force on the box should
be zero. The weight and the normal contact force
balance each other but the frictional force f  m2r acts
on the box towards the origin. To make the resultant
zero, a pseudo force must be assumed which acts on
the box away from the centre (radially outward) and
has a magnitude m2r. This pseudo force is called the
centrifugal force. The analysis from the rotating frame
is as follows :

The forces on the box are
(a) weight mg
(b) normal force N

(c) friction f

(d) centrifugal force m2r.
The free body diagram is shown in figure (7.6c). As
the box is at rest, Newton’s first law gives

            f  m2r.

Note that we get the same equation for friction as we
got from the ground frame. But we had to apply
Newton’s second law from the ground frame and
Newton’s first law from the rotating frame. Let us now
summarise our discussion.

Suppose we are working from a frame of reference
that is rotating at a constant angular velocity  with
respect to an inertial frame. If we analyse the
dynamics of a particle of mass m kept at a distance r
from the axis of rotation, we have to assume that a
force m2r acts radially outward on the particle. Only
then we can apply Newton’s laws of motion in the
rotating frame. This radially outward pseudo force is
called the centrifugal force.

In fact, centrifugal force is a sufficient pseudo
force, only if we are analysing the particles at rest in
a uniformly rotating frame. If we analyse the motion
of a particle that moves in the rotating frame, we may
have to assume other pseudo forces, together with the
centrifugal force. Such forces are called the coriolis
forces. The coriolis force is perpendicular to the velocity
of the particle and also perpendicular to the axis of
rotation of the frame. Once again, we emphasise that
all these pseudo forces, centrifugal or coriolis, are
needed only if the working frame is rotating. If we
work from an inertial frame, there is no need to apply
any pseudo force.

It is a common misconception among the beginners
that centrifugal force acts on a particle because the

f

mg

f

mgr

Z

(a) (c)(b)

2
m r

Figure 7.6
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particle goes on a circle. Centrifugal force acts (or is
assumed to act) because we describe the particle from
a rotating frame which is noninertial and still use
Newton’s laws.

7.7 EFFECT OF EARTH’S ROTATION
   ON APPARENT WEIGHT

The earth rotates about its axis at an angular
speed of one revolution per 24 hours. The line joining
the north and the south poles is the axis of rotation.
Every point on the earth moves in a circle. A point at
equator moves in a circle of radius equal to the radius
of the earth and the centre of the circle is same as the
centre of the earth. For any other point on the earth,
the circle of rotation is smaller than this. Consider a
place P on the earth (figure 7.7).

Drop a perpendicular PC from P to the axis SN.
The place P rotates in a circle with the centre at C.
The radius of this circle is CP. The angle between the
axis SN and the radius OP through P is called the
colatitude of the place P. We have

         CP  OP sin
or,         r  R sin

where R is the radius of the earth.
If we work from the frame of reference of the earth,

we shall have to assume the existence of the pseudo
forces. In particular, a centrifugal force m2r has to
be assumed on any particle of mass m placed at P.
Here  is the angular speed of the earth. If we discuss
the equilibrium of bodies at rest in the earth’s frame,
no other pseudo force is needed.

Consider a heavy particle of mass m suspended
through a string from the ceiling of a laboratory at
colatitude  (figure 7.8). Looking from the earth’s
frame the particle is in equilibrium and the forces on
it are

(a) gravitational attraction mg towards the centre
of the earth, i.e., vertically downward,

(b) centrifugal force m2r towards CP and

(c) the tension in the string T along the string.

As the particle is in equilibrium (in the frame of earth),
the three forces on the particle should add up to zero.

The resultant of mg and m2r

  mg 2  m2r 2  2mg m2r cos90  

   m g2  4R 2sin2  2g2R sin2

   mg

where g  g2  2 R sin2 2g  2R .  (7.14)

Also, the direction of this resultant makes an angle 
with the vertical OP, where

    tan   
m2r sin90  

mg  m2r cos90  

            
2R sin cos
g  2R sin2

   (7.15)

As the three forces acting on the particle must add up
to zero, the force of tension must be equal and opposite
to the resultant of the rest two. Thus, the magnitude
of the tension in the string must be mg and the
direction of the string should make an angle  with
the true vertical.

The direction of g is the apparent vertical
direction, because a plumb line stays in this direction
only. The walls of the buildings are constructed by
making them parallel to g and not to g. The water
surface placed at rest is perpendicular to g.

The magnitude of g is also different from g. As
2g > 2R, it is clear from equation (7.14) that g < g.
One way of measuring the weight of a body is to
suspend it by a string and find the tension in the
string. The tension itself is taken as a measure of the
weight. As T  mg, the weight so observed is less than
the true weight mg. This is known as the apparent
weight. Similarly, if a person stands on the platform
of a weighing machine, the platform exerts a normal
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force N  which is equal to mg′. The reading of the
machine responds to the force exerted on it and hence
the weight recorded is the apparent weight mg′.

At equator, θ = 90° and equation (7.14) gives

       g′ = √g 2 − 2gω 2R + ω 4R 2

          = g − ω 2R

   or,     mg′ = mg − mω 2R. … (7.16)

This can be obtained in a more straightforward way.
At the equator, mω 2R is directly opposite to mg and
the resultant is simply mg – mω 2R. Also, this
resultant is towards the centre of the earth so that at
the equator the plumb line stands along the true
vertical.

At poles, θ = 0 and equation (7.14) gives g′ = g and
equation (7.15) shows that α = 0. Thus, there is no
apparent change in g at the poles. This is because the
poles themselves do not rotate and hence the effect of
earth’s rotation is not felt there.

Example 7.7

   A body weighs 98 N on a spring balance at the north
pole. What will be its weight recorded on the same scale
if it is shifted to the equator ? Use g = GM/R 2 = 9.8 m/s 2

and the radius of the earth R = 6400 km.

Solution : At poles, the apparent weight is same as the
true weight.
Thus,

        98 N = mg = m(9.8 m/s 2)

or,         m = 10 kg.
At the equator, the apparent weight is

         mg′ = mg − mω 2R.

The radius of the earth is 6400 km and the angular
speed is

      ω = 
2π rad

24 × 60 × 60 s
 = 7.27 × 10 − 5 rad/s.

Thus,

 mg′ = 98 N − (10 kg) (7.27 × 10 − 5 s − 1) 2 (6400 km)

        = 97.66 N.

Worked Out Examples

 1. A car has to move on a level turn of radius 45 m. If the
coefficient of static friction between the tyre and the road
is µs = 2.0, find the maximum speed the car can take
without skidding.

Solution : Let the mass of the car be M. The forces on the
car are

(a) weight Mg downward
(b) normal force N  by the road upward
(c) friction fs by the road towards the centre.

The car is going on a horizontal circle of radius R, so it
is accelerating. The acceleration is towards the centre
and its magnitude is v 2/R, where v is the speed. For
vertical direction, acceleration = 0. Resolving the forces
in vertical and horizontal directions and applying
Newton’s laws, we have

            N  = mg

and            fs = Mv 2/R.

As we are looking for the maximum speed for no
skidding, it is a case of limiting friction and hence
fs = µs N  = µs Mg.
So, we have

            µs Mg = Mv 2/R

or,           v 2 = µs gR.

Putting the values, v = √2 × 10 m/s 2 × 45 m

              = 30 m/s = 108 km/hr.

 2. A circular track of radius 600 m is to be designed for
cars at an average speed of 180 km/hr. What should be
the angle of banking of the track ?

Solution : Let the angle of banking be θ. The forces on the
car are (figure 7-W1)
(a) weight of the car Mg downward and

(b) normal force N .

For proper banking, static frictional force is not needed.
For vertical direction the acceleration is zero. So,

            N  cosθ = Mg. … (i)

For horizontal direction, the acceleration is v 2/r towards
the centre, so that

               N  sinθ = Mv 2/r. … (ii)

N

Figure 7-W1
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From (i) and (ii),
              tan  v 2/rg.

Putting the values, tan  
180 km/hr 2

600 m 10 m/s 2
  0.4167

or,                22.6.

 3. A particle of mass m is suspended from a ceiling through
a string of length L. The particle moves in a horizontal
circle of radius r. Find (a) the speed of the particle and
(b) the tension in the string. Such a system is called a
conical pendulum.

Solution : The situation is shown in figure (7-W2). The
angle  made by the string with the vertical is given by

                sin  r/L.  (i)

The forces on the particle are

(a) the tension T along the string and
(b) the weight mg vertically downward.

The particle is moving in a circle with a constant speed
v. Thus, the radial acceleration towards the centre has
magnitude v 2/r. Resolving the forces along the radial
direction and applying Newton’s second law,

             T sin  m v 2/r.  (ii)

As there is no acceleration in vertical direction, we have
from Newton’s first law,

             T cos  mg.  (iii)

Dividing (ii) by (iii),

           tan  
v 2

rg
or,            v  rg tan .
And from (iii),

             T  
mg
cos

 

Using (i),

    v  
rg

L 2  r 2 1/4   and   T  
mgL

L 2  r 2 1/2 

 4. One end of a massless spring of spring constant 100 N/m
and natural length 0.5 m is fixed and the other end is
connected to a particle of mass 0.5 kg lying on a
frictionless horizontal table. The spring remains

horizontal. If the mass is made to rotate at an angular
velocity of 2 rad/s, find the elongation of the spring.

Solution : The particle is moving in a horizontal circle, so
it is accelerated towards the centre with magnitude
v 2/r. The horizontal force on the particle is due to the
spring and equals kl, where l is the elongation and k is
the spring constant. Thus,

       kl  mv 2/r  m 2r  m 2l0  l.

Here  is the angular velocity, l0 is the natural length
(0.5 m) and l0 + l is the total length of the spring which
is also the radius of the circle along which the particle
moves.

Thus, k  m 2l  m 2l0

or,         l  
m 2l0

k  m 2
 

Putting the values,

      l  
0.5  4  0.5
100  0.5  4

 m  
1

100
 m  1 cm.

 5. A simple pendulum is constructed by attaching a bob of
mass m to a string of length L fixed at its upper end.
The bob oscillates in a vertical circle. It is found that the
speed of the bob is v when the string makes an angle 
with the vertical. Find the tension in the string at this
instant.

Solution : The forces acting on the bob are (figure 7-W3)
(a) the tension T
(b) the weight mg.

As the bob moves in a vertical circle with centre at O,
the radial acceleration is v 2/L towards O. Taking the
components along this radius and applying Newton’s
second law, we get,
         T  mg cos  mv 2/L

or,               T  m g cos  v 2/L.

 6. A cylindrical bucket filled with water is whirled around
in a vertical circle of radius r. What can be the minimum
speed at the top of the path if water does not fall out
from the bucket ? If it continues with this speed, what
normal contact force the bucket exerts on water at the
lowest point of the path ?

�

��

�
�

Figure 7-W2

Figure 7-W3
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Solution : Consider water as the system. At the top of the
circle its acceleration towards the centre is vertically
downward with magnitude v 2/r. The forces on water are
(figure 7-W4)
(a) weight Mg downward and
(b) normal force by the bucket, also downward.

So, from Newton’s second law
           Mg  N   Mv 2/r.

For water not to fall out from the bucket, N   0.

Hence, Mv 2/r  Mg  or,  v 2  rg.
The minimum speed at the top must be rg .

If the bucket continues on the circle with this minimum
speed rg , the forces at the bottom of the path are

(a) weight Mg downward and
(b) normal contact force N  by the bucket upward.

The acceleration is towards the centre which is vertically
upward, so

       N   Mg  Mv 2/r

or,         N   Mg  v 2/r  2 Mg.

 7. A fighter plane is pulling out for a dive at a speed of
900 km/hr. Assuming its path to be a vertical circle of
radius 2000 m and its mass to be 16000 kg, find the
force exerted by the air on it at the lowest point. Take
g  9.8 m/s 2.

Solution : At the lowest point in the path the acceleration
is vertically upward (towards the centre) and its
magnitude is v 2/r.

The forces on the plane are
(a) weight Mg downward and
(b) force F by the air upward.

Hence, Newton’s second law of motion gives

           F  Mg  Mv 2/r

or,          F  Mg  v 2/r.

Here v  900 km/hr  
9  10 5

3600
 m/s  250 m/s

  or, F  16000 



9.8  

62500
2000




 N  6.56  10 5 N upward.

 8. Figure (7-W5) shows a rod of length 20 cm pivoted near
an end and which is made to rotate in a horizontal plane
with a constant angular speed. A ball of mass m is
suspended by a string also of length 20 cm from the other
end of the rod. If the angle  made by the string with
the vertical is 30, find the angular speed of the rotation.
Take g  10 m/s 2.

Solution : Let the angular speed be . As is clear from the
figure, the ball moves in a horizontal circle of radius
L  L sin, where L  20 cm. Its acceleration is,

therefore,  2L  L sin towards the centre. The forces
on the bob are (figure 7-W5)

(a) the tension T along the string and
(b) the weight mg.

Resolving the forces along the radius and applying
Newton’s second law,

           T sin  m 2L 1  sin.  (i)

Applying Newton’s first law in the vertical direction,

           T cos  mg.  (ii)

Dividing (i) by (ii),

          tan  
 2L1  sin

g

or,           2  
g tan

L1  sin
  

10 m/s 2 1/3
0.20 m 1  1/2

or,            4.4 rad/s.

 9. Two blocks each of mass M are connected to the ends of
a light frame as shown in figure (7-W6). The frame is
rotated about the vertical line of symmetry. The rod
breaks if the tension in it exceeds T0 . Find the maximum
frequency with which the frame may be rotated without
breaking the rod.

Figure 7-W4

���

�

�

Figure 7-W5

M M

Figure 7-W6
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Solution : Consider one of the blocks. If the frequency of
revolution is f, the angular velocity is ω = 2π f. The

acceleration towards the centre is v 2/l = ω 2l = 4π 2 f 2 l.
The only horizontal force on the block is the tension of
the rod. At the point of breaking, this force is T0. So
from Newton’s second law,

           T0 = M ⋅ 4π 2f 2l

or,           f = 
1
2π

 




T0

Ml




 1/2

⋅

10. In a rotor, a hollow vertical cylindrical structure rotates
about its axis and a person rests against the inner wall.
At a particular speed of the rotor, the floor below the
person is removed and the person hangs resting against
the wall without any floor. If the radius of the rotor is
2 m and the coefficient of static friction between the wall
and the person is 0.2, find the minimum speed at which
the floor may be removed. Take g = 10 m/s 2.

Solution : The situation is shown in figure (7-W7).

When the floor is removed, the forces on the person are

(a) weight mg downward
(b) normal force N  due to the wall, towards the centre
(c) frictional force fs , parallel to the wall, upward.

The person is moving in a circle with a uniform speed,
so its acceleration is v 2/r towards the centre.
Newton’s law for the horizontal direction (2nd law) and
for the vertical direction (1st law) give

                N  = mv 2/r … (i)

   and             fs = mg. … (ii)

For the minimum speed when the floor may be removed,
the friction is limiting one and so equals µs N . This
gives

         µs N  = mg

or,      
µsmv 2

r
 = mg   [using  (i)]

or,          v = √rg
µs

 = √2 m × 10 m/s 2

0.2
 = 10 m/s.

11. A hemispherical bowl of radius R is set rotating about
its axis of symmetry which is kept vertical. A small block

kept in the bowl rotates with the bowl without slipping
on its surface. If the surface of the bowl is smooth, and
the angle made by the radius through the block with the
vertical is θ, find the angular speed at which the bowl
is rotating.

Solution : Suppose the angular speed of rotation of the
bowl is ω. The block also moves with this angular speed.
The forces on the block are (figure 7-W8)
(a) the normal force N  and
(b) the weight mg.

The block moves in a horizontal circle with the centre
at C, so that the radius is PC = OP sinθ = R sinθ. Its

acceleration is, therefore, ω 2R sinθ. Resolving the forces
along PC and applying Newton’s second law,

            N  sinθ = mω 2R sinθ
   or,             N  = mω 2R. … (i)

As there is no vertical acceleration,
            N  cosθ = mg. … (ii)

Dividing (i) by (ii),

           
1

cosθ
 = 

ω 2R
g

 ⋅ 

or,           ω = √gR cosθ
⋅

12. A metal ring of mass m and radius R is placed on a
smooth horizontal table and is set rotating about its own
axis in such a way that each part of the ring moves with
a speed v. Find the tension in the ring.

Solution : Consider a small part ACB of the ring that
subtends an angle ∆θ at the centre as shown in figure
(7-W9). Let the tension in the ring be T.

The forces on this small part ACB are

(a) tension T by the part of the ring left to A,
(b) tension T by the part of the ring right to B,

mg

fs

N

Figure 7-W7

P

mg

C

O
N

Figure 7-W8

O

A

C

B

T

T

Figure 7-W9
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(c) weight mg and
(d) normal force N  by the table.

The tension at A acts along the tangent at A and the
tension at B acts along the tangent at B. As the small
part ACB moves in a circle of radius R at a constant
speed v, its acceleration is towards the centre (along CO)
and has a magnitude mv 2/R.

Resolving the forces along the radius CO,

  T cos 



90  


2



  T cos 




90  


2



  m 





v 2

R




   or,       2T sin 

2

  m 




v 2

R



   (i)

The length of the part ACB is R. As the total mass
of the ring is m, the mass of the part ACB will be

        m  
m

2R
 R  

m
2

 

Putting m in (i),

        2T sin 

2

  
m
2

  




v 2

R




or,       T  mv 2

2 R
 

/2
sin/2

As  is very small, 
/2

sin/2
  1   and   T  

mv 2

2 R
 

13. A table with smooth horizontal surface is turning at an
angular speed  about its axis. A groove is made on the
surface along a radius and a particle is gently placed
inside the groove at a distance a from the centre. Find
the speed of the particle as its distance from the centre
becomes L.

Solution : The situation is shown in figure (7-W10).

Let us work from the frame of reference of the table.
Let us take the origin at the centre of rotation O and

the X-axis along the groove (figure 7-W10). The Y-axis
is along the line perpendicular to OX coplanar with the
surface of the table and the Z-axis is along the vertical.

Suppose at time t the particle in the groove is at a
distance x from the origin and is moving along the X-axis
with a speed v. The forces acting on the particle
(including the pseudo forces that we must assume
because we have taken our frame on the table which is
rotating and is noninertial) are

(a) weight mg vertically downward,
(b) normal contact force N 1 vertically upward by the

bottom surface of the groove,
(c) normal contact force N 2 parallel to the Y-axis by

the side walls of the groove,
(d) centrifugal force m 2x along the X-axis, and

(e) coriolis force along Y-axis (coriolis force is
perpendicular to the velocity of the particle and the axis
of rotation.)

As the particle can only move in the groove, its
acceleration is along the X-axis. The only force along the
X-axis is the centrifugal force m 2x. All the other forces
are perpendicular to the X-axis and have no components
along the X-axis.

Thus, the acceleration along the X-axis is

         a  
F
m

  
m 2x

m
   2x

or, 
dv
dt

   2x

or, 
dv
dx

  dx
dt

   2x

or, 
dv
dx

  v   2x

or,           v dv   2x dx

or,  
0

v

 vdv   
a

L

 2x dx

or, 



1
2

 v 2

 0

 v

  


1
2

  2x 2

 a

 L

or, 
v 2

2
  

1
2

  2 L2  a 2

or, v   L2  a 2 .

QUESTIONS FOR SHORT ANSWER

 1. You are driving a motorcycle on a horizontal road. It is
moving with a uniform velocity. Is it possible to

accelerate the motorcyle without putting higher petrol
input rate into the engine ?

O
x

X

Y

Z

2
m x

Figure 7-W10
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 2. Some washing machines have cloth driers. It contains a
drum in which wet clothes are kept. As the drum rotates,
the water particles get separated from the cloth. The
general description of this action is that “the centrifugal
force throws the water particles away from the drum”.
Comment on this statement from the viewpoint of an
observer rotating with the drum and the observer who
is washing the clothes.

 3. A small coin is placed on a record rotating at 331
3

rev/minute. The coin does not slip on the record. Where
does it get the required centripetal force from ?

 4. A bird while flying takes a left turn, where does it get
the centripetal force from ?

 5. Is it necessary to express all angles in radian while using
the equation   0  t ?

 6. After a good meal at a party you wash your hands and
find that you have forgotten to bring your handkerchief.
You shake your hands vigorously to remove the water
as much as you can. Why is water removed in this
process ?

 7. A smooth block loosely fits in a circular tube placed on
a horizontal surface. The block moves in a uniform
circular motion along the tube (figure 7-Q1). Which wall
(inner or outer) will exert a nonzero normal contact force
on the block ?

 8. Consider the circular motion of the earth around the
sun. Which of the following statements is more
appropriate ?
(a) Gravitational attraction of the sun on the earth is
equal to the centripetal force.
(b) Gravitational attraction of the sun on the earth is
the centripetal force.

 9. A car driver going at some speed v suddenly finds a wide
wall at a distance r. Should he apply brakes or turn the
car in a circle of radius r to avoid hitting the wall ?

10. A heavy mass m is hanging from a string in equilibrium
without breaking it. When this same mass is set into
oscillation, the string breaks. Explain.

OBJECTIVE I

 1. When a particle moves in a circle with a uniform speed
(a) its velocity and acceleration are both constant
(b) its velocity is constant but the acceleration changes
(c) its acceleration is constant but the velocity changes
(d) its velocity and acceleration both change.

 2. Two cars having masses m1 and m2 move in circles of
radii r1 and r2 respectively. If they complete the circle
in equal time, the ratio of their angular speeds 1 /2 is
(a) m1 /m2    (b) r1 /r2    (c) m1r1 /m2 r2    (d) 1.

 3. A car moves at a constant speed on a road as shown in
figure (7-Q2). The normal force by the road  on the car
is NA and NB when it is at the points A and B
respectively.
(a) NA  NB (b) NA > NB (c) NA < NB (d) insufficient
information to decide the relation of NA and NB .

 4. A particle of mass m is observed from an inertial frame
of reference and is found to move in a circle of radius r
with a uniform speed v. The centrifugal force on it is

(a) 
mv 2

r
 towards the centre

(b) 
mv 2

r
 away from the centre

(c) 
mv 2

r
 along the tangent through the particle

(d) zero.

 5. A particle of mass m rotates about the Z-axis in a circle
of radius a with a uniform angular speed . It is viewed
from a frame rotating about the Z-axis with a
uniform angular speed 0. The centrifugal force on the
particle is

(a) m 2a   (b) m 0
2 a   (c) m





  0

2




 2

a   (d) m 0 a.

 6. A particle is kept fixed on a turntable rotating
uniformly. As seen from the ground the particle goes in
a circle, its speed is 20 cm/s and acceleration is 20 cm/s 2.
The particle is now shifted to a new position to make
the radius half of the original value. The new values of
the speed and acceleration will be
(a) 10 cm/s, 10 cm/s 2       (b) 10 cm/s, 80 cm/s 2

(c) 40 cm/s, 10 cm/s 2       (d) 40 cm/s, 40 cm/s 2.

 7. Water in a bucket is whirled in a vertical circle with a
string attached to it. The water does not fall down even
when the bucket is inverted at the top of its path. We
conclude that in this position

Figure 7-Q1

� �

Figure 7-Q2
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(a) mg = 
mv 2

r
        (b) mg is greater than 

mv 2

r

(c) mg is not greater than 
mv 2

r

   (d) mg is not less than 
mv 2

r
 ⋅

 8. A stone of mass m tied to a string of length l is rotated
in a circle with the other end of the string as the centre.
The speed of the stone is v. If the string breaks, the
stone will move
(a) towards the centre    (b) away from the centre
(c) along a tangent      (d) will stop.

 9. A coin placed on a rotating turntable just slips if it is
placed at a distance of 4 cm from the centre. If the
angular velocity of the turntable is doubled, it will just
slip at a distance of
(a) 1 cm    (b) 2 cm    (c) 4 cm    (d) 8 cm.

10. A motorcyle is going on an overbridge of radius R. The
driver maintains a constant speed. As the motorcycle is
ascending on the overbridge, the normal force on it
(a) increases           (b) decreases
(c) remains the same      (d) fluctuates.

11. Three identical cars A, B and C are moving at the same
speed on three bridges. The car A goes on a plane bridge,
B on a bridge convex upward and C goes on a bridge
concave upward. Let FA , FB and FC be the normal forces
exerted by the cars on the bridges when they are at the
middle of bridges.
(a) FA is maximum of the three forces.
(b) FB is maximum of the three forces.
(c) FC is maximum of the three forces.
(d) FA = FB = FC .

12. A train A runs from east to west and another train B
of the same mass runs from west to east at the same

speed along the equator. A presses the track with a force
F1 and B presses the track with a force F2 .
(a) F1 > F2 .      (b) F1 < F2 .      (c) F1 = F2 .
(d) the information is insufficient to find the relation
between F1  and  F2 .

13. If the earth stops rotating, the apparent value of g on
its surface will
(a) increase everywhere
(b) decrease everywhere
(c) remain the same everywhere
(d) increase at some places and remain the same at
some other places.

14. A rod of length L is pivoted at one end and is rotated
with a uniform angular velocity in a horizontal plane.
Let T1 and T2 be the tensions at the points L/4 and
3L/4 away from the pivoted ends.
(a) T1 > T2 . (b) T2 > T1 . (c) T1 = T2 . (d) The relation
between T1 and T2 depends on whether the rod rotates
clockwise or anticlockwise.

15. A simple pendulum having a bob of mass m is suspended
from the ceiling of a car used in a stunt film shooting.
The car moves up along an inclined cliff at a speed v
and makes a jump to leave the cliff and lands at some
distance. Let R be the maximum height of the car from
the top of the cliff. The tension in the string when the
car is in air is

(a) mg  (b) mg − 
mv 2

R
  (c) mg + 

mv 2

R
  (d) zero.

16. Let θ denote the angular displacement of a simple
pendulum oscillating in a vertical plane. If the mass of
the bob is m, the tension in the string is mg cosθ
(a) always             (b) never
(c) at the extreme positions
(d) at the mean position.

OBJECTIVE II

 1. An object follows a curved path. The following quantities
may remain constant during the motion
(a) speed        (b) velocity
(c) acceleration    (d) magnitude of acceleration.

 2. Assume that the earth goes round the sun in a circular
orbit with a constant speed of 30 km/s.
(a) The average velocity of the earth from 1st Jan, 90
to 30th June, 90 is zero.
(b) The average acceleration during the above period is
60 km/s 2.
(c) The average speed from 1st Jan, 90 to 31st Dec, 90
is zero.
(d) The instantaneous acceleration of the earth points
towards the sun.

 3. The position vector of a particle in a circular motion
about the origin sweeps out equal area in equal time.

Its
(a) velocity remains constant
(b) speed remains constant
(c) acceleration remains constant
(d) tangential acceleration remains constant.

 4. A particle is going in a spiral path as shown in figure
(7-Q3) with constant speed.

(a) The velocity of the particle is constant.
(b) The acceleration of the particle is constant.

Figure 7-Q3
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(c) The magnitude of acceleration is constant.
(d) The magnitude of acceleration is decreasing
continuously.

 5. A car of mass M is moving on a horizontal circular path
of radius r. At an instant its speed is v and is increasing
at a rate a.
(a) The acceleration of the car is towards the centre of
the path.
(b) The magnitude of the frictional force on the car is

greater than 
mv 2

r
 ⋅

(c) The friction coefficient between the ground and the
car is not less than a/g.
(d) The friction coefficient between the ground and the

car is µ = tan – 1 
v 2

rg
 ⋅

 6. A circular road of radius r is banked for a speed v = 40
km/hr. A car of mass m attempts to go on the circular
road. The friction coefficient between the tyre and the
road is negligible.
(a) The car cannot make a turn without skidding.

(b) If the car turns at a speed less than 40 km/hr, it will
slip down.
(c) If the car turns at the correct speed of 40 km/hr, the

force by the road on the car is equal to 
mv 2

r
 ⋅

(d) If the car turns at the correct speed of 40 km/hr, the
force by the road on the car is greater than mg as well

as greater than 
mv 2

r
 ⋅

 7. A person applies a constant force F
→

 on a particle of mass
m and finds that the particle moves in a circle of radius
r with a uniform speed v as seen from an inertial frame
of reference.
(a) This is not possible.
(b) There are other forces on the particle.

(c) The resultant of the other forces is 
mv 2

r
 towards the

centre.
(d) The resultant of the other forces varies in magnitude
as well as in direction.

EXERCISES

 1. Find the acceleration of the moon with respect to the
earth from the following data : Distance between the

earth and the moon = 3.85 × 10 5 km and the time taken
by the moon to complete one revolution around the earth
= 27.3 days.

 2. Find the acceleration of a particle placed on the surface
of the earth at the equator due to earth’s rotation. The
diameter of earth = 12800 km and it takes 24 hours for
the earth to complete one revolution about its axis.

 3. A particle moves in a circle of radius 1.0 cm at a speed
given by v = 2.0 t where v is in cm/s and t in seconds.
(a) Find the radial acceleration of the particle at t = 1 s.
(b) Find the tangential acceleration at t = 1 s. (c) Find
the magnitude of the acceleration at t = 1 s.

 4. A scooter weighing 150 kg together with its rider moving
at 36 km/hr is to take a turn of radius 30 m. What
horizontal force on the scooter is needed to make the
turn possible ?

 5. If the horizontal force needed for the turn in the previous
problem is to be supplied by the normal force by the
road, what should be the proper angle of banking ?

 6. A park has a radius of 10 m. If a vehicle goes round it
at an average speed of 18 km/hr, what should be the
proper angle of banking ?

 7. If the road of the previous problem is horizontal (no
banking), what should be the minimum friction
coefficient so that a scooter going at 18 km/hr does not
skid ?

 8. A circular road of radius 50 m has the angle of banking
equal to 30°. At what speed should a vehicle go on this
road so that the friction is not used ?

 9. In the Bohr model of hydrogen atom, the electron is
treated as a particle going in a circle with the centre at
the proton. The proton itself is assumed to be fixed in
an inertial frame. The centripetal force is provided by
the Coloumb attraction. In the ground state, the electron
goes round the proton in a circle of radius

5.3 × 10 – 11 m.  Find  the  speed  of  the  electron  in
the ground state. Mass of the electron = 9.1 × 10 – 31 kg
and charge of the electron = 1.6 × 10 – 19 C.

10. A stone is fastened to one end of a string and is whirled
in a vertical circle of radius R. Find the minimum speed
the stone can have at the highest point of the circle.

11. A ceiling fan has a diameter (of the circle through the
outer edges of the three blades) of 120 cm and rpm 1500
at full speed. Consider a particle of mass 1 g sticking at
the outer end of a blade. How much force does it
experience when the fan runs at full speed ? Who exerts
this force on the particle ? How much force does the
particle exert on the blade along its surface ?

12. A mosquito is sitting on an L.P. record disc rotating on

a turn table at 331
3
 revolutions per minute. The distance

of the mosquito from the centre of the turn table is
10 cm. Show that the friction coefficient between the
record and the mosquito is greater than π 2/81. Take
g = 10 m/s 2.

13. A simple pendulum is suspended from the ceiling of a
car taking a turn of radius 10 m at a speed of 36 km/h.
Find the angle made by the string of the pendulum with
the vertical if this angle does not change during the turn.
Take g = 10 m/s 2.
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14. The bob of a simple pendulum of length 1 m has mass
100 g and a speed of 1.4 m/s at the lowest point in its
path. Find the tension in the string at this instant.

15. Suppose the bob of the previous problem has a speed of
1.4 m/s when the string makes an angle of 0.20 radian
with the vertical. Find the tension at this instant. You
can use cosθ ≈ 1 − θ 2/2 and sinθ ≈ θ for small θ.

16. Suppose the amplitude of a simple pendulum having a
bob of mass m is θ0 . Find the tension in the string when
the bob is at its extreme position.

17. A person stands on a spring balance at the equator.
(a) By what fraction is the balance reading less than his
true weight ? (b) If the speed of earth’s rotation is
increased by such an amount that the balance reading
is half the true weight, what will be the length of the
day in this case ?

18. A turn of radius 20 m is banked for the vehicles going
at a speed of 36 km/h. If the coefficient of static friction
between the road and the tyre is 0.4, what are the
possible speeds of a vehicle so that it neither slips down
nor skids up ?

19. A motorcycle has to move with a constant speed on an
overbridge which is in the form of a circular arc of radius
R and has a total length L. Suppose the motorcycle
starts from the highest point. (a) What can its maximum
velocity be for which the contact with the road is not
broken at the highest point ? (b) If the motorcycle goes
at speed 1/√2 times the maximum found in part (a),
where will it lose the contact with the road ? (c) What
maximum uniform speed can it maintain on the bridge
if it does not lose contact anywhere on the bridge ?

20. A car goes on a horizontal circular road of radius R, the

speed increasing at a constant rate dv
dt

 = a. The friction

coefficient between the road and the tyre is µ. Find the
speed at which the car will skid.

21. A block of mass m is kept on a horizontal ruler. The
friction coefficient between the ruler and the block is µ.
The ruler is fixed at one end and the block is at a
distance L from the fixed end. The ruler is rotated about
the fixed end in the horizontal plane through the fixed
end. (a) What can the maximum angular speed be for
which the block does not slip ? (b) If the angular speed
of the ruler is uniformly increased from zero at an
angular acceleration α, at what angular speed will the
block slip ?

22. A track consists of two circular parts ABC and CDE of
equal radius 100 m and joined smoothly as shown in
figure (7-E1). Each part subtends a right angle at its
centre. A cycle weighing 100 kg together with the rider
travels at a constant speed of 18 km/h on the track.
(a) Find the normal contact force by the road on the
cycle when it is at B and at D. (b) Find the force of
friction exerted by the track on the tyres when the cycle
is at B, C and D. (c) Find the normal force between the
road and the cycle just before and just after the cycle
crosses C. (d) What should be the minimum friction
coefficient between the road and the tyre, which will

ensure that the cyclist can move with constant speed ?
Take g = 10 m/s 2.

23. In a children’s park a heavy rod is pivoted at the centre
and is made to rotate about the pivot so that the rod
always remains horizontal. Two kids hold the rod near
the ends and thus rotate with the rod (figure 7-E2). Let
the mass of each kid be 15 kg, the distance between the
points of the rod where the two kids hold it be 3.0 m
and suppose that the rod rotates at the rate of 20
revolutions per minute. Find the force of friction exerted
by the rod on one of the kids.

24. A hemispherical bowl of radius R is rotated about its
axis of symmetry which is kept vertical. A small block
is kept in the bowl at a position where the radius makes
an angle θ with the vertical. The block rotates with the
bowl without any slipping. The friction coefficient
between the block and the bowl surface is µ. Find the
range of the angular speed for which the block will not
slip.

25. A particle is projected with a speed u at an angle θ with
the horizontal. Consider a small part of its path near
the highest position and take it approximately to be a
circular arc. What is the radius of this circle ? This
radius is called the radius of curvature of the curve at
the point.

26. What is the radius of curvature of the parabola traced
out by the projectile in the previous problem at a point
where the particle velocity makes an angle θ/2 with the
horizontal ?

27. A block of mass m moves on a horizontal circle against
the wall of a cylindrical room of radius R. The floor of
the room on which the block moves is smooth but the
friction coefficient between the wall and the block is µ.
The block is given an initial speed v0. As a function of
the speed v write (a) the normal force by the wall on
the block, (b) the frictional force by the wall and (c) the
tangential acceleration of the block. (d) Integrate the

A

B

C

D

E

Figure 7-E1

Figure 7-E2
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tangential acceleration 



dv
dt

 = v 
dv
ds




 to obtain the speed

of the block after one revolution.
28. A table with smooth horizontal surface is fixed in a cabin

that rotates with a uniform angular velocity ω in a
circular path of radius R (figure 7-E3). A smooth groove
AB of length L( << R) is made on the surface of the table.
The groove makes an angle θ with the radius OA of the
circle in which the cabin rotates. A small particle is kept
at the point A in the groove and is released to move
along AB. Find the time taken by the particle to reach
the point B.

29. A car moving at a speed of 36 km/hr is taking a turn on
a circular road of radius 50 m. A small wooden plate is
kept on the seat with its plane perpendicular to the
radius of the circular road (figure 7-E4). A small block
of mass 100 g is kept on the seat which rests against
the plate. The friction coefficient between the block and
the plate is µ = 0.58. (a) Find the normal contact force
exerted by the plate on the block. (b) The plate is slowly
turned so that the angle between the normal to the plate
and the radius of the road slowly increases. Find the
angle at which the block will just start sliding on the
plate.

30. A table with smooth horizontal surface is placed in a
cabin which moves in a circle of a large radius R
(figure 7-E5). A smooth pulley of small radius is
fastened to the table. Two masses m and 2m placed on
the table are connected through a string going over the
pulley. Initially the masses are held by a person with
the strings along the outward radius and then the
system is released from rest (with respect to the cabin).
Find the magnitude of the initial acceleration of the
masses as seen from the cabin and the tension in the
string.

ANSWERS

OBJECTIVE I

 1. (d)  2. (d)  3. (c)  4. (d)  5. (b)  6. (a)
 7. (c)  8. (c)  9. (a) 10. (a) 11. (c) 12. (a)
13. (d) 14. (a) 15. (d) 16. (c)

OBJECTIVE II

 1. (a), (d)  2. (d)  3. (b), (d)
 4. (c)  5. (b), (c)  6. (b), (d)
 7. (b), (d)

EXERCISES

 1. 2.73 × 10 − 3 m/s 2

 2. 0.0336 m/s 2

 3. (a) 4.0 cm/s 2 (b) 2.0 cm/s 2 (c) √20 cm/s 2

 4. 500 N

 5. tan – 1 (1/3)

 6. tan – 1 (1/4)

 7. 0.25

 8. 17 m/s

 9. 2.2 × 10 6 m/s

10. √Rg

11. 14.8 N, 14.8 N

13. 45°
14. 1.2 N

A

B

O

 R 

Figure 7-E3

O

Figure 7-E4

m

m

1

2

Figure 7-E5
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15. 1.16 N
16. mg cos0

17. (a) 3.5  10  3 (b) 2.0 hour

18. Between 14.7 km/h and 54 km/hr

19. (a) Rg,
    (b) a distance  R/3 along the bridge from the highest
     point,
    (c) gRcosL/2 R

20.  2g 2  a 2R 2


 1/4

21. (a) g/L (b) 








g
L




 2

   2




 1/4

22. (a) 975 N, 1025 N (b) 0, 707 N, 0
    (c) 682 N, 732 N (d) 1.037

23. 10  2 N

24. 




gsin   cos
R sincos   sin





1/2

 to 




gsin   cos
R sincos   sin





1/2

25. 
u 2cos 2

g

26. 
u 2cos 2

g cos 3/2

27. (a) 
mv 2

R
    (b) 

mv 2

R
     (c)  

v 2

R
     (d) v0e

  2 

28. 2 L
 2R cos

29. (a) 0.2 N (b) 30

30. 
 2R

3
 , 

4
3

 m 2R
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CHAPTER 8

WORK AND ENERGY

8.1 KINETIC ENERGY

A dancing, running man is said to be more
energetic compared to a sleeping snoring man. In
physics, a moving particle is said to have more energy
than an identical particle at rest. Quantitatively the
energy of the moving particle (over and above its
energy at rest) is defined by

         Kv  
1
2

 mv 2  1
2
 mv


  v


  (8.1)

and is called the kinetic energy of the particle. The
kinetic energy of a system of particles is the sum of
the kinetic energies of all its constituent particles, i.e.,

          K   
i

1
2

 mi vi
 2 

The kinetic energy of a particle or a system of
particles can increase or decrease or remain constant
as time passes.

If no force is applied on the particle, its velocity v
remains constant and hence the kinetic energy
remains the same. A force is necessary to change the
kinetic energy of a particle. If the resultant force acting
on a particle is perpendicular to its velocity, the speed
of the particle does not change and hence the kinetic
energy does not change. Kinetic energy changes only
when the speed changes and that happens only when
the resultant force has a tangential component. When
a particle falls near the earth’s surface, the force of
gravity is parallel to its velocity. Its kinetic energy
increases as time passes. On the other hand, a particle
projected upward has the force opposite to the velocity
and its kinetic energy decreases.

From the definition of kinetic energy

      
dK
dt

  
d
dt

 


1
2

mv 2

  mv dv

dt
  Ft v,

where Ft is the resultant tangential force. If the
resultant force F


 makes an angle  with the velocity,

Ft  F cos  and  
dK
dt

  Fv cos  F


  v

  F


  dr



dt
   or,          dK  F


  dr


.  (8.2)

8.2 WORK AND WORK-ENERGY THEOREM

The quantity F


  dr

  F dr cos is called the work

done by the force F


 on the particle during the small
displacement dr


.

The work done on the particle by a force F


 acting
on it during a finite displacement is obtained by

       W    F


  dr

    F cos dr,  (8.3)

where the integration is to be performed along the path
of the particle. If F


 is the resultant force on the particle

we can use equation (8.2) to get

     W    F


  dr

    dK  K2  K1 .

Thus, the work done on a particle by the resultant
force is equal to the change in its kinetic energy. This
is called the work-energy theorem.

Let F


1 , F


2 , F


3 , be the individual forces acting on
a particle. The resultant force is F


  F


1  F


2  F


3 , and

the work done by the resultant force on the particle is

    W    F


  dr


       F


1  F


2  F


3 .......   dr


         F


1  dr

    F


2  dr


    F


3  dr


  ,

where    F


1  dr

 is the work done on the particle by

F


1 and so on. Thus, the work done by the resultant
force is equal to the sum of the work done by the
individual forces. Note that the work done on a particle
by an individual force is not equal to the change in its

More energetic

balls

Less energetic

balls

Less energetic man

More energetic man

Figure 8.1



kinetic energy; the sum of the work done by all the
forces acting on the particle (which is equal to the work
done by the resultant force) is equal to the change in
its kinetic energy.

The rate of doing work is called the power
delivered. The work done by a force F

→
 in a small

displacement dr
→
 is dW = F

→
 ⋅ dr

→
.

Thus, the power delivered by the force is

        P = 
dW
dt

 = F
→

 ⋅ dr
→

dt
 = F

→
 ⋅ v

→
.

The SI unit of power is joule/second and is written
as “watt”. A commonly used unit of power is
horsepower which is equal to 746 W.

8.3 CALCULATION OF WORK DONE

The work done by a force on a particle during a
displacement has been defined as

            W = ∫  F
→

 ⋅ dr
→
.

Constant Force

Suppose, the force is constant (in direction and
magnitude) during the displacement. Then

W = ∫  F
→

 ⋅ dr
→
 = F

→
 ⋅ ∫  dr

→
 = F

→
 ⋅ r

→
, where r

→
 is the total

displacement of the particle during which the work is
calculated. If θ be the angle between the constant force
F
→

 and the displacement r
→
, the work is

            W = Fr cosθ. … (8.4)

In particular, if the displacement is along the force,
as is the case with a freely and vertically falling
particle, θ = 0 and W = Fr.

The force of gravity (mg
→

) is constant in magnitude
and direction if the particle moves near the surface of
the earth. Suppose a particle moves from A to B along
some curve and that AB 

→
makes an angle θ with the

vertical as shown in figure (8.2). The work done by the
force of gravity during the transit from A to B is

        W = mg (AB) cosθ = mgh,

where h is the height descended by the particle. If a
particle ascends a height h, the work done by the force
of gravity is – mgh.

If the particle goes from the point A to the point
B along some other curve, the work done by the force
of gravity is again mgh. We see that the work done by
a constant force in going from A to B depends only on
the positions of A and B and not on the actual path
taken. In case of gravity, the work is weight mg times
the height descended. If a particle starts from A and
reaches to the same point A after some time, the work
done by gravity during this round trip is zero, as the
height descended is zero. We shall encounter other
forces having this property.

Spring Force

Consider the situation shown in figure (8.3). One
end of a spring is attached to a fixed vertical support
and the other end to a block which can move on a
horizontal table. Let x = 0 denote the position of the
block when the spring is in its natural length. We shall
calculate the work done on the block by the
spring-force as the block moves from x = 0 to x = x1.

The force on the block is k times the elongation of
the spring. But the elongation changes as the block
moves and so does the force. We cannot take F

→
 out of

the integration ∫  F
→

 ⋅ dr
→
. We have to write the work

done during a small interval in which the block moves
from x to x + dx. The force in this interval is kx and
the displacement is dx. The force and the displacement
are opposite in direction.

So,         F
→

 ⋅ dr
→
 = − F dx = − kx dx

during this interval. The total work done as the block
is displaced from x = 0 to x = x1 is

   W = ∫ 
0

x1

 − kx dx = 

− 

1
2

 k x 2
 0

 x1

 = − 
1
2

 k x1
 2.

If the block moves from x = x1 to x = x2 , the limits of
integration are x1 and x2 and the work done is

         W = 


1
2

 k x1
 2 − 

1
2

 k x2
 2


 ⋅ … (8.5)

Note that if the block is displaced from x1 to x2 and
brought back to x = x1 , the work done by the
spring-force is zero. The work done during the return
journey is negative of the work during the onward
journey. The net work done by the spring-force in a
round trip is zero.

A

B

mg

h

Figure 8.2

x = 0 x = x1

A A

Figure 8.3
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Three positions of a spring are shown in figure
(8.4). In (i) the spring is in its natural length, in (ii)
it is compressed by an amount x and in (iii) it is
elongated by an amount x. Work done by the
spring-force on the block in various situations is shown
in the following table.

Table 8.1

Initial state of
the spring

Final state of
the spring

  x1   x2  W

Natural Compressed   0 – x − 1
2
 k x 2

Natural Elongated   0   x − 1
2
 k x 2

Elongated Natural   x   0    1
2
 k x 2

Compressed Natural − x   0    
1
2

 k x 2

Elongated Compressed   x − x  0

Compressed Elongated  – x   x  0

Force Perpendicular to Velocity

Suppose F
→

 ⊥ v
→
 for all the time. Then

F
→

 ⋅ dr
→
 = F

→
 ⋅ v

→
 dt is zero in any small interval and the

work done by this force is zero.

For example, if a particle is fastened to the end of
a string and is whirled in a circular path, the tension
is always perpendicular to the velocity of the particle
and hence the work done by the tension is zero in
circular motion.

Example 8.1

   A spring of spring constant 50 N/m is compressed from
its natural position through 1 cm. Find the work done
by the spring-force on the agency compressing the spring.

Solution : The magnitude of the work is

  
1
2

 kx 2 = 
1
2

 × (50 N/m) × (1 cm) 2

      = (25 N/m) × (1 × 10 − 2m) 2 = 2.5 × 10 − 3 J.

As the compressed spring will push the agency, the force
will be opposite to the displacement of the point of

application and the work will be negative. Thus, the
work done by the spring-force is –2.5 mJ.

The following three cases occur quite frequently :
(a) The force is perpendicular to the velocity at all

the instants. The work done by the force is then zero.
(b) The force is constant (both in magnitude and

direction). The work done by the force is
W = Fd cosθ, where F and d are magnitudes of the
force and the displacement and θ is the angle between
them. The amount of work done depends only on the
end positions and not on the intermediate path. The
work in a round trip is zero. Force of gravity on the
bodies near the earth’s surface is an example.

The work done due to the force of gravity on a
particle of mass m is mgh, where h is the vertical
height ‘descended’ by the particle.

(c) The force is F = − kx as is the case with an
elastic spring. The magnitude of the work done by the
force during a displacement x from or to its natural
position (x = 0) is 1

2
 kx 2. The work may be + 1

2
 kx 2 or

− 1
2
 kx 2 depending on whether the force and the

displacement are along the same or opposite directions.

Example 8.2

   A particle of mass 20 g is thrown vertically upwards
with a speed of 10 m/s. Find the work done by the force
of gravity during the time the particle goes up.

Solution : Suppose the particle reaches a maximum height
h. As the velocity at the highest point is zero, we have

           0 = u 2 − 2gh

or,          h = 
u 2

2g
 ⋅

The work done by the force of gravity is

        − mgh = − mg 
u 2

2g
 = − 

1
2

 mu 2

        = − 
1
2

 (0.02 kg) × (10 m/s) 2 = − 1.0 J.

8.4 WORK-ENERGY THEOREM FOR A
   SYSTEM OF PARTICLES

So far we have considered the work done on a
single particle. The total work done on a particle
equals the change in its kinetic energy. In other words,
to change the kinetic energy of a particle we have to
apply a force on it and the force must do work on it.
Next, consider a system containing more than one
particle and suppose the particles exert forces on each
other. As a simple example, take a system of two

 x  x 

(i)

(ii)

(iii)

Figure 8.4
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charged particles as shown in figure (8.5) attracting
each other (such as a positive and a negative charge).

Because of mutual attraction, the particles are
accelerated towards each other and the kinetic energy
of the system increases. We have not applied any
external force on the system, yet the kinetic energy
has changed. Let us examine this in more detail. The
particle B exerts a force F


AB on A. As A moves towards

B, this force does work. The work done by this force
is equal to the increase in the kinetic energy of A.

Similarly, A exerts a force F


BA on B. This force does
work on B and this work is equal to the increase in
the kinetic energy of B. The work by F


AB + the work

by F


BA is equal to the increase in the total kinetic
energy of the two particles. Note that F


AB   F


BA , so

that F


AB  F


BA  0. But the work by F


AB + the work by
F


BA  0. The two forces are opposite in direction but
the displacements are also opposite. Thus, the work
done by both the forces are positive and are added.
The total work done on different particles of the system
by the internal forces may not be zero. The change in
the kinetic energy of a system is equal to the work
done on the system by the external as well as the
internal forces.

8.5 POTENTIAL ENERGY

Consider the example of the two charged particles
A and B taken in the previous section. Suppose at some
instant t1 the particles are at positions A, B and are
going away from each other with speeds v1 and v2

(figure 8.6).

The kinetic energy of the system is K1 . We call the
positions of the particles at time t1 as configuration-1.
The particle B attracts A and hence the speed v1

decreases as time passes. Similarly, the speed v2 of B

decreases. Thus, the kinetic energy of the two-particle
system decreases as time passes. Suppose at a time
t2, the particles are at A and B, the speeds have
changed to v1 and v2 and the kinetic energy becomes
K2. We call the positions of the particles at time t2 as
configuration-2. The kinetic energy of the system is
decreased by K1  K2 .

However, if you wait for some more time, the
particles return to the original positions A and B, i.e.,
in configuration-1. At this time, say t3 , the particles
move towards each other with speeds v1 and v2 . Their
kinetic energy is again K1 .

When the particles were in configuration-1 the
kinetic energy was K1 . When they reached
configuration-2 it decreased to K2 . The kinetic energy
has decreased but is not lost for ever. We just have to
wait. When the particles return to configuration-1 at
time t3 , the kinetic energy again becomes K1 . It seems
meaningful and reasonable if we think of yet another
kind of energy which depends on the configuration. We
call this as the potential energy of the system. Some
kinetic energy was converted into potential energy
when the system passed from configuration-1 to
configuration-2. As the system returns to
configuration-1, this potential energy is converted back
into kinetic energy. The sum of the kinetic energy and
the potential energy remains constant.

How do we precisely define the potential energy of
a system ? Before defining potential energy, let us
discuss the idea of conservative and nonconservative
forces.

8.6 CONSERVATIVE AND
   NONCONSERVATIVE FORCES

Let us consider the following two examples.
(1) Suppose a block of mass m rests on a rough

horizontal table (figure 8.7). It is dragged horizontally
towards right through a distance l and then back to
its initial position. Let  be the friction coefficient
between the block and the table. Let us calculate the
work done by friction during the round trip.

The normal force between the table and the block
is N   mg and hence the force of friction is mg. When
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the block moves towards right, friction on it is towards
left and the work by friction is (− µmgl) . When the
block moves towards left, friction on it is towards right
and the work is again (− µmgl) .

Hence, the total work done by the force of friction
in the round trip is (− 2µmgl) .

(2) Suppose a block connected by a spring is kept
on a rough table as shown in figure (8.8). The block is
pulled aside and then released. It moves towards the
centre A and has some velocity v0 as it passes through
the centre. It goes to the other side of A and then
comes back. This time it passes through the centre
with somewhat smaller velocity v1 . Compare these two
cases in which the block is at A, once going towards
left and then towards right. In both the cases the
system (table + block + spring) has the same
configuration. The spring has the same length. The
block is at the same point on the table and the table
of course is fixed to the ground. The kinetic energy in
the second case is less than the kinetic energy in the
first case. This loss in the kinetic energy is a real loss.
Every time the block passes through the mean position
A, the kinetic energy of the system is smaller and in
due course, the block stops on the table. We hold
friction as the culprit, because in absence of friction
the system regains its kinetic energy as it returns to
its original configuration. Remember, work done by
friction in a round trip is negative and not zero
[example (1) above].

We divide the forces in two categories
(a) conservative forces and (b) nonconservative forces.
If the work done by a force during a round trip of a
system is always zero, the force is said to be
conservative. Otherwise, it is called nonconservative.

Conservative force can also be defined as follows :

If the work done by a force depends only on the
initial and final states and not on the path taken, it is
called a conservative force.

Thus, the force of gravity, Coulomb force and the
force of spring are conservative forces, as the work
done by these forces are zero in a round trip. The force
of friction is nonconservative because the work done
by the friction is not zero in a round trip.

8.7 DEFINITION OF POTENTIAL ENERGY AND
   CONSERVATION OF  MECHANICAL ENERGY

We define the change in potential energy of a
system corresponding to a conservative internal force
as

         Uf − Ui = − W = − ∫ 
i

f

 F
→

 ⋅ dr
→

where W is the work done by the internal force on the
system as the system passes from the initial
configuration i to the final configuration f.

We don’t (or can’t) define potential energy
corresponding to a nonconservative internal force.

Suppose only conservative internal forces operate
between the parts of the system and the potential
energy U is defined corresponding to these forces.
There are either no external forces or the work done
by them is zero. We have

       Uf − Ui = − W = − (Kf − Ki)
   or,      Uf + Kf = Ui + Ki . … (8.6)

The sum of the kinetic energy and the potential energy
is called the total mechanical energy. We see from
equation (8.6) that the total mechanical energy of a
system remains constant if the internal forces are
conservative and the external forces do no work. This
is called the principle of conservation of energy.

The total mechanical energy K + U is not constant
if nonconservative forces, such as friction, act between
the parts of the system. We can’t apply the principle
of conservation of energy in presence of
nonconservative forces. The work-energy theorem is
still valid even in the presence of nonconservative
forces.

Note that only a change in potential energy is
defined above. We are free to choose the zero potential
energy in any configuration just as we are free to
choose the origin in space anywhere we like.

If nonconservative internal forces operate within
the system, or external forces do work on the system,
the mechanical energy changes as the configuration
changes. According to the work-energy theorem, the
work done by all the forces equals the change in the
kinetic energy. Thus,

        Wc + Wnc + Wext = Kf − Ki

where the three terms on the left denote the work done
by the conservative internal forces, nonconservative
internal forces and the external forces.
As         Wc = − (Uf − Ui) ,

we get

       Wnc + Wext = (Kf + Uf) − (Ki + Ui)

              = Ef − Ei … (8.7)

v = 0 v0 1v

A A A

Figure 8.8
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where E = K + U is the total mechanical energy.
If the internal forces are conservative but external

forces also act on the system and they do work,
Wnc = 0 and from (8.7),

          Wext = Ef − Ei .  … (8.8)

The work done by the external forces equals the change
in the mechanical energy of the system.

Let us summarise the concepts developed so far in
this chapter.

(1) Work done on a particle is equal to the change
in its kinetic energy.

(2) Work done on a system by all the (external and
internal) forces is equal to the change in its kinetic
energy.

(3) A force is called conservative if the work done
by it during a round trip of a system is always zero.
The force of gravitation, Coulomb force, force by a
spring etc. are conservative. If the work done by it
during a round trip is not zero, the force is
nonconservative. Friction is an example of
nonconservative force.

(4) The change in the potential energy of a system
corresponding to conservative internal forces is equal
to negative of the work done by these forces.

(5) If no external forces act (or the work done by
them is zero) and the internal forces are conservative,
the mechanical energy of the system remains constant.
This is known as the principle of conservation of
mechanical energy.

(6) If some of the internal forces are
nonconservative, the mechanical energy of the system
is not constant.

(7) If the internal forces are conservative, the work
done by the external forces is equal to the change in
mechanical energy.

Example 8.3

   Two charged particles A and B repel each other by a
force k/r 2, where k is a constant and r is the separation
between them. The particle A is clamped to a fixed point
in the lab and the particle B which has a mass m, is
released from rest with an initial separation r0 from A.
Find the change in the potential energy of the two-particle
system as the separation increases to a large value. What
will be the speed of the particle B in this situation ?

Solution : The situation is shown in figure (8.9). Take
A + B as the system. The only external force acting on
the system is that needed to hold A fixed. (You can
imagine the experiment being conducted in a gravity free
region or the particles may be kept and allowed to move
on a smooth horizontal surface, so that the normal force
balances the force of gravity). This force does no work

on the system because it acts on the charge A which
does not move. Thus, the external forces do no work and
internal forces are conservative. The total mechanical
energy must, therefore, remain constant. There are two
internal forces; FAB acting on A and FBA acting on B. The
force FAB does no work because it acts on A which does
not move. The work done by FBA as the particle B is
taken away is,

           W = ∫  F
→

 ⋅ dr
→
 = ∫ 

r0

∞

 
k
r 2 dr = 

k
r0

 ⋅ … (i)

The change in the potential energy of the system is

        Uf − Ui = − W = − 
k
r0

 ⋅

As the total mechanical energy is conserved,
        Kf + Uf = Ki + Ui

or,       Kf = Ki − (Uf − Ui)

or,       
1
2

 mv 2 = 
k
r0

or,          v = √2k
mr0

 ⋅

8.8 CHANGE IN THE POTENTIAL ENERGY
   IN A RIGID-BODY-MOTION

If the separation between the particles do not
change during motion, such as in the case of the
motion of a rigid body, the internal forces do no work.
This is a consequence of Newton’s third law. As an
example, consider a system of two particles A and B.
Suppose, the particles move in such a way that the
line AB translates parallel to itself. The displacement
dr

→
A of the particle A is equal to the displacement dr

→
B

of the particle B in any short time interval. The net
work done by the internal forces F

→
AB and F

→
BA is

      W = ∫  (F
→

AB ⋅ dr
→

A + F
→

BA ⋅ dr
→

B)

         = ∫  (F→AB + F
→

BA) ⋅ dr
→

A = 0.

Thus, the work done by F
→

AB and F
→

BA add up to zero.
Even if AB does not translate parallel to itself but
rotates, the result is true. The internal forces acting
between the particles of a rigid body do no work in its
motion and we need not consider the potential energy
corresponding to these forces.

The potential energy of a system changes only
when the separations between the parts of the system
change. In other words, the potential energy depends
only on the separation between the interacting particles.

A B
AB BA

F    = k/r 2
F    = k/r 2

External force

Figure 8.9
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8.9 GRAVITATIONAL POTENTIAL ENERGY

Consider a block of mass m kept near the surface
of the earth and suppose it is raised through a height
h. Consider “the earth + the block” as the system. The
gravitational force between the earth and the block is
conservative and we can define a potential energy
corresponding to this force. The earth is very heavy as
compared to the block and so one can neglect its
acceleration. Thus, we take our reference frame
attached to the earth, it will still be very nearly an
inertial frame. The work done by the gravitational
force due to the block on the earth is zero in this frame.
The force mg on the block does work (–mgh) if the
block ascends through a height h and hence the
potential energy is increased by mgh. Thus, if a block
of mass m ascends a height h above the earth’s surface
(h << radius of earth), the potential energy of the “earth
+ block” system increases by mgh. If the block descends
by a height h, the potential energy decreases by mgh.
Since the earth almost remains fixed, it is customary
to call the potential energy of the earth-block system
as the potential energy of the block only. We then say
that the gravitational potential energy of the “block”
is increased by an amount mgh when it is raised
through a hieght h above the earth’s surface.

We have been talking in terms of the changes in
gravitational potential energy. We can choose any
position of the block and call the gravitational
potential energy to be zero in this position. The
potential energy at a height h above this position is
mgh. The position of the zero potential energy is
chosen according to the convenience of the problem.

Example 8.4

   A block of mass m slides along a frictionless surface as
shown in the figure (8.10). If it is released from rest at
A, what is its speed at B ?

Solution : Take the block + the earth as the system. Only
the block moves, so only the work done on the block will
contribute to the gravitational potential energy. As it
descends through a height h between A and B, the
potential energy decreases by mgh. The normal contact
force N  on the block by the surface does no work as it

is perpendicular to its velocity. No external force does
any work on the system. Hence,
 increase in kinetic energy  decrease in potential energy

or,        1
2
 mv 2  mgh  or,  v  2gh .

Example 8.5

   A pendulum bob has a speed 3 m/s while passing through
its lowest position. What is its speed when it makes an
angle of 60 with the vertical ? The length of the
pendulum is 0.5 m. Take g  10 m/s 2.

Solution : Take the bob + earth as the system. The
external force acting on the system is that due to the
string. But this force is always perpendicular to the
velocity of the bob and so the work done by this force
is zero. Hence, the total mechanical energy will remain
constant. As is clear from figure (8.11), the height
ascended by the bob at an angular displacement  is
l  l cos  l 1  cos. The increase in the potential
energy is mgl 1  cos. This should be equal to the
decrease in the kinetic energy of the system. Again, as
the earth does not move in the lab frame, this is the
decrease in the kinetic energy of the bob. If the speed
at an angular displacement  is v1, the decrease in
kinetic energy is

             
1
2

 mv0
 2  

1
2

 mv1
 2 ,

where v0 is the speed of the block at the lowest position.

Thus,     
1
2

 mv0
 2  

1
2

 mv1
 2  mgl 1  cos

or,  v1  v 0
 2  2gl 1  cos

      9 m 2/s 2  2  10 m/s 2  0.5 m 

1  1

2




      2 m/s.

8.10 POTENTIAL ENERGY OF A COMPRESSED
    OR EXTENDED SPRING

Consider a massless spring of natural length l, one
end of which is fastened to a wall (figure 8.12). The
other end is attached to a block which is slowly pulled

������

�

�

�

Figure 8.10

Figure 8.11
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on a smooth horizontal surface to extend the spring.
Take the spring as the system. When it is elongated
by a distance x, the tension in it is kx, where k is its
spring constant. It pulls the wall towards right and
the block towards left by forces of magnitude kx. The
forces exerted on the spring are (i) kx towards left by
the wall and (ii) kx towards right by the block.

How much work has been done on the spring by
these two external forces ? The force by the wall does
no work as the point of application is fixed. The force

by the block does work ∫ 
0

x

 kx dx = 1
2
 kx 2. The work is

positive as the force is towards right and the particles
of the spring, on which this force is acting, also move
towards right. Thus, the total external work done on
the spring is 1

2
 kx 2, when the spring is elongated by

an amount x from its natural length. The same is the
external work done on the spring if it is compressed
by a distance x.

We have seen (equation 8.8) that the external work
done on a system is equal to the change in its total
mechanical energy. The spring is assumed to be
massless and hence its kinetic energy remains zero all
the time. Thus, its potential energy has increased by
1
2
 kx 2.

We conclude that a stretched or compressed spring
has a potential energy 1

2
 kx 2 larger than its potential

energy at its natural length. The potential energy of
the spring corresponds to the internal forces between
the particles of the spring when it is stretched or
compressed. It is called elastic potential energy or the
strain energy of the spring. Again, the calculation gives
only the change in the elastic potential energy of the
spring and we are free to choose any length of the
spring and call the potential energy zero at that length.
It is customary to choose the potential energy of a
spring in its natural length to be zero. With this choice
the potential energy of a spring is 1

2
 kx 2, where x is the

elongation or the compression of the spring.

Example 8.6

   A block of mass m, attached to a spring of spring
constant k, oscillates on a smooth horizontal table. The

other end of the spring is fixed to a wall. If it has a speed
v when the spring is at its natural length, how far will
it move on the table before coming to an instantaneous
rest ?

Solution : Consider the block + the spring as the system.
The external forces acting on the system are (a) the force
of gravity, (b) the normal force by the table and (c) the
force by the wall. None of these do any work on this
system and hence the total mechanical energy is
conserved. If the block moves a distance x before
comming to rest, we have,

            
1
2

 mv 2 = 
1
2

 kx 2 

or,              x = v √m/k .

Example 8.7

   A block of mass m is suspended through a spring of
spring constant k and is in equilibrium. A sharp blow
gives the block an initial downward velocity v. How far
below the equilibrium position, the block comes to an
instantaneous rest ?

Solution : Let us consider the block + the spring + the
earth as the system. The system has gravitational
potential energy corresponding to the force between the
block and the earth as well as the elastic potential
energy corresponding to the spring-force. The total
mechanical energy includes kinetic energy, gravitational
potential energy and elastic potential energy.

When the block is in equilibrium, it is acted upon by
two forces, (a) the force of gravity mg and (b) the tension
in the spring T = kx, where x is the elongation. For
equilibrium, mg = kx, so that the spring is stretched by
a length x = mg/k. The potential energy of the spring
in this position is

          
1
2

 k (mg/k) 2 = 
m 2g 2

2k
 ⋅

Take the gravitational potential energy to be zero in this
position. The total mechanical energy of the system just
after the blow is

          
1
2

 mv 2 + 
m 2g 2

2k
 ⋅

The only external force on this system is that due to the
ceiling which does no work. Hence, the mechanical

kx kx

k

L

 x 

Figure 8.12

l0

x = mg/k

h

Figure 8.13
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energy of this system remains constant. If the block
descends through a height h before coming to an
instantaneous rest, the elastic potential energy becomes
1
2

 k (mg/k + h) 2 and the gravitational potential energy

– mgh. The kinetic energy is zero in this state. Thus,
we have

     
1
2

 mv 2 + 
m 2g 2

2k
 = 

1
2

 k (mg/k + h) 2 − mgh.

Solving this we get,

              h = v √m/k .

Compare this with the result obtained in Example (8.6).
If we neglect gravity and consider the length of the
spring in equilibrium position as the natural length, the
answer is same. This simplification is often used while
dealing with vertical springs.

8.11 DIFFERENT FORMS OF ENERGY :
     MASS ENERGY EQUIVALENCE

The kinetic energy and the potential energy of a
system, taken together, form mechanical energy.
Energy can exist in many other forms. In measuring
kinetic energy of an extended body, we use the speed
of the body as a whole. Even if we keep the body at

rest, the particles in it are continuously moving inside
the body. These particles also exert forces on each
other and there is a potential energy corresponding to
these forces. The total energy corresponding to the
internal motion of molecules and their interaction, is
called internal energy or thermal energy of the body.
Light and sound are other forms of energy. When a
source emits light or sound, it loses energy. Chemical
energy is significant if there are chemical reactions.

Einstein’s special theory of relativity shows that a
material particle itself is a form of energy. Thus, about
8.18 × 10 – 14 J of energy may be converted to form an
electron and equal amount of energy may be obtained
by destroying an electron. The ralation between the
mass of a particle m and its equivalent energy E is
given as

             E = mc 2,

where c = 3 × 10 8 m/s is the speed of light in vacuum.

When all forms of energy are taken into account,
we arrive at the generalised law of conservation of
energy.

Energy can never be created or destroyed, it can
only be changed from one form into another.

Worked Out Examples

 1. A porter lifts a suitcase weighing 20 kg from the platform
and puts it on his head 2.0 m above the platform.
Calculate the work done by the porter on the suitcase.

Solution : The kinetic energy of the suitcase was zero
when it was at the platform and it again became zero
when it was put on the head. The change in kinetic
energy is zero and hence the total work done on the
suitcase is zero. Two forces act on the suitcase, one due
to gravity and the other due to the porter. Thus, the
work done by the porter is negative of the work done by
gravity. As the suitcase is lifted up, the work done by
gravity is
   W = − mgh

     = − (20 kg) (9.8 m/s 2) (2 m) = − 392 J

The work done by the porter is 392 J ≈ 390 J.

 2. An elevator weighing 500 kg is to be lifted up at a
constant velocity of 0.20 m/s. What would be the
minimum horsepower of the motor to be used ?

Solution : As the elevator is going up with a uniform
velocity, the total work done on it is zero in any time
interval. The work done by the motor is, therefore, equal
to the work done by the force of gravity in that interval

(in magnitude). The rate of doing work, i.e., the power
delivered is

   P = F v = mgv

     = (500 kg) (9.8 m/s2) (0.2 m/s) = 980 W
  

Assuming no loss against friction etc., in the motor, the
minimum horsepower of the motor is

       P = 980 W = 
980
746

 hp = 1.3 hp.

 3. A block of mass 2.0 kg is pulled up on a smooth incline
of angle 30° with the horizontal. If the block moves with
an acceleration of 1.0 m/s 2, find the power delivered by
the pulling force at a time 4.0 s after the motion starts.
What is the average power delivered during the 4.0 s
after the motion starts ?

Solution : The forces acting on the block are shown in
figure (8-W1). Resolving the forces parallel to the incline,
we get

   F − mg sinθ = ma
or,  F = mg sinθ + ma

    = (2.0 kg) [(9.8 m/s 2) (1/2) + 1.0 m/s 2] = 11.8 N.
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The velocity at t = 4.0 s is

      v = at = (1.0 m/s 2) (4.0 s) = 4.0 m/s.

The power delivered by the force at t = 4.0 s is

     P = F
→

 ⋅ v
→
 = (11.8 N) (4.0 m/s) ≈ 47 W.

The displacement during the first four seconds is

     x = 1
2
 at 2 = 1

2
 (1.0 m/s 2) (16 s 2) = 8.0 m.

The work done in these four seconds is, therefore,

  W = F
→

 ⋅ d
→

 = (11.8 N) (8.0 m) = 94.4 J.

The average power delivered = 
94.4 J
4.0 s

                   = 23.6 W ≈ 24 W.

 4. A force F = (10 + 0.50 x) acts on a particle in the
x direction, where F is in newton and x in meter. Find
the work done by this force during a displacement from
x = 0 to x = 2.0 m.

Solution : As the force is variable, we shall find the work
done in a small displacement x to x + dx and then
integrate it to find the total work. The work done in this
small displacement is

   dW = F
→

 ⋅ dx
→
 = (10 + 0.5 x) dx.

Thus, W = ∫ 
0

2⋅0

 (10 + 0.50 x) dx

      = 



10 x + 0.50 

x 2

2


 0

 2⋅0

 = 21 J.

 5. A body dropped from a height H reaches the ground with

a speed of 1.2 √gH . Calculate the work done by
air-friction.

Solution : The forces acting on the body are the force of
gravity and the air-friction. By work-energy theorem, the
total work done on the body is

     W = 
1
2

 m(1.2 √gH ) 2 − 0 = 0.72 mgH.

The work done by the force of gravity is mgH. Hence,
the work done by the air-friction is

       0.72 mgH − mgH = − 0.28 mgH.

 6. A block of mass M is pulled along a horizontal surface
by applying a force at an angle θ with the horizontal.

The friction coefficient between the block and the surface
is µ. If the block travels at a uniform velocity, find the
work done by this applied force during a displacement
d of the block.

Solution : Forces on the block are

(i) its weight Mg,
(ii) the normal force N ,

(iii) the applied force F and
(iv) the kinetic friction µ N .

The forces are shown in figure (8-W2). As the block
moves  with a uniform velocity, the forces add up to zero.
Taking horizontal and vertical components,
             F cosθ = µ N
and        F sinθ + N  = Mg.
Eliminating N  from these equations,
        F cosθ = µ (Mg − F sinθ)

or,          F = 
µ Mg

cosθ + µ sinθ
 ⋅

The work done by this force during a displacement d is

        W = F d cosθ = 
µ Mgd cosθ

cosθ + µ sinθ
 ⋅

 7. Two cylindrical vessels of equal cross-sectional area A
contain water upto heights h1 and h2 . The vessels are
interconnected so that the levels in them become equal.
Calculate the work done by the force of gravity during
the process. The density of water is ρ.

Solution : Since the total volume of the water is constant,
the height in each vessel after interconnection will be
(h1 + h2)/2 . The level in the left vessel shown in the
figure, drops from A to C and that in the right vessel
rises from B to D. Effectively, the water in the part AC
has dropped down to DB.

The mass of this volume of water is

         m = ρ A 



h1 − 

h1 + h2

2




30°
mg

F
N

Figure 8-W1

F

Mg

N

N

Figure 8-W2

A
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B
h1

h2

2h + h1
2

Figure 8-W3
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           = ρ A 




h1 − h2

2



 ⋅

The height descended by this water is AC = (h1 − h2)/2.
The work done by the force of gravity during this process
is, therefore,

           = ρ A 




h1 − h2

2




 2

g.

 8. What minimum horizontal speed should be given to the
bob of a simple pendulum of length l so that it describes
a complete circle ?

Solution : Suppose the bob is given a horizontal speed v0

at the bottom and it describes a complete vertical circle.
Let its speed at the highest point be v. Taking the
gravitational potential energy to be zero at the bottom,
the conservation of energy gives,

        
1
2

 mv0
 2 = 

1
2

 mv 2 + 2mgl

   or,        mv 2 = mv0
 2 − 4 mgl. … (i)

The forces acting on the bob at the highest point are mg
due to the gravity and T due to the tension in the string.
The resultant force towards the centre is, therefore,
mg + T. As the bob is moving in a circle, its acceleration

towards the centre is v 2/l. Applying Newton’s second
law and using (i),

        mg + T = m
v 2

l
 = 

1
l
 (mv0

 2 − 4mgl)

or,        mv0
 2 = 5 mgl + T l.

Now, for v0 to be minimum, T should be minimum. As
the minimum value of T can be zero, for minimum speed,

        mv0
 2 = 5 mgl   or,   v0 = √5 gl .

 9. A uniform chain of length l and mass m overhangs a
smooth table with its two third part lying on the table.
Find the kinetic energy of the chain as it completely slips
off the table.

Solution : Let us take the zero of potential energy at the
table. Consider a part dx of the chain at a depth x below
the surface of the table. The mass of this part is
dm = m/l dx and hence its potential energy is
− (m/l dx)gx.

The potential energy of the l/3 of the chain that

overhangs is U1 = ∫ 
0

l/3

 − 
m
l

 gx dx

           = − 


m
l

 g 




x 2

2





 0

 l/3

 = − 
1
18

 mgl.

This is also the potential energy of the full chain in the
initial position because the part lying on the table has
zero potential energy. The potential energy of the chain
when it completely slips off the table is

           U2 = ∫ 
0

l

 − 
m
l

 gx dx = − 
1
2

 mgl.

The loss in potential energy = 

− 

1
18

 mgl

 − 


− 

1
2

 mgl


                   = 
4
9

 mgl.

This should be equal to the gain in the kinetic energy.
But the initial kinetic enegry is zero. Hence, the kinetic
energy of the chain as it completely slips off the table

is 4
9
 mgl.

10. A block of mass m is pushed against a spring of spring
constant k fixed at one end to a wall. The block can slide
on a frictionless table as shown in figure (8-W6). The
natural length of the spring is L0 and it is compressed
to half its natural length when the block is released. Find
the velocity of the block as a function of its distance x
from the wall.

Solution : When the block is released, the spring pushes
it towards right. The velocity of the block increases till
the spring acquires its natural length. Thereafter, the
block loses contact with the spring and moves with
constant velocity.

Initially, the compression of the spring is L0 /2. When
the distance of the block from the wall becomes x, where

v

T

mg

2l

v0

Figure 8-W4

dx

x

Figure 8-W5

m

 L  /2 

v

 x 

k

0

Figure 8-W6
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x < L0 , the compression is (L0 − x). Using the principle
of conservation of energy,

        
1
2

 k 




L0

2




 2

 = 
1
2

 k (L0 − x) 2 + 
1
2

 mv 2.

Solving this,

         v = √k
m

 




L0
2

4
 − (L0 − x) 2



 1/2

⋅

When the spring acquires its natural length, x = L0 and

v = √k
m

 
L0

2
 ⋅ Thereafter, the block continues with this

velocity.

11. A particle is placed at the point A of a frictionless track
ABC as shown in figure (8-W7). It is pushed slightly
towards right. Find its speed when it reaches the point
B. Take g = 10 m/s 2.

Solution : Let us take the gravitational potential energy
to be zero at the horizontal surface shown in the figure.
The potential energies of the particle at A and B are

             UA = Mg (1 m)

and           UB = Mg (0.5 m).

The kinetic energy at the point A is zero. As the track
is frictionless, no energy is lost. The normal force on the
particle does no work. Applying the principle of
conservation of energy,

          UA + KA = UB + KB

or,        Mg(1 m) = Mg(0.5 m) + 1
2
 MvB

 2

or,           
1
2

 vB
 2 = g(1 m − 0.5 m)

                = (10 m/s 2) × 0.5 m

                = 5 m 2/s 2

or,             vB = √10 m/s.

12. Figure (8-W8) shows a smooth curved track terminating
in a smooth horizontal part. A spring of spring constant
400 N/m is attached at one end to a wedge fixed rigidly
with the horizontal part. A 40 g mass is released from
rest at a height of 4.9 m on the curved track. Find the
maximum compression of the spring.

Solution : At the instant of maximum compression the
speed of the 40 g mass reduces to zero. Taking the
gravitational potential energy to be zero at the
horizontal part, the conservation of energy shows,

             mgh = 1
2
 kx 2

where m = 0.04 kg, h = 4.9 m, k = 400 N/m and x is the
maximum compression.

Thus, x = √2mgh
k

      = √2 × (0.04 kg) × (9.8 m/s 2) × (4.9 m)
(400 N/m)

      = 9.8 cm.

13. Figure (8-W9) shows a loop-the-loop track of radius R.
A car (without engine) starts from a platform at a
distance h above the top of the loop and goes around the
loop without falling off the track. Find the minimum
value of h for a successful looping. Neglect friction.

Solution : Suppose the speed of the car at the topmost
point of the loop is v. Taking the gravitational potential
energy to be zero at the platform and assuming that the
car starts with a negligible speed, the conservation of
energy shows,

           0 = − mgh + 
1
2

 mv 2

   or,        mv 2 = 2 mgh, … (i)

where m is the mass of the car. The car moving in a
circle must have radial acceleration v 2/R at this instant.
The forces on the car are, mg due to gravity and N  due
to the contact with the track. Both these forces are in
radial direction at the top of the loop. Thus, from
Newton’s Law

            mg + N  = 
mv 2

R
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or,           mg + N  = 2 mgh/R.

For h to be minimum, N  should assume the minimum
value which can be zero. Thus,

       2 mg 
hmin

R
 = mg  or,  hmin = R/2.

14. A heavy particle is suspended by a string of length l. The
particle is given a horizontal velocity v0 . The string
becomes slack at some angle and the particle proceeds on
a parabola. Find the value of v0 if the particle passes
through the point of suspension.

 

Solution : Suppose the string becomes slack when the
particle reaches the point P (figure 8-W10). Suppose the
string OP makes an angle θ with the upward vertical.
The only force acting on the particle at P is its weight
mg. The radial component of the force is mg cosθ. As the
particle moves on the circle upto P,

         mg cosθ = m 




v 2

l




   or,         v 2 = gl cosθ … (i)
where v is its speed at P. Using conservation of energy,

          
1
2

 mv0
 2 = 

1
2

 mv 2 + mgl (1 + cosθ)

   or,           v 2 = v0
 2 − 2gl(1 + cosθ). … (ii)

From (i) and (ii), v0
 2 − 2 g l (1 + cosθ) = g l cosθ

   or,           v0
 2 = gl (2 + 3 cosθ). … (iii)

Now onwards the particle goes in a parabola under the
action of gravity. As it passes through the point of
suspension O, the equations for horizontal and vertical
motions give,

          l sinθ = (v cosθ) t

and    − l cosθ = (v sinθ) t − 1
2
 gt 2

or,      − l cosθ = (v sinθ) 




l sinθ
v cosθ




 − 1

2
 g 





l sinθ
v cosθ





 2

or,      − cos 2θ = sin 2θ − 1
2
 g 

l sin 2θ
v 2 cosθ

or,     − cos 2θ = 1 − cos 2θ − 
1
2

 
gl sin 2θ
gl cos 2θ

  [From (i)]

or,         1 = 
1
2

 tan 2θ

or,        tan θ = √2.

From (iii), v0 = [gl (2 + √3)] 1/2.

QUESTIONS FOR SHORT ANSWER

 1. When you lift a box from the floor and put it on an
almirah the potential energy of the box increases, but
there is no change in its kinetic energy. Is it a violation
of conservation of energy ?

 2. A particle is released from the top of an incline of height
h. Does the kinetic energy of the particle at the bottom
of the incline depend on the angle of incline ? Do you
need any more information to answer this question in
Yes or No ?

 3. Can the work by kinetic friction on an object be positive ?
Zero ?

 4. Can static friction do nonzero work on an object ? If yes,
give an example. If no, give reason.

 5. Can normal force do a nonzero work on an object. If yes,
give an example. If no, give reason.

 6. Can kinetic energy of a system be increased without
applying any external force on the system ?

 7. Is work-energy theorem valid in noninertial frames ?

 8. A heavy box is kept on a smooth inclined plane and is
pushed up by a force F acting parallel to the plane. Does
the work done by the force F as the box goes from A to
B depend on how fast the box was moving at A and B ?
Does the work by the force of gravity depend on this ?

 9. One person says that the potential energy of a particular
book kept in an almirah is 20 J and the other says it is
30 J. Is one of them necessarily wrong ?

10. A book is lifted from the floor and is kept in an almirah.
One person says that the potential energy of the book
is increased by 20 J and the other says it is increased
by 30 J. Is one of them necessarily wrong ?

11. In one of the exercises to strengthen the wrist and
fingers, a person squeezes and releases a soft rubber
ball. Is the work done on the ball positive, negative or
zero during compression ? During expansion ?

12. In tug of war, the team that exerts a larger tangential
force on the ground wins. Consider the period in which
a team is dragging the opposite team by applying a
larger tangential force on the ground. List which of the

O

P

Figure 8-W10
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following works are positive, which are negative and
which are zero ?
(a) work by the winning team on the losing team
(b) work by the losing team on the winning team
(c) work by the ground on the winning team
(d) work by the ground on the losing team
(e) total external work on the two teams.

13. When an apple falls from a tree what happens to its
gravitational potential energy just as it reaches the
ground ? After it strikes the ground ?

14. When you push your bicycle up on an incline the
potential energy of the bicyle and yourself increases.
Where does this energy come from ?

15. The magnetic force on a charged particle is always
perpendicular to its velocity. Can the magnetic force
change the velocity of the particle ? Speed of the
particle ?

16. A ball is given a speed v on a rough horizontal surface.
The ball travels through a distance l on the surface and
stops. (a) What are the initial and final kinetic energies
of the ball ? (b) What is the work done by the kinetic
friction ?

17. Consider the situation of the previous question from a
frame moving with a speed v0 parallel to the initial
velocity of the  block. (a) What are the initial and final
kinetic energies ? (b) What is the work done by the
kinetic friction ?

OBJECTIVE I

 1. A heavy stone is thrown from a cliff of height h with a
speed v. The stone will hit the ground with maximum
speed if it is thrown
(a) vertically downward    (b) vertically upward
(c) horizontally
(d) the speed does not depend on the initial  direction.

 2. Two springs A and B(kA = 2kB) are stretched by applying
forces of equal magnitudes at the four ends. If the energy
stored in A is E, that in B is
(a) E/2     (b) 2E     (c) E     (d) E/4.

 3. Two equal masses are attached to the two ends of a
spring of spring constant k. The masses are pulled out
symmetrically to stretch the spring by a length x over
its natural length. The work done by the spring on each
mass is

(a) 
1
2

 kx 2    (b) − 
1
2

 kx 2   (c) 
1
4

 kx 2   (d) − 
1
4

 kx 2.

 4. The negative of the work done by the conservative
internal forces on a system equals the change in
(a) total energy        (b) kinetic energy
(c) potential energy      (d) none of these.

 5. The work done by the external forces on a system equals
the change in
(a) total energy         (b) kinetic energy
(c) potential energy       (d) none of these.

 6. The work done by all the forces (external and internal)
on a system equals the change in

(a) total energy         (b) kinetic energy
(c) potential energy      (d) none of these.

 7. ————— of a two particle system depends only on the
separation between the two particles. The most
appropriate choice for the blank space in the above
sentence is
(a) Kinetic energy     (b) Total mechanical energy
(c) Potential energy    (d) Total energy.

 8. A small block of mass m is kept on a rough inclined
surface of inclination θ fixed in an elevator. The elevator
goes up with a uniform velocity v and the block does not
slide on the wedge. The work done by the force of friction
on the block in time t will be
(a) zero             (b) mgvt cos 2θ
(c) mgvt sin 2θ        (d) mgvt sin 2θ.

 9. A block of mass m slides down a smooth vertical circular
track. During the motion, the block is in

(a) vertical equilibrium   (b) horizontal equilibrium
(c) radial equilibrium    (d) none of these.

10. A particle is rotated in a vertical circle by connecting it
to a string of length l and keeping the other end of the
string fixed. The minimum speed of the particle when
the string is horizontal for which the particle will
complete the circle is
(a) √gl     (b) √2gl     (c) √3gl     (d) √5gl .

OBJECTIVE II

 1. A heavy stone is thrown from a cliff of height h in a
given direction. The speed with which it hits the ground
(a) must depend on the speed of projection
(b) must be larger than the speed of projection

(c) must be independent of the speed of projection
(d) may be smaller than the speed of projection.

 2. The total work done on a particle is equal to the change
in its kinetic energy
(a) always
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(b) only if the forces acting on it are  conservative
(c) only if gravitational force alone acts on it
(d) only if elastic force alone acts on it.

 3. A particle is acted upon by a force of constant magnitude
which is always perpendicular to the velocity of the
particle. The motion of the particle takes place in a
plane. It follows that
(a) its velocity is constant
(b) its acceleration is constant
(c) its kinetic energy is constant
(d) it moves in a circular path.

 4. Consider two observers moving with respect to each
other at a speed v along a straight line. They observe a
block of mass m moving a distance l on a rough surface.
The following quantities will be same as observed by the
two observers
(a) kinetic energy of the block at time t
(b) work done by friction
(c) total work done on the block
(d) acceleration of the block.

 5. You lift a suitcase from the floor and keep it on a table.
The work done by you on the suitcase does not depend
on
(a) the path taken by the suitcase
(b) the time taken by you in doing so 
(c) the weight of the suitcase
(d) your weight. 

 6. No work is done by a force on an object if
(a) the force is always perpendicular to its velocity
(b) the force is always perpendicular to its acceleration
(c) the object is stationary but the point of application
of  the force moves on the object
(d) the object moves in such a way that the point of
application of the force remains fixed.

 7. A particle of mass m is attached to a light string of
length l, the other end of which is fixed. Initially the
string is kept horizontal and the particle is given an
upward velocity v. The particle is just able to complete
a circle.
(a) The string becomes slack when the particle reaches

its highest point.
(b) The velocity of the particle becomes zero at the
highest  point.
(c) The kinetic energy of the ball in initial position was
1
2
 mv 2  mgl.

(d) The particle again passes through the initial position.

 8. The kinetic energy of a particle continuously increases
with time.
(a) The resultant force on the particle must be parallel
to  the velocity at all instants.
(b) The resultant force on the particle must be at an
angle less than 90 all the time.
(c) Its height above the ground level must continuously
decrease.
(d) The magnitude of its linear momentum is increasing
continuously.

 9. One end of a light spring of spring constant k is fixed
to a wall and the other end is tied to a block placed on
a smooth horizontal surface. In a displacement, the work

done by the spring is 1
2
 kx 2. The possible cases are

(a) the spring was initially compressed by a distance x
and was finally in its natural length
(b) it was initially stretched by a distance x and finally
was in its natural length
(c) it was initially in its natural length and finally in a
compressed position
(d) it was initially in its natural length and finally in a
stretched position.

10. A block of mass M is hanging over a smooth and light
pulley through a light string. The other end of the string
is pulled by a constant force F. The kinetic energy of
the block increases by 20 J in 1 s.
(a) The tension in the string is Mg.
(b) The tension in the string is F.
(c) The work done by the tension on the block is 20 J
in the  above 1 s.
(d) The work done by the force of gravity is –20 J in the
above 1 s.

EXERCISES

 1. The mass of cyclist together with the bike is 90 kg.
Calculate the increase in kinetic energy if the speed
increases from 6.0 km/h to 12 km/h.

 2. A block of mass 2.00 kg moving at a speed of 10.0 m/s
accelerates at 3.00 m/s 2 for 5.00 s. Compute its final
kinetic energy.

 3. A box is pushed through 4.0 m across a floor offering
100 N resistance. How much work is done by the
resisting force ?

 4. A block of mass 5.0 kg slides down an incline of
inclination 30 and length 10 m. Find the work done by
the force of gravity.

 5. A constant force of 2.50 N accelerates a stationary
particle of mass 15 g through a displacement of 2.50 m.
Find the work done and the average power delivered.

 6. A particle moves from a point r


1  2 m i

  3 m j


 to

another point r


2  3 m i

  2 m j


 during which a certain

force F


  5 N i

  5 N j


 acts on it. Find the work done

by the force on the particle during the displacement.

 7. A man moves on a straight horizontal road with a block
of mass 2 kg in his hand. If he covers a distance of 40 m
with an acceleration of 0.5 m/s 2, find the work done by
the man on the block during the motion.
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 8. A force F = a + bx acts on a particle in the x-direction,
where a and b are constants. Find the work done by this
force during a displacement from x = 0 to x = d.

 9. A block of mass 250 g slides down an incline of
inclination 37° with a uniform speed. Find the work done
against the friction as the block slides through 1.0 m.

10. A block of mass m is kept over another block of mass
M and the system rests on a horizontal surface
(figure 8-E1). A constant horizontal force F acting on the

lower block produces an acceleration 
F

2 (m + M)
 in the

system, the two blocks always move together. (a) Find
the coefficient of kinetic friction between the bigger block
and the horizontal surface. (b) Find the frictional force
acting on the smaller block. (c) Find the work done by
the force of friction on the smaller block by the bigger
block during a displacement d of the system.

11. A box weighing 2000 N is to be slowly slid through 20 m
on a straight track having friction coefficient 0.2 with
the box. (a) Find the work done by the person pulling
the box with a chain at an angle θ with the horizontal.
(b) Find the work when the person has chosen a value
of θ which ensures him the minimum magnitude of the
force.

12. A block of weight 100 N is slowly slid up on a smooth
incline of inclination 37° by a person. Calculate the work
done by the person in moving the block through a
distance of 2.0 m, if the driving force is (a) parallel to
the incline and (b) in the horizontal direction.

13. Find the average frictional force needed to stop a car
weighing 500 kg in a distance of 25 m if the initial speed
is 72 km/h.

14. Find the average force needed to accelerate a car
weighing 500 kg from rest to 72 km/h in a distance of
25 m.

15. A particle of mass m moves on a straight line with its
velocity varying with the distance travelled according to
the equation v = a√x, where a is a constant. Find the
total work done by all the forces during a displacement
from x = 0 to x = d.

16. A block of mass 2.0 kg kept at rest on an inclined plane
of inclination 37° is pulled up the plane by applying a
constant force of 20 N parallel to the incline. The force
acts for one second. (a) Show that the work done by the
applied force does not exceed 40 J. (b) Find the work
done by the force of gravity in that one second if the
work done by the applied force is 40 J. (c) Find the
kinetic energy of the block at the instant the force ceases
to act. Take g = 10 m/s 2.

17. A block of mass 2.0 kg is pushed down an inclined plane
of inclination 37° with a force of 20 N acting parallel to
the incline. It is found that the block moves on the
incline with an acceleration of 10 m/s 2. If the block

started from rest, find the work done (a) by the applied
force in the first second, (b) by the weight of the block
in the first second and (c) by the frictional force acting
on the block in the first second. Take g = 10 m/s 2.

18. A 250 g block slides on a rough horizontal table. Find
the work done by the frictional force in bringing the
block to rest if it is initially moving at a speed of 40
cm/s. If the friction coefficient between the table and the
block is 0.1, how far does the block move before coming
to rest ?

19. Water falling from a 50 m high fall is to be used for
generating electric energy. If 1.8 × 10 5 kg of water falls
per hour and half the gravitational potential energy can
be converted into electric energy, how many 100 W
lamps can be lit ?

20. A person is painting his house walls. He stands on a
ladder with a bucket containing paint in one hand and
a brush in other. Suddenly the bucket slips from his
hand and falls down on the floor. If the bucket with the
paint had a mass of 6.0 kg and was at a height of 2.0 m
at the time it slipped, how much gravitational potential
energy is lost together with the paint ?

21. A projectile is fired from the top of a 40 m high cliff
with an initial speed of 50 m/s at an unknown angle.
Find its speed when it hits the ground.

22. The 200 m free style women’s swimming gold medal at
Seol Olympic 1988 went to Heike Friendrich of East
Germany when she set a new Olympic record of 1 minute
and 57.56 seconds. Assume that she covered most of the
distance with a uniform speed and had to exert 460 W
to maintain her speed. Calculate the average force of
resistance offered by the water during the swim.

23. The US athlete Florence Griffith-Joyner won the 100 m
sprint gold medal at Seol Olympic 1988 setting a new
Olympic record of 10.54 s. Assume that she achieved her
maximum speed in a very short-time and then ran the
race with that speed till she crossed the line. Take her
mass to be 50 kg. (a) Calculate the kinetic energy of
Griffith-Joyner at her full speed. (b) Assuming that the
track, the wind etc. offered an average resistance of one
tenth of her weight, calculate the work done by the
resistance during the run. (c) What power Griffith-
Joyner had to exert to maintain uniform speed ? 

24. A water pump lifts water from a level 10 m below the
ground. Water is pumped at a rate of 30 kg/minute with
negligible velocity. Calculate the minimum horsepower
the engine should have to do this. 

25. An unruly demonstrator lifts a stone of mass 200 g from
the ground and throws it at his opponent. At the time
of projection, the stone is 150 cm above the ground and
has a speed of 3.00 m/s. Calculate the work done by the
demonstrator during the process. If it takes one second
for the demonstrator to lift the stone and throw, what
horsepower does he use ?

26. In a factory it is desired to lift 2000 kg of metal through
a distance of 12 m in 1 minute. Find the minimum
horsepower of the engine to be used.

27. A scooter company gives the following specifications
about its product.
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Weight of the scooter — 95 kg
Maximum speed — 60 km/h
Maximum engine power — 3.5 hp
Pick up time to get the maximum speed — 5 s
Check the validity of these specifications.

28. A block of mass 30.0 kg is being brought down by a
chain. If the block acquires a speed of 40.0 cm/s in
dropping down 2.00 m, find the work done by the chain
during the process.

29. The heavier block in an Atwood machine has a mass
twice that of the lighter one. The tension in the string
is 16.0 N when the system is set into motion. Find the
decrease in the gravitational potential energy during the
first second after the system is released from rest.

30. The two blocks in an Atwood machine have masses
2.0 kg and 3.0 kg. Find the work done by gravity during
the fourth second after the system is released from rest.

31. Consider the situation shown in figure (8-E2). The system
is released from rest and the block of mass 1.0 kg is
found to have a speed 0.3 m/s after it has descended
through a distance of 1 m. Find the coefficient of kinetic
friction between the block and the table.

32. A block of mass 100 g is moved with a speed of 5.0 m/s
at the highest point in a closed circular tube of radius
10 cm kept in a vertical plane. The cross-section of the
tube is such that the block just fits in it. The block
makes several oscillations inside the tube and finally
stops at the lowest point. Find the work done by the
tube on the block during the process.

33. A car weighing 1400 kg is moving at a speed of 54 km/h
up a hill when the motor stops. If it is just able to reach
the destination which is at a height of 10 m above the
point, calculate the work done against friction (negative
of the work done by the friction).

34. A small block of mass 200 g is kept at the top of a
frictionless incline which is 10 m long and 3.2 m high.
How much work was required (a) to lift the block from
the ground and put it at the top, (b) to slide the block
up the incline ? What will be the speed of the block when
it reaches the ground, if (c) it falls off the incline and
drops vertically on the ground (d) it slides down the
incline ? Take g = 10 m/s 2.

35. In a children’s park, there is a slide which has a total
length of 10 m and a height of 8.0 m (figure 8-E3).
Vertical ladder are provided to reach the top. A boy
weighing 200 N climbs up the ladder to the top of the
slide and slides down to the ground. The average friction

offered by the slide is three tenth of his weight. Find
(a) the work done by the boy on the ladder as he goes
up, (b) the work done by the slide on the boy as he comes
down, (c) the work done by the ladder on the boy as he
goes up. Neglect any work done by forces inside the body
of the boy.

36. Figure (8-E4) shows a particle sliding on a frictionless
track which terminates in a straight horizontal section.
If the particle starts slipping from the point A, how far
away from the track will the particle hit the ground ?

37. A block weighing 10 N travels down a smooth curved
track AB joined to a rough horizontal surface
(figure 8-E5). The rough surface has a friction coefficient
of 0.20 with the block. If the block starts slipping on the
track from a point 1.0 m above the horizontal surface,
how far will it move on the rough surface ?

38. A uniform chain of mass m and length l overhangs a
table with its two third part on the table. Find the work
to be done by a person to put the hanging part back on
the table.

39. A uniform chain of length L and mass M overhangs a
horizontal table with its two third part on the table. The
friction coefficient between the table and the chain is μ.
Find the work done by the friction during the period the
chain slips off the table. 

40. A block of mass 1 kg is placed at the point A of a rough
track shown in figure (8-E6). If slightly pushed towards
right, it stops at the point B of the track. Calculate the
work done by the frictional force on the block during its
transit from A to B.
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41. A block of mass 5.0 kg is suspended from the end of a
vertical spring which is stretched by 10 cm under the
load of the block. The block is given a sharp impulse
from below so that it acquires an upward speed of 2.0
m/s. How high will it rise ? Take g = 10 m/s 2.

42. A block of mass 250 g is kept on a vertical spring of
spring constant 100 N/m fixed from below. The spring
is now compressed to have a length 10 cm shorter than
its natural length and the system is released from this
position. How high does the block rise ? Take
g = 10 m/s 2.

43. Figure (8-E7) shows a spring fixed at the bottom end of
an incline of inclination 37°. A small block of mass 2 kg
starts slipping down the incline from a point 4.8 m away
from the spring. The block compresses the spring by
20 cm, stops momentarily and then rebounds through a
distance of 1 m up the incline. Find (a) the friction
coefficient between the plane and the block and (b) the
spring constant of the spring. Take g = 10 m/s 2.

44. A block of mass m moving at a speed v compresses a
spring through a distance x before its speed is halved.
Find the spring constant of the spring.

45. Consider the situation shown in figure (8-E8). Initially
the spring is unstretched when the system is released
from rest. Assuming no friction in the pulley, find the
maximum elongation of the spring.

46. A block of mass m is attached to two unstretched springs
of spring constants k1 and k2 as shown in figure (8-E9).
The block is displaced towards right through a distance

x and is released. Find the speed of the block as it passes
through the mean position shown.

47. A block of mass m sliding on a smooth horizontal surface
with a velocity v

→
 meets a long horizontal spring fixed at

one end and having spring constant k as shown in figure
(8-E10). Find the maximum compression of the spring.
Will the velocity of the block be the same as v

→
 when it

comes back to the original position shown ?

48. A small block of mass 100 g is pressed against a
horizontal spring fixed at one end to compress the spring
through 5.0 cm (figure 8-E11). The spring constant is
100 N/m. When released, the block moves horizontally
till it leaves the spring. Where will it hit the ground 2 m
below the spring ?

49. A small heavy block is attached to the lower end of a
light rod of length l which can be rotated about its
clamped upper end. What minimum horizontal velocity
should the block be given so that it moves in a complete
vertical circle ?

50. Figure (8-E12) shows two blocks A and B, each having
a mass of 320 g connected by a light string passing over
a smooth light pulley. The horizontal surface on which
the block A can slide is smooth. The block A is attached

0.8 m1.0 m
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to a spring of spring constant 40 N/m whose other end
is fixed to a support 40 cm above the horizontal surface.
Initially, the spring is vertical and unstretched when the
system is released to move. Find the velocity of the block
A at the instant it breaks off the surface below it. Take
g  10 m/s 2.

51. One end of a spring of natural length h and spring
constant k is fixed at the ground and the other is fitted
with a smooth ring of mass m which is allowed to slide
on a horizontal rod fixed at a height h (figure 8-E13).
Initially, the spring makes an angle of 37 with the
vertical when the system is released from rest. Find the
speed of the ring when the spring becomes vertical.

52. Figure (8-E14) shows a light rod of length l rigidly
attached to a small heavy block at one end and a hook
at the other end. The system is released from rest with
the rod in a horizontal position. There is a fixed smooth
ring at a depth h below the initial position of the hook
and the hook gets into the ring as it reaches there. What
should be the minimum value of h so that the block
moves in a complete circle about the ring ?

53. The bob of a pendulum at rest is given a sharp hit to
impart a horizontal velocity 10 gl , where l is the length
of the pendulum. Find the tension in the string when
(a) the string is horizontal, (b) the bob is at its highest
point and (c) the string makes an angle of 60 with the
upward vertical.

54. A simple pendulum consists of a 50 cm long string
connected to a 100 g ball. The ball is pulled aside so
that the string makes an angle of 37 with the vertical
and is then released. Find the tension in the string when
the bob is at its lowest position.

55. Figure (8-E15) shows a smooth track, a part of which is
a circle of radius R. A block of mass m is pushed against
a spring of spring constant k fixed at the left end and

is then released. Find the initial compression of the
spring so that the block presses the track with a force
mg when it reaches the point P, where the radius of the
track is horizontal.

56. The bob of a stationary pendulum is given a sharp hit
to impart it a horizontal speed of 3 gl . Find the angle
rotated by the string before it becomes slack.

57. A heavy particle is suspended by a 1.5 m long string. It
is given a horizontal velocity of 57 m/s. (a) Find the
angle made by the string with the upward vertical, when
it becomes slack. (b) Find the speed of the particle at
this instant. (c) Find the maximum height reached
by the particle over the point of suspension. Take
g  10 m/s 2.

58. A simple pendulum of length L having a bob of mass m
is deflected from its rest position by an angle  and
released (figure 8-E16). The string hits a peg which is
fixed at a distance x below the point of suspension and
the bob starts going in a circle centred at the peg. (a)
Assuming that initially the bob has a height less than
the peg, show that the maximum height reached by the
bob equals its initial height. (b) If the pendulum is
released with   90 and x  L/2 find the maximum
height reached by the bob above its lowest position
before the string becomes slack. (c) Find the minimum
value of x/L for which the bob goes in a complete circle
about the peg when the pendulum is released from
  90.

59. A particle slides on the surface of a fixed smooth sphere
starting from the topmost point. Find the angle rotated
by the radius through the particle, when it leaves contact
with the sphere.

60. A particle of mass m is kept on a fixed, smooth sphere
of radius R at a position, where the radius through the
particle makes an angle of 30 with the vertical. The
particle is released from this position. (a) What is the
force exerted by the sphere on the particle just after the
release ? (b) Find the distance travelled by the particle
before it leaves contact with the sphere.

61. A particle of mass m is kept on the top of a smooth
sphere of radius R. It is given a sharp impulse which
imparts it a horizontal speed v. (a) Find the normal force
between the sphere and the particle just after the
impulse. (b) What should be the minimum value of v for
which the particle does not slip on the sphere ?
(c) Assuming the velocity v to be half the minimum
calculated in part (b) find the angle made by the radius
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through the particle with the vertical when it leaves the
sphere.

62. Figure (8-E17) shows a smooth track which consists of
a straight inclined part of length l joining smoothly with
the circular part. A particle of mass m is projected up
the incline from its bottom. (a) Find the minimum
projection-speed v0 for which the particle reaches the top
of the track. (b) Assuming that the projection-speed is
2v0 and that the block does not lose contact with the
track before reaching its top, find the force acting on it

when it reaches the top. (c) Assuming that the
projection-speed is only slightly greater than v0, where
will the block lose contact with the track ?

63. A chain of length l and mass m lies on the surface of a
smooth sphere of radius R > l with one end tied to the
top of the sphere. (a) Find the gravitational potential
energy of the chain with reference level at the centre of
the sphere. (b) Suppose the chain is released and slides
down the sphere. Find the kinetic energy of the chain,
when it has slid through an angle . (c) Find the

tangential acceleration dv
dt

 of the chain when the chain

starts sliding down.

64. A smooth sphere of radius R is made to translate in a
straight line with a constant acceleration a. A particle
kept on the top of the sphere is released from there at
zero velocity with respect to the sphere. Find the speed
of the particle with respect to the sphere as a function
of the angle  it slides.

ANSWERS

OBJECTIVE I

 1. (d)  2. (b)  3. (d)  4. (c)  5. (a)  6. (b)
 7. (c)  8. (c)  9. (d) 10. (c)

OBJECTIVE II

 1. (a), (b)  2. (a)  3. (c), (d)
 4. (d)  5. (a), (b), (d)  6. (a), (c), (d)
 7. (a), (d)  8. (b), (d)  9. (a), (b)
10. (b)

EXERCISES

 1. 375 J
 2. 625 J
 3.  400 J
 4. 245 J
 5. 6.25 J, 36.1 W
 6. zero
 7. 40 J

 8. 

a  1

2
 bd


 d

 9. 1.5 J

10. (a) 
F

2 M  m g
     (b) 

mF
2 M  m

     (c) 
mFd

2M  m

11. (a) 
40000 J
5  tan

     (b) 7690 J

12. (a) 120 J     (b) 120 J
13. 4000 N
14. 4000 N

15. ma 2d/2
16. (b)  24 J (c) 16 J

17. (a) 100 J (b) 60 J (c)  60 J

18.  002 J,  82 cm
19. 122
20. 118 J
21. 58 m/s
22. 270 N
23. (a) 2250 J (b)  4900 J (c) 465 W

24. 6.6  10 – 2 hp

25. 3.84 J,  5.14  10 – 3 hp
26. 5.3 hp
27. Seems to be somewhat overclaimed.
28.  586 J
29. 19.6 J
30. 67 J
31. 0.12
32.  1.45 J
33. 20300 J
34. (a) 6.4 J    (b) 6.4 J    (c) 8.0 m/s    (d) 8.0 m/s
35. (a) zero     (b) – 600 J  (c) 1600 J

36. At a horizontal distance of 1 m from the end of the track.
37. 5.0 m

Figure 8-E17
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38. mgl/18
39. − 2 μ MgL/9
40. – 2 J
41. 20 cm
42. 20 cm
43. (a) 0.5 (b) 1000 N/m

44. 
3 mv 2

4 x 2

45. 2 mg/k

46. √⎯⎯⎯k
1
 + k

2

m
 x

47. v √⎯⎯⎯⎯⎯m/k ,  No

48. At a horizontal distance of 1 m from the free end of the

    spring.
49. 2 √⎯⎯gl
50. 1.5 m/s

51. 
h
4

 √⎯⎯⎯⎯⎯k/m

52. l
53. (a) 8 mg (b) 5 mg (c) 6.5 mg
54. 1.4 N

55. √⎯⎯⎯3 mg R
k

56. cos – 1 (− 1/3)

57. (a) 53° (b) 3.0 m/s (c) 1.2 m

58. (b) 5L/6 above the lowest point (c) 0.6

59. cos – 1(2/3)

60. √3 mg/2 (b) 0.43 R

61. (a) mg − 
mv 2

R
   (b) √⎯⎯⎯Rg (c) cos – 1 (3/4)

62. (a) √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯2 g [R(1 − cosθ) + l sinθ]  (b) 6 mg ⎛⎜
⎝
1 − cosθ + 

l
R

 sinθ⎞
⎟
⎠

   (c) The radius through the particle makes an angle
       cos

 – 1
(2/3) with the vertical.

63.  (a) 
mR 2 g

l
 sin (l/R)

   (b) 
mR 2 g

l
 ⎡⎢
⎣
sin ⎛⎜

⎝

l
R

⎞
⎟
⎠
 + sinθ − sin⎛

⎜
⎝
θ + 

l
R

⎞
⎟
⎠

⎤
⎥
⎦

   (c) 
Rg
l

 [1 − cos(l/R)]

64. [2 R(a sinθ + g − g cosθ)]1/2
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CHAPTER 9

CENTRE OF MASS, LINEAR
MOMENTUM, COLLISION

9.1 CENTRE OF MASS

Suppose a spin bowler throws a cricket ball
vertically upward. Being a spinner, his fingers turn
while throwing the ball and the ball goes up spinning
rapidly. Focus your attention to a particular point on
the surface of the ball. How does it move in the space ?
Because the ball is spinning as well as rising up, in
general, the path of a particle at the surface is
complicated, not confined to a straight line or to a
plane. The centre of the ball, however, still goes on the
vertical straight line and the spinner’s fingers could
not make its path complicated. If he does not throw
the ball vertically up, rather passes it to his fellow
fielder, the centre of the ball goes in a parabola.

All the points of the ball do not go in parabolic
paths. If the ball is spinning, the paths of most of the
particles of the ball are complicated. But the centre of
the ball always goes in a parabola irrespective of how
the ball is thrown. (In fact the presence of air makes
the path of the centre slightly different from a parabola
and bowlers utilise this deviation. This effect will be
discussed in a later chapter. At present we neglect it.)

The centre of the ball is a very special point which
is called the centre of mass of the ball. Its motion is
just like the motion of a single particle thrown.

Definition of Centre of Mass

Let us consider a collection of N particles
(Figure 9.2). Let the mass of the ith particle be mi and
its coordinates with reference to the chosen axes be
xi ,  yi ,  zi . Write the product mi xi for each of the
particles and add them to get  mi xi . Similarly get

 
i

mi yi and  
i

mi zi. Then find

X  
1
M

  
i

mi xi , Y  
1
M

  
i

mi yi and Z  
1
M

  
i

mi zi

where M   
i

mi is the total mass of the system.

Locate the point with coordinates X, Y, Z. This point
is called the centre of mass of the given collection of
the particles. If the position vector of the i th particle
is ri , the centre of mass is defined to have the position
vector

           R


CM  
1
M

  
i

mi r


i .  (9.1)

Taking x, y, z components of this equation, we get the
coordinates of centre of mass as defined above

X  
1
M

  
i

mi xi , Y  
1
M

  
i

mi yi , Z  
1
M

  
i

mi zi   (9.2)

��� ���
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Example 9.1

   Four particles A, B, C and D having masses m, 2m,
3m and 4m respectively are placed in order at the corners
of a square of side a. Locate the centre of mass.

Solution : Take the axes as shown in figure (9.3). The
coordinates of the four particles are as follows :

Particle mass x-coordinate y-coordinate

A  m 0 0

B 2m a 0

C 3m a a

D 4m 0 a

Hence, the coordinates of the centre of mass of the
four-particle system are

     X  
m  0  2 m a  3 m a  4 m  0

m  2 m  3 m  4 m
  

a
2

     Y  
m  0  2 m  0  3 m a  4 m a

m  2 m  3 m  4 m
  

7a
10

The centre of mass is at 


a
2

 , 7a
10




 .

Centre of Mass of Two Particles

As the simplest example, consider a system of two
particles of masses m1 and m2 separated by a distance
d (figure 9.4). Where is the centre of mass of this
system ?

Take the origin at m1 and the X-axis along the line
joining m1 and m2. The coordinates of m1 are (0, 0, 0)
and of m2 are d, 0, 0. So,

   
i

mi xi  m1 0  m2 d  m2 d,  
i

mi yi  0,  
i

mi zi  0.

The total mass is M  m1  m2. By definition, the

centre of mass will be at 




m2 d
m1  m2

 , 0, 0



  We find that

the centre of mass of a system of two particles is

situated on the line joining the particles. If O, C, P be
the positions of m1 , the centre of mass and m2

respectively, we have

    OC  
m2 d

m1  m2
   and   CP  

m1 d
m1  m2

   so that m1OC  m2CP   (9.3)

The centre of mass divides internally the line joining
the two particles in inverse ratio of their masses.

Centre of Mass of Several Groups of Particles

Consider a collection of N1  N2 particles. We call
the group of N1 particles as the first part and the other
group of N2 particles as the second part. Suppose the
first part has its centre of mass at C1 and the total
mass M1 (figure 9.5). Similarly the second part has its
centre of mass at C2 and the total mass M2 . Where is
the centre of mass of the system of N1  N2 particles ?

The x-coordinate of the centre of mass is 

   X  

 
i  1

N1  N2

mi xi

M1  M2
    

  
i  1

N1

mi xi     
i  N1  1

N1  N2

mi xi

M1  M2
   (9.4)

If X1 , X2 are the x-coordinates of C1 and C2 , then
by the definition of centre of mass,  mi xi for the first

part is M1 X1 and  mi xi for the second part is
M2 X2 . Hence equation (9.4) becomes,

       X  
M1 X1  M2 X2

M1  M2

Similarly,  Y  
M1 Y1  M2 Y2

M1  M2

and     Z  
M1 Z1  M2 Z2

M1  M2
 

But this is also the centre of mass of two point
particles of masses M1 and M2 placed at C1 and C2

respectively. Thus, we obtain a very useful result. If
we know the centres of mass of parts of the system and
their masses, we can get the combined centre of mass
by treating the parts as point particles placed at their
respective centres of mass.

Y

X
m

3m4m

2mA B

CD

Figure 9.3
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Example 9.2

   Two identical uniform rods AB and CD, each of length
L are jointed to form a T-shaped frame as shown in
figure (9.6). Locate the centre of mass of the frame. The
centre of mass of a uniform rod is at the middle point
of the rod.

Solution : Let the mass of each rod be m. Take the centre
C of the rod AB as the origin and CD as the Y-axis. The
rod AB has mass m and its centre of mass is at C. For
the calculation of the centre of mass of the combined
system, AB may be replaced by a point particle of mass
m placed at the point C. Similarly the rod CD may be
replaced by a point particle of mass m placed at the
centre E of the rod CD. Thus, the frame is equivalent
to a system of two particles of equal masses m each,
placed at C and E. The centre of mass of this pair of
particles will be at the middle point F of CE.

The centre of mass of the frame is, therefore, on the rod
CD at a distance L/4 from C.

9.2 CENTRE OF MASS OF CONTINUOUS BODIES

If we consider the body to have continuous
distribution of matter, the summation in the formula
of centre of mass should be replaced by integration.
So, we do not talk of the ith particle, rather we talk
of a small element of the body having a mass dm. If
x, y, z are the coordinates of this small mass dm, we
write the coordinates of the centre of mass as

X = 
1
M

 ∫ x dm ,  Y = 
1
M

 ∫ y dm ,  Z = 
1
M

 ∫ z dm. … (9.5)

The integration is to be performed under proper limits
so that as the integration variable goes through the
limits, the elements cover the entire body. We
illustrate the method with three examples.

(a) Centre of Mass of a Uniform Straight Rod

Let M and L be the mass and the length of the
rod respectively. Take the left end of the rod as the
origin and the X-axis along the rod (figure 9.7).
Consider an element of the rod between the positions
x and x + dx. If x = 0, the element is at the left end of
the rod. If x = L, the element is at its right end. So as
x varies from 0 through L, the elements cover the
entire rod. As the rod is uniform, the mass per unit
length is  M/L  and hence the mass of the element is
dm = (M/L) dx. The coordinates of the element are
(x, 0, 0). (The coordinates of different points of the
element differ, but the difference is less than dx and
that much is harmless as integration will
automatically correct it. So x-coordinate of the left end
of the element may be called the “x-coordinate of the
element.”)

The x-coordinate of the centre of mass of the rod
is

      X = 1
M

 ∫ x dm = 1
M

 ∫ 
0

L

x 


M
L

 dx



                = 1
L




x 2

2


 0

 L

 = L
2

 ⋅

The y-coordinate is

              Y = 1
M

 ∫ y dm = 0

and similarly Z = 0. The centre of mass is at 



L
2

, 0, 0


 ,

i.e., at the middle point of the rod.

(b) Centre of Mass of a Uniform Semicircular Wire

Let M be the mass and R the radius of a uniform
semicircular wire. Take its centre as the origin, the
line joining the ends as the X-axis, and the Y-axis in

A BC

D

E

F

Figure 9.6

A B

dxx
X

Figure 9.7

R

Rcos

Rsin

X

Y

d

O

Figure 9.8
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the plane of the wire (figure 9.8). The centre of mass
must be in the plane of the wire i.e., in the X-Y plane.

How do we choose a small element of the wire ?
First, the element should be so defined that we can
vary the element to cover the whole wire. Secondly, if

we are interested in ∫ x dm, the x-coordinates of

different parts of the element should only
infinitesimally differ in range. We select the element
as follows. Take a radius making an angle θ with the
X-axis and rotate it further by an angle dθ. Note the
points of intersection of the radius with the wire
during this rotation. This gives an element of length
R dθ. When we take θ = 0, the element is situated near
the right edge of the wire. As θ is gradually increased
to π, the element takes all positions on the wire i.e.,
the whole wire is covered. The “coordinates of the
element” are (R cosθ ,  R sinθ). Note that the
coordinates of different parts of the element differ only
by an infinitesimal amount.

As the wire is uniform, the mass per unit length

of the wire is M
π R

 ⋅ The mass of the element is,

therefore,

       dm = 


M
π R




 (R dθ) = M

π
 dθ.

The coordinates of the centre of mass are

      X = 1
M

 ∫ x dm = 1
M

 ∫ 
0

π

(R cosθ) 


M
π




 dθ = 0

   and

      Y = 1
M

 ∫ y dm = 1
M

 ∫ 
0

π

(R sinθ) 


M
π




 dθ = 2R

π

The centre of mass is at 


0, 

2R
π




 .

(c) Centre of Mass of a Uniform Semicircular Plate

This problem can be worked out using the result
obtained for the semicircular wire and that any part
of the system (semicircular plate) may be replaced by
a point particle of the same mass placed at the centre
of mass of that part.

Figure (9.9) shows the semicircular plate. We take
the origin at the centre of the semicircular plate, the

X-axis along the straight edge and the Y-axis in the
plane of the plate. Let M be the mass and R be its
radius. Let us draw a semicircle of radius r on the
plate with the centre at the origin. We increase r to
r + dr and draw another semicircle with the same
centre. Consider the part of the plate between the two
semicircles of radii r and r + dr. This part, shown
shaded in figure (9.9), may be considered as a
semicircular wire.

If we take r = 0, the part will be formed near the
centre and if r = R, it will be formed near the edge of
the plate. Thus, if r is varied from 0 to R, the elemental
parts will cover the entire semicircular plate.

We can replace the semicircular shaded part by a
point particle of the same mass at its centre of mass
for the calculation of the centre of mass of the plate.

The area of the shaded part = π rdr. The area of
the plate is π R 2/2. As the plate is uniform, the mass

per unit area is M

π R 
2
/2

 ⋅ Hence the mass of the

semicircular element

       M

π R 
2
/2

 (π r dr) = 2 M rdr

R 
2  ⋅

The y-coordinate of the centre of mass of this wire is
2r/π . The y-coordinate of the centre of mass of the
plate is, therefore,

  Y = 1
M

 ∫ 
0

R

 


2 r
π




 


2 M r

R 
2  dr




 = 

1
M

 ⋅ 4 M

π R 
2 

R 
3

3
 = 

4 R
3 π

 ⋅

The x-coordinate of the centre of mass is zero by
symmetry.

9.3 MOTION OF THE CENTRE OF MASS

Consider two particles A and B of masses m1 and
m2 respectively. Take the line joining A and B as the
X-axis. Let the coordinates of the particles at time t
be x1 and x2. Suppose no external force acts on the
two-particle-system. The particles A and B, however,
exert forces on each other and the particles accelerate
along the line joining them. Suppose the particles are
initially at rest and the force between them is
attractive. The particles will then move along the line
AB as shown in figure (9.10).

The centre of mass at time t is situated at

          X = 
m1x1 + m2x2

m1 + m2

 ⋅

X

Y

r

 R 

r + dr

Figure 9.9

A B

Fm F m1 2
X

Figure 9.10
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As time passes, x1 , x2 change and hence X changes
and the centre of mass moves along the X-axis.
Velocity of the centre of mass at time t is

         VCM  dx
dt

  
m1v1  m2 v2

m1  m2

   (9.6)

The acceleration of the centre of mass is

         aCM  
dVCM

dt
  

m1a1  m2 a2

m1  m2

   (9.7)

Suppose the magnitude of the forces between the
particles is F. As the only force acting on A is F
towards B, its acceleration is a1  F/m1 . The force on
B is –F and hence a2   F/m2

Putting in (9.7),

      aCM  
m1F/m1  m2  F/m2

m1  m2

  0.

That means, the velocity of the centre of mass does
not change with time. But as we assumed, initially the
particles are at rest. Thus, at this instant, v1  v2  0
and from (9.5) VCM  0. Hence the centre of mass
remains fixed and does not change with time.

Thus, if no external force acts on a
two-particle-system and its centre of mass is at rest (say
in the inertial frame A) initially, it remains fixed (in
the inertial frame A) even when the particles
individually move and accelerate. Let us now
generalise this result.

Consider a system of N particles, the ith particle
having a mass mi and the position vector ri with
respect to an inertial frame. Each particle is acted
upon by forces due to all other N  1 particles and
forces due to the sources outside the system. The
acceleration of the ith particle is

   a


i  1
mi

 

   
j  i

 F


ij  F


i
  ext 



 (Newton’s second law)

or, mi a


i  

   
j  i

 F


ij  F


i
   ext 



 .

Here F


ij is the force on the ith particle due to the

jth particle and F


i
  ext  is the vector sum of the forces

acting on the ith particle by the external sources.
Summing over all the particles

       
i

mi a


i   
i  j

  
j

F


ij   
i

F


i
  ext  F

  ext.  (9.8)

The internal forces F


ij add up to zero as they cancel

in pairs F


ij  F


ji  0 by Newton’s third law. F
  ext is the

sum of all the forces acting on all the particles by the
external sources.

Now  
i

mi r


i  M R


CM giving  
i

mi a


i  M a


CM

Putting in (9.8),

             M a


CM  F
 ext .  (9.9)

If the external forces acting on the system add to zero,
aCM  0 and hence the velocity of the centre of mass is
constant. If initially the centre of mass was at rest
with respect to an inertial frame, it will continue to
be at rest with respect to that frame. The individual
particles may go on complicated paths changing their
positions, but the centre of mass will be obtained at
the same position.

If the centre of mass was moving with respect to
the inertial frame at a speed v along a particular
direction, it will continue its motion along the same
straight line with the same speed. Thus, the motion of
the centre of mass of the system is not affected by the
internal forces. If the external forces add up to zero,
the centre of mass has no acceleration.

Example 9.3

   Two charged particles of masses m and 2m are placed
a distance d apart on a smooth horizontal table. Because
of their mutual attraction, they move towards each other
and collide. Where will the collision occur with respect
to the initial positions ?

Solution : As the table is smooth, there is no friction. The
weight of the particles and the normal force balance each
other as there is no motion in the vertical direction.
Thus, taking the two particles as constituting the
system, the sum of the external forces acting on the
system is zero. The forces of attraction between the
particles are the internal forces as we have included both
the particles in the system. Therefore, the centre of mass
of the system will have no acceleration.
Initially, the two particles are placed on the table and
their velocities are zero. The velocity of the centre of
mass is, therefore, zero. As time passes, the particles
move, but the centre of mass will continue to be at the
same place. At the time of collision, the two particles
are at one place and the centre of mass will also be at
that place. As the centre of mass does not move, the
collision will take place at the centre of mass.

The centre of mass will be at a distance 2d/3 from the
initial position of the particle of mass m towards the
other particle and the collision will take place there.

When the external forces do not add up to zero,
the centre of mass is accelerated and the acceleration
is given by equation (9.9)

            a


CM  
F
  ext

M
 

If we have a single particle of mass M on which a
force F

  ext acts, its acceleration would be the same as
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F
→  ext

M
 ⋅ Thus the motion of the centre of mass of a system

is identical to the motion of a single particle of mass
equal to the mass of the given system, acted upon by
the same external forces that act on the system.

To explain this statement, once again consider the
spinning ball of figure (9.1b). The ball is spinning and
at the same time moving under gravity. To find the
motion of the centre of mass of the ball, which is
actually the centre of the ball, we imagine a particle
of mass equal to that of the ball. We throw this particle
with the velocity v, which the centre of mass had at
the time of projection. What is the motion of this single
particle of mass M subjected to the force Mg
downward, thrown initially with velocity v ? It is a
parabolic motion, given by,

        x = vx t,    y = vy t − 1
2
 gt 2. … (9.10)

The centre of the ball exactly traces this curve with
coordinates given by this equation only.

Next, suppose the ball breaks up into two parts
(figure 9.11) because of some internal stress, while
moving along the parabola. The two parts go on two
different parabolae because the velocities of the parts
change at the instant of breaking. Locate the two parts
at some instant t and calculate the position of the
centre of mass of the combination at that instant. It
will be found at the same point on the original
parabola where the centre would have been at the
instant t according to equation (9.10).

9.4 LINEAR MOMENTUM AND ITS
   CONSERVATION PRINCIPLE

The (linear) momentum of a particle is defined as
p
→

 = mv
→
. The momentum of an N-particle system is the

(vector) sum of the momenta of the N particles i.e.,

       P
→

 = ∑ 
i

p
→

i = ∑ 
i

mi v
→

i .

But ∑ 
i

 mi v
→

i = 
d
dt

 ∑ 
i

 mi r
→

i = 
d
dt

 M R
→

CM = M V
→

CM .

Thus,          P
→

 = M V
→

CM . … (9.11)

As we have seen, if the external forces acting on the
system add up to zero, the centre of mass moves with
constant velocity, which means P

→
 = constant. Thus the

linear momentum of a system remains constant (in
magnitude and direction) if the external forces acting
on the system add up to zero. This is known as the
principle of conservation of linear momentum.

Consider a trivial example of a single particle on
which no force acts (imagine a practical situation
where this can be achieved). Looking from an inertial
frame, the particle is moving with uniform velocity and
so its momentum remains constant as time passes.

As a different example, consider a radioactive
nucleus at rest which emits an alpha particle along
the X-axis. Let m and M be the masses of the alpha
particle and the residual nucleus respectively. Take
the entire nucleus as the system. The alpha particle
is ejected from the nucleus because of the forces
between the neutrons and protons of the nucleus (this
is the nuclear force and not gravitational or
electromagnetic). There is no external force acting on
the system and hence its linear momentum should not
change. The linear momentum before the emission was
zero as the nucleus was at rest. After the emission,
the system is broken up into two parts, the alpha
particle and the residual nucleus. If the alpha particle
is emitted with a speed v, the residual nucleus must
recoil in the opposite direction with a speed V, so that

     M V
→

 + m v
→
 = 0   or,  V

→
 = − 

m
M

 v
→
.

9.5 ROCKET PROPULSION

In a rocket, the fuel burns and produces gases at
high temperatures. These gases are ejected out of the
rocket from a nozzle at the backside of the rocket. The
ejecting gas exerts a forward force on the rocket which
helps it in accelerating.

Suppose, a rocket together with its fuel has a mass
M0 at t = 0. Let the gas be ejected at a constant rate

r = − dM
dt

 ⋅ Also suppose, the gas is ejected at a constant

velocity u with respect to the rocket.
At time t, the mass of the rocket together with the

remaining fuel is
           M = M0 − rt.

If the velocity of the rocket at time t is v, the linear
momemtum of this mass M is
           P = Mv = (M0 − rt)v. … (i)

Consider a small time interval ∆t. A mass
∆M = r∆t of the gas is ejected in this time and the

Figure 9.11
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velocity of the rocket becomes v  v. The velocity of
the gas with respect to ground is

v


gas, ground  v


gas, rocket  v


rocket, ground

         u  v
in the forward direction.
The linear momentum of the mass M at t  t is,

       M  M v  v  Mv  u.  (ii)

Assuming no external force on the rocket-fuel
system, from (i) and (ii),

M  M v  v  Mv  u  Mv

or,         M  M v  Mu

or,                v  
Mu

M  M

   or,       
v
t

  
M
t

 
u

M  M
  

ru
M  rt

Taking the limit as t  0,

         
dv
dt

  
ru
M

  
ru

M0  rt
 

This gives the acceleration of the rocket. We see
that the acceleration keeps on increasing as time
passes. If the rocket starts at t  0 and we neglect any
external force such as gravity,

        
0

v

dv  ru  
0

t
dt

M0  rt

or,        v  ru 

 

1
r



 ln 

M0  rt
M0

or,        v  u ln 
M0

M0  rt
 

9.6 COLLISION

Consider the situation shown in figure (9.13). Two
blocks of masses m1 and m2 are moving on the same
straight line on a frictionless horizontal table. The
block m2 , which is ahead of m1 , is going with a speed
v2 smaller than the speed v1 of m1 . A spring is attached
to the rear end of m2 . Since v1 > v2 , the block m1 will
touch the rear of the spring at some instant, say t1 .
Then onwards, the velocity of the left end of the spring
will be equal to the velocity of m1 (as they are in
contact). The velocity of the right end of the spring
will be same as that of m2 (as they are in contact).
Since m1 moves faster than m2 , the length of the

spring will decrease. The spring will be compressed.
As it is compressed, it pushes back both the blocks
with forces kx where x is the compression and k, the
spring constant. This force is in the direction of the
velocity of m2 , hence m2 will accelerate. However, this
is opposite to the velocity of m1 and so m1 will
decelerate. The velocity of the front block A (which was
slower initially) will gradually increase, and the
velocity of the rear block B (which was faster initially)
will gradually decrease. The spring will continue to
become more and more compressed as long as the rear
block B is faster than the front block A. There will be
an instant t1  t1 , when the two blocks will have equal
velocities. At this instant, both the ends of the spring
will move with the same velocity and no further
compression will take place. This corresponds to the
maximum compression of the spring. Thus, “the
spring-compression is maximum when the two blocks
attain equal velocities”.

Now, the spring being already compressed, it
continues to push back the two blocks. Thus, the front
block A will still be accelerated and the rear block B
will still be decelerated. At t1  t1 the velocities were
equal and hence, after t1  t1 the front block will move
faster than the rear block. And so do the ends of the
spring as they are in contact with the blocks. The
spring will thus increase its length. This process will
continue till the spring acquires its natural length, say
at a time t1  t1  t2 . Once the spring regains its
natural length, it stops exerting any force on the
blocks. As the two blocks are moving with different
velocities by this time, the rear one slower, the rear
block will leave contact with the spring and the blocks
will move with constant velocities. Their separation
will go on increasing.

During the whole process, the momentum of the
two-blocks system remains constant. The momentum
before the instant t1 was m1v1  m2v2  P. At time
t1  t1 , the two blocks have equal velocities say V and
we have m1V  m2V  P. After the contact is broken,
the blocks finally attain constant velocities v1 and
v2v2 > v1 and the momentum will be
m1v1  m2v2  P. In fact, take the velocities of the
blocks at any instant, before the collision, during the
collision or after the collision; the momentum will be
equal to P. This is because there is no resultant
external force acting on the system. Note that the
spring being massless, exerts equal and opposite forces
on the blocks.

Next, consider the energy of the system. As there
is no friction anywhere, the sum of the kinetic energy
and the elastic potential energy remains constant. The
gravitational potential energy does not come into the
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picture, as the motion is horizontal. The elastic
potential energy is 1

2
 k x 2 when the spring is

compressed by x. If u1 and u2 are the speeds at this
time, we have,

     
1
2

 m1u1
 2 + 

1
2

 m2u2
 2 + 

1
2

 k x 2 = E

where E is the total energy of the system.

At and before t = t1 , the spring is at its natural length
so that,

          
1
2

 m1v1
 2 + 

1
2

 m2v2
 2 = E. … (i)

At time t = t1 + ∆t1 , u1 = u2 = V and the compression of
the spring is maximum. Thus,

     
1
2

 (m1 + m2) V 2 + 
1
2

 k xmax
 2  = E.

At and after t = t1 + ∆t1 + ∆t2 , the spring acquires its
natural length, so that,

        
1
2

 m1v1′ 
2 + 

1
2

 m2v2′ 
2 = E. … (ii)

From (i) and (ii),

   
1
2

 m1v1
 2 + 

1
2

 m2v2
 2 = 

1
2

 m1v1′ 
2 + 

1
2

 m2v2′ 
2.

The kinetic energy before the collision is the same as
the kinetic energy after the collision. However, we can
not say that the kinetic energy remains constant
because it changes as a function of time, during the
interval t1 to t1 + ∆t1 + ∆t2 .

Example 9.4

   Each of the blocks shown in figure (9.14) has mass 1 kg.
The rear block moves with a speed of 2 m/s towards the
front block kept at rest. The spring attached to the front
block is light and has a spring constant 50 N/m. Find
the maximum compression of the spring.

Solution : Maximum compression will take place when the
blocks move with equal velocity. As no net external force
acts on the system of the two blocks, the total linear
momentum will remain constant. If V is the common
speed at maximum compression, we have,

      (1 kg) (2 m/s) = (1 kg) V + (1 kg)V

or,            V = 1 m/s.

Initial kinetic energy = 
1
2

 (1 kg) (2 m/s)2 = 2 J

Final kinetic energy

         = 1
2
 (1 kg) (1 m/s) 2 + 1

2
 (1 kg) (1 m/s) 2

         = 1 J.

The kinetic energy lost is stored as the elastic energy in
the spring.

Hence, 1
2
 (50 N/m) x 2 = 2 J − 1 J = 1 J

or,            x = 0.2 m.

Almost similar is the situation when two balls
collide with each other and no spring is put between
them (figure 9.15). At the instant they come into
contact, the rear ball has a larger velocity v1 and the
front ball has a smaller velocity v2. But the surfaces
in contact must move equal distance in any time
interval as long as they remain in contact. The balls
have to be deformed at the contact.

 

The deformed balls push each other and the
velocities of the two balls change. The total kinetic
energy of the two balls decreases as some energy is
converted into the elastic potential energy of the
deformed balls. The deformation is maximum (and the
kinetic energy minimum) when the two balls attain
equal velocities. Total momentum of the balls remains
constant. The behaviour of the balls after this depends
on the nature of the materials of the balls. If the balls
are perfectly elastic, forces may develop inside them
so that the balls try to regain their original shapes. In
this case, the balls continue to push each other, the
velocity of the front ball increases while that of the
rear ball decreases and thus the balls separate. After
separation, the balls regain their original shapes so
that the elastic potential energy is completely
converted back into kinetic energy. Thus, although the
kinetic energy is not constant, the initial kinetic energy
is equal to the final kinetic energy. Such a collision is
called an elastic collision.

On the contrary, if the materials of the balls are
perfectly inelastic, the balls have no tendency to regain
their original shapes after maximum deformation. As
a result, they do not push each other and continue to
move with the common velocity with their deformed
shapes. The kinetic energy decreases at the time of
deformation and thereafter remains constant at this
decreased value. Such a collision is called an inelastic
collision.

Figure 9.14

v1 v2

Figure 9.15
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If the material is partially elastic, the balls try to
regain their original shapes, they push each other,
even after maximum deformation. The velocities
further change, the balls separate but the shapes are
not completely recovered. Some energy remains inside
the deformed ball. The final kinetic energy is,
therefore, less than the initial kinetic energy. But the
loss of kinetic energy is not as large as that in the
case of a perfectly inelastic collision.

Thus, for an elastic collision,

     m1v
→

1 + m2v
→

2 = m1v
→

1′ + m2v
→

2′

and  
1
2

 m1v 1
2 + 

1
2

 m2v 2
2 = 

1
2

 m1v1′ 
2 + 

1
2

 m2v 2′ 
2 

⎪
⎪
⎪

⎪
⎪… (9.12)

i.e.,        Kf = Ki .

For an inelastic collision, v
→

1′ = v
→

2′ = V
→

,

       m1v
→

1 + m2v
→

2 = m1V
→

 + m2V
→

… (9.13)

and        Kf < Ki.

For a partially elastic collision,
    m1 v

→
1 + m2 v

→
2 = m1 v

→
1′ + m2 v

→
2′

       Kf < Ki ,   Δ K = Ki − Kf

is the loss of kinetic energy. It is less than that in the
case of a perfectly inelastic collision. For one
dimensional collision (head-on collision) the vector sign
may be removed.

9.7 ELASTIC COLLISION IN ONE DIMENSION

Consider two elastic bodies A and B moving along
the same line (figure 9.16). The body A has a mass
m1 and moves with a velocity v1 towards right and the
body B has a mass m2 and moves with a velocity v2 in
the same direction. We assume v1 > v2 so that the two
bodies may collide. Let v1′ and v2′ be the final velocities
of the bodies after the collision. The total linear
momentum of the two bodies remains constant, so that,
       m1v1 + m2v2 = m1v1′ + m2v2′ … (i)

   or, m1v1 − m1v1′ = m2v2′ − m2v2

   or,    m1 (v1 − v1′) = m2 (v2′ − v2). … (ii)

Also, since the collision is elastic, the kinetic energy
before the collision is equal to the kinetic energy after
the collision. Hence,

   
1
2

 m1v1
 2 + 

1
2

 m2v2
 2 = 

1
2

 m1v1′ 
2 + 

1
2

 m2v 2′ 
2

   or,    m1v1
 2 − m1v1′ 

2 = m2v2′ 
2 − m2v2

 2

   or,     m1 (v1
 2 − v1′ 

2) = m2 (v2′ 
2 − v2

 2). … (iii)

Dividing (iii) by (ii),
            v1 + v1′ = v2′ + v2

   or,        v1 − v2 = v2′ − v1′. … (iv)

Now, (v1 − v2) is the rate at which the separation
between the bodies decreases before the collision.
Similarly, (v2′ − v1′) is the rate of increase of separation
after the collision. So the equation (iv) may be written
as

Velocity of separation (after collision)

   = Velocity of approach (before collision). … (9.14)

This result is very useful in solving problems
involving elastic collision. The final velocities v1′ and
v2′ may be obtained from equation (i) and (iv). Multiply
equation (iv) by m2 and subtract from equation (i).

    2 m2v2 + (m1 − m2) v1 = (m1 + m2) v1′

   or,   v1′ = 
(m1 − m2)
m1 + m2

 v1 + 
2 m2

m1 + m2
 v2 . … (9.15)

Now multiply equation (iv) by m1 and add to
equation (i),
       2 m1v1 − (m1 − m2) v2 = (m2 + m1) v2′

   or,     v′2 = 
2m1 v1

m1 + m2
 − 

(m1 − m2)v2

m1 + m2
 ⋅ … (9.16)

Equations (9.15) and (9.16) give the final velocities
in terms of the initial velocities and the masses.

Special cases :

(a) Elastic collision between a heavy body and a light body :

Let m1 >> m2 . A heavy body hits a light body from
behind.

We have, 

        
m1 − m2

m1 + m2
 ≈ 1,   

2 m2

m1 + m2
 ≈ 0

and 
2 m1

m1 + m2
 ≈ 2.

With these approximations the final velocities of
the bodies are, from (9.15) and (9.16),

         v1′ ≈ v1 and v2′ ≈ 2v1 − v2 .

The heavier body continues to move with almost
the same velocity. If the lighter body were kept at rest
v2 = 0, v2′ = 2v1 which means the lighter body, after
getting a push from the heavier body will fly away
with a velocity double the velocity of the heavier body.

Next suppose m2 >> m1. A light body hits a heavy
body from behind.
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We have,

             
m1 − m2

m1 + m2

 ≈ − 1

          
2 m2

m1 + m2

 ≈ 2

and         
2 m1

m1 + m2

 ≈ 0

The final velocities of the bodies are, from (9.15)
and (9.16),
        v1′ ≈ − v1 + 2v2   and   v2′ ≈ v2 .

The heavier body continues to move with almost
the same velocity, the velocity of the lighter body
changes. If the heavier body were at rest, v2 = 0 then
v1′ = − v1 , the lighter body returns after collision with
almost the same speed. This is the case when a ball
collides elastically with a fixed wall and returns with
the same speed.

(b) Elastic collision of two bodies of equal mass :

Putting m1 = m2 in equation (9.15) and (9.16)

        v1′ = v2  and  v2′ = v1 .

When two bodies of equal mass collide elastically, their
velocities are mutually interchanged.

9.8 PERFECTLY INELASTIC COLLISION
   IN ONE DIMENSION

Final Velocity

When perfectly inelastic bodies moving along the
same line collide, they stick to each other. Let m1 and
m2 be the masses, v1 and v2 be their velocities before
the collision and V be the common velocity of the
bodies after the collision. By the conservation of linear
momentum,

     m1v1 + m2v2 = m1V + m2V

   or,          V = 
m1v1 + m2v2

m1 + m2
 ⋅ … (i)

Loss in Kinetic Energy

The kinetic energy before the collision is

         
1
2

 m1v1
 2 + 

1
2

 m2v2
 2

and that after the collision is 1
2
 (m1 + m2)V 2. Using

equation (i), the loss in kinetic energy due to the
collision is

    
1
2

 m1v1
 2 + 

1
2

 m2v2
 2 − 

1
2

 (m1 + m2) V 2

   = 
1
2

 
⎡
⎢
⎣
m1v1

 2 + m2v2
 2 − 

(m1v1 + m2v2) 
2

m1 + m2

⎤
⎥
⎦

     = 
1
2

 
⎡
⎢
⎣

m1m2 (v1
 2 + v2

 2 − 2v1v2)
m1 + m2

⎤
⎥
⎦

   = 
m1m2 (v1 − v2) 

2

2 (m1 + m2)
 ⋅

We see that the loss in kinetic energy is positive.

Example 9.5

   A cart A of mass 50 kg moving at a speed of 20 km/h
hits a lighter cart B of mass 20 kg moving towards it at
a speed of 10 km/h. The two carts cling to each other.
Find the speed of the combined mass after the collision.

Solution : This is an example of inelastic collision. As the
carts move towards each other, their momenta have
opposite sign. If the common speed after the collision is
V, momentum conservation gives
  (50 kg) (20 km/h) – (20 kg) (10 km/h) = (70 kg) V

or            V = 80
7

 km/h.

9.9 COEFFICIENT OF RESTITUTION

We have seen that for a perfectly elastic collision
velocity of separation = velocity of approach

and for a perfectly inelastic collision
velocity of separation = 0.

In general, the bodies are neither perfectly elastic nor
perfectly inelastic. In that case we can write

velocity of separation = e (velocity of approach),
where 0 < e < 1. The constant e depends on the
materials of the colliding bodies. This constant is
known as coefficient of restitution. If e = 1, the collision
is perfectly elastic and if e = 0, the collision is perfectly
inelastic.

Example 9.6

   A block of mass m moving at speed v collides with
another block of mass 2 m at rest. The lighter block
comes to rest after the collision. Find the coefficient
of restitution.

Solution : Suppose the second block moves at speed v′
towards right after the collision. From the principle of
conservation of momentum,
mv = 2mv′   or   v′ = v/2.

Hence, the velocity of separation = v/2 and the velocity
of approach = v. By definition,

     e = 
velocity  of  the  separation 

velocity  of  approach
 = 

v/2
v

 = 
1
2

 ⋅

9.10 ELASTIC COLLISION IN TWO DIMENSIONS

Consider two objects A and B of mass m1 and m2

kept on the X-axis (figure 9.17). Initially, the object
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B is at rest and A moves towards B with a speed
u1 . If the collision is not head-on (the force during the
collision is not along the initial velocity), the objects
move along different lines. Suppose the object A moves
with a velocity v

→
1 making an angle θ with the X-axis

and the object B moves with a velocity v
→

2 making an
angle Φ with the same axis. Also, suppose v

→
1 and v

→
2

lie in X-Y plane. Using conservation of momentum in
X and Y directions, we get
       m1u1 = m1v1 cosθ + m2v2 cosΦ … (i)

   and     0 = m1v1 sinθ − m2v2 sinΦ. … (ii)

If the collision is elastic, the final kinetic energy is
equal to the initial kinetic energy. Thus,

      
1
2

 m1u1
 2 = 

1
2

 m1v1
 2 + 

1
2

m2v2
 2 . … (iii)

We have four unknowns v1,  v2,  θ  and  Φ to describe
the final motion whereas there are only three relations.
Thus, the final motion cannot be uniquely determined
with this information.

In fact, the final motion depends on the angle
between the line of force during the collision and the
direction of initial velocity. The momentum of each
object must be individually conserved in the direction
perpendicular to the force. The motion along the line
of force may be treated as a one-dimensional collision.

9.11 IMPULSE AND IMPULSIVE FORCE

When two bodies collide, they exert forces on each
other while in contact. The momentum of each body is
changed due to the force on it exerted by the other.
On an ordinary scale, the time duration of this contact
is very small and yet the change in momentum is
sizeable. This means that the magnitude of the force
must be large on an ordinary scale. Such large forces
acting for a very short duration are called impulsive
forces. The force may not be uniform while the contact
lasts.

The change in momentum produced by such an
implusive force is

      P
→

f − P
→

i = ∫ 
Pi

Pf

dP
→

 = ∫ 
ti

tf

dP
→

dt
 dt = ∫ 

ti

tf

F
→

 dt. … (9.17) 

This quantity ∫ 
ti

tf

 F
→

 dt is known as the impluse of

the force F
→

 during the time interval ti to tf and is equal
to the change in the momentum of the body on which
it acts. Obviously, it is the area under the F − t curve
for one-dimensional motion (figure 9.18).

Worked Out Examples

 1. Three particles of masses 0.50 kg, 1.0 kg and 1.5 kg are

placed at the three corners of a right-angled triangle of

sides 3.0 cm, 4.0 cm and 5.0 cm as shown in figure

(9-W1). Locate the centre of mass of the system.

Solution : Let us take the 4.0 cm line as the X-axis and
the 3.0 cm line as the Y-axis. The coordinates of the
three particles are as follows :

m x y

0.50 kg 0 0

1.0 kg 4.0 cm 0

1.5 kg 0 3.0 cm

The x-coordinate of the centre of mass is 

   X = 
m1 x1 + m2 x2 + m3 x3

m1 + m2 + m3

     = 
(0.50 kg) . 0 + (1.0 kg) . (4.0 cm) + (1.5 kg) . 0

0.50 kg + 1.0 kg + 1.5 kg

X

Y

A B

u1

X

A

B

1v

v2

Figure 9.17

Area = 
P � P

t f

if

i t

F

t

Figure 9.18

4.0 cm

5.0 cm3.0 cm
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     = 
4 kg–cm

3 kg
 = 1.3 cm.

The y-coordinate of the centre of mass is

   Y = 
m1 y1 + m2 y2 + m3 y3

m1 + m2 + m3

     = 
(0.50 kg) . 0 + (1.0 kg) . 0 + (1.5 kg) (3.0 cm)

0.50 kg + 1.0 kg + 1.5 kg

     = 
4.5 kg–cm

3 kg
 = 1.5 cm.

Thus, the centre of mass is 1.3 cm right and 1.5 cm
above the 0.5 kg particle.

 2. Half of the rectangular plate shown in figure (9-W2) is
made of a material of density ρ1  and the other half of
density ρ2 . The length of the plate is L. Locate the centre
of mass of the plate.

Solution : The centre of mass of each half is located at the
geometrical centre of that half. Thus, the left half may
be replaced by a point particle of mass Kρ1 placed at C1

and the right half may be replaced by a point particle
of mass Kρ2 placed at C2 . This replacement is for the
specific purpose of locating the combined centre of mass.
Take the middle point of the left edge to be the origin.
The x-coordinate of C1 is L/4 and that of C2 is 3L/4.
Hence, the x-coordinate of the centre of mass is

     X = 
(Kρ1) 

L
4

 + (Kρ2) 
3L
4

Kρ1 + Kρ2

       = 
(ρ1 + 3ρ2)
4(ρ1 + ρ2)

 L.

The combined centre of mass is this much to the right
of the assumed origin.

 3. The density of a linear rod of length L varies as
ρ = A + Bx where x is the distance from the left end.
Locate the centre of mass.

Solution : Let the cross-sectional area be α. The mass of
an element of length dx located at a distance x away
from the left end is (A + Bx) α dx. The x-coordinate of
the centre of mass is given by

    XCM = 
∫ x dm

∫ dm
 = 

∫ 
0

L

x (A + Bx) α dx

∫ 
0

L

(A + Bx) α dx

       = 
A L

2

2
 + B 

L3

3

AL + B 
L 2

2

 = 
3 A L + 2 B L 2

3(2A + B L)
 ⋅

 4. A cubical block of ice of mass m and edge L is placed in
a large tray of mass M. If the ice melts, how far does the
centre of mass of the system “ice plus tray” come down ?

Solution : Consider figure (9-W4). Suppose the centre of
mass of the tray is a distance x1 above the origin and
that of the ice is a distance x2 above the origin. The
height of the centre of mass of the ice-tray system is

            x = 
m x2 + M x1

m + M
 ⋅

When the ice melts, the water of mass m spreads on the
surface of the tray. As the tray is large, the height of
water is negligible. The centre of mass of the water is
then on the surface of the tray and is at a distance
x2 − L/2 above the origin. The new centre of mass of the
ice-tray system will be at the height

          x ′ = 

m 

x2 − 

L
2




 + M x1

m + M
 ⋅

The shift in the centre of mass = x − x ′ = m L
2 (m + M)

 ⋅

 5. Consider a two-particle system with the particles having
masses m1 and m2 . If the first particle is pushed towards
the centre of mass through a distance d, by what distance
should the second particle be moved so as to keep the
centre of mass at the same position ?

Solution : Consider figure (9-W5). Suppose the distance of
m1 from the centre of mass C is x1 and that of m2 from
C is x2 . Suppose the mass m2 is moved through a
distance d′ towards C so as to keep the centre of mass
at C.

O

 L 

1 2

C1  C  2

Figure 9-W2

dxO

 x 

Figure 9-W3

O

x1
x2

Figure 9-W4

C

 x  
m

1  x  
m

 d 

1 2

d

2 

Figure 9-W5
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Then,
               m1 x1 = m2 x2 … (i)

   and       m1 (x1 − d) = m2 (x2 − d′). … (ii)

Subtracting (ii) from (i)
            m1 d = m2 d′

or,           d′ = 
m1

m2

 d.

 6. A body of mass 2.5 kg is subjected to the forces shown
in figure (9-W6). Find the acceleration of the centre of
mass.

Solution : Take the X and Y axes as shown in the figure.
The x-component of the resultant force is

  Fx = − 6 N + (5 N) cos 37° + (6 N) cos 53° + (4 N) cos 60°

  = − 6 N + (5 N) ⋅ (4/5) + (6 N) ⋅ (3/5) + (4 N) ⋅ (1/2) = 3.6 N.

Similarly, the y-component of the resultant force is
Fy = 5 N sin 37° − (6 N) sin 53° + 4 N sin 60°

= (5 N) ⋅ (3/5) − (6 N) ⋅ (4/5) + (4 N) ⋅ (√3/2) = 1.7 N ⋅
The magnitude of the resultant force is

 F = √Fx 
2 + Fy 

2  = √(3.6 N) 2 + (1.7 N) 2  ≈ 4.0 N.
The direction of the resultant force makes an angle θ
with the X-axis where

          tanθ = 
Fy

Fx
 = 

1.7
3.6

 = 0.47.

The acceleration of the centre of mass is

        aCM = F
M

 = 4.0 N
2.5 kg

 = 1.6 m/s 2

in the direction of the resultant force.

 7. Two blocks of equal mass m are connected by an
unstretched spring and the system is kept at rest on a
frictionless horizontal surface. A constant force F is
applied on one of the blocks pulling it away from the
other as shown in figure (9-W7). (a) Find the position of
the centre of mass at time t. (b) If the extension of the

spring is x0 at time t, find the displacement of the two
blocks at this instant.

Solution : (a) The acceleration of the centre of mass is
given by

             aCM = F
M

 = F
2m

 ⋅

The position of the centre of mass at time t is

             x = 1
2

 aCM t 2 = 
F t 2

4 m
 ⋅

(b) Suppose the displacement of the first block is x1 and
that of the second is x2 . As the centre of mass is at x,
we should have

             x = 
m x1 + m x2

2 m

or,         
F t 2

4 m
 = 

x1 + x2

2

   or,        x1 + x2 = F t 2

2 m
 ⋅ … (i)

The extension of the spring is x2 − x1 . Therefore,

    x2 − x1 = x0 . … (ii)

from (i) and (ii), x1 = 
1
2

 




F t 2

2 m
 − x0





and         x2 = 
1
2

 




F t 2

2 m
 + x0




 .

 8. A projectile is fired at a speed of 100 m/s at an angle of
37° above the horizontal. At the highest point, the
projectile breaks into two parts of mass ratio 1 : 3, the
smaller coming to rest. Find the distance from the
launching point to the point where the heavier piece
lands.

Solution : See figure (9-W8). At the highest point, the
projectile has horizontal velocity. The lighter part comes
to rest. Hence the heavier part will move with increased
horizontal velocity. In vertical direction, both parts have
zero velocity and undergo same acceleration, hence they
will cover equal vertical displacements in a given time.
Thus, both will hit the ground together. As internal
forces do not affect the motion of the centre of mass, the
centre of mass hits the ground at the position where the
original projectile would have landed. The range of the
original projectile is

     xCM = 
2 u 2 sinθ cosθ

g
 = 

2 × 10 4 × 
3
5

 × 
4
5

10
 m

                   = 960 m.

Y

X

6N

4N

60°6N

5N

37°

53°

Figure 9-W6

m
k F

m

Figure 9-W7

37°

Figure 9-W8

Centre of Mass, Linear momentum, Collision 151



The centre of mass will hit the ground at this position.
As the smaller block comes to rest after breaking, it falls
down vertically and hits the ground at half of the range
i.e., at x = 480 m. If the heavier block hits the ground at
x2 , then

          xCM = 
m1 x1 + m2 x2

m1 + m2

or,       960 m = 

M
4

 × 480 m + 
3 M

4
 × x2

M
or,            x2 = 1120 m.

 9. A block of mass M is placed on the top of a bigger block
of mass 10 M as shown in figure (9-W9). All the surfaces
are frictionless. The system is released from rest. Find
the distance moved by the bigger block at the instant the
smaller block reaches the ground.

Solution : If the bigger block moves towards right by a
distance X, the smaller block will move towards left by
a distance (2.2 m – X).  Taking the two blocks together
as the system, there is no horizontal external force on
it. The centre of mass, which was at rest initially, will
remain at the same horizontal position.
Thus,

         M (2.2 m − X) = 10 MX

or,             2.2 m = 11 X

or,               X = 0.2 m.

10. The hero of a stunt film fires 50 g bullets from a machine
gun, each at a speed of 1.0 km/s. If he fires 20 bullets
in 4 seconds, what average force does he exert against
the machine gun during this period ?

Solution : The momentum of each bullet

     = (0.050 kg) (1000 m/s) = 50 kg-m/s.

The gun is imparted this much of momentum by each
bullet fired. Thus, the rate of change of momentum of
the gun

         = 
(50 kg–m/s) × 20

4 s
 = 250 N

In order to hold the gun, the hero must exert a force of
250 N against the gun.

11. A block moving horizontally on a smooth surface with a
speed of 20 m/s bursts into two equal parts continuing

in the same direction. If one of the parts moves at 30 m/s,
with what speed does the second part move and what is
the fractional change in the kinetic energy ?

Solution : There is no external force on the block. Internal
forces break the block in two parts. The linear
momentum of the block before the break should,
therefore, be equal to the linear momentum of the two
parts after the break. As all the velocities are in same
direction, we get,

       M (20 m/s) = 
M
2

 (30 m/s) + 
M
2

 v

where v is the speed of the other part. From this
equation v = 10 m/s. The change in kinetic energy is

    
1
2

 
M
2

 (30 m/s) 2 + 
1
2

 
M
2

 (10 m/s) 2 − 
1
2

 M (20 m/s) 2 

      = 
M
2

 (450 + 50 − 400) m 2

s 2  = 



50 

m 2

s 2




 M.

Hence, the fractional change in the kinetic energy

           = 

M 



50 

m 2

s 2  




1
2

 M (20 m/s) 2
 = 

1
4

 ⋅

12. A car of mass M is moving with a uniform velocity v on
a horizontal road when the hero of a Hindi film drops
himself on it from above. Taking the mass of the hero to
be m, what will be the velocity of the car after the event ?

Solution : Consider the car plus the hero as the system.
In the horizontal direction, there is no external force.
Since the hero has fallen vertically, so his initial
horizontal momentum = 0.

Initial horizontal momemtum of the system = Mv
towards right.

Finally the hero sticks to the roof of the car, so they
move with equal horizontal velocity say V. Final
horizontal momentum of the system

             = (M + m) V

Hence, M v = (M + m) V

or, V = 
M v

M + m
 ⋅

13. A space shuttle, while travelling at a speed of 4000 km/h
with respect to the earth, disconnects and ejects a module
backward, weighing one fifth of the residual part. If the
shuttle ejects the disconnected module at a speed of
100 km/h with respect to the state of the shuttle before
the ejection, find the final velocity of the shuttle.

Solution : Suppose the mass of the shuttle including the
module is M. The mass of the module will be M/6. The
total linear momentum before disconnection
             = M (4000 km/h).

M

10 M

 2.2 m 

Figure 9-W9
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The velocity of the ejected module with respect to the earth
= its velocity with respect to the shuttle + the velocity
of the shuttle with respect to the earth
      = − 100 km/h + 4000 km/h = 3900 km/h .

If the final velocity of the shuttle is V then the total
final linear momentum 

         = 
5M
6

 V + 
M
6

 × 3900 km/h.

By the principle of conservation of linear momentum,

    M (4000 km/h) = 
5M
6

 V + 
M
6

 × 3900 km/h

or,            V = 4020 km/h .

14. A boy of mass 25 kg stands on a board of mass 10 kg
which in turn is kept on a frictionless horizontal ice
surface. The boy makes a jump with a velocity component
5 m/s in a horizontal direction with respect to the ice.
With what velocity does the board recoil ? With what rate
are the boy and the board separating from each other ?

Solution : Consider the “board + boy” as a system. The
external forces on this system are (a) weight of the
system and (b) normal contact force by the ice surface.
Both these forces are vertical and there is no external
force in horizontal direction. The horizontal component
of linear momentum of the “board + boy” system is,
therefore, constant.
If the board recoils at a speed v,

        0 = (25 kg) × (5 m/s) − (10 kg)v

or,       v = 12.5 m/s.

The boy and the board are separating with a rate

     5 m/s + 12.5 m/s = 17.5 m/s.

15. A man of mass m is standing on a platform of mass M
kept on smooth ice. If the man starts moving on the
platform with a speed v relative to the platform, with
what velocity relative to the ice does the platform recoil ?

Solution : Consider the situation shown in figure ( 9-W10).
Suppose the man moves at a speed w towards right and
the platform recoils at a speed V towards left, both
relative to the ice. Hence, the speed of the man relative
to the platform is V + w. By the question,

            V + w = v,  or  w = v − V. … (i)

Taking the platform and the man to be the system, there
is no external horizontal force on the system. The linear

momentum of the system remains constant. Initially,
both the man and the platform were at rest. Thus,

               0 = MV − mw

   or,      MV = m (v − V) [Using (i)]

or,       V = 
m v

M + m
 ⋅

16. A ball of mass m, moving with a velocity v along X-axis,
strikes another ball of mass 2m kept at rest. The first
ball comes to rest after collision and the other breaks into
two equal pieces. One of the pieces starts moving along
Y-axis with a speed v1 . What will be the velocity of the
other piece ?

Solution : The total linear momentum of the balls before
the collision is mv along the X-axis. After the collision,
momentum of the first ball = 0, momentum of the first
piece = m v1 along the Y-axis and momentum of the
second piece = m v2 along its direction of motion where
v2 is the speed of the second piece. These three should
add to mv along the X-axis, which is the initial
momentum of the system.

Taking components along the X-axis,

               m v2 cosθ = m v … (i)

and taking components along the Y-axis,

              m v2 sinθ = m v1 . … (ii)

From (i) and (ii),

      v2 = √v 2 + v1
 2   and  tanθ = v1 /v.

17. A bullet of mass 50 g is fired from below into the bob of
mass 450 g of a long simple pendulum as shown in figure
(9-W12). The bullet remains inside the bob and the bob
rises through a height of 1.8 m. Find the speed of the
bullet. Take g = 10 m/s 2.

w

V

Figure 9-W10
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Solution : Let the speed of the bullet be v. Let the common
velocity of the bullet and the bob, after the bullet is
embedded into the bob, is V. By the principle of
conservation of linear momentum,

         V  
0.05 kgv

0.45 kg  0.05 kg
  

v
10

 

The string becomes loose and the bob will go up with a
deceleration of g  10 m/s 2. As it comes to rest at a

height of 1.8 m, using the equation v 2  u2  2ax ,

           1.8 m  
v/10 2

2  10 m/s 2

or,             v  60 m/s.

18. A light spring of spring constant k is kept compressed
between two blocks of masses m and M on a smooth
horizontal surface (figure 9-W13). When released, the
blocks acquire velocities in opposite directions. The spring
loses contact with the blocks when it acquires natural
length. If the spring was initially compressed through a
distance x, find the final speeds of the two blocks.

Solution : Consider the two blocks plus the spring to be
the system. No external force acts on this system in
horizontal direction. Hence, the linear momentum will
remain constant. As the spring is light, it has no linear
momentum. Suppose the block of mass M moves with a
speed V and the other block with a speed v after losing
contact with the spring. As the blocks are released from
rest, the initial momentum is zero. The final momentum
is MV  mv towards right. Thus,

         MV  mv  0     or,    V  
m
M

 v.  (i)

Initially, the energy of the system  
1
2

 kx 2.

Finally, the energy of the system  
1
2

 mv 2  
1
2

 MV 2.

As there is no friction,

             
1
2

 mv 2  
1
2

 MV 2  
1
2

 kx 2.  (ii)

Using (i) and (ii),

      mv 2 

1  m

M



  k x 2

or,            v  kM
m M  m

 x

and           V  km
M M  m

 x.

19. A block of mass m is connected to another block of mass
M by a massless spring of spring constant k. The blocks
are kept on a smooth horizontal plane. Initially, the
blocks are at rest and the spring is unstretched when a
constant force F starts acting on the block of mass M to
pull it. Find the maximum extension of the spring.

Solution : Let us take the two blocks plus the spring as
the system. The centre of mass of the system moves with

an acceleration a  F
m  M

  Let us work from a reference

frame with its origin at the centre of mass. As this frame
is accelerated with respect to the ground we have to
apply a pseudo force ma towards left on the block of
mass m and Ma towards left on the block of mass M.
The net external force on m is

        F1  ma  
mF

m  M
 towards left

and the net external force on M is

   F2  F  Ma   F  
MF

m  M
  

mF
m  M

 towards right.

The situation from this frame is shown in figure
(9-W14b). As the centre of mass is at rest in this frame,
the blocks move in opposite directions and come to
instantaneous rest at some instant. The extension of the
spring will be maximum at this instant. Suppose the left
block is displaced through a distance x1 and the right
block through a distance x2 from the initial positions.
The total work done by the external forces F1 and F2 in
this period are

       W  F1 x1  F2 x2  
mF

m  M
 x1  x2.

This should be equal to the increase in the potential
energy of the spring as there is no change in the kinetic
energy. Thus,

mF
m  M

 x1  x2  
1
2

 k x1  x2 
2

or,    x1  x2  
2 mF

k m  M
 

This is the maximum extension of the spring.

20. The two balls shown in figure (9-W15) are identical, the
first moving at a speed v towards right and the second
staying at rest. The wall at the extreme right is fixed.
Assume all collisions to be elastic. Show that the speeds
of the balls remain unchanged after all the collisions
have taken place.
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Solution : 1st collision : As the balls have equal mass and
make elastic collision, the velocities are interchanged.
Hence, after the first collision, the ball A comes to rest
and the ball B moves towards right at a speed v.

2nd collision : The ball B moving with a speed v, collides
with the wall and rebounds. As the wall is rigid and
may be taken to be of infinite mass, momentum conser-
vation gives no useful result. Velocity of separation
should be equal to the velocity of approach. Hence, the
ball rebounds at the same speed v towards left.

3rd collision : The ball B moving towards left at the
speed v again collides with the ball A kept at rest. As
the masses are equal and the collision is elastic, the
velocities are interchanged. Thus, the ball B comes to
rest and the ball A moves towards left at a speed v. No
further collision takes place. Thus, the speeds of the
balls remain the same as their initial values.

21. A block of mass m moving at a velocity v collides head
on with another block of mass 2m at rest. If the coefficient
of restitution is 1/2, find the velocities of the blocks after
the collision.

Solution : Suppose after the collision the block of mass
m moves at a velocity u1 and the block of mass 2m moves
at a velocity u2 . By conservation of momentum,

           mv  mu1  2mu2 .  (i)

The velocity of separation is u2  u1 and the velocity of
approach is v.

    So,           u2  u1  v/2.  (ii)

From (i) and (ii), u1  0 and u2  v/2.

22. A block of mass 1.2 kg moving at a speed of 20 cm/s
collides head-on with a similar block kept at rest. The
coefficient of restitution is 3/5. Find the loss of kinetic
energy during the collision.

Solution : Suppose the first block moves at a speed v1 and
the second at v2 after the collision. Since the collision is
head-on, the two blocks move along the original direction
of motion of the first block.
By conservation of linear momentum,

    1.2 kg 20 cm/s  1.2 kg v1  1.2 kg v2

   or,         v1  v2  20 cm/s.  (i)

The velocity of separation is v2  v1 and the velocity of
approach is 20 cm/s. As the coefficient of restitution is
3/5, we have,

         v2  v1  3/5  20 cm/s  12 cm/s.  (ii)

By (i) and (ii),

       v1  4 cm/s  and  v2  16 cm/s.

The loss in kinetic energy is

 
1
2

 1.2 kg[20 cm/s 2  4 cm/s 2  16 cm/s 2]

   0.6 kg [0.04 m 2/s 2  0.0016 m 2/s 2  0.0256 m 2/s 2]

  0.6 kg 0.0128 m 2/s 2  7.7  10  3 J.

23. A ball of mass m hits the floor with a speed v making
an angle of incidence  with the normal. The coefficient
of restitution is e. Find the speed of the reflected ball and
the angle of reflection of the ball.

Solution : See figure (9-W16). Suppose the angle of
reflection is  and the speed after the collision is v. The
floor exerts a force on the ball along the normal during
the collision. There is no force parallel to the surface.
Thus, the parallel component of the velocity of the ball
remains unchanged. This gives

              v sin  v sin.  (i)

For the components normal to the floor,

the velocity of separation  v cos

and the velocity of approach  v cos.

   Hence,       v cos  e v cos.  (ii)

From (i) and (ii),

         v  v sin 2  e 2 cos 2

and     tan  
tan

e
 

For elastic collision, e  1 so that      and   v  v.

24. A block of mass m and a pan of equal mass are connected
by a string going over a smooth light pulley as shown in
figure (9-W17). Initially the system is at rest when a
particle of mass m falls on the pan and sticks to it. If
the particle strikes the pan with a speed v find the speed
with which the system moves just after the collision.

Solution : Let the required speed be V.

As there is a sudden change in the speed of the block,
the tension must change by a large amount during the
collision.
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Let N = magnitude of the contact force between the
particle  and the pan

         T = tension in the string

Consider the impulse imparted to the particle. The force

is N in upward direction and the impulse is ∫ N dt. This

should be equal to the change in its momentum.

   Thus,       ∫ N dt = mv − mV. … (i)

Similarly considering the impulse imparted to the pan,

             ∫ (N − T)dt = mV … (ii)

and that to the block,

                ∫ T dt = mV. … (iii)

Adding (ii) and (iii),

             ∫ N dt = 2 mV.

Comparing with (i),

           mv − mV = 2mV

or,               V = v/3.

QUESTIONS FOR SHORT ANSWER

 1. Can the centre of mass of a body be at a point outside
the body ?

 2. If all the particles of a system lie in X-Y plane, is it
necessary that the centre of mass be in X-Y plane ?

 3. If all the particle of a system lie in a cube, is it neccesary
that the centre of mass be in the cube ?

 4. The centre of mass is defined as R
→

 = 
1
M

 ∑ 

i

mi r
→

i . Suppose

we define “centre of charge” as R
→

C = 
1
Q

 ∑ 

i

qi r
→

i where qi

represents the ith charge placed at r
→

i and Q is the total
charge of the system.
(a) Can the centre of charge of a two-charge system be
outside the line segment joining the charges ?
(b) If all the charges of a system are in X-Y plane, is it
necessary that the centre of charge be in X-Y plane ?
(c) If all the charges of a system lie in a cube, is it
necessary that the centre of charge be in the cube ?

 5. The weight Mg of an extended body is generally shown
in a diagram to act through the centre of mass. Does it
mean that the earth does not attract other particles ?

 6. A bob suspended from the ceiling of a car which is
accelerating on a horizontal road. The bob stays at rest
with respect to the car with the string making an angle
θ with the vertical. The linear momentum of the bob as
seen from the road is increasing with time. Is it a
violation of conservation of linear momentum ? If not,
where is the external force which changes the linear
momentum ?

 7. You are waiting for a train on a railway platform. Your
three-year-old niece is standing on your iron trunk

containing the luggage. Why does the trunk not recoil
as she jumps off on the platform ?

 8. In a head-on collision between two particles, is it
necessary that the particles will acquire a common
velocity at least for one instant ?

 9. A collision experiment is done on a horizontal table kept
in an elevator. Do you expect a change in the results if
the elevator is accelerated up or down because of the
noninertial character of the frame ?

10. Two bodies make an elastic head-on collision on a
smooth horizontal table kept in a car. Do you expect a
change in the result if the car is accelerated on a
horizontal road because of the noninertial character of
the frame ? Does the equation “Velocity of separation =
Velocity of approach” remain valid in an accelerating
car ? Does the equation “final momentum = initial
momentum” remain valid in the accelerating car ?

11. If the total mechanical energy of a particle is zero, is its
linear momentum necessarily zero ? Is it necessarily
nonzero ?

12. If the linear momentum of a particle is known, can you
find its kinetic energy ? If the kinetic energy of a particle
is known can you find its linear momentum ?

13. What can be said about the centre of mass of a uniform
hemisphere without making any calculation ? Will its
distance from the centre be more than r/2 or less than
r/2 ?

14. You are holding a cage containing a bird. Do you have
to make less effort if the bird flies from its position in
the cage and manages to stay in the middle without
touching the walls of the cage ? Does it make a difference
whether the cage is completely closed or it has rods to
let air pass ?

m

m
m

Figure 9-W17
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15. A fat person is standing on a light plank floating on a
calm lake. The person walks from one end to the other
on the plank. His friend sitting on the shore watches
him and finds that the person hardly moves any distance
because the plank moves backward about the same
distance as the person moves on the plank. Explain.

16. A high-jumper successfully clears the bar. Is it possible
that his centre of mass crossed the bar from below it ?
Try it with appropriate figures.

17. Which of the two persons shown in figure (9-Q1) is more
likely to fall down ? Which external force is responsible
for his falling down ?

18. Suppose we define a quantity ‘Linear Momentum’ as
     linear momentum  mass  speed.
The linear momentum of a system of particles is the
sum of linear momenta of the individual particles. Can
we state a principle of conservation of linear momentum
as “linear momentum of a system remains constant if
no external force acts on it” ?

19. Use the definition of linear momentum from the previous
question. Can we state the principle of conservation of
linear momentum for a single particle ?

20. To accelerate a car we ignite petrol in the engine of the
car. Since only an external force can accelerate the
centre of mass, is it proper to say that “the force
generated by the engine accelerates the car” ?

21. A ball is moved on a horizontal table with some velocity.
The ball stops after moving some distance. Which
external force is responsible for the change in the
momentum of the ball ?

22. Consider the situation of the previous problem. Take
“the table plus the ball” as the system. Friction between
the table and the ball is then an internal force. As the
ball slows down, the momentum of the system decreases.
Which external force is responsible for this change in
the momentum ? 

23. When a nucleus at rest emits a beta particle, it is found
that the velocities of the recoiling nucleus and the beta
particle are not along the same straight line. How can
this be possible in view of the principle of conservation
of momentum ?

24. A van is standing on a frictionless portion of a horizontal
road. To start the engine, the vehicle must be set in
motion in the forward direction. How can the persons
sitting inside the van do it without coming out and
pushing from behind ?

25. In one-dimensional elastic collision of equal masses, the
velocities are interchanged. Can velocities in a one-
dimensional collision be interchanged if the masses are
not equal ?

OBJECTIVE I

 1. Consider the following two equations :

          A     R


  
1
M

  

i

mi r


i

and        B  a


CM  
F


M
 

In a noninertial frame
(a) both are correct       (b) both are wrong
(c) A is correct but B is wrong
(d) B is correct but A is wrong.

 2. Consider the following two statements :
(A) Linear momentum of the system remains constant.
(B) Centre of mass of the system remains at rest.
  (a) A implies B and B implies A.
  (b) A does not imply B and B does not imply A.
  (c) A implies B but B does not imply A.
  (d) B implies A but A does not imply B.

 3. Consider the following two statements :
(A) Linear momentum of a system of particles is zero.
(B) Kinetic energy of a system of particles is zero.
  (a) A implies B and B implies A.
  (b) A does not imply B and B does not imply A.

  (c) A implies B but B does not imply A.
  (d) B implies A but A does not imply B.

 4. Consider the following two statements :
(A) The linear momentum of a particle is independent
of the frame of reference.
(B) The kinetic energy of a particle is independent of
the frame of reference.
(a) Both A and B are true.   (b) A is true but B is false.
(c) A is false but B is true.  (d) both A and B are false.

 5. All the particles of a body are situated at a distance R
from  the origin. The distance of the centre of mass of
the body from the origin is
(a)  R      (b)  R      (c) > R      (d)  R.

 6. A circular plate of diameter d is kept in contact with a
square plate of edge d as shown in figure (9-Q2). The
density of the material and the thickness are same
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everywhere. The centre of mass of the composite system
will be
(a) inside the circular plate (b) inside the square plate
(c) at the point of contact   (d) outside the system.

 7. Consider a system of two identical particles. One of the
particles is at rest and the other has an acceleration a

→
.

The centre of mass has an acceleration

(a) zero     (b) 
1
2

 a
→

      (c) a
→

      (d) 2a
→

.

 8. Internal forces can change
(a) the linear momentum but not the kinetic energy
(b) the kinetic energy but not the linear momentum
(c) linear momentum as well as kinetic energy
(d) neither the linear momentum nor the kinetic energy.

 9. A bullet hits a block kept at rest on a smooth horizontal
surface and gets embedded into it. Which of the following
does not change ?
(a) linear momentum of the block
(b) kinetic energy of the block
(c) gravitational potential energy of the block
(d) temperature of the block.

10. A uniform sphere is placed on a smooth horizontal
surface and a horizontal force F is applied on it at a
distance h above the surface. The acceleration of the
centre
(a) is maximum when h = 0
(b) is maximum when h = R
(c) is maximum when h = 2R
(d) is independent of h.

11. A body falling vertically downwards under gravity
breaks in two parts of unequal masses. The centre of
mass of the two parts taken together shifts horizontally
towards

(a) heavier piece        (b) lighter piece
(c) does not shift horizontally
(d) depends on the vertical velocity at the time of
breaking.

12. A ball kept in a closed box moves in the box making
collisions with the walls. The box is kept on a smooth
surface. The velocity of the centre of mass
(a) of the box remains constant
(b) of the box plus the ball system remains constant
(c) of the ball remains constant
(d) of the ball relative to the box remains constant.

13. A body at rest breaks into two pieces of equal masses.
The parts will move
(a) in same direction      (b) along different lines
(c) in opposite directions with equal speeds
(d) in opposite directions with unequal speeds.

14. A heavy ring of mass m is clamped on the periphery of
a light circular disc. A small particle having equal mass
is clamped at the centre of the disc. The system is
rotated in such a way that the centre moves in a circle
of radius r with a uniform speed v. We conclude that an
external force

(a) mv 
2

r
 must be acting on the central particle

(b) 2mv 2

r
 must be acting on the central particle

(c) 2mv 2

r
 must be acting on the system

(d) 2mv 2

r
 must be acting on the ring.

15. The quantities remaining constant in a collision are
(a) momentum, kinetic energy and temperature
(b) momentum and kinetic energy but not temperature
(c) momentum and temperature but not kinetic energy
(d) momentum, but neither kinetic energy nor tempe-
rature.

16. A nucleus moving with a velocity v
→
 emits an α-particle.

Let the velocities of the α-particle and the remaining
nucleus be v

→
1 and v

→
2 and their masses be m1 and m2 .

(a) v
→
,  v

→
1 and v

→
2 must be parallel to each other.

(b) None of the two of v
→
,  v

→
1 and v

→
2 should be parallel

to  each other.
(c) v

→
1 + v

→
2 must be parallel to v

→
.

(d) m1 v
→

1 + m2 v
→

2 must be parallel to v
→
.

17. A shell is fired from a cannon with a velocity V at an
angle θ with the horizontal direction. At the highest
point in its path, it explodes into two pieces of equal
masses. One of the pieces retraces its path to the cannon.
The speed of the other piece immediately after the
explosion is

(a) 3V cosθ   (b) 2V cosθ   (c) 
3
2

 V cosθ    (d) V cosθ.

18. In an elastic collision
(a) the initial kinetic energy is equal to the final kinetic
energy
(b) the final kinetic energy is less than the initial kinetic
energy
(c) the kinetic energy remains constant
(d) the kinetic energy first increases then decreases.

19. In an inelastic collsion
(a) the initial kinetic energy is equal to the final kinetic
energy
(b) the final kinetic energy is less than the initial kinetic
energy
(c) the kinetic energy remains the constant
(d) the kinetic energy first increases then decreases.

OBJECTIVE II

 1. The centre of mass of a system of particles is at the
origin. It follows that
(a) the number of particles to the right of the origin is

equal to the number of particles to the left
(b) the total mass of the particles to the right of the
origin is same as the total mass to the left of the origin

158 Concepts of Physics



(c) the number of particles on X-axis should be equal to
the  number of particles on Y-axis
(d) if there is a particle on the positive X-axis, there
must be at least one particle on the negative X-axis.

 2. A body has its centre of mass at the origin. The
x-coordinates of the particles
(a) may be all positive     (b) may be all negative
(c) may be all non-negative
(d) may be positive for some case and negative in other
cases.

 3. In which of the following cases the centre of  mass of a
rod is certainly not at its centre ?
(a) the density continuously increases from left to right
(b) the density continuously decreases from left to right
(c) the density decreases from left to right upto the
centre  and then increases
(d) the density increases from left to right upto the
centre  and then decreases.

 4. If the external forces acting on a system have zero
resultant, the centre of mass
(a) must not move     (b) must not accelerate 
(c) may move         (d) may accelerate.

 5. A nonzero external force acts on a system of particles.
The velocity and the acceleration of the centre of mass
are found to be v0 and a0 at an instant t. It is possible
that
(a) v0 = 0, a0 = 0          (b) v0 = 0, a0 ≠ 0,
(c) v0 ≠ 0, a0 = 0           (d) v0 ≠ 0, a0 ≠ 0.

 6. Two balls are thrown simultaneously in air. The
acceleration of the centre of mass of the two balls while
in air
(a) depends on the direction of the motion of the balls
(b) depends on the masses of the two balls
(c) depends on the speeds of the two balls
(d) is equal to g.

 7. A block moving in air breaks in two parts and the parts
separate
(a) the total momentum must be conserved

(b) the total kinetic energy must be conserved
(c) the total momentum must change
(d) the total kinetic energy must change.

 8. In an elastic collision
(a) the kinetic energy remains constant
(b) the linear momentum remains constant
(c) the final kinetic energy is equal to the initial kinetic
energy
(d) the final linear momentum is equal to the initial
linear  momentum.

 9. A ball hits a floor and rebounds after an inelastic
collision. In this case
(a) the momentum of the ball just after the collision is
same  as that just before the collision
(b) the mechanical energy of the ball remains the same
during the collision
(c) the total momentum of the ball and the earth is
conserved
(d) the total energy of the ball and the earth remains
the  same.

10. A body moving towards a finite body at rest collides with
it. It is possible that
(a) both the bodies come to rest
(b) both the bodies move after collision
(c) the moving body comes to rest and the stationary
body  starts moving
(d) the stationary body remains stationary, the moving
body  changes its velocity.

11. In a head-on elastic collision of two bodies of equal
masses
(a) the velocities are interchanged
(b) the speeds are interchanged
(c) the momenta are interchanged
(d) the faster body slows down and the slower body
speeds up.

EXERCISES

 1. Three particles of masses 1.0 kg, 2.0 kg and 3.0 kg are
placed at the corners A, B and C respectively of an
equilateral triangle ABC of edge 1 m. Locate the centre
of mass of the system.

 2. The structure of a water molecule is shown in figure
(9-E1). Find the distance of the centre of mass of the
molecule from the centre of the oxygen atom.

 3. Seven homogeneous bricks, each of length L, are
arranged as shown in figure (9-E2). Each brick is
displaced with respect to the one in contact by L/10.
Find the x-coordinate of the centre of mass relative to
the origin shown.

 4. A uniform disc of radius R is put over another uniform
disc of radius 2R of the same thickness and density. The
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peripheries of the two discs touch each other. Locate the
centre of mass of the system.

 5. A disc of radius R is cut out from a larger disc of radius
2R in such a way that the edge of the hole touches the
edge of the disc. Locate the centre of mass of the residual
disc.

 6. A square plate of edge d and a circular disc of diameter
d are placed touching each other at the midpoint of an
edge of the plate as shown in figure (9-Q2). Locate the
centre of mass of the combination, assuming same mass
per unit area for the two plates.

 7. Calculate the velocity of the centre of mass of the system
of particles shown in figure (9-E3).

 8. Two blocks of masses 10 kg and 20 kg are placed on the
X-axis. The first mass is moved on the axis by a distance
of 2 cm. By what distance should the second mass be
moved to keep the position of the centre of mass
unchanged ?

 9. Two blocks of masses 10 kg and 30 kg are placed along
a vertical line. The first block is raised through a height
of 7 cm. By what distance should the second mass be
moved to raise the centre of mass by 1 cm ?

10. Consider a gravity-free hall in which a tray of mass M,
carrying a cubical block of ice of mass m and edge L, is
at rest in the middle (figure 9-E4). If the ice melts, by
what distance does the centre of mass of “the tray plus
the ice” system descend ?

11. Find the centre of mass of a uniform plate having
semicircular inner and outer boundaries of radii R1 and
R2 (figure 9-E5).

12. Mr. Verma (50 kg) and Mr. Mathur (60 kg) are sitting
at the two extremes of a 4 m long boat (40 kg) standing
still in water. To discuss a mechanics problem, they
come to the middle of the boat. Neglecting friction with
water, how far does the boat move on the water during
the process ?

13. A cart of mass M is at rest on a frictionless horizontal
surface and a pendulum bob of mass m hangs from the
roof of the cart (figure 9-E6). The string breaks, the bob
falls on the floor, makes several collisions on the floor
and finally lands up in a small slot made in the floor.
The horizontal distance between the string and the slot
is L. Find the displacement of the cart during this
process.

14. The balloon, the light rope and the monkey shown in
figure (9-E7) are at rest in the air. If the monkey reaches
the top of the rope, by what distance does the balloon
descend ? Mass of the balloon =  M, mass of the
monkey =  m and the length of the rope ascended by the
monkey =  L.

15. Find the ratio of the linear momenta of two particles of
masses 1.0 kg and 4.0 kg if their kinetic energies are
equal.

16. A uranium-238 nucleus, initially at rest, emits an alpha
particle with a speed of 1.4 × 10 7 m/s. Calculate the
recoil speed of the residual nucleus thorium-234. Assume
that the mass of a nucleus is proportional to the mass
number.

17. A man of mass 50 kg starts moving on the earth and
acquires a speed of 1.8 m/s. With what speed does the
earth recoil ? Mass of earth = 6 × 1024 kg.

18. A neutron initially at rest, decays into a proton, an
electron and an antineutrino. The ejected electron has
a momentum of 1.4 × 10 – 26 kg-m/s and the antineutrino

37°

1.0 kg

1.5 m/s

0.50 kg 3.0 m/s

1.5 kg
1.0 m/s

1.0 kg

2.0 m/s

1.2 kg

0.4 m/s

37°

37°

Figure 9-E3

M

L
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m
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R1
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M

m

L

Figure 9-E7
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6.4 × 10 – 27 kg-m/s. Find the recoil speed of the proton
(a) if the electron and the antineutrino are ejected along
the same direction and (b) if they are ejected along
perpendicular directions. Mass of the proton
= 1.67 × 10 – 27 kg.

19. A man of mass M having a bag of mass m slips from
the roof of a tall building of height H and starts falling
vertically (figure 9-E8). When at a height h from the
ground, he notices that the ground below him is pretty
hard, but there is a pond at a horizontal distance x from
the line of fall. In order to save himself he throws the
bag horizontally (with respect to himself) in the direction
opposite to the pond. Calculate the minimum horizontal
velocity imparted to the bag so that the man lands in
the water. If the man just succeeds to avoid the hard
ground, where will the bag land ?

20. A ball of mass 50 g moving at a speed of 2.0 m/s strikes
a plane surface at an angle of incidence 45°. The ball is
reflected by the plane at equal angle of reflection with
the same speed. Calculate (a) the magnitude of the
change in momentum of the ball (b) the change in the
magnitude of the momentum of the ball.

21. Light in certain cases may be considered as a stream of
particles called photons. Each photon has a linear
momentum h/λ where h is the Planck’s constant and λ
is the wavelength of the light. A beam of light of
wavelength λ is incident on a plane mirror at an angle
of incidence θ. Calculate the change in the linear
momentum of a photon as the beam is reflected by the
mirror. 

22. A block at rest explodes into three equal parts. Two
parts start moving along X and Y axes respectively with
equal speeds of 10 m/s. Find the initial velocity of the
third part.

23. Two fat astronauts each of mass 120 kg are travelling
in a closed spaceship moving at a speed of 15 km/s in
the outer space far removed from all other material
objects. The total mass of the spaceship and its contents
including the astronauts is 660 kg. If the astronauts do
slimming exercise and thereby reduce their masses to
90 kg each, with what velocity will the spaceship move ?

24. During a heavy rain, hailstones of average size 1.0 cm
in diameter fall with an average speed of 20 m/s.
Suppose 2000 hailstones strike every square meter of a
10 m × 10 m roof perpendicularly in one second and
assume that the hailstones do not rebound. Calculate
the average force exerted by the falling hailstones on
the roof. Density of a hailstone is 900 kg/m 3.

25. A ball of mass m is dropped onto a floor from a certain
height. The collision is perfectly elastic and the ball
rebounds to the same height and again falls. Find the
average force exerted by the ball on the floor during a
long time interval.

26. A railroad car of mass M is at rest on frictionless rails
when a man of mass m starts moving on the car towards
the engine. If the car recoils with a speed v backward
on the rails, with what velocity is the man approaching
the engine ?

27. A gun is mounted on a railroad car. The mass of the car,
the gun, the shells and the operator is 50 m where m is
the mass of one shell. If the velocity of the shell with
respect to the gun (in its state before firing) is 200 m/s,
what is the recoil speed of the car after the second shot ?
Neglect friction.

28. Two persons each of mass m are standing at the two
extremes of a railroad car of mass M resting on a smooth
track (figure 9-E10). The person on left jumps to the left
with a horizontal speed u with respect to the state of
the car before the jump. Thereafter, the other person
jumps to the right, again with the same horizontal speed
u with respect to the state of the car before his jump.
Find the velocity of the car after both the persons have
jumped off.

29. Figure (9-E11) shows a small block of mass m which is
started with a speed v on the horizontal part of the
bigger block of mass M placed on a horizontal floor. The
curved part of the surface shown is semicircular. All the
surfaces are frictionless. Find the speed of the bigger
block when the smaller block reaches the point A of the
surface.
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30. In a typical Indian Bugghi (a luxury cart drawn by
horses), a wooden plate is fixed on the rear on which
one person can sit. A bugghi of mass 200 kg is moving
at a speed of 10 km/h. As it overtakes a school boy
walking at a speed of 4 km/h, the boy sits on the wooden
plate. If the mass of the boy is 25 kg, what will be the
new velocity of the bugghi ?

31. A ball of mass 0.50 kg moving at a speed of 5.0 m/s
collides with another ball of mass 1.0 kg. After the
collision the balls stick together and remain motionless.
What was the velocity of the 1.0 kg block before the
collision ?

32. A 60 kg man skating with a speed of 10 m/s collides
with a 40 kg skater at rest and they cling to each other.
Find the loss of kinetic energy during the collision.

33. Consider a head-on collision between two particles of
masses m1 and m2. The initial speeds of the particles
are u1 and u2 in the same direction. The collision starts
at t = 0 and the particles interact for a time interval ∆t.
During the collision, the speed of the first particle
varies as

           v(t) = u1 + t
∆t

 (v1 − u1).

Find the speed of the second particle as a function of
time during the collision.

34. A bullet of mass m moving at a speed v hits a ball of
mass M kept at rest. A small part having mass m′ breaks
from the ball and sticks to the bullet. The remaining
ball is found to move at a speed v1 in the direction of
the bullet. Find the velocity of the bullet after the
collision.

35. A ball of mass m moving at a speed v makes a head-on
collision with an identical ball at rest. The kinetic energy
of the balls after the collision is three fourths of the
original. Find the coefficient of restitution.

36. A block of mass 2.0 kg moving at 2.0 m/s collides head
on with another block of equal mass kept at rest.
(a) Find the maximum possible loss in kinetic energy
due to the collision. (b) If the actual loss in kinetic
energy is half of this maximum, find the coefficient of
restitution.

37. A particle of mass 100 g moving at an initial speed u
collides with another particle of same mass kept initially
at rest. If the total kinetic energy becomes 0.2 J after
the collision, what could be the minimum and the
maximum value of u.

38. Two friends A and B (each weighing 40 kg) are sitting
on a frictionless platform some distance d apart. A rolls
a ball of mass 4 kg on the platform towards B which B
catches. Then B rolls the ball towards A and A catches
it. The ball keeps on moving back and forth between A
and B. The ball has a fixed speed of 5 m/s on the
platform. (a) Find the speed of A after he rolls the ball
for the first time. (b) Find the speed of A after he catches
the ball for the first time. (c) Find the speeds of A and
B after the ball has made 5 round trips and is held by
A. (d) How many times can A roll the ball ? (e) Where
is the centre of mass of the system “A + B + ball” at the
end of the nth trip ?

39. A ball falls on the ground from a height of 2.0 m and
rebounds up to a height of 1.5 m. Find the coefficient of
restitution.

40. In a gamma decay process, the internal energy of a
nucleus of mass M decreases, a gamma photon of energy
E and linear momentum E/c is emitted and the nucleus
recoils. Find the decrease in internal energy. 

41. A block of mass 2.0 kg is moving on a frictionless
horizontal surface with a velocity of 1.0 m/s (figure
9-E12) towards another block of equal mass kept at rest.
The spring constant of the spring fixed at one end is 100
N/m. Find the maximum compression of the spring.

42. A bullet of mass 20 g travelling horizontally with a speed
of 500 m/s passes through a wooden block of mass 10.0
kg initially at rest on a level surface. The bullet emerges
with a speed of 100 m/s and the block slides 20 cm on
the surface before coming to rest. Find the friction
coefficient between the block and the surface
(figure 9-E13).

43. A projectile is fired with a speed u at an angle θ above
a horizontal field. The coefficient of restitution of
collision between the projectile and the field is e. How
far from the starting point, does the projectile makes its
second collision with the field ?

44. A ball falls on an inclined plane of inclination θ from a
height h above the point of impact and makes a perfectly
elastic collision. Where will it hit the plane again ?

45. Solve the previous problem if the coefficient of restitution

is e. Use θ = 45°, e = 3
4
 and h = 5 m.

46. A block of mass 200 g is suspended through a vertical
spring. The spring is stretched by 1.0 cm when the block
is in equilibrium. A particle of mass 120 g is dropped
on the block from a height of 45 cm. The particle sticks
to the block after the impact. Find the maximum
extension of the spring. Take g = 10 m/s 2.

1.0 m/s

2.0 kg2.0 kg

Figure 9-E12

500 m/s

10 kg

Figure 9-E13

v

Figure 9-E14

162 Concepts of Physics



47. A bullet of mass 25 g is fired horizontally into a ballistic
pendulum of mass 5.0 kg and gets embedded in it
(figure 9-E14). If the centre of the pendulum rises by a
distance of 10 cm, find the speed of the bullet.

48. A bullet of mass 20 g moving horizontally at a speed of
300 m/s is fired into a wooden block of mass 500 g
suspended by a long string. The bullet crosses the block
and emerges on the other side. If the centre of mass of
the block rises through a height of 20.0 cm, find the
speed of the bullet as it emerges from the block.

49. Two masses m1 and m2 are connected by a spring of
spring constant k and are placed on a frictionless
horizontal surface. Initially the spring is stretched
through a distance x0 when the system is released from
rest. Find the distance moved by the two masses before
they again come to rest.

50. Two blocks of masses m1 and m2 are connected by a
spring of spring constant k (figure 9-E15). The block of
mass m2 is given a sharp impulse so that it acquires a
velocity v0 towards right. Find (a) the velocity of the
centre of mass, (b) the maximum elongation that the
spring will suffer.

51. Consider the situation of the previous problem. Suppose
each of the blocks is pulled by a constant force F instead
of any impulse. Find the maximum elongation that the
spring will suffer and the distances moved by the two
blocks in the process.

52. Consider the situation of the previous problem. Suppose
the block of mass m1 is pulled by a constant force F1 and
the other block is pulled by a constant force F2 . Find
the maximum elongation that the spring will suffer.

53. Consider a gravity-free hall in which an experimenter
of mass 50 kg is resting on a 5 kg pillow, 8 ft above the
floor of the hall. He pushes the pillow down so that it
starts falling at a speed of 8 ft/s. The pillow makes a
perfectly elastic collision with the floor, rebounds and
reaches the experimenter’s head. Find the time elapsed
in the process.

54. The track shown in figure (9-E16) is frictionless. The
block B of mass 2m is lying at rest and the block A of
mass m is pushed along the track with some speed. The
collision between A and B is perfectly elastic. With what
velocity should the block A be started to get the sleeping
man awakened ?

55. A bullet of mass 10 g moving horizontally at a speed of
50√7 m/s strikes a block of mass 490 g kept on a

frictionless track as shown in figure (9-E17). The bullet
remains inside the block and the system proceeds
towards the semicircular track of radius 0.2 m. Where
will the block strike the horizontal part after leaving the
semicircular track ?

56. Two balls having masses m and 2m are fastened to two
light strings of same length l (figure 9-E18). The other
ends of the strings are fixed at O. The strings are kept
in the same horizontal line and the system is released
from rest. The collision between the balls is elastic. (a)
Find the velocities of the balls just after their collision.
(b) How high will the balls rise after the collision ?

57. A uniform chain of mass M and length L is held
vertically in such a way that its lower end just touches
the horizontal floor. The chain is released from rest in
this position. Any portion that strikes the floor comes to
rest. Assuming that the chain does not form a heap on
the floor, calculate the force exerted by it on the floor
when a length x has reached the floor.

58. The blocks shown in figure (9-E19) have equal masses.
The surface of A is smooth but that of B has a friction
coefficient of 0.10 with the floor. Block A is moving at
a speed of 10 m/s towards B which is kept at rest. Find
the distance travelled by B if (a) the collision is perfectly
elastic and (b) the collision is perfectly inelastic. Take g
= 10 m/s 2.

59. The friction coefficient between the horizontal surface
and each of the blocks shown in figure (9-E20) is 0.20.
The collision between the blocks is perfectly elastic. Find
the separation between the two blocks when they come
to rest. Take g = 10 m/s 2.

60. A block of mass m is placed on a triangular block of
mass M, which in turn is placed on a horizontal surface
as shown in figure (9-E21). Assuming frictionless

m

v0

1 2m

Figure 9-E15

h

A

B h

Figure 9-E16

0.2 m

Figure 9-E17

m 2m

O

Figure 9-E18

10 m/s
A B

Figure 9-E19

1.0 m/s
2 kg 4 kg

16 cm

Figure 9-E20
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surfaces find the velocity of the triangular block when
the smaller block reaches the bottom end.

61. Figure (9-E22) shows a small body of mass m placed
over a larger mass M whose surface is horizontal near
the smaller mass and gradually curves to become
vertical. The smaller mass is pushed on the longer one
at a speed v and the system is left to itself. Assume that
all the surfaces are frictionless. (a) Find the speed of the
larger block when the smaller block is sliding on the
vertical part. (b) Find the speed of the smaller mass
when it breaks off the larger mass at height h. (c) Find
the maximum height (from the ground) that the smaller
mass ascends. (d) Show that the smaller mass will again
land on the bigger one. Find the distance traversed by
the bigger block during the time when the smaller block
was in its flight under gravity.

62. A small block of superdense material has a mass of
3 × 10 24 kg. It is situated at a height h (much smaller
than the earth’s radius) from where it falls on the earth’s
surface. Find its speed when its height from the earth’s
surface has reduced to h/2. The mass of the earth is
6 × 10 24 kg.

63. A body of mass m makes an elastic collision with another
identical body at rest. Show that if the collision is not
head-on, the bodies go at right angle to each other after
the collision.

64. A small particle travelling with a velocity v collides
elastically with a spherical body of equal mass and of
radius r initially kept at rest. The centre of this spherical
body is located a distance ρ(< r) away from the direction
of motion of the particle (figure 9-E23). Find the final
velocities of the two particles.

   [Hint : The force acts along the normal to the sphere
through the contact. Treat the collision as one-
dimensional for this direction. In the tangential direction
no force acts and the velocities do not change].

ANSWERS

OBJECTIVE I

 1. (c)  2. (d)  3. (d)  4. (d)  5. (b)  6. (b)
 7. (b)  8. (b)  9. (c) 10. (d) 11. (c) 12. (b)
13. (c) 14. (c) 15. (d) 16. (d) 17. (a) 18. (a)
19. (b)

OBJECTIVE II

 1. none   2. (c), (d)  3. (a), (b)
 4. (b), (c)  5. (b), (d)  6. (d)
 7. (a), (d)  8. (b), (c), (d)  9. (c), (d)
10. (b), (c) 11. all

EXERCISES

 1. Taking AB as the x-axis and A as the origin, the
centre of mass is at (7/12 m,  √3/4 m)

 2. 6.6 × 10 – 12 m

 3. 22 L/35

 4. At R/5 from the centre of the bigger disc towards the
centre of the smaller disc
 5. At R/3 from the centre of the original disc away from
the centre of the hole

 6. 
4 d

4 + π
 right to the centre of the disc

 7. 0.20 m/s at 45° below the direction towards right
 8. 1 cm
 9. 1 cm downward
10. zero

11. 
4(R1

 2 + R1R2 + R2
 2)

3π (R1 + R2)
 above the centre

12. 13 cm
13. mL/(m + M)
14. mL/(m + M)
15. 1 : 2

16. 2.4 × 10 5 m/s

M

m

h

Figure 9-E21

M

h

m

Figure 9-E22

rv

Figure 9-E23
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17. 1.5 × 10 − 23 m/s

18. (a) 12.2 m/s (b) 9.2 m/s

19. 
Mx √g

m [√2H  − √2(H − h) ]
 , Mx/m left to the line of fall

20. (a) 0.14 kg–m/s (b) zero
21. 2 h cosθ/λ
22. 10√2 m/s 135° below the X-axis

23. 15 km/s
24. 1900 N
25. mg

26. 


1 + M

m



 v

27. 200 


1
49

 + 
1
48




 m/s

28. 
m 2u

M(M + m)
 towards left

29. 
mv

M + m

30. 
28
3

 km/h

31. 2.5 m/s opposite to the direction of motion of the first
   ball
32. 1200 J

33. u2 − 
m1

m2

 
t

∆t
 (v1 − u1)

34. 
mv − (M − m′)v1

m + m′
 in the initial direction

35. 1/√2 36. 2 J,  1/√2

37. 2 m/s,  2√2 m/s

38. (a) 0.5 m/s (b) 10
11

 m/s (c) 50
11

 m/s,  5 m/s (d) 6 (e) 10
21

 d 

   away from the initial position of A towards B
39. √3/2

40. E + E 2

2 Mc 2

41. 10 cm
42. 0.16

43. 
(1 + e) u 2 sin 2θ

g
44. 8 h sinθ along the incline

45. 18.5 m along the incline
46. 6.1 cm
47. 280 m/s
48. 250 m/s

49. 
2 m2 x0

m1 + m2

 ,  
2 m1 x0

m1 + m2

50. (a) 
m2 v0

m1 + m2

(b) v0 





m1m2

(m1 + m2)k




 1/2

51. 2 F/k, 
2 F m2

k(m1 + m2)
 ,  

2 F m1

k(m1 + m2)

52. 
2(m1F2 + m2F1)

k(m1 + m2)
53. 2.22 s

54. Greater than √2.5 gh

55. At the junction of the straight and the curved parts

56. (a) Light ball 
√50 gl

3
 towards left, heavy ball 

√2 gl
3

   towards right (b) Light ball 2l and heavy ball l
9

57. 3 Mgx/L
58. (a) 50 m (b) 25 m
59. 5 cm

60. 




2 m 2gh cos 2α
(M + m) (M + m sin 2 α)





 1/2

61. (a) 
mv

M + m
(b) 





(M 2 + Mm + m 2)
(M + m) 2  v 2 − 2 gh





 1/2

   (c) 
Mv 2

2 g(M + m)
(d) 

2 mv[Mv 2 − 2(M + m)gh]1/2

g(M + m) 3/2

62. √2 gh
3

64. The small particle goes along the tangent with a speed
   of vρ/r and the spherical body goes perpendicular to the

   smaller particle with a speed of 
v
r
 √r 

2
 − ρ 

2
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CHAPTER 10

ROTATIONAL MECHANICS

Consider a pulley fixed at a typical Indian well on
which a rope is wound with one end attached to a
bucket. When the bucket is released, the pulley starts
rotating. As the bucket goes down, the pulley rotates
more rapidly till the bucket goes into the water.

 Take the pulley as the system. The centre of mass
of the pulley is at its geometrical centre which remains
at rest. However, the other particles of the pulley move
and are accelerated. The pulley is said to be executing
rotational motion. Also, the rotational motion is not
uniform. Since a

→
CM = 0, the resultant external force F

→

acting on the pulley must be zero. Even then the pulley
is not in rotational equilibrium. We shall now study
this type of motion.

10.1 ROTATION OF A RIGID BODY 
    ABOUT A GIVEN FIXED LINE 

Take a rigid body like a plate or a ball or your
tennis racket or anything else present nearby and hold
it between your fingers at two points. Now keep these
two points fixed and then displace the body (try it with
any rigid body at hand).

Notice the kind of displacement you can produce.
In particular, notice that each particle of the rigid body
goes in a circle, the centre being on the line joining
the two fixed points between your finger tips. Let us
call this line the axis of rotation. In fact, the centre of
the circular path of a particle is at the foot of the
perpendicular from the particle to this axis. Different
particles move in different circles, the planes of all
these circles are parallel to each other, and the radii
depend on the distances of the particles from this axis.
The particles on the axis remain stationary, those close

to this line move on smaller circles and those far away
from this line move in larger circles. However, each
particle takes equal time to complete its circle.

Such a displacement of a rigid body in which a
given line is held fixed, is called rotation of the rigid
body about the given line. The line itself is called the
axis of rotation.

Examples : (1) Consider the door of your almirah.
When you open the door, the vertical line passing
through the hinges is held fixed and that is the axis
of rotation. Each point of the door describes a circle
with the centre at the foot of the perpendicular from
the particle on the axis. All these circles are horizontal
and thus perpendicular to the axis. 

(2) Consider the ceiling fan in your room. When it
is on, each point on its body goes in a circle. Locate
the centres of the circles traced by different particles
on the three blades of the fan and the body covering
the motor. All these centres lie on a vertical line
through the centre of the body. The fan rotates about
this vertical line.

(3) Look at the on–off switch on the front panel of
your gas stove in the kitchen. To put the gas on, you
push the switch a little, and then you rotate it. While
rotating, each particle of the switch moves on a circle.
Think about the centres of all such circles. They lie on
a straight line (generally horizontal, towards the
operator). This is the axis of rotation and the switch
rotates about this axis.

Sometimes the axis may not pass through the
body. Consider a record rotating on the turntable of a
record player. Suppose a fly is sitting on the record
near the rim. Look at the path of any particle of the
fly. It is a circle with the centre on the vertical line
through the centre of the record. The fly is “rotating
about this vertical line” (can you consider the fly as a
rigid body ?). The axis of rotation is lying completely
outside the fly.

If each particle of a rigid body moves in a circle,
with centres of all the circles on a straight line and

Figure 10.1



with planes of the circles perpendicular to this line,
we say that the body is rotating about this line. The
straight line itself is called the axis of rotation.

10.2 KINEMATICS

Consider a rigid body rotating about a given fixed
line. Take this line as the Z-axis. Consider a particle
P of the body (figure 10.2). Look at its position P0 at
t = 0. Draw a perpendicular P0Q to the axis of rotation.
At time t, the particle moves to P. Let ∠PQP0 = θ. We
say that the particle P has rotated through an angle
θ. In fact, all the particles of the body have also rotated
through the same angle θ and so we say that the whole
rigid body has rotated through an angle θ. The
“angular position” of the body at time t is said to be
θ. If P has made a complete revolution on its circle,
every particle has done so and we say that the body
has rotated through an angle of 2π. So the rotation of
a rigid body is measured by the rotation of the line
QP from its initial position.

Now, suppose the angular position of the body at
time t is θ. During a time ∆t, it further rotates through
∆θ, so that its angular position becomes θ + ∆θ. The
average angular velocity during the time interval ∆t is

ω = 
∆θ
∆t

 ⋅

The instantaneous angular velocity at time t is

               ω = 
dθ
dt

 ⋅

We associate the direction of the axis of rotation
with the angular velocity. If the body rotates
anticlockwise as seen through the axis, the angular
velocity is towards the viewer. If it rotates clockwise,
the angular velocity is away from the reader. It turns
out that the angular velocity adds like a vector and
hence it becomes a vector quantity. The magnitude of
angular velocity is called angular speed . However, we
shall continue to use the word angular velocity if the
direction of the axis is clear from the context. The SI
unit for angular velocity is radian/sec (rad/s). Quite
often the angular velocity is given in revolutions per
second (rev/s). The conversion in radian per second
may be made using 1 rev = 2 π radian.

If the body rotates through equal angles in equal
time intervals (irrespective of the smallness of the
intervals), we say that it rotates with uniform angular
velocity. In this case ω = dθ/dt = constant and thus
θ = ωt. If it is not the case, the body is said to be
rotationally “accelerated”. The angular acceleration is
defined as

            α = 
dω
dt

 = d
dt

 




dθ
dt




 = 

d 2θ
dt 2

 ⋅

If the angular acceleration α is constant, we have
            ω = ω0 + αt … (10.1)

           θ = ω0t + 
1
2

 αt 2 … (10.2)

   and ω 2 = ω0
2 + 2 αθ … (10.3)

where ω0 is the angular velocity of the body at t = 0.
As an example, think of your ceiling fan. Switch

on the fan. The fan rotates about a vertical line (axis).
The angle rotated by the fan in the first second is
small, that in the second second is larger, that in the
third second is still larger and so on. The fan, thus,
has an angular acceleration. The angular velocity
ω = dθ/dt  increases with time. Wait for about a couple
of minutes. The fan has now attained full speed. The
angle rotated in any time interval is now equal to the
angle rotated in the successive equal time interval. The
fan is rotating uniformly about the vertical axis. Now
switch off the fan. The angle rotated in any second is
smaller than the angle rotated in the previous second.
The angular velocity dω/dt decreases as time passes,
and finally it becomes zero when the fan stops. The
fan has an angular deceleration.

Given the axis of rotation, the body can rotate in
two directions. Looking through the axis, it may be
clockwise or anticlockwise. One has to define the
“positive” rotation. This may be defined according to
the convenience of the problem, but once decided, one
has to stick to the choice. The angular displacement,
angular velocity and the angular acceleration may
accordingly be positive or negative.

Notice the similarity between the motion of a
particle on a straight line and the rotation of a rigid
body about a fixed axis. The position of the particle
was decided by a single variable x, which could be
positive or negative according to the choice of the
positive direction of the X-axis. The rate of change of
position gave the velocity and the rate of change of
velocity gave the acceleration.

Example 10.1

   The motor of an engine is rotating about its axis with
an angular velocity of 100 rev/minute. It comes to rest

Q P

P

0r

Z

Figure 10.2
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in 15 s, after being switched off. Assuming constant
angular deceleration, calculate the number of revolutions
made by it before coming to rest.

Solution : The initial angular velocity = 100 rev/minute

                        = (10 π/3) rad/s.

Final angular velocity = 0.

Time interval = 15 s.

Let the angular acceleration be α. Using the equation
ω = ω0 + αt, we obtain α = (− 2π/9) rad/s 2.

The angle rotated by the motor during this motion is

       θ = ω0 t + 
1
2

 αt 2

        = 




10π
3

 
rad
s




 (15 s) − 

1
2

 




2π
9

 
rad
s 2




 (15 s) 2

        = 25π rad = 12.5  revolutions.

Hence the motor rotates through 12.5 revolutions before
coming to rest.

Example 10.2

   Starting from rest, a fan takes five seconds to attain the
maximum speed of 400 rpm(revolutions per minute).
Assuming constant acceleration, find the time taken by
the fan in attaining half the maximum speed.

Solution : Let the angular acceleration be α. According to
the question,

           400 rev/min = 0 + α 5 s … (i)

Let t be the time taken in attaining the speed of 200
rev/min which is half the maximum.

   Then,     200 rev/min = 0 + αt … (ii)

Dividing (i) by (ii), we get,

     2 = 5 s/t  or,      t = 2.5 s.

Relation between the Linear Motion of a
Particle of a Rigid Body and its Rotation

Consider a point P of the rigid body rotating about
a fixed axis as shown in figure (10.2). As the body
rotates, this point moves on a circle. The radius of this
circle is the perpendicular distance of the particle from
the axis of rotation. Let it be r. If the body rotates
through an angle θ, so does the radius joining the
particle with the centre of its circle. The linear distance
moved by the particle is s = rθ along the circle. 

The linear speed along the tangent is

          v = 
ds
dt

 = r ⋅ 
dθ
dt

 = rω … (10.4)

and the linear acceleration along the tangent, i.e., the
tangential acceleration, is

          a = 
dv
dt

 = r ⋅ 
dω
dt

 = rα.  … (10.5)

The relations v = rω and a = rα are very useful and
their meanings should be clearly understood. For
different particles of the rigid body, the radius r of
their circles has different values, but ω and α are same
for all the particles. Thus, the linear speed and the
tangential acceleration of different particles are
different. For r = 0, i.e., for the particles on the axis,
v = rω = 0 and a = rα = 0, consistent with the fact that
the particles on the axis do not move at all.

Example 10.3

   A bucket is being lowered down into a well through a
rope passing over a fixed pulley of radius 10 cm. Assume
that the rope does not slip on the pulley. Find the angular
velocity and angular acceleration of the pulley at an
instant when the bucket is going down at a speed of
20 cm/s and has an acceleration of 4.0 m/s 2.

Solution : Since the rope does not slip on the pulley, the
linear speed v of the rim of the pulley is same as the
speed of the bucket.
The angular velocity of the pulley is then

        ω = v/r = 
20 cm/s
10 cm

 = 2 rad/s

and the angular acceleration of the pulley is

α = a/r = 
4.0 m/s 2

10 cm
 = 40 rad/s 2.

10.3 ROTATIONAL DYNAMICS

When one switches a fan on, the centre of the fan
remains unmoved while the fan rotates with an
angular acceleration. As the centre of mass remains
at rest, the external forces acting on the fan must add
to zero. This means that one can have angular
acceleration even if the resultant external force is zero.
But then why do we need to switch on the fan in order
to start it ? If an angular acceleration may be achieved
with zero total external force, why does not a wheel
chair start rotating on the floor as soon as one wishes
it to do so. Why are we compelled to use our muscles
to set it into rotation ? In fact, one cannot have angular
acceleration without external forces.

What is then the relation between the force and
the angular acceleration ? We find that even if the
resultant external force is zero, we may have angular
acceleration. We also find that without applying an
external force we cannot have an angular acceleration.
What is responsible for producing angular
acceleration ? The answer is torque which we define
below.
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10.4 TORQUE OF A FORCE ABOUT
    THE AXIS OF ROTATION

Consider a force F
→

 acting on a particle P. Choose
an origin O and let r

→
 be the position vector of the

particle experiencing the force. We define the torque of
the force F about O as

            Γ
→

 = r
→
 × F

→
 … (10.6)

This is a vector quantity having its direction
perpendicular to r

→
 and F

→
 according to the rule of

cross product. Now consider a rigid body rotating
about a given axis of rotation AB (figure 10.4). Let F
be a force acting on the particle P of the body. F may
not be in the plane ABP. Take the origin O somewhere
on the axis of rotation.

The torque of F about O is Γ
→

 = r
→
 × F

→
. Its component

along OA is called the torque of F
→

 about OA. To
calculate it, we should find the vector r

→
 × F

→
 and then

find out the angle θ it makes with OA. The torque
about OA is then  r

→
 × F

→
  cosθ. The torque of a force

about a line is independent of the choice of the origin
as long as it is chosen on the line. This can be shown
as given below. Let O1 be any point on the line AB
(figure 10.4). The torque of F about O1 is

O1P
→

 × F
→

 = ( O1O
→

 + OP 
→

) × F
→

 = O1O
→

 × F
→

 + OP 
→

× F
→

.

As O1O
→

 × F
→

 ⊥ O1O
→

, this term will have no
component along AB.

Thus, the component of O1P
→

 × F
→

 is equal to that of

OP
→

 × F
→

.

There are some special cases which occur
frequently.

Case I

             F
→

 || AB 
→

.

r
→
 × F

→
 is perpendicular to F

→
, but F

→
 ||  AB,

→
 hence

r
→
 × F

→
 is perpendicular to AB.

→
 The component of r

→
 × F

→

along AB 
→

 is, therefore, zero.

Case II

F intersects AB (say at O)

Taking the point of intersection as the origin,

we see that r
→
(= OP)

→
  and  F

→
 are in the same line. The

torque about O is r
→
 × F

→
 = 0. Hence the component along

OA is zero.

Case III

F
→

 ⊥ AB 
→

 but F
→

 and AB do not intersect.
In three dimensions, two lines may be

perpendicular without intersecting each other. For
example, a vertical line on the surface of a wall of your
room and a horizontal line on the opposite wall are
mutually perpendicular but they never intersect. Two
nonparallel and nonintersecting lines are called skew
lines.

Figure (10.6) shows the plane through the particle
P that is perpendicular to the axis of rotation AB.
Suppose the plane intersects the axis at the point O.
The force F is in this plane. Taking the origin at O,

         Γ
→

 = r
→
 × F

→
 = OP 

→
× F

→
.

F
P

r

O

Figure 10.3

A

O

r

P
F

B

1

O

Figure 10.4
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O
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B

Figure 10.5
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r
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Thus,      Γ = rF sinθ = F. (OS)
where OS is the perpendicular from O to the line of
action of the force F

→
. The line OS is also perpendicular

to the axis of rotation. It is thus the length of the
common perpendicular to the force and the axis of
rotation.

The direction of Γ
→

 = OP 
→

× F
→

 is along the axis AB

because AB 
→

⊥ OP 
→

 and  AB 
→

⊥ F
→

. The torque about AB
is, therefore, equal to the magnitude of Γ

→
 that is

F.(OS).
Thus, the torque of F about AB = magnitude of the

force F × length of the common perpendicular to the
force and the axis. The common perpendicular OS is
called the lever arm or moment arm of this torque.

The torque may try to rotate the body clockwise
or anticlockwise about AB. Depending on the
convenience of the problem one may be called positive
and the other negative. It is conventional to take the
torque positive if the body rotates anticlockwise as
viewed through the axis.

Case IV

F
→

  and  OA 
→

 are skew but not perpendicular.
Take components of F

→
 parallel and perpendicular

to the axis.
The torque of the parallel part is zero from case I

and that of the perpendicular part may be found as in
case III.

In most of the applications that we shall see, cases
I, II or III will apply.

Example 10.4

   Consider a pulley fixed at its centre of mass by a clamp.
A light rope is wound over it and the free end is tied to
a block. The tension in the rope is T. (a) Write the forces
acting on the pulley. How are they related ? (b) Locate
the axis of rotation. (c) Find the torque of the forces about
the axis of rotation.

Solution : (a) The forces on the pulley are (figure 10.7)
  (i) attraction by the earth, Mg vertically downward,
 (ii) tension T by the rope, along the rope,
(iii) contact force N  by the support at the centre.

N  = T + Mg (centre of mass of the pulley is at rest, so
Newton’s 1st law applies).

(b) The axis of rotation is the line through the centre of
the pulley and perpendicular to the plane of the pulley.

(c) Let us take the positive direction of the axis towards
the reader.

The force Mg passes through the centre of mass and it
intersects the axis of rotation. Hence the torque of Mg
about the axis is zero (Case II). Similarly, the torque of
the contact force N  is also zero.

The tension T is along the tangent of the rim in the
vertically downward direction. The tension and the axis
of rotation are perpendicular but never intersect. Case
III applies. Join the point where the rope leaves the rim
to the centre. This line is the common perpendicular to
the tension and the axis. Hence the torque is T.r
(positive, since it will try to rotate the pulley
anticlockwise).

If there are more than one forces F
→

1, F
→

2, F
→

3, …
acting on a body, one can define the total torque acting
on the body about a given line.

To obtain the total torque, we have to get
separately the torques of the individual forces and then
add them.

         Γ
→

 = r
→

1 × F
→

1 + r
→

2 × F
→

2 + …

You may be tempted to add the forces F
→

1, F
→

2,
F
→

3, … vectorially and then obtain the torque of
resultant force about the axis. But that won’t always
work. Even if F

→
1 + F

→
2 + … = 0,  r

→
1 × F

→
1 + r

→
2 × F

→
2 + … may

not. However, if the forces act on the same particle,
one can add the forces and then take the torque of the
resultant.

10.5 Γ = Iα

We are now in a position to tell how the angular
acceleration is produced when the resultant force on
the body is zero. It is the total torque that decides the
angular acceleration. Although the resultant force on
the fan in our example is zero, the total torque is not.
Whereas, if one does not apply any force, the torque
is also zero and no angular acceleration is produced.
For angular acceleration, there must be a torque.

To have linear acceleration of a particle, the total
force on the particle should be nonzero. The
acceleration of the particle is proportional to the force
applied on it. To have angular acceleration about an
axis you must have a nonzero torque on the body about
the axis of rotation. Do we also have the relation that
the angular acceleration is proportional to the total
torque on the body ? Let us hope so.

�

Figure 10.7

170 Concepts of Physics



Consider a rigid body rotating about a fixed axis
AB (figure 10.8). Consider a particle P of mass m
rotating in a circle of radius r.

The radial acceleration of the particle = 
v 2

r 
 = ω 2r. 

Thus, the radial force on it = mω 2r.

The tangential acceleration of the particle = 
dv
dt

 ⋅ 

Thus, the tangential force on it

      = m 
dv
dt

 = mr 
dω
dt

 = m r α .

The torque of mω 2r about AB is zero as it
intersects the axis and that of mrα  is  mr 2α as the
force and the axis are skew and perpendicular. Thus,
the torque of the resultant force acting on P is
mr 2α . Summing over all the particles, the total torque
of all the forces acting on all the particles of the body
is

          Γ total = ∑ 
i

mi ri
 2 α = Iα … (i)

   where       I = ∑ 
i

 mi ri
 2. … (10.7)

The quantity I is called the moment of inertia  of
the body about the axis of rotation. Note that mi is the
mass of the ith particle and ri is its perpendicular
distance from the axis.

We have Γ total = ∑ 
i

(r
→

i × F
→

i) where F
→

i is the resultant

force on the ith particle. This resultant force consists
of forces by all the other particles as well as other
external forces applied on the ith particle. Thus,

     Γ total = ∑ 
i

r
→

i × 


  ∑ 
j ≠ i

F
→

ij + F
→

i 
ext 




where F
→

ij is the force on the ith particle by the jth

particle and F
→

i 
ext is the external force applied on the

ith particle. When summation is made on both i and
j, the first summation contains pairs like
r
→

i × F
→

ij + r
→

j × F
→

ji . Newton’s third law tells us that
F
→

ij = − F
→

ji so that such pairs become (r
→

i − r
→

j) × F
→

ij . Also

the force F
→

ij is along the line joining the particles so
that (r

→
i − r

→
j) || F

→
ij and the cross product is zero. Thus,

it is necessary to consider only the torques of the
external forces applied on the rigid body and (i)
becomes 

              Γ ext = Iα … (10.8)

where the torque and the moment of inertia are both
evaluated about the axis of rotation. 

Note the similarity between Γ = Iα and F = Ma.
Also, note the dissimilarity between the behaviour of
M and I. The mass M is a property of the body and
does not depend on the choice of the origin or the axes
or the kind of motion it undergoes (as long as we are
dealing with velocities much less than 3 × 10 8 m/s).
But the moment of inertia I = ∑ 

i

miri
 2 depends on the

choice of the axis about which it is calculated. The
quantity ri is the perpendicular distance of the ith
particle from the “axis”. Changing the axis changes
ri and hence I.

Moment of inertia of bodies of simple geometrical
shapes may be calculated using the techniques of
integration. We shall discuss the calculation for bodies
of different shapes in somewhat greater detail in a
later section.

Note that Γ = Iα is not an independent rule of
nature. It is derived from the more basic Newton’s laws
of motion. 

Example 10.5

   A wheel of radius 10 cm can rotate freely about its centre
as shown in figure (10.9). A string is wrapped over its
rim and is pulled by a force of 5.0 N. It is found that
the torque produces an angular acceleration 2.0 rad/s 2

in the wheel. Calculate the moment of inertia of the
wheel.

Solution : The forces acting on the wheel are (i) W due to
gravity, (ii) N  due to the support at the centre and
(iii) F due to tension. The torque of W and N  are
separately zero and that of F is F.r. The net torque is

      Γ = (5.0 N).(10 cm) = 0.50 N–m.
The moment of inertia is

       I = 
Γ
α

 = 0
.50 N–m

2 rad/s 2  = 0.25 kg–m 2.

A

P

B

Figure 10.8

5.0 N
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10.6 BODIES IN EQUILIBRIUM

The centre of mass of a body remains in
equilibrium if the total external force acting on the
body is zero. This follows from the equation F = Ma.
Similarly, a body remains in rotational equilibrium if
the total external torque acting on the body is zero.
This follows from the equation Γ = Iα. Thus, if a body
remains at rest in an inertial frame, the total external
force acting on the body should be zero in any direction
and the total external torque should be zero about any
line.

We shall often find situations in which all the
forces acting on a body lie in a single plane as shown
in figure (10.10).

Let us take this plane as the X-Y plane. For
translational equilibrium
              ∑ Fx = 0 … (i)

   and          ∑ Fy = 0. … (ii)

As all the forces are in the X-Y plane, Fz is
identically zero for each force and so ∑ Fz = 0 is
automatically satisfied. Now consider rotational
equilibrium. The torque of each force about the X-axis
is identically zero because either the force intersects
the axis or it is parallel to it. Similarly, the torque of
each force about the Y-axis is identically zero. In fact,
the torque about any line in the X-Y plane is zero.

Thus, the condition of rotational equilibrium is
               ∑ Γz = 0. … (iii)

While taking torque about the Z-axis, the origin
can be chosen at any point in the plane of the forces.
That is, the torque can be taken about any line
perpendicular to the plane of the forces. In general,
the torque is different about different lines but it can
be shown that if the resultant force is zero, the total
torque about any line perpendicular to the plane of the
forces is equal. If it is zero about one such line, it will
be zero about all such lines.

If a body is placed on a horizontal surface, the
torque of the contact forces about the centre of mass
should be zero to maintain the equilibrium. This may

happen only if the vertical line through the centre of
mass cuts the base surface at a point within the
contact area or the area bounded by the contact points.
That is why a person leans in the opposite direction
when he or she lifts a heavy load in one hand.

The equilibrium of a body is called stable  if the
body tries to regain its equilibrium position after being
slightly displaced and released. It is called unstable if
it gets further displaced after being slightly displaced
and released. If it can stay in equilibrium even after
being slightly displaced and released, it is said to be
in neutral equilibrium.

In the case of stable equilibrium, the centre of
mass goes higher on being slightly displaced. For
unstable equilibrium it goes lower and for neutral
equilibrium it stays at the same height.

10.7 BENDING OF A CYCLIST ON
    A HORIZONTAL TURN

Suppose a cyclist is going at a speed v on a circular
horizontal road of radius r which is not banked.
Consider the cycle and the rider together as the
system. The centre of mass C (figure 10.11a) of the
system is going in a circle with the centre at O and
radius r.

Let us choose O as the origin, OC as the X-axis
and vertically upward as the Z-axis. This frame is
rotating at an angular speed ω = v/r about the Z-axis.
In this frame the system is at rest. Since we are
working from a rotating frame of reference, we will
have to apply a centrifugal force on each particle. The
net centrifugal force on the system will be Mω 2r 
= Mv 2/r, where M is the total mass of the system.
This force will act through the centre of mass. Since
the system is at rest in this frame, no other pseudo
force is needed.

Figure (10.11b) shows the forces. The cycle is bent
at an angle θ with the vertical. The forces are

(i) weight Mg,
(ii) normal force N ,

F1

Y

X

F2

F3
F4

F5

Figure 10.10
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(iii) friction f and,
(iv) centrifugal force Mv 2/r.
In the frame considered, the system is at rest.

Thus, the total external force and the total external
torque must be zero. Let us consider the torques of all
the forces about the point A. The torques of N  and f
about A are zero because these forces pass through A.
The torque of Mg about A is Mg(AD) in the clockwise

direction and that of Mv 
2

r
 is Mv 

2

r
 (CD) in the anti-

clockwise direction. For rotational equilibrium,

       Mg (AD) = 
Mv 2

r
 (CD)

   or,         
AD
CD

 = 
v 2

rg

   or,        tanθ = 
v 2

rg
 ⋅ … (10.9)

Thus the cyclist bends at an angle tan − 1 



v 

2

rg




 with

the vertical.

10.8 ANGULAR MOMENTUM

Angular momentum of a particle about a point  O
is defined as
              l

→
 = r

→
 × p

→
… (10.10)

where p
→

 is the linear momentum and r
→
 is the position

vector of the particle from the given point O. The
angular momentum of a system of particles is the
vector sum of the angular momenta of the particles of
the system. Thus,

         L
→

 = ∑ 
i

l
→
i = ∑ (r→i × p→i).

Suppose a particle P of mass m moves at a velocity
v
→
 (figure 10.12). Its angular momentum about a point

O is,

        l
→
 = OP 

→
× (mv

→
)

   or,       l = mv OP sin θ = mvr … (10.11)

where r = OA = OP sin θ is the perpendicular distance
of the line of motion from O.

As in the case of torque, we define the angular
momentum of a particle “about a line” say AB. Take
any point O on the line AB and obtain the angular
momentum r

→
 × p

→
 of the particle about O. The

component of r
→
 × p

→
 along the line AB is called the

angular momentum of the particle “about AB”. The
point O may be chosen anywhere on the line AB.

10.9 L ==== Iωωωω

Suppose a particle is going in a circle of radius r
and at some instant the speed of the particle is v
(figure 10.13a). What is the angular momentum of the
particle about the axis of the circle ?

As the origin may be chosen anywhere on the axis,
we choose it at the centre of the circle. Then r

→
 is along

a radius and v
→
 is along the tangent so that r

→
 is

perpendicular to v
→
 and l = | r

→
 × p

→
 | = mvr. Also r

→
 × p

→
 is

perpendicular to r
→
 and p

→
 and hence is along the axis.

Thus, the component of r
→
 × p

→
 along the axis is mvr

itself.
Next consider a rigid body rotating about an axis

AB (figure 10.13b). Let the angular velocity of the body
be ω. Consider the ith particle going in a circle of
radius ri with its plane perpendicular to AB. The linear
velocity of this particle at this instant is vi = riω. The
angular momentum of this particle about AB = miviri

= miri
2ω. The angular momentum of the whole body

about AB is the sum of these components, i.e.,

          L = ∑ mi ri
 2 ω = Iω … (10.12)

where I is the moment of inertia of the body about AB.

10.10 CONSERVATION OF ANGULAR MOMENTUM

We have defined the angular momentum of a body as
L
→

 = ∑ (r
→

i × p
→

i). Differentiating with respect to time,

       
dL

→

dt
 = 

d
dt

 ∑ (r
→

i × p
→

i)

          = ∑ 
i




dr

→
i

dt
 × p

→
i + r

→
i × 

dp
→

i

dt





          = ∑ 
i


 v

→
i × mv

→
i + r

→
i × F

→
i



             = ∑ 
i

(r
→

i × F
→

i) = Γ
→

 total … (i)

r

O

P

vA
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where F
→

i is the total force acting on the ith particle.
This includes any external force as well as the forces
on the ith particle by all the other particles. When
summation is taken over all the particles, the internal
torques add to zero. Thus, (i) becomes

              
dL

→

dt
 = Γ

→
 ext  … (10.13)

where Γ
→

 ext is the total torque on the system due to all
the external forces acting on the system.

For a rigid body rotating about a fixed axis, we
can arrive at equation (10.13) in a simpler manner.
We have

            L = Iω

or,         
dL
dt

 = I 
dω
dt

 = Iα

or,         
dL
dt

 = Γ ext.

Equation (10.13) shows that
If the total external torque on a system is zero, its

angular momentum remains constant.
This is known as the principle of conservation of

angular momentum.

Example 10.6

   A wheel is rotating at an angular speed ω about its axis
which is kept vertical. An identical wheel initially at rest
is gently dropped into the same axle and the two wheels
start rotating with a common angular speed. Find this
common angular speed.

Solution : Let the moment of inertia of the wheel about
the axis be I. Initially the first wheel is rotating at the
angular speed ω about the axle and the second wheel is
at rest. Take both the wheels together as the system.
The total angular momentum of the system before the
coupling is Iω + 0 = Iω. When the second wheel is
dropped into the axle, the two wheels slip on each other
and exert forces of friction. The forces of friction have
torques about the axis of rotation but these are torques
of internal forces. No external torque is applied on the
two-wheel system and hence the angular momentum of
the system remains unchanged. If the common angular
speed is ω′, the total angular momentum of the
two-wheel system is 2Iω′ after the coupling. Thus,

              Iω = 2Iω′

or,             ω′ = ω/2.

10.11 ANGULAR IMPULSE

The angular impulse of a torque in a given time
interval is defined as

           J = ∫ 
t1

t2

 Γ dt.

If Γ be the resultant torque acting on a body

        Γ = 
dL
dt

 ,  or,  Γdt = dL.

Integrating this
              J = L2 − L1 .

Thus, the change in angular momentum is equal
to the angular impulse of the resultant torque.

10.12 KINETIC ENERGY OF A RIGID BODY
     ROTATING ABOUT A GIVEN AXIS

Consider a rigid body rotating about a line AB with
an angular speed ω. The ith particle is going in a circle
of radius ri with a linear speed vi = ωri . The kinetic

energy of this particle is 1
2
 mi(ωri) 

2. The kinetic energy

of the whole body is

     ∑ 
1
2

 mi ω 2 ri
 2 = 1

2
 ∑ (mi ri

2)ω 2 = 
1
2

 Iω 2.

Sometimes it is called rotational kinetic energy. It
is not a new kind of kinetic energy as is clear from
the derivation. It is the sum of 1

2
 mv 2 of all the

particles.

Example 10.7

   A wheel of moment of inertia I and radius r is free to
rotate about its centre as shown in figure (10.14). A string
is wrapped over its rim and a block of mass m is attached
to the free end of the string. The system is released from
rest. Find the speed of the block as it descends through
a height h.

Solution : Let the speed of the block be v when it descends
through a height h. So is the speed of the string and
hence of a particle at the rim of the wheel. The angular
velocity of the wheel is v/r and its kinetic energy at this

instant is 1
2
 I(v/r) 2. Using the principle of conservation

of energy, the gravitational potential energy lost by the
block must be equal to the kinetic energy gained by the
block and the wheel. Thus,

m

Figure 10.14
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       mgh = 
1
2

 mv 2 + 
1
2

 I v 2

r 2  

or,      v = 


2 mgh
m + I/r 2





 1/2

.

10.13 POWER DELIVERED AND WORK
     DONE BY A TORQUE

Consider a rigid body rotating about a fixed axis
on which a torque acts. The torque produces angular
acceleration and the kinetic energy increases. The rate
of increase of the kinetic energy equals the rate of
doing work on it, i.e., the power delivered by the torque.

     P = 
dW
dt

 = 
dK
dt

 

       = 
d
dt

 


1
2

Iω 2

 = Iω 

dω
dt

 = Iαω = Γω.

The work done in an infinitesimal angular
displacement dθ is
   dW = Pdt = Γω dt = Γ dθ.

The work done in a finite angular displacement
θ1  to  θ2 is

             W = ∫ 
θ1

θ2

Γ dθ. … (10.14)

10.14 CALCULATION OF MOMENT OF INERTIA 

We have defined the moment of inertia of a system
about a given line as 

I = ∑ 
i

 mi ri
 2

where mi is the mass of the ith particle and ri is its
perpendicular distance from the given line. If the
system is considered to be a collection of discrete
particles, this definition may directly be used to
calculate the moment of inertia.

Example 10.8

   Consider a light rod with two heavy mass particles at
its ends. Let AB be a line perpendicular to the rod as
shown in figure (10.15). What is the moment of inertia
of the system about AB ?

Solution : Moment of inertia of the particle on the left is
m1 r1

 2.

Moment of inertia of the particle on the right is m2 r2
 2.

Moment of inertia of the rod is negligible as the rod is
light.
Thus, the moment of inertia of the system about AB is

             m1 r1
 2 + m2 r2

 2.

Example 10.9

   Three particles, each of mass m, are situated at the
vertices of an equilateral triangle ABC of side L (figure
10.16). Find the moment of inertia of the system about
the line AX perpendicular to AB in the plane of ABC.

Solution : Perpendicular distance of A from  AX = 0

           ,,      ,,     B   ,,    ,, = L

            ,,      ,,     C   ,,   ,, = L/2.

Thus, the moment of inertia of the particle at A = 0, of

the particle at B = mL 2, and of the particle at

C = m(L/2) 2. The moment of inertia of the three-particle
system about AX is

       0 + mL 2 + m(L/2) 2 = 
5 mL 2

4
 ⋅

Note that the particles on the axis do not contribute to
the moment of inertia.

Moment of Inertia of Continuous
Mass Distributions

If the body is assumed to be continuous, one can
use the technique of integration to obtain its moment
of inertia about a given line. Consider a small element
of the body. The element should be so chosen that the
perpendiculars from different points of the element to
the given line differ only by infinitesimal amounts. Let
its mass be dm and its perpendicular distance from
the given line be r. Evaluate the product r 2dm and
integrate it over the appropriate limits to cover the
whole body. Thus, 

            I = ∫ r 2dm

under proper limits.

We can call r 2dm the moment of inertia of the
small element. Moment of inertia of the body about
the given line is the sum of the moments of inertia of
its constituent elements about the same line.

 r  

m

A

B

 r   

m

1
2

1 2

Figure 10.15

x

C

A BL
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(A) Uniform rod about a perpendicular bisector

Consider a uniform rod of mass M and length l
(figure 10.17) and suppose the moment of inertia is to
be calculated about the bisector AB. Take the origin
at the middle point O of the rod. Consider the element
of the rod between a distance x and x  dx from the
origin. As the rod is uniform,

Mass per unit length of the rod  M/l
so that the mass of the element  (M/l)dx.

The perpendicular distance of the element from the
line AB is x. The moment of inertia of this element
about AB is 

          dI  
M
l

 dx x 2.

When x   l/2, the element is at the left end of
the rod. As x is changed from  l/2  to  l/2, the
elements cover the whole rod.

Thus, the moment of inertia of the entire rod about
AB is

    I   
 l/2

l/2

 
M
l

 x 2 dx  



M
l

 
x 3

3


  l/2

 l/2

  
Ml 2

12
 

(B) Moment of inertia of a rectangular plate about a
line parallel to an edge and passing through the centre

The situation is shown in figure (10.18). Draw a
line parallel to AB at a distance x from it and another
at a distance x  dx. We can take the strip enclosed
between the two lines as the small element.

It is “small” because the perpendiculars from
different points of the strip to AB differ by not more
than dx. As the plate is uniform,

its mass per unit area  M
bl

 

   Mass of the strip  
M
bl

 b dx  
M
l

 dx.

The perpendicular distance of the strip from
AB  x. The moment of inertia of the strip about

AB  dI  M
l

 dx x 2. The moment of inertia of the given

plate is, therefore,

        I   
 l/2

l/2

 
M
l

 x 2 dx  
Ml 2

12
 

The moment of inertia of the plate about the line
parallel to the other edge and passing through the
centre may be obtained from the above formula by
replacing l by b and thus,

            I  
Mb 2

12
 

(C) Moment of inertia of a circular ring about its axis
(the line perpendicular to the plane of the ring
through its centre)

Suppose the radius of the ring is R and its mass
is M. As all the elements of the ring are at the same
perpendicular distance R from the axis, the moment
of inertia of the ring is 

   I    r 2dm    R 2dm  R 2  dm  MR 2.

(D) Moment of inertia of a uniform circular plate
about its axis

Let the mass of the plate be M and its radius R
(figure 10.19). The centre is at O and the axis OX is
perpendicular to the plane of the plate.

Draw two concentric circles of radii x and x  dx,
both centred at O and consider the area of the plate
in between the two circles.

This part of the plate may be considered to be a
circular ring of radius x. As the periphery of the ring
is 2  x and its width is dx, the area of this elementary
ring is 2xdx. The area of the plate is  R 2. As the
plate is uniform,

its mass per unit area  
M

 R 2
 

   Mass of the ring  
M

 R 2
 2 x dx  2 M x dx

R 2
  

�
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�
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Using the result obtained above for a circular ring,
the moment of inertia of the elementary ring about OX
is

        dI  


2 Mxdx
R 2




 x 2.

The moment of inertia of the plate about OX is

       I   
0

R

 
2 M
R 2

 x 3 dx  
MR 2

2
 

(E) Moment of inertia of a hollow cylinder
about its axis

Suppose the radius of the cylinder is R and its
mass is M. As every element of this cylinder is at the
same perpendicular distance R from the axis, the
moment of inertia of the hollow cylinder about its axis
is 

   I   R 2dm  R 2  dm  MR 2.

(F) Moment of inertia of a uniform solid cylinder
about its axis

Let the mass of the cylinder be M and its radius
R. Draw two cylindrical surfaces of radii x and
x  dx coaxial with the given cylinder. Consider the
part of the cylinder in between the two surfaces (figure
10.20). This part of the cylinder may be considered to
be a hollow cylinder of radius x. The area of
cross-section of the wall of this hollow cylinder is
2 x dx. If the length of the cylinder is l, the volume
of the material of this elementary hollow cylinder is
2 x dx l.

The volume of the solid cylinder is  R 2l and it is
uniform, hence its mass per unit volume is

             
M

 R 2l
 

The mass of the hollow cylinder considered is

        
M

 R 2l
 2x dx l  

2 M
R 2

  xdx.

As its radius is x, its moment of inertia about the
given axis is

        dI  


2 M
R 2

 x dx

 x 2.

The moment of inertia of the solid cylinder is,
therefore,

        I   
0

R

 
2 M
R 2

 x 3dx  
MR 2

2
 

Note that the formula does not depend on the
length of the cylinder.

(G) Moment of inertia of a uniform hollow sphere
about a diameter

Let M and R be the mass and the radius of the
sphere, O its centre and OX the given axis (figure
10.21). The mass is spread over the surface of the
sphere and the inside is hollow.

Let us consider a radius OA of the sphere at an
angle  with the axis OX and rotate this radius about
OX. The point A traces a circle on the sphere. Now
change  to   d and get another circle of somewhat
larger radius on the sphere. The part of the sphere
between these two circles, shown in the figure, forms
a ring of radius R sin. The width of this ring is Rd
and its periphery is 2R sin. Hence,

the area of the ring  2R sin Rd.

Mass per unit area of the sphere  
M

4R 2
 

The mass of the ring

     
M

4R 2
 2R sin Rd  

M
2

 sin d.

The moment of inertia of this elemental ring about
OX is

          dI  



M
2

 sin d



 R sin 2.

           
M
2

 R 2 sin 3 d

As  increases from 0 to , the elemental rings
cover the whole spherical surface. The moment of
inertia of the hollow sphere is, therefore,

��

�

Figure 10.20

Figure 10.21
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I = ∫ 
0

π
M
2

 R 2 sin 3θ dθ = 
MR 2

2
 



∫ 
0

π

(1 − cos 2θ) sinθ dθ




 = 
MR 2

2
 






  ∫ 
θ = 0

π

− (1 − cos 2θ) d (cosθ) 







 = 
− MR 2

2
 



cosθ − 

cos 3θ
3



 0

 π

 = 
2
3

 MR 2 ⋅

Alternative method

Consider any particle P of the surface, having
coordinates (xi, yi, zi) with respect to the centre O as
the origin (figure 10.22) and OX as the X-axis. Let PQ
be the perpendicular to OX. Then OQ = xi. That is the
definition of x-coordinate.

Thus, PQ 2 = OP 2 − OQ 2

        = xi
 2 + yi

 2 + zi
 2
 − xi

 2 = yi
 2 + zi

 2.

The moment of inertia of the particle P about the
X-axis
          = mi (yi

 2 + zi
 2).

The moment of inertia of the hollow sphere about
the X-axis is, therefore,

      Ix = ∑ 
i

mi yi
 2 + zi

 2
 ⋅

Similarly, the moment of inertia of the hollow
sphere about the Y-axis is

Iy = ∑ 
i

mi zi
 2 + xi

 2


and about the Z-axis it is
         Iz = ∑ 

i

mi xi
 2 + yi

2


Adding these three equations we get

      Ix + Iy + Iz = ∑ 
i

2 mi xi
 2 + yi

 2 + zi
 2


               = ∑ 
i

2 mi R 2 = 2 MR 2.

As the mass is uniformly distributed over the
entire surface of the sphere, all diameters are
equivalent. Hence Ix, Iy  and  Iz must be equal.

Thus,      I = 
Ix + Iy + Iz

3
 = 

2
3

 MR 2.

(H) Moment of inertia of a uniform solid sphere
about a diameter

Let M and R be the mass and radius of the given
solid sphere. Let O be the centre and OX the given
axis. Draw two spheres of radii x and x + dx concentric
with the given solid sphere. The thin spherical shell
trapped between these spheres may be treated as a
hollow sphere of radius x.

The mass per unit volume of the solid sphere

            = 
M

4
3
 π R 3

 = 
3 M

4 π R 3
 ⋅

   The thin hollow sphere considered above has a
surface area 4 π x 2 and thickness dx. Its volume is
4 π x 2dx and hence its mass is

            = 

 

3 M
4 π R 3




 (4 π x 2dx)

            = 
3 M
R 3

 x 2dx.

Its moment of inertia about the diameter OX is,
therefore,

       dI = 
2
3

 


3 M
R 3

 x 2dx


 x 2 = 

2 M
R 3

 x 4dx.

If x = 0, the shell is formed at the centre of the
solid sphere. As x increases from 0 to R, the shells
cover the whole solid sphere.

The moment of inertia of the solid sphere about
OX is, therefore,

I = ∫ 
0

R

 
2 M
R 3

 x 4dx = 
2
5

 MR 2.

10.15 TWO IMPORTANT THEOREMS ON
     MOMENT OF INERTIA

Theorem of Parallel Axes

Suppose we have to obtain the moment of inertia
of a body about a given line AB (figure 10.24). Let C

X

Q

O

P (x , y , z )i i i

Figure 10.22

x

dx

X

O

Figure 10.23
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be the centre of mass of the body and let CZ be the
line parallel to AB through C.  Let I and I0 be the
moments of inertia of the body about AB and CZ
respectively. The parallel axes theorem states that

          I  I0  Md 2

where d is the perpendicular distance between the
parallel lines AB and CZ and M is the mass of the
body.

Take C to be the origin and CZ the Z-axis. Let CA
be the perpendicular from C to AB. Take CA to be the
X-axis. As CA  d, the coordinates of A are (d, 0, 0).

Let P be an arbitrary particle of the body with the
coordinates xi, yi, zi. Let PQ and PR be the
perpendiculars from P to CZ and AB respectively. Note
that P may not be in the plane containing CZ and AB.
We have CQ  zi. Also AR  CQ  zi. Thus, the point Q
has coordinates 0, 0, zi and the point R has
coordinatesd, 0, zi.

   I   
i

mi PR 2

      
i

mi xi  d 2  yi  0 2  zi  zi 
2


      
i

mi xi
 2  yi

 2  d 2  2 xid

         
i

mi xi
 2  yi

 2   
i

mid 2  2d  
i

mi xi  (i)

We have
          

i

mi xi  MXCM  0.

The moment of inertia about CZ is,
      I0   

i

miPQ 2

       
i

mi [xi  0 2  yi  0 2  zi  zi 
2]

       
i

mi xi
 2  yi

 2

From (i),
          I  I0   mid 2  I0  Md 2.

Theorem of Perpendicular Axes

This theorem is applicable only to the plane bodies.
Let X and Y-axes be chosen in the plane of the body
and Z-axis perpendicular to this plane, three axes
being mutually perpendicular. Then the theorem states
that 

           Iz  Ix  Iy .

Consider an arbitrary particle P of the body (figure
10.25). Let PQ and PR be the perpendiculars from P
on the X and the Y-axes respectively. Also PO is the
perpendicular from P to the Z-axis. Thus, the moment
of inertia of the body about the Z-axis is

     Iz   
i

miPO 2   
i

miPQ 2  OQ 2

           
i

miPQ 2  PR 2

           
i

miPQ 2   
i

miPR 2

       Ix  Iy .

Example 10.10

   Find the moment of inertia of a uniform ring of mass M
and radius R about a diameter. 

Solution :

Let AB and CD be two mutually perpendicular
diameters of the ring. Take them as X and Y-axes and
the line perpendicular to the plane of the ring through
the centre as the Z-axis. The moment of inertia of the
ring about the Z-axis is I  MR 2. As the ring is uniform,
all of its diameters are equivalent and so Ix  Iy. From
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perpendicular axes theorem,

      Iz = Ix + Iy.   Hence  Ix = 
Iz

2
 = 

MR 2

2
 ⋅

Similarly, the moment of inertia of a uniform disc about
a diameter is MR 2/4.

Example 10.11

   Find the moment of inertia of a solid cylinder of mass
M and radius R about a line parallel to the axis of the
cylinder and on the surface of the cylinder.

Solution : The moment of inertia of the cylinder about its

axis = MR 
2

2
 ⋅

Using parallel axes theorem

      I = I0 + MR 2 = 
MR 2

2
 + MR 2 = 

3
2

 MR 2.

Similarly, the moment of inertia of a solid sphere about
a tangent is

        
2
5

 MR 2 + MR 2 = 
7
5

 MR 2.

Radius of Gyration

 The radius of gyration k of a body about a given
line is defined by the equation

            I = Mk 2

where I is its moment of inertia about the given line
and M is its total mass. It is the radius of a ring with
the given line as the axis such that if the total mass
of the body is distributed on the ring, it will have the
same moment of inertia I. For example, the radius of
gyration of a uniform disc of radius r about its axis is
r⁄ √2.

10.16 COMBINED ROTATION AND TRANSLATION

We now consider the motion of a rigid body which
is neither pure translational nor pure rotational as
seen from a lab. Suppose instead, there is a frame of
reference A in which the motion of the rigid body is a
pure rotation about a fixed line. If the frame A is also
inertial, the motion of the body with respect to A is
governed by the equations developed above. The
motion of the body in the lab may then be obtained by
adding the motion of A with respect to the lab to the
motion of the body in A.

If the frame A is noninertial, we do not hope
Γ ext = Iα to hold. In the derivation of this equation we
used F = m a for each particle and this holds good only
if a is measured from an inertial frame. If the frame
A has an acceleration a

→
 in a fixed direction with

respect to an inertial frame, we have to apply a pseudo

force − ma
→

 to each particle. These pseudo forces
produce a pseudo torque about the axis.

Pleasantly, there exists a very special and very
useful case where Γ ext = Iα does hold even if the
angular acceleration α is measured from a noninertial
frame A. And that special case is, when the axis of
rotation in the frame A passes through the centre of
mass.

Take the origin at the centre of mass. The total
torque of the pseudo forces is 

   ∑ r
→

i × (− mi a
→

) = − 

 ∑ mi r

→
i

 × a
→

 = − M 



 
∑ mir

→
i

M




 × a

→

where r
→

i is the position vector of the ith particle as
measured from the centre of mass.

But 
∑ mi r

→
i

M
 is the position vector of the centre of

mass and that is zero as the centre of mass is at the
origin. Hence the pseudo torque is zero and we get
Γ ext = Iα. To make the point more explicit, we write
Γcm = Icmα, reminding us that the equation is valid in
a noninertial frame, only if the axis of rotation passes
through the centre of mass and the torques and the
moment of inertia are evaluated about the axis
through the centre of mass.

So, the working rule for discussing combined
rotation and translation is as follows. List the external
forces acting on the body. The vector sum divided by
the mass of the body gives the acceleration of the
centre of mass. Then find the torque of the external
forces and the moment of inertia of the body about a
line through the centre of mass and perpendicular to
the plane of motion of the particles. Note that this line
may not be the axis of rotation in the lab frame. Still
calculate Γ  and  I about this line. The angular
acceleration α about the centre of mass will be
obtained by α = Γ/I.

   
Thus

and
                

a
→

cm = F
→

 ext/M

α = Γcm
 ext/Icm

   






 . … (10.15)

These equations together with the initial
conditions completely determine the motion.

10.17 ROLLING

When you go on a bicycle on a straight road what
distance on the road is covered during one full pedal ?
Suppose a particular spoke of the bicycle is painted
black and is vertical at some instant pointing
downward. After one full pedal the spoke is again
vertical in the similar position. We say that the wheel
has made one full rotation. During this period the
bicycle has moved through a distance 2πR in normal
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cycling on a good, free road. Here R is the radius of
the wheel. The wheels are said to be ‘rolling’ on the
road.

Looking from the road frame, the wheel is not
making pure rotation about a fixed line. The particles
of the wheel do not go on circles. The path of a particle
at the rim will be something like that shown in figure
(10.27), whereas the centre of the wheel goes in a
straight line. But we still say that during one pedal
the wheel has made one rotation, i.e., it has rotated
through an angle of 2. By this we mean that the spoke
that was vertical (pointing downward from the centre)
again became vertical in the similar position. In this
period the centre of the wheel has moved through a
distance 2R. In half of this period, the wheel has
moved through a distance  R and the spoke makes
an angle of  with its original direction. During a short
time-interval t, the wheel moves through a distance
x and the spoke rotates by . Thus the wheel rotates
and at the same time moves forward. The relation
between the displacement of (the centre of) the wheel
and the angle rotated by (a spoke of) the wheel is
x  R. Dividing by t and taking limits, we get

            v  R,

where v is the linear speed of the centre of mass and
 is the angular velocity of the wheel.

This type of motion of a wheel (or any other object
with circular boundary) in which the centre of the
wheel moves in a straight line and the wheel rotates
in its plane about its centre with v  R, is called pure
rolling.

Place a ring on a horizontal surface as shown in
figure (10.28) and put your finger on the lowest part.
Use other hand to rotate the ring a little while the
finger is kept on the lowest point. This is

approximately a small part of rolling motion. Note the
displacements of different particles of the ring. The
centre has moved forward a little, say x. The topmost
point has moved approximately double of this distance.
The part in contact with the horizontal surface below
the finger has almost been in the same position.

In pure rolling, the velocity of the contact point is
zero. The velocity of the centre of mass is vcm  R and
that of the topmost point is vtop  2R  2vcm.

Next, consider another type of combination of
rotation and translation, in which the wheel moves
through a distance greater than 2R in one full
rotation. Hold the ring of figure (10.28) between three
fingers, apply a forward force to move it fast on the
table and rotate it slowly through the fingers. Its
angular velocity   d/dt is small and vcm  R. This
is a case of rolling with forward slipping. This type of
motion occurs when you apply sudden brakes to the
bicycle on a road which is fairly smooth after rain. The
cycle stops after a long distance and the wheel rotates
only little during this period. If you look at the
particles in contact, these will be found rubbing the
road in the forward direction. The particles in contact
have a velocity in the forward direction. In this case
vcm > R. An extreme example of this type occurs
when the wheel does not rotate at all and translates
with linear velocity v. Then vcm  v  and    0.

Yet another type of rolling with slipping occurs
when the wheel moves a distance shorter than 2R
while making one rotation. In this case, the velocity
vcm < R. Hold the ring of figure (10.28) between three
fingers, rotate it fast and translate it slowly. It will
move a small distance on the table and rotate fast. If
you drive a bicycle on a road on which a lot of mud is
present, sometimes the wheel rotates fast but moves
a little. If you look at the particles in contact, they rub
the road in the backward direction. The centre moves
less than 2R during one full rotation and vcm < R.

These situations may be visualised in a different
manner which gives another interpretation of rolling.
Consider a wheel of radius r with its axis fixed in a
second-hand car. The wheel may rotate freely about
this axis. Suppose the floor of the second-hand car has
a hole in it and the wheel just touches the road through
the hole. Suppose the person sitting on the back seat
rotates the wheel at a uniform angular velocity  and
the driver drives the car at a uniform velocity v on the
road which is parallel to the plane of the wheel as
shown in figure (10.29). The two motions are
independent. The backseater is rotating the wheel at
an angular velocity according to his will and the driver
is driving the car at a velocity according to his will.

2 R

Figure 10.27

Figure 10.28
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Look at the wheel from the road. If the persons
inside the car agree to choose v and ω in such a way
that v = ωr, the wheel is in pure rolling on the road.
Looking from the road, the centre of the wheel is
moving forward at a speed v and the wheel is rotating
at an angular velocity ω with v = ωr. The velocity of
the lowest particle with respect to the road = its
velocity with respect to the car + velocity of the car
with respect to the road. So,

 vcontact, road = vcontact, car + vcar, road = − ωr + v = 0.

If the driver drives the car at a higher speed,
v > ωr, the wheel rubs the road and we have rolling
with forward slipping. In this case

 vcontact, road = vcontact, car + vcar, road = − ωr + v > 0

Similarly, if v < ωr, we have rolling with backward
slipping,

        vcontact, road = − ωr + v < 0,

the particles at contact rub the road backward.

10.18 KINETIC ENERGY OF A BODY IN COMBINED
    ROTATION AND  TRANSLATION

Consider a body in combined translational and
rotational motion in the lab frame. Suppose in the
frame of the centre of mass, the body is making a pure
rotation with an angular velocity ω. The centre of mass
itself is moving in the lab frame at a velocity v

→
0. The

velocity of a particle of mass mi is v
→

i, cm with respect
to the centre-of-mass frame and v

→
i with respect to the

lab frame. We have,

          v
→

i = v
→

i, cm + v
→

0

The kinetic energy of the particle in the lab frame
is

  
1
2

 mivi
 2 = 

1
2

 mi (v
→

i, cm + v
→

0) ⋅ (v
→

i, cm + v
→

0)

       = 
1
2

 mivi, cm
 2  + 

1
2

 miv0
 2 + 

1
2

 mi (2v
→

i, cm ⋅ v
→

0).

Summing over all the particles, the total kinetic
energy of the body in the lab frame is

K = ∑ 
i

 1
2
 mivi

 2 = ∑ 
i

1
2
 mivi, cm

 2  + 1
2
 ∑ 

i

miv0
 2 + ⎛⎜

⎝
 ∑

i

 miv
→

i, cm
⎞
⎟
⎠

 ⋅ v
→

0.

Now ∑ 

i

1
2
 mivi, cm

 2  is the kinetic energy of the body

in the centre of mass frame. In this frame, the body
is making pure rotation with an angular velocity ω.

Thus, this term is equal to 1
2
 Icm ω 2. Also 

∑ mi v
→

i, cm

M
 is

the velocity of the centre of mass in the centre of mass
frame which is obviously zero. Thus,

         K = 
1
2

 Icmω 2 + 
1
2

 Mv0
 2.

In the case of pure rolling, v0 = Rω so that 

         K = 
1
2

(Icm + MR 2)ω 2.

Using the parallel axes theorem, Icm + MR 2 = I,
which is the moment of inertia of the wheel about the
line through the point of contact and parallel to the
axis. Thus, K = 1

2
 Iω 2.

This gives another interpretation of rolling. At any
instant a rolling body may be considered to be in pure
rotation about an axis through the point of contact.
This axis translates forward with a speed v0.

Example 10.12

   A uniform sphere of mass 200 g rolls without slipping
on a plane surface so that its centre moves at a speed of
2.00 cm/s. Find its kinetic energy.

Solution : As the sphere rolls without slipping on the
plane surface, its angular speed about the center is

ω = 
vcm

r
 ⋅ The kinetic energy is 

       K = 
1
2

 Icmω 2 + 
1
2

 M vcm
 2  

         = 
1
2

 ⋅ 2
5

 Mr 2ω 2 + 
1
2

 Mvcm
 2  

         = 
1
5

 Mvcm
 2  + 

1
2

 Mvcm
 2  = 

7
10

 Mvcm
 2  

         = 
7
10

 (0.200 kg) (0.02 m/s) 2 = 5.6 × 10 − 5 J. 

10.19 ANGULAR MOMENTUM OF A BODY
     IN COMBINED ROTATION AND TRANSLATION

Consider the situation described in the previous
section. Let O be a fixed point in the lab which we
take as the origin. Angular momentum of the body
about O is

      L
→

 = ∑ 
i

mi r
→

i × v
→

i

        = ∑ 
i

mi (r
→

i, cm + r
→

0) × (v
→

i, cm + v
→

0).

�

Figure 10.29
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Here, r
→

0 is the position vector of the centre of mass.
Thus,

    L
→

 = ∑ 
i

mi (r
→

i, cm × v
→

i, cm) + 

 ∑

i

 mi r
→

i, cm



 × v

→
0

         + r
→

0 × 

 ∑

i

 mi v
→

i, cm



 + 


 ∑

i

 mi 



 r
→

0 × v
→

0 .

Now,      ∑ 
i

mi r
→

i, cm = M R
→

cm, cm = 0

and       ∑ 
i

mi v
→

i, cm = M V
→

cm, cm = 0.

Thus,     L
→

 = ∑ 
i

mi (r
→

i, cm × v
→

i, cm) + M r
→

0 × v
→

0

          = L
→

cm + M r
→

0 × v
→

0 .

The first term L
→

cm represents the angular
momentum of the body as seen from the centre-of-mass
frame. The second term M r

→
0 × v

→
0 equals the angular

momentum of the body if it is assumed to be
concentrated at the centre of mass translating with the
velocity v

→
0 .

10.20 WHY DOES A ROLLING SPHERE
     SLOW DOWN ?

When a sphere is rolled on a horizontal table it
slows down and eventually stops. Figure (10.30) shows
the situation. The forces acting on the sphere are (a)

weight mg, (b) friction at the contact and (c) the normal
force. As the centre of the sphere decelerates, the
friction should be opposite to its velocity, that is
towards left in figure (10.30). But this friction will have
a clockwise torque that should increase the angular
velocity of the sphere. There must be an anticlockwise
torque that causes the decrease in the angular velocity.

In fact, when the sphere rolls on the table, both
the sphere and the surface deform near the contact.
The contact is not at a single point as we normally
assume, rather there is an area of contact. The front
part pushes the table a bit more strongly than the back
part. As a result, the normal force does not pass
through the centre, it is shifted towards the right. This
force, then, has an anticlockwise torque. The net
torque causes an angular deceleration.

Worked Out Examples

 1. A wheel rotates with a constant acceleration of 2.0 rad/s 2.
If the wheel starts from rest, how many revolutions will
it make in the first 10 seconds ?

Solution : The angular displacement in the first 10
seconds is given by

  θ = ω0 t + 
1
2

 α t 2 = 
1
2

 (2.0 rad/s 2) (10 s) 2 = 100 rad.

As the wheel turns by 2π radian in each revolution, the
number of revolutions in 10 s is

           n = 100
2π

 = 16.

 2. The wheel of a motor, accelerated uniformly from rest,
rotates through 2.5 radian during the first second. Find
the angle rotated during the next second.

Solution : As the angular acceleration is constant, we have

         θ = ω0 t + 
1
2

 α t 2 = 
1
2

 αt 2.

Thus,  2.5 rad = 
1
2

 α(1 s) 2

         α = 5 rad/s 2

or,       α = 5 rad/s 2.

The angle rotated during the first two seconds is

        = 1
2

 × (5 rad/s 2) (2 s) 2 = 10 rad.

Thus, the angle rotated during the 2nd second is

        10 rad − 2.5 rad = 7.5 rad.

 3. A wheel having moment of inertia 2 kg–m 2 about its axis,
rotates at 50 rpm about this axis. Find the torque that
can stop the wheel in one minute.

Solution : The initial angular velocity

           = 50 rpm = 
5π
3

 rad/s.

Using ω = ω0 + α t,

    α = 
ω − ω0

t
 = 

0 − 
5π
3

60
 rad/s 2 = − 

π
36

 rad/s 2.

The torque that can produce this deceleration is

  Γ = I  α  = (2 kg–m 2) 




π
36

 rad/s 2

 = 

π
18

 N–m.

v

f

mg

(a) (b)

Figure 10.30
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 4. A string is wrapped around the rim of a wheel of moment
of inertia 0.20 kg-m 2 and radius 20 cm. The wheel is
free to rotate about its axis. Initially, the wheel is at rest.
The string is now pulled by a force of 20 N. Find the
angular velocity of the wheel after 5.0 seconds.

Solution :

The torque applied to the wheel is

    Γ = F. r = (20 N) (0.20 m) = 4.0 N–m.

The angular acceleration produced is

     α = 
Γ
I

 = 
4.0 N–m

0.20 kg–m 2
 = 20 rad/s 2.

The angular velocity after 5.0 seconds is 

   ω = ω0 + α t = (20 rad/s 2) (5.0 s) = 100 rad/s. 

 5. A wheel of radius r and moment of inertia I about its
axis is fixed at the top of an inclined plane of inclination
θ as shown in figure (10-W2). A string is wrapped round
the wheel and its free end supports a block of mass M
which can slide on the plane. Initially, the wheel is
rotating at a speed ω in a direction such that the block
slides up the plane. How far will the block move before
stopping ?

Solution : Suppose the deceleration of the block is a. The
linear deceleration of the rim of the wheel is also a. The
angular deceleration of the wheel is α = a/r. If the
tension in the string is T, the equations of motion are
as follows:
           Mg sinθ − T = Ma

and         Tr = Iα = I a/r.

Eliminating T from these equations,

           Mg sinθ − I 
a
r 2 = Ma

giving,       a = 
Mg r 2sinθ
I + Mr 2 

 ⋅

The initial velocity of the block up the incline is
v = ω r. Thus, the distance moved by the block before
stopping is 

     x = 
v 2

2a
 = 

ω 2r 2(I + Mr 2)
2 Mg r 2sinθ

 = 
(I + Mr 2)ω 2

2 Mg sinθ
 ⋅

 6. The pulley shown in figure (10-W3) has a moment of
inertia I about its axis and its radius is R. Find the
magnitude of the acceleration of the two blocks. Assume
that the string is light and does not slip on the pulley.

Solution : Suppose the tension in the left string is T1 and
that in the right string is T2. Suppose the block of mass
M goes down with an acceleration a and the other block
moves up with the same acceleration. This is also the
tangential acceleration of the rim of the wheel as the
string does not slip over the rim. The angular
acceleration of the wheel is, therefore, α = a/R. The
equations of motion for the mass M, the mass m and
the pulley are as follows :

            Mg − T1 = Ma … (i)

             T2 − mg = ma … (ii)

           T1 R − T2 R = Iα = Ia/R. … (iii)

Putting T1  and  T2 from (i) and (ii) into (iii),

         [M(g − a) − m(g + a)] R = I 
a
R

which gives a = 
(M − m)gR 2

I + (M + m) R 2 ⋅ 

 7. Two small kids weighing 10 kg and 15 kg respectively
are trying to balance a seesaw of total length 5.0 m, with
the fulcrum at the centre. If one of the kids is sitting at
an end, where should the other sit ?

Solution :

It is clear that the 10 kg kid should sit at the end and
the 15 kg kid should sit closer to the centre. Suppose
his distance from the centre is x. As the kids are in
equilibrium, the normal force between a kid and the
seesaw equals the weight of that kid. Considering the
rotational equilibrium of the seesaw, the torques of the
forces acting on it should add to zero. The forces are
(a) (15 kg)g downward by the 15 kg kid,

Figure 10-W1

M

Figure 10-W2

m
M

I
R

Figure 10-W3

Figure 10-W4
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(b) (10 kg)g downward by the 10 kg kid,
(c) weight of the seesaw and
(d) the normal force by the fulcrum. 

Taking torques about the fulcrum,

         (15 kg)g x = (10 kg)g (2.5 m)

or,             x = 1.7 m.

 8. A uniform ladder of mass 10 kg leans against a smooth
vertical wall making an angle of 53° with it. The other
end rests on a rough horizontal floor. Find the normal
force and the frictional force that the floor exerts on the
ladder.

Solution :

The forces acting on the ladder are shown in figure
(10-W5). They are

(a) its weight W,
(b) normal force N 1 by the vertical wall,
(c) normal force N 2 by the floor and
(d) frictional force f by the floor.

Taking horizontal and vertical components
               N 1 = f ... (i)

   and          N 2 = W. ... (ii)

Taking torque about B,

          N 1 (AO) = W(CB)

or,    N 1 (AB) cos 53° = W 
AB
2

 sin 53°

or,           N 1 
3
5

 = 
W
2

 
4
5

   or,            N 1 = 
2
3

 W. … (iii)

The normal force by the floor is

      N 2 = W = (10 kg) (9.8 m/s 2) = 98 N.

The frictional force is

       f = N 1 = 2
3
 W = 65 N.

 9. The ladder shown in figure (10-W6) has negligible mass
and rests on a frictionless floor. The crossbar connects
the two legs of the ladder at the middle. The angle
between the two legs is 60°. The fat person sitting on the

ladder has a mass of 80 kg. Find the contact force exerted
by the floor on each leg and the tension in the crossbar.

Solution : The forces acting on different parts are shown
in figure (10-W6). Consider the vertical equilibrium of
“the ladder plus the person” system. The forces acting
on this system are its weight (80 kg)g and the contact
force N  + N  = 2 N  due to the floor. Thus,

          2 N  = (80 kg) g

or,          N  = (40 kg) (9.8 m/s 2) = 392 N.

Next consider the equilibrium of the left leg of the
ladder. Taking torques of the forces acting on it about
the upper end,

           N  (2 m)tan 30° = T(1 m)

or,           T = N  
2

√3
 = (392 N) × 

2
√3

 ≈ 450 N.

10. Two small balls A and B, each of mass m, are attached
rigidly to the ends of a light rod of length d. The structure
rotates about the perpendicular bisector of the rod at an
angular speed ω. Calculate the angular momentum of
the individual balls and of the system about the axis of
rotation.

Solution :

Consider the situation shown in figure (10-W7). The
velocity of the ball A with respect to the centre O is

v = 
ω d
2

 ⋅ The angular momentum of the ball with respect

to the axis is L1 = mvr = m



ω d
2




 



d
2




 = 1

4
 mωd 2.

The same is the angular momentum L2 of the second
ball. The angular momentum of the system is equal to

sum of these two angular momenta i.e., L = 1
2
 mωd 2.

11. Two particles of mass m each are attached to a light rod
of length d, one at its centre and the other at a free end.

53°

W

f C O

A1

2N

N

B

Figure 10-W5

30°

1m

T T
1m

60°

N N

W

Figure 10-W6

A

 d 

O B

Figure 10-W7
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The rod is fixed at the other end and is rotated in a plane
at an angular speed ω. Calculate the angular momentum
of the particle at the end with respect to the particle at
the centre.

Solution :

The situation is shown in figure (10-W8). The velocity
of the particle A with respect to the fixed end O is

vA = ω 


d
2




 and that of B with respect to O is vB = ω d.

Hence the velocity of B with respect to A is

vB − vA = ω 


d
2




 . The angular momentum of B with respect

to A is, therefore,

       L = mvr = mω



d
2




 
d
2

 = 1
4
 mωd 2

along the direction perpendicular to the plane of
rotation.

12. A particle is projected at time t = 0 from a point P with
a speed v0 at an angle of 45° to the horizontal. Find the
magnitude and the direction of the angular momentum
of the particle about the point P at time t = v0/g.

Solution : Let us take the origin at P, X-axis along the
horizontal and Y-axis along the vertically upward
direction as shown in figure (10-W9). For horizontal
motion during the time 0 to t,

        vx = v0 cos 45° = v0/√2

and       x = vx t = 
v0

√2
 ⋅ 

v0

g
 = 

v0
 2

√2 g
 ⋅

For vertical motion,

      vy = v0 sin 45° − gt = 
v0

√2
 − v0 = 

(1 − √2)
√2

 v0

and    y = (v0 sin 45°) t − 
1
2

 gt 2

        = 
v0

 2

√2 g
 − 

v0
 2

2 g
 = 

v0
 2

2 g
 (√2 − 1)

The angular momentum of the particle at time t about
the origin is
       L = r

→
 × p

→
 = m r

→
 × v

→

         = m (i
→
 x + j

→
 y) × (i

→
 vx + j

→
 vy)

       = m (k
→

 x vy − k
→

 y vx)

       = m k
→

 








v0
 2

√2 g




 
v0

√2
 (1 − √2) − 

v0
 2

2 g
 (√2 − 1) 

v0

√2





       = − k
→

 
mv0

 3

2√2 g
 ⋅

Thus, the angular momentum of the particle is 
m v0

 3

2√2 g
 in

the negative Z-direction, i.e., perpendicular to the plane
of motion, going into the plane.

13. A uniform circular disc of mass 200 g and radius 4.0 cm
is rotated about one of its diameter at an angular speed
of 10 rad/s. Find the kinetic energy of the disc and its
angular momentum about the axis of rotation.

Solution : The moment of inertia of the circular disc about
its diameter is

      I = 
1
4

 Mr 2 = 
1
4

 (0.200 kg) (0.04 m) 2

       = 8.0 × 10 − 5 kg–m 2.

The kinetic energy is

   K = 
1
2

 Iω 2 = 
1
2

 (8.0 × 10 − 5 kg–m 2) (100 rad 2/s 2)

     = 4.0 × 10 − 3 J

and the angular momentum about the axis of rotation is

   L = Iω = (8.0 × 10 − 5 kg–m 2) (10 rad/s)

     = 8.0 × 10 − 4 kg–m 2/s = 8.0 × 10 − 4 J–s.

14. A wheel rotating at an angular speed of 20 rad/s is
brought to rest by a constant torque in 4.0 seconds. If
the moment of inertia of the wheel about the axis of
rotation is 0.20 kg-m 2, find the work done by the torque
in the first two seconds.

Solution : The angular deceleration of the wheel during
the 4.0 seconds may be obtained by the equation

        ω = ω0 − αt

or,       α = 
ω0 − ω

t
 = 

20 rad/s
4.0 s

 = 5.0 rad/s 2.

The torque applied to produce this deceleration is

   Γ = Iα = (0.20 kg–m 2) (5.0 rad/s 2) = 1.0 N–m.

The angle rotated in the first two seconds is

       θ = ω0 t − 
1
2

 αt 2

         = (20 rad/s) (2 s) − 
1
2

 (5.0 rad/s 2) (4.0 s 2)

         = 40 rad − 10 rad = 30 rad.

The work done by the torque in the first 2 seconds is,
therefore,

       W = Γθ = (1.0 N–m) (30 rad) = 30 J.

A BO

Figure 10-W8

Y

P

r

v

X

Figure 10-W9
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15. Two masses M and m are connected by a light string
going over a pulley of radius r. The pulley is free to rotate
about its axis which is kept horizontal. The moment of
inertia of the pulley about the axis is I. The system is
released from rest. Find the angular momentum of the
system when the mass M has descended through a height
h. The string does not slip over the pulley.

Solution :

The situation is shown in figure (10-W10). Let the speed
of the masses be v at time t. This will also be the speed
of a point on the rim of the wheel and hence the angular
velocity of the wheel at time t will be v/r. If the height
descended by the mass M is h, the loss in the potential
energy of the “masses plus the pulley” system is
Mgh − mgh. The gain in kinetic energy is

1
2
 Mv 2 + 1

2
 mv 2 + 1

2
 I ⎛⎜

⎝

v
r

⎞
⎟
⎠

 2

. As no energy is lost,

       
1
2

 ⎛⎜
⎝
M + m + 

I
r 2

⎞
⎟
⎠
 v 2 = (M − m) gh

or,      v 2 = 
2 (M − m)g h

M + m + 
I

r 2

 ⋅

The angular momentum of the mass M is Mvr and that
of the mass m is mvr in the same direction. The angular
momentum of the pulley is Iω = Iv/r. The total angular
momentum is

 ⎡
⎢
⎣
(M + m)r + 

I
r
⎤
⎥
⎦
v = ⎡⎢

⎣

⎛
⎜
⎝
M + m + 

I
r 2

⎞
⎟
⎠
 r⎤

⎥
⎦
 √⎯⎯⎯⎯2(M − m)gh

M + m + 
I

r 2

           = √⎯⎯⎯⎯⎯⎯⎯⎯2(M − m) ⎛⎜
⎝
M + m + 

I
r 2

⎞
⎟
⎠
 r 2gh .

16. Figure (10-W11) shows a mass m placed on a frictionless
horizontal table and attached to a string passing through
a small hole in the surface. Initially, the mass moves in
a circle of radius r0 with a speed v0 and the free end of

the string is held by a person. The person pulls on the
string slowly to decrease the radius of the circle to r.
(a) Find the tension in the string when the mass moves
in the circle of radius r. (b) Calculate the change in the
kinetic energy of the mass.

Solution : The torque acting on the mass m about the
vertical axis through the hole is zero. The angular
momentum about this axis, therefore, remains constant.
If the speed of the mass is v when it moves in the circle
of radius r, we have

          mv0 r0 = mvr

   or,            v = 
r0

r
 v0 . … (i)

(a) The tension T = 
mv 2

r
 = 

mr0
 2 v0

 2

r 3  ⋅

(b) The change in kinetic energy = 
1
2

 mv 2 − 
1
2

 mv0
 2⋅

By (i), it is 
1
2

 mv0
 2 

⎡
⎢
⎣

r0
 2

r 2 − 1
⎤
⎥
⎦
 .

17. A uniform rod of mass m and length l is kept vertical
with the lower end clamped. It is slightly pushed to let
it fall down under gravity. Find its angular speed when
the rod is passing through its lowest position. Neglect
any friction at the clamp. What will be the linear speed
of the free end at this instant ?

Solution :

As the rod reaches its lowest position, the centre of mass
is lowered by a distance l. Its gravitational potential
energy is decreased by mgl. As no energy is lost against
friction, this should be equal to the increase in the
kinetic energy. As the rotation occurs about the
horizontal axis through the clamped end, the moment of
inertia is I = ml 2/3. Thus,

            
1
2

 I ω 2 = mgl

         
1
2

 
⎛
⎜
⎝

ml 2

3
⎞
⎟
⎠
 ω 2 = mgl

or,              ω = √⎯⎯6 g
l

 ⋅

�
�

�
�

Figure 10-W10

Figure 10-W11
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The linear speed of the free end is
           v = lω = √6 gl .

18. Four particles each of mass m are kept at the four corners
of a square of edge a. Find the moment of inertia of the
system about a line perpendicular to the plane of the
square and passing through the centre of the square.

Solution :

The perpendicular distance of every particle from the
given line is a/√2. The moment of inertia of one particle

is, therefore, m(a/√2) 2 = 1
2
 ma 2. The moment of inertia

of the system is, therefore, 4 × 1
2
 ma 2 = 2 ma 2.

19. Two identical spheres each of mass 1.20 kg and radius
10.0 cm are fixed at the ends of a light rod so that the
separation between the centres is 50.0 cm. Find the
moment of inertia of the system about an axis
perpendicular to the rod passing through its middle
point.

Solution :

Consider the diameter of one of the spheres parallel to
the given axis. The moment of inertia of this sphere
about the diameter is

      I = 
2
5

 mR 2 = 
2
5

 (1.20 kg) (0.1 m) 2

       = 4.8 × 10 − 3 kg–m 2.

Its moment of inertia about the given axis is obtained
by using the parallel axes theorem. Thus,

      I = Icm + md 2

       = 4.8 × 10 − 3 kg–m 2 + (1.20 kg) (0.25 m) 2

       = 4.8 × 10 − 3 kg–m 2 + 0.075 kg–m 2

       = 79.8 × 10 − 3 kg–m 2.

The moment of inertia of the second sphere is also the
same so that the moment of inertia of the system is

       2 × 79.8 × 10 − 3 kg–m 2 ≈ 0.160 kg–m 2.

20. Two uniform identical rods each of mass M and length
l are joined to form a cross as shown in figure (10-W15).
Find the moment of inertia of the cross about a bisector
as shown dotted in the figure.

Solution : Consider the line perpendicular to the plane of
the figure through the centre of the cross. The moment

of inertia of each rod about this line is Ml 
2

12
 and hence

the moment of inertia of the cross is Ml 
2

6
 ⋅ The moment

of inertia of the cross about the two bisectors are equal
by symmetry and according to the theorem of
perpendicular axes, the moment of inertia of the cross

about the bisector is Ml 
2

12
 ⋅

21. A uniform rod of mass M and length a lies on a smooth
horizontal plane. A particle of mass m moving at a speed
v perpendicular to the length of the rod strikes it at a
distance a/4 from the centre and stops after the collision.
Find (a) the velocity of the centre of the rod and (b) the
angular velocity of the rod about its centre just after the
collision.

Solution :

The situation is shown in figure (10-W16a). Consider the
rod and the particle together as the system. As there is
no external resultant force, the linear momentum of the
system will remain constant. Also there is no resultant
external torque on the system and so the angular
momentum of the system about any line will remain
constant.

Suppose the velocity of the centre of the rod is V and
the angular velocity about the centre is ω.
(a) The linear momentum before the collision is mv and
that after the collision is MV. Thus,

           mv = MV,  or  V = 
m
M

 v.

m m

mm

a/
  2

Figure 10-W13

10 cm

25 cm

Figure 10-W14

Figure 10-W15

a/4

aA VA
r0

(a) (b)

Figure 10-W16

188 Concepts of Physics



(b) Let A be the centre of the rod when it is at rest. Let
AB be the line perpendicular to the plane of the figure.
Consider the angular momentum of “the rod plus the
particle” system about AB. Initially the rod is at rest.
The angular momentum of the particle about AB is

             L  mva/4.

After the collision, the particle comes to rest. The
angular momentum of the rod about A is

              L


  L


cm  M r


0  V


.

As   r


0 ||  V


,        r


0  V


  0.

Thus,       L


  L


cm.

Hence the angular momentum of the rod about AB is

            L  I  Ma 2

12
 .

Thus,  
mva

4
  

Ma 2

12
      or,    3 mv

Ma
 

22. A wheel of perimeter 220 cm rolls on a level road at a
speed of 9 km/h. How many revolutions does the wheel
make per second ?

Solution : As the wheel rolls on the road, its angular speed
 about the centre and the linear speed v of the centre
are related as v   r.

        
v
r
  

9 km/h
220 cm/2

  
2  9  10 5

220  3600
 rad/s.

 900
22  36

 rev/s  25
22

 rev/s.

23. A cylinder is released from rest from the top of an incline
of inclination  and length l. If the cylinder rolls without
slipping, what will be its speed when it reaches the
bottom ?

Solution : Let the mass of the cylinder be m and its radius
r. Suppose the linear speed of the cylinder when it
reaches the bottom is v. As the cylinder rolls without
slipping, its angular speed about its axis is   v/r. The
kinetic energy at the bottom will be

 K  
1
2

 I 2  
1
2

 mv 2

    
1
2

 


1
2

 mr 2


  2  1

2
 mv 2  

1
4

 mv 2  
1
2

 mv 2  
3
4

 mv 2.

This should be equal to the loss of potential energy

mgl sin. Thus,    3
4
 mv 2  mgl sin

or,                v  4
3
 gl sin .

24. A sphere of mass m rolls without slipping on an inclined
plane of inclination . Find the linear acceleration of the
sphere and the force of friction acting on it. What should
be the minimum coefficient of static friction to support
pure rolling ?

Solution : Suppose the radius of the sphere is r. The forces
acting on the sphere are shown in figure (10-W17).
They are (a) weight mg, (b) normal force N  and
(c) friction f.

Let the linear acceleration of the sphere down the plane
be a. The equation for the linear motion of the centre
of mass is

              mg sin  f  ma.  (i)

As the sphere rolls without slipping, its angular
acceleration about the centre is a/r. The equation of
rotational motion about the centre of mass is,

          fr  



2
5

 mr 2

 



a
r




   or,         f  
2
5

 ma.  (ii)

From (i) and (ii),

          a  
5
7

 g sin

and         f  
2
7

 mg sin.

The normal force is equal to mg cos as there is no
acceleration perpendicular to the incline. The maximum
friction that can act is, therefore,  mg cos, where  is
the coefficient of static friction. Thus, for pure rolling

          mg cos > 
2
7

 mg sin

or,              > 
2
7

 tan.

25. Figure (10-W18) shows two cylinders of radii r1  and  r2

having moments of inertia I1  and  I2 about their
respective axes. Initially, the cylinders rotate about their
axes with angular speeds 1 and 2 as shown in the
figure. The cylinders are moved closer to touch each other
keeping the axes parallel. The cylinders first slip over
each other at the contact but the slipping finally ceases
due to the friction between them. Find the angular speeds
of the cylinders after the slipping ceases.

�

��

�

Figure 10-W17

r
1 r

2
1

1 2

2

Figure 10-W18
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Solution : When slipping ceases, the linear speeds of the
points of contact of the two cylinders will be equal. If
1  and  2 be the respective angular speeds, we have

                1 r1  2 r2.  (i)

The change in the angular speed is brought about by
the frictional force which acts as long as the slipping
exists. If this force f acts for a time t, the torque on the
first cylinder is f r1 and that on the second is f r2.
Assuming 1 r1 > 2 r2 , the corresponding angular
impluses are  f r1 t and f r2 t. We, therefore, have

           f r1 t  I11  1

and         f r2 t  I22  2

   or,   
I1

r1

 1  1  
I2

r2

 2  2.  (ii)

Solving (i) and (ii),

 1  
I1 1 r2  I2 2 r1

I2 r1
 2  I1 r2

 2  r2  and  2  
I1 1 r2  I2 2 r1

I2 r1
 2  I1 r2

 2  r1 .

26. A cylinder of mass m is suspended through two strings
wrapped around it as shown in figure (10-W19). Find (a)
the tension T in the string and (b) the speed of the
cylinder as it falls through a distance h.

Solution : The portion of the strings between the ceiling
and the cylinder is at rest. Hence the points of the
cylinder where the strings leave it are at rest. The
cylinder is thus rolling without slipping on the strings.
Suppose the centre of the cylinder falls with an
acceleration a. The angular acceleration of the cylinder
about its axis is   a/R, as the cylinder does not slip
over the strings.
The equation of motion for the centre of mass of the
cylinder is

                mg  2T  ma  (i)

and for the motion about the centre of mass, it is

         2 Tr  



1
2

 mr 2



  

1
2

 mra

   or,        2 T  
1
2

 ma.  (ii)

From (i) and (ii),

          a  
2
3

 g  and  T  
mg
6

 

As the centre of the cylinder starts moving from rest,
the velocity after it has fallen through a distance h is

given by

           v 2  2 



2
3

 g



 h

or,          v  4 gh
3

 

27. A force F acts tangentially at the highest point of a sphere
of mass m kept on a rough horizontal plane. If the sphere
rolls without slipping, find the acceleration of the centre
of the sphere.

Solution :

The situation is shown in figure (10-W20). As the force
F rotates the sphere, the point of contact has a tendency
to slip towards left so that the static friction on the
sphere will act towards right. Let r be the radius of the
sphere and a be the linear acceleration of the centre of
the sphere. The angular acceleration about the centre of
the sphere is   a/r, as there is no slipping.

For the linear motion of the centre
                F  f  ma  (i)

and for the rotational motion about the centre,

     Fr  f r  I  


2
5

 mr 2


 


a
r




   or,        F  f  
2
5

 ma.  (ii)

From (i) and (ii),

         2F  
7
5

 ma  or,  a  
10 F
7 m

 

28. A sphere of mass M and radius r shown in figure
(10-W21) slips on a rough horizontal plane. At some
instant it has translational velocity v0 and rotational

velocity about the centre 
v0

2 r
  Find the translational

velocity after the sphere starts pure rolling.

Solution : Velocity of the centre   v0 and the angular

velocity about the centre  0  
v0

2 r
  Thus, v0 > 0 r. The

sphere slips forward and thus the friction by the plane
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on the sphere will act backward. As the friction is
kinetic, its value is N   Mg and the sphere will be
decelerated by acm  f/M. Hence,

              vt  v0  
f

M
 t   (i)

This friction will also have a torque   f r about the
centre. This torque is clockwise and in the direction of
0. Hence the angular acceleration about the centre
will be

         f 
r

2/5 Mr 2  
5 f

2 Mr

and the clockwise angular velocity at time t will be

      t  0  
5 f

2 Mr
 t  

v0

2 r
  

5 f
2 Mr

 t

Pure rolling starts when vt  rt

   i.e.,        vt  
v0

2
  

5 f
2 M

 t  (ii)

Eliminating t from (i) and (ii),

          
5
2

 vt  vt  
5
2

 v0  
v0

2

or,         vt  
2
7

  3 v0  
6
7

 v0 .

Thus, the sphere rolls with translational velocity
6v0 /7 in the forward direction.

Alternative : Let us consider the torque about the initial
point of contact A. The force of friction passes through
this point and hence its torque is zero. The normal force
and the weight balance each other. The net torque about
A is zero. Hence the angular momentum about A is
conserved.
Initial angular momentum is,
       L  Lcm  Mrv0  Icm 0  Mrv0

 


2
5

 Mr 2


 




v0

2 r



  Mrv0  

6
5

 Mrv0.

Suppose the translational velocity of the sphare, after it
starts rolling, is v. The angular velocity is v/r. The
angular momentum about A is,
          L  Lcm  Mrv

             


2
5

 Mr 2


 


v
r



  Mrv  

7
5

 Mrv.

Thus,      
6
5

 Mrv0  
7
5

 Mrv

or,            v  
6
7

 v0 .

29. The sphere shown in figure (10-W22) lies on a rough
plane when a particle of mass m travelling at a speed
v0 collides and sticks with it. If the line of motion of the
particle is at a distance h above the plane, find (a) the
linear speed of the combined system just after the
collision, (b) the angular speed of the system about the
centre of the sphere just after the collision and (c) the
value of h for which the sphere starts pure rolling on the
plane. Assume that the mass M of the sphere is large
compared to the mass of the particle so that the centre
of mass of the combined system is not appreciably shifted
from the centre of the sphere.

Solution : Take the particle plus the sphere as the system.
(a) Using conservation of linear momentum, the linear
speed of the combined system v is given by

         mv0  M  mv   or,   v  
mv0

M  m
   (i)

(b) Next, we shall use conservation of angular
momentum about the centre of mass, which is to be
taken at the centre of the sphere M  m. Angular
momentum of the particle before collision is
mv0h  R. If the system rotates with angular speed 
after collision, the angular momentum of the system
becomes

            


2
5

 MR 2  mR 2


 .

Hence,

          mv0h  R  


2
5

 M  m


 R 2

or,              
mv0h  R





2
5

 M  m


 R 2

 

(c) The sphere will start rolling just after the collision if

      v  R,  i.e.,  
mv0

M  m
  

mv0h  R




2
5

 M  m


 R

 

giving,  h  








7
5

 M  2 m

M  m






 R  

7
5

 R.

�
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QUESTIONS FOR SHORT ANSWER

 1. Can an object be in pure translation as well as in pure
rotation ?

 2. A simple pendulum is a point mass suspended by a light
thread from a fixed point. The particle is displaced
towards one side and then released. It makes small
oscillations. Is the motion of such a simple pendulum a
pure rotation ? If yes, where is the axis of rotation ?

 3. In a rotating body, a = αr  and  v = ω r. Thus 
a
α

 = 
v
ω

 ⋅ Can

you use the theorems of ratio and proportion studied in
algebra so as to write

                 
a + α
a − α

 = 
v + ω
v − ω

 4. A ball is whirled in a circle by attaching it to a fixed
point with a string. Is there an angular rotation of the
ball about its centre ? If yes, is this angular velocity
equal to the angular velocity of the ball about the fixed
point ?

 5. The moon rotates about the earth in such a way that
only one hemisphere of the moon faces the earth
(figure 10-Q1). Can we ever see the “other face” of the
moon from the earth ? Can a person on the moon ever
see all the faces of the earth ?

 6. The torque of the weight of any body about any vertical
axis is zero. Is it always correct ?

 7. The torque of a force F
→

 about a point is defined as
Γ
→

 = r
→
 × F

→
. Suppose r

→
, F

→
  and  Γ

→
 are all nonzero. Is

r
→
 × Γ

→
|| F

→
 always true ? Is it ever true ?

 8. A heavy particle of mass m falls freely near the earth’s
surface. What is the torque acting on this particle about
a point 50 cm east to the line of motion ? Does this
torque produce any angular acceleration in the particle ?

 9. If several forces act on a particle, the total torque on
the particle may be obtained by first finding the
resultant force and then taking torque of this resultant.
Prove this. Is this result valid for the forces acting on
different particles of a body in such a way that their
lines of action intersect at a common point ?

10. If the sum of all the forces acting on a body is zero, is
it necessarily in equilibrium ? If the sum of all the forces
on a particle is zero, is it necessarily in equilibrium ?

11. If the angular momentum of a body is found to be zero
about a point, is it necessary that it will also be zero
about a different point ?

12. If the resultant torque of all the forces acting on a body
is zero about a point, is it necessary that it will be zero
about any other point ?

13. A body is in translational equilibrium under the action
of coplanar forces. If the torque of these forces is zero
about a point, is it necessary that it will also be zero
about any other point ?

14. A rectangular brick is kept on a table with a part of its
length projecting out. It remains at rest if the length
projected is slightly less than half the total length but
it falls down if the length projected is slightly more than
half the total length. Give reason.

15. When a fat person tries to touch his toes, keeping the
legs straight, he generally falls. Explain with reference
to figure (10-Q2).

16. A ladder is resting with one end on a vertical wall and
the other end on a horizontal floor. Is it more likely to
slip when a man stands near the bottom or near the
top ?

17. When a body is weighed on an ordinary balance we
demand that the arm should be horizontal if the weights
on the two pans are equal. Suppose equal weights are
put on the two pans, the arm is kept at an angle with
the horizontal and released. Is the torque of the two
weights about the middle point (point of support) zero ?
Is the total torque zero ? If so, why does the arm rotate
and finally become horizontal ?

18. The density of a rod AB continuously increases from A
to B. Is it easier to set it in rotation by clamping it at
A and applying a perpendicular force at B or by clamping
it at B and applying the force at A ?

19. When tall buildings are constructed on earth, the
duration of day–night slightly increases. Is it true ?

20. If the ice at the poles melts and flows towards the
equator, how will it affect the duration of day–night ?

21. A hollow sphere, a solid sphere, a disc and a ring all
having same mass and radius are rolled down on an
inclined plane. If no slipping takes place, which one will
take the smallest time to cover a given length ?

22. A sphere rolls on a horizontal surface. Is there any point
of the sphere which has a vertical velocity ?

E

Figure 10-Q1

Figure 10-Q2
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 OBJECTIVE I

 1. Let A
→

 be a unit vector along the axis of rotation of a
purely rotating body and B

→
 be a unit vector along the

velocity of a particle P of the body away from the axis.
The value of A

→
 . B

→
 is

(a) 1     (b) –1     (c) 0     (d) None of these.
 2. A body is uniformly rotating about an axis fixed in an

inertial frame of reference. Let A
→

 be a unit vector along
the axis of rotation and B

→
 be the unit vector along the

resultant force on a particle P of the body away from
the axis. The value of A

→
 . B

→
 is 

(a) 1     (b) –1     (c) 0     (d) none of these.
 3. A particle moves with a constant velocity parallel to the

X-axis. Its angular momentum with respect to the origin
(a) is zero            (b) remains constant
(c) goes on increasing    (d) goes on decreasing.

 4. A body is in pure rotation. The linear speed v of a
particle, the distance r of the particle from the axis and
the angular velocity ω of the body are related as

ω = v
r
 ⋅ Thus 

(a) ω ∝ 
1
r

           (b) ω ∝ r

(c) ω = 0            (d) ω is independent of r.

 5. Figure (10-Q3) shows a small wheel fixed coaxially on a
bigger one of double the radius. The system rotates
about the common axis. The strings supporting A and B
do not slip on the wheels. If x and y be the distances
travelled by A and B in the same time interval, then
(a) x = 2 y  (b) x = y  (c) y = 2 x  (d) none of these.

 

 6. A body is rotating uniformly about a vertical axis fixed
in an inertial frame. The resultant force on a particle of
the body not on the axis is
(a) vertical    (b) horizontal and skew with the axis
(c) horizontal and intersecting the axis
(d) none of these.

 7. A body is rotating nonuniformly about a vertical axis
fixed in an inertial frame. The resultant force on a
particle of the body not on the axis is
(a) vertical    (b) horizontal and skew with the axis
(c) horizontal and intersecting the axis
(d) none of these.

 8. Let F
→

 be a force acting on a particle having position
vector r

→
. Let Γ

→
 be the torque of this force about the

origin, then

(a) r
→
 . Γ

→
 = 0  and  F

→
 . Γ

→
 = 0    (b) r

→
 . Γ

→
 = 0  but  F

→
 . Γ

→
 ≠ 0

(c) r
→
 . Γ

→
 ≠ 0  but  F

→
 . Γ

→
 = 0    (d) r

→
 . Γ

→
 ≠ 0  and  F

→
 . Γ

→
 ≠ 0.

 9. One end of a uniform rod of mass m and length l is
clamped. The rod lies on a smooth horizontal surface
and rotates on it about the clamped end at a uniform
angular velocity ω. The force exerted by the clamp on
the rod has a horizontal component

(a) mω 2l    (b) zero    (c) mg    (d) 
1
2

 mω 2l.

10. A uniform rod is kept vertically on a horizontal smooth
surface at a point O. If it is rotated slightly and released,
it falls down on the horizontal surface. The lower end
will remain
(a) at O      (b) at a distance less than l/2 from O
(c) at a distance l/2 from O
(d) at a distance larger than l/2 from O.

11. A circular disc A of radius r is made from an iron plate
of thickness t and another circular disc B of radius 4r
is made from an iron plate of thickness t/4. The relation
between the moments of inertia IA  and  IB is
(a) IA > IB       (b) IA = IB       (c) IA < IB

(d) depends on the actual values of t and r.

12. Equal torques act on the discs A and B of the previous
problem, initially both being at rest. At a later instant,
the linear speeds of a point on the rim of A and another
point on the rim of B are vA  and  vB respectively. We
have
(a) vA > vB       (b) vA = vB      (c) vA < vB

(d) the relation depends on the actual magnitude of the
torques.

13. A closed cylindrical tube containing some water (not
filling the entire tube) lies in a horizontal plane. If the
tube is rotated about a perpendicular bisector, the
moment of inertia of water about the axis
(a) increases   (b) decreases   (c) remains constant
(d) increases if the rotation is clockwise and decreases
if  it is anticlockwise.

14. The moment of inertia of a uniform semicircular wire of
mass M and radius r about a line perpendicular to the
plane of the wire through the centre is

(a) Mr 2    (b) 
1
2

 Mr 2     (c) 
1
4

 Mr 2     (d) 
2
5

 Mr 2.

15. Let I1  and  I2 be the moments of inertia of two bodies of
identical geometrical shape, the first made of aluminium
and the second of iron.
(a) I1 < I2        (b) I1 = I2        (c) I1 > I2

(d) relation between I1  and  I2 depends on the actual
shapes  of the bodies.

16. A body having its centre of mass at the origin has three
of its particles at (a,0,0), (0,a,0), (0,0,a). The moments
of inertia of the body about the X and Y axes are
0.20 kg–m 2 each. The moment of inertia about the
Z-axis

(a) is 0.20 kg–m 2        (b) is 0.40 kg–m 2

(c) is 0.20√2 kg–m 2

(d) cannot be deduced with this  information.

17. A cubical block of mass M and edge a slides down a
rough inclined plane of inclination θ with a uniform

A

B

Figure 10-Q3
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velocity. The torque of the normal force on the block
about its centre has a magnitude

(a) zero  (b) Mga  (c) Mga sinθ  (d) 
1
2

 Mga sinθ.

18. A thin circular ring of mass M and radius r is rotating
about its axis with an angular speed ω. Two particles
having mass m each are now attached at diametrically
opposite points. The angular speed of the ring will
become

(a)  
ωM

M + m
               (b) 

ωM
M + 2 m

(c) 
ω(M − 2 m)

M + 2 m
             (d) 

ω(M + 2 m)
M

 ⋅

19. A person sitting firmly over a rotating stool has his arms
stretched. If he folds his arms, his angular momentum
about the axis of rotation
(a) increases              (b) decreases
(c) remains unchanged        (d) doubles.

20. The centre of a wheel rolling on a plane surface moves
with a speed v0. A particle on the rim of the wheel at
the same level as the centre will be moving at speed
(a) zero     (b) v0     (c) √2v0     (d) 2v0.

21. A wheel of radius 20 cm is pushed to move it on a rough
horizontal surface. It is found to move through a distance
of 60 cm on the road during the time it completes one
revolution about the centre. Assume that the linear and
the angular accelerations are uniform. The frictional
force acting on the wheel by the surface is
(a) along the velocity of the wheel
(b) opposite to the velocity of the wheel
(c) perpendicular to the velocity of the wheel
(d) zero.

22. The angular velocity of the engine (and hence of the
wheel) of a scooter is proportional to the petrol input
per second. The scooter is moving on a frictionless road
with uniform velocity. If the petrol input is increased by

10%, the linear velocity of the scooter is increased by
(a) 50%     (b) 10%     (c) 20%     (d) 0%.

23. A solid sphere, a hollow sphere and a disc, all having
same mass and radius, are placed at the top of a smooth
incline and released. Least time will be taken in
reaching the bottom by
(a) the solid sphere      (b) the hollow sphere
(c) the disc            (d) all will take same time.

24. A solid sphere, a hollow sphere and a disc, all having
same mass and radius, are placed at the top of an incline
and released. The friction coefficients between the
objects and the incline are same and not sufficient to
allow pure rolling. Least time will be taken in reaching
the bottom by 
(a) the solid sphere      (b) the hollow sphere
(c) the disc            (d) all will take same time.

25. In the previous question, the smallest kinetic energy at
the bottom of the incline will be achieved by 
(a) the solid sphere       (b) the hollow sphere 
(c) the disc  (d) all will achieve same kinetic energy.

26. A string of negligible thickness is wrapped several times
around a cylinder kept on a rough horizontal surface. A
man standing at a distance l from the cylinder holds one
end of the string and pulls the cylinder towards him
(figure 10-Q4). There is no slipping anywhere. The
length of the string passed through the hand of the man
while the cylinder reaches his hands is
(a) l       (b) 2l       (c) 3l       (d) 4l.

 OBJECTIVE II

 1. The axis of rotation of a purely rotating body
(a) must pass through the centre of mass
(b) may pass through the centre of mass
(c) must pass through a particle of the body
(d) may pass through a particle of the body.

 2. Consider the following two equations

(A) L = I ω                 (B) 
dL
dt

 = Γ

In noninertial frames
(a) both A and B are true   (b) A is true but B is false
(c) B is true but A is false  (d) both A and B are false.

 3. A particle moves on a straight line with a uniform
velocity. Its angular momentum
(a) is always zero
(b) is zero about a point on the  straight line 
(c) is not zero about a point away from the straight line
(d) about any given point remains constant.

 4. If there is no external force acting on a nonrigid body,
which of the following quantities must remain constant ?
(a) angular momentum     (b) linear momentum
(c) kinetic energy         (d) moment of inertia.

 5. Let IA  and  IB be moments of inertia of a body about two
axes A and B respectively. The axis A passes through
the centre of mass of the body but B does not.
(a) IA < IB    (b) If IA < IB,  the axes are parallel
(c) If the axes are parallel, IA < IB 
(d) If the axes are not parallel, IA ≥ IB.

 6. A sphere is rotating about a diameter. 
(a) The particles on the surface of the sphere do not have
any linear acceleration.
(b) The particles on the diameter mentioned above do
not have  any linear acceleration.
(c) Different particles on the surface have different

Figure 10-Q4
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angular  speeds.
(d) All the particles on the surface have same linear
speed.

 7. The density of a rod gradually decreases from one end
to the other. It is pivoted at an end so that it can move
about a vertical axis through the pivot. A horizontal
force F is applied on the free end in a direction
perpendicular to the rod. The quantities, that do not
depend on which end of the rod is pivoted, are
(a) angular acceleration  
(b) angular velocity when the rod completes one rotation
(c) angular momentum when the rod completes one
rotation
(d) torque of the applied force.

 8. Consider a wheel of a bicycle rolling on a level road at
a linear speed v0 (figure 10-Q5).
(a) the speed of the particle A is zero
(b) the speed of B, C and D are all equal to v0

(c) the speed of C is 2 v0

(d) the speed of B is greater than the speed of O.

 9. Two uniform solid spheres having unequal masses and
unequal radii are released from rest from the same
height on a rough incline. If the spheres roll without
slipping,
(a) the heavier sphere reaches the bottom first
(b) the bigger sphere reaches the bottom first
(c) the two spheres reach the bottom together
(d) the information given is not sufficient to tell which
   sphere will reach the bottom first.

10. A hollow sphere and a solid sphere having same mass
and same radii are rolled down a rough inclined plane.
(a) The hollow sphere reaches the bottom first.
(b) The solid sphere reaches the bottom with greater
speed.
(c) The solid sphere reaches the bottom with greater
kinetic energy.
(d) The two spheres will reach the bottom with same
linear momentum.

11. A sphere cannot roll on
(a) a smooth horizontal surface
(b) a smooth inclined surface
(c) a rough horizontal surface
(d) a rough inclined surface.

12. In rear-wheel drive cars, the engine rotates the rear
wheels and the front wheels rotate only because the car
moves. If such a car accelerates on a horizontal road,
the friction
(a) on the rear wheels is in the forward  direction
(b) on the front wheels is in the backward  direction
(c) on the rear wheels has larger magnitude than  the
friction on the front wheels
(d) on the car is in the backward  direction.

13. A sphere can roll on a surface inclined at an angle  if

the friction coefficient is more than 2
7
 tan. Suppose the

friction coefficient is 1
7
 g tan. If a sphere is released

from rest on the incline,
(a) it will stay at rest
(b) it will make pure translational motion
(c) it will translate and rotate about the centre
(d) the angular momentum of the sphere about its centre
will remain constant.

14. A sphere is rolled on a rough horizontal surface.
It gradually slows down and stops. The force of friction
tries to
(a) decrease the linear velocity
(b) increase the angular velocity
(c) increase the linear momentum
(d) decrease the angular velocity.

15. Figure (10-Q6) shows a smooth inclined plane fixed in
a car accelerating on a horizontal road. The angle of
incline  is related to the acceleration a of the car as
a  g tan. If the sphere is set in pure rolling on the
incline,
(a) it will continue pure rolling
(b) it will slip down the plane
(c) its linear velocity will increase
(d) its linear velocity will slowly decrease.

EXERCISES

 1. A wheel is making revolutions about its axis with
uniform angular acceleration. Starting from rest, it
reaches 100 rev/sec in 4 seconds. Find the angular
acceleration. Find the angle rotated during these four
seconds.

 2. A wheel rotating with uniform angular acceleration
covers 50 revolutions in the first five seconds after the
start. Find the angular acceleration and the angular
velocity at the end of five seconds.

 3. A wheel starting from rest is uniformly accelerated at
4 rad/s 2 for 10 seconds. It is allowed to rotate uniformly

�

�
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�
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�
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for the next 10 seconds and is finally brought to rest in
the next 10 seconds. Find the total angle rotated by the
wheel.

 4. A body rotates about a fixed axis with an angular
acceleration  of one radian/second/second. Through what
angle does it rotate during the time in which its angular
velocity increases from 5 rad/s to 15 rad/s.

 5. Find the angular velocity of a body rotating with an
acceleration of 2 rev/s 2 as it completes the 5th revolution
after the start.

 6. A disc of radius 10 cm is rotating about its axis at an
angular speed of 20 rad/s. Find the linear speed of
(a) a point on the rim,
(b) the middle point of a radius.

 7. A disc rotates about its axis with a constant angular
acceleration of 4 rad/s2. Find the radial and tangential
accelerations of a particle at a distance of 1 cm from the
axis at the end of the first second after the disc starts
rotating.

 8. A block hangs from a string wrapped on a disc of radius
20 cm free to rotate about its axis which is fixed in a
horizontal position. If the angular speed of the disc is
10 rad/s at some instant, with what speed is the block
going down at that instant ?

 9. Three particles, each of mass 200 g, are kept at the
corners of an equilateral triangle of side 10 cm. Find the
moment of inertia of the system about an axis
(a) joining two of the particles and
(b) passing through one of the particles and perpendi-
cular to the plane of the particles.

10. Particles of masses 1 g, 2 g, 3 g, ..., 100 g are kept at
the marks 1 cm, 2 cm, 3 cm, ..., 100 cm respectively on
a metre scale. Find the moment of inertia of the system
of particles about a perpendicular bisector of the metre
scale.

11. Find the moment of inertia of a pair of spheres, each
having a mass m and radius r, kept in contact about the
tangent passing through the point of contact.

12. The moment of inertia of a uniform rod of mass 0.50 kg
and length 1 m is 0.10 kg-m2 about a line perpendicular
to the rod. Find the distance of this line from the middle
point of the rod.

13. Find the radius of gyration of a circular ring of radius
r about a line perpendicular to the plane of the ring and
passing through one of its particles.

14. The radius of gyration of a uniform disc about a line
perpendicular to the disc equals its radius. Find the
distance of the line from the centre.

15. Find the moment of inertia of a uniform square plate of
mass m and edge a about one of its diagonals.

16. The surface density (mass/area) of a circular disc of
radius a depends on the distance from the centre as
ρ(r) = A + Br. Find its moment of inertia about the line
perpendicular to the plane of the disc through its centre.

17. A particle of mass m is projected with a speed u at an
angle θ with the horizontal. Find the torque of the
weight of the particle about the point of projection when
the particle is at the highest point.

18. A simple pendulum of length l is pulled aside to make
an angle θ with the vertical. Find the magnitude of the
torque of the weight w of the bob about the point of
suspension. When is the torque zero ?

19. When a force of 6.0 N is exerted at 30° to a wrench at
a distance of 8 cm from the nut, it is just able to loosen
the nut. What force F would be sufficient to loosen it if
it acts perpendicularly to the wrench at 16 cm from the
nut ?

20. Calculate the total torque acting on the body shown in
figure (10-E2) about the point O.

21. A cubical block of mass m and edge a slides down a
rough inclined plane of inclination θ with a uniform
speed. Find the torque of the normal force acting on the
block about its centre.

22. A rod of mass m and length L, lying horizontally, is free
to rotate about a vertical axis through its centre. A
horizontal force of constant magnitude F acts on the rod
at a distance of L/4 from the centre. The force is always
perpendicular to the rod. Find the angle rotated by the
rod during the time t after the motion starts.

23. A square plate of mass 120 g and edge 5.0 cm rotates
about one of the edges. If it has a uniform angular
acceleration of 0.2 rad/s 2, what torque acts on the plate ?

24. Calculate the torque on the square plate of the previous
problem if it rotates about a diagonal with the same
angular acceleration.

25. A flywheel of moment of inertia 5.0 kg-m 2 is rotated at
a speed of 60 rad/s. Because of the friction at the axle,
it comes to rest in 5.0 minutes. Find (a) the average
torque of the friction, (b) the total work done by the
friction and (c) the angular momentum of the wheel 1
minute before it stops rotating.

26. Because of the friction between the water in oceans with
the earth’s surface, the rotational kinetic energy of the
earth is continuously decreasing. If the earth’s angular
speed decreases by 0.0016 rad/day in 100 years, find the
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average torque of the friction on the earth. Radius of
the earth is 6400 km and its mass is 6.0 × 10 24 kg.

27. A wheel rotating at a speed of 600 rpm (revolutions per
minute) about its axis is brought to rest by applying a
constant torque for 10 seconds. Find the angular
deceleration and the angular velocity 5 seconds after the
application of the torque.

28. A wheel of mass 10 kg and radius 20 cm is rotating at
an angular speed of 100 rev/min when the motor is
turned off. Neglecting the friction at the axle, calculate
the force that must be applied tangentially to the wheel
to bring it to rest in 10 revolutions.

29. A cylinder rotating at an angular speed of 50 rev/s is
brought in contact with an identical stationary cylinder.
Because of the kinetic friction, torques act on the two
cylinders, accelerating the stationary one and
decelerating the moving one. If the common magnitude
of the acceleration and deceleration be one revolution
per second square, how long will it take before the two
cylinders have equal angular speed ?

30. A body rotating at 20 rad/s is acted upon by a constant
torque providing it a deceleration of 2 rad/s 2 . At what
time will the body have kinetic energy same as the
initial value if the torque continues to act ?

31. A light rod of length 1 m is pivoted at its centre and
two masses of 5 kg and 2 kg are hung from the ends as
shown in figure (10-E3). Find the initial angular
acceleration of the rod assuming that it was horizontal
in the beginning.

32. Suppose the rod in the previous problem has a mass of
1 kg distributed uniformly over its length.
(a) Find the initial angular acceleration of the rod.
(b) Find the tension in the supports to the blocks of mass
2 kg and 5 kg.

33. Figure (10-E4) shows two blocks of masses m and M
connected by a string passing over a pulley. The
horizontal table over which the mass m slides is smooth.
The pulley has a radius r and moment of inertia I about
its axis and it can freely rotate about this axis. Find the
acceleration of the mass M assuming that the string does
not slip on the pulley.

34. A string is wrapped on a wheel of moment of inertia
0.20 kg-m 2 and radius 10 cm and goes through a light
pulley to support a block of mass 2.0 kg as shown in
figure (10-E5). Find the acceleration of the block.

35. Suppose the smaller pulley of the previous problem has
its radius 5.0 cm and moment of inertia 0.10 kg-m2. Find
the tension in the part of the string joining the pulleys.

36. The pulleys in figure (10-E6) are identical, each having
a radius R and moment of inertia I. Find the acceleration
of the block M.

37. The descending pulley shown in figure (10-E7) has a
radius 20 cm and moment of inertia 0.20 kg-m2. The
fixed pulley is light and the horizontal plane frictionless.
Find the acceleration of the block if its mass is 1.0 kg.

38. The pulley shown in figure (10-E8) has a radius 10 cm
and moment of inertia 0.5 kg-m2 about its axis.
Assuming the inclined planes to be frictionless, calculate
the acceleration of the 4.0 kg block.

39. Solve the previous problem if the friction coefficient
between the 2.0 kg block and the plane below it is 0.5
and the plane below the 4.0 kg block is frictionless.

40. A uniform metre stick of mass 200 g is suspended from
the ceiling through two vertical strings of equal lengths
fixed at the ends. A small object of mass 20 g is placed
on the stick at a distance of 70 cm from the left end.
Find the tensions in the two strings.

41. A uniform ladder of length 10.0 m and mass 16.0 kg is
resting against a vertical wall making an angle of 37°
with it. The vertical wall is frictionless but the ground
is rough. An electrician weighing 60.0 kg climbs up the
ladder. If he stays on the ladder at a point 8.00 m from

2 kg 5 kg

Figure 10-E3

m

M

Figure 10-E4

2 kg

10 cm

Figure 10-E5

M
m

Figure 10-E6
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2.0 kg 4 kg

45°45°
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the lower end, what will be the normal force and the
force of friction on the ladder by the ground ? What
should be the minimum coefficient of friction for the
elctrician to work safely ?

42. Suppose the friction coefficient between the ground and
the ladder of the previous problem is 0.540. Find the
maximum weight of a mechanic who could go up and do
the work from the same position of the ladder.

43. A 6.5 m long ladder rests against a vertical wall reaching
a height of 6.0 m. A 60 kg man stands half way up the
ladder. (a) Find the torque of the force exerted by the
man on the ladder about the upper end of the ladder.
(b) Assuming the weight of the ladder to be negligible
as compared to the man and assuming the wall to be
smooth, find the force exerted by the ground on the
ladder.

44. The door of an almirah is 6 ft high, 1.5 ft wide and
weighs 8 kg. The door is supported by two hinges
situated at a distance of 1 ft from the ends. If the
magnitudes of the forces exerted by the hinges on the
door are equal, find this magnitude.

45. A uniform rod of length L rests against a smooth roller
as shown in figure (10-E9). Find the friction coefficient
between the ground and the lower end if the minimum
angle that the rod can make with the horizontal is θ.

46. A uniform rod of mass 300 g and length 50 cm rotates
at a uniform angular speed of 2 rad/s about an axis
perpendicular to the rod through an end. Calculate
(a) the angular momentum of the rod about the axis of
rotation, (b) the speed of the centre of the rod and (c) its
kinetic energy.

47. A uniform square plate of mass 2.0 kg and edge 10 cm
rotates about one of its diagonals under the action of a
constant torque of 0.10 N-m. Calculate the angular
momentum and the kinetic energy of the plate at the
end of the fifth second after the start.

48. Calculate the ratio of the angular momentum of the
earth about its axis due to its spinning motion to that
about the sun due to its orbital motion. Radius of the
earth = 6400 km and radius of the orbit of the earth
about the sun = 1.5 × 10 8 km.

49. Two particles of masses m1 and m2 are joined by a light
rigid rod of length r. The system rotates at an angular
speed ω about an axis through the centre of mass of the
system and perpendicular to the rod. Show that the
angular momentum of the system is L = µ r 2ω where µ
is the reduced mass of the system defined as

µ = 
m1m2

m1 + m2

 ⋅

50. A dumb-bell consists of two identical small balls of mass
1/2 kg each connected to the two ends of a 50 cm long

light rod. The dumb-bell is rotating about a fixed axis
through the centre of the rod and perpendicular to it at
an angular speed of 10 rad/s. An impulsive force of
average magnitude 5.0 N acts on one of the masses in
the direction of its velocity for 0.10 s. Find the new
angular velocity of the system.

51. A wheel of moment of inertia 0.500 kg-m2 and radius
20.0 cm is rotating about its axis at an angular speed
of 20.0 rad/s. It picks up a stationary particle of mass
200 g at its edge. Find the new angular speed of the
wheel.

52. A diver having a moment of inertia of 6.0 kg-m2 about
an axis through its centre of mass rotates at an angular
speed of 2 rad/s about this axis. If he folds his hands
and feet to decrease the moment of inertia to 5.0 kg-m2,
what will be the new angular speed ?

53. A boy is seated in a revolving chair revolving at an
angular speed of 120 revolutions per minute. Two heavy
balls form part of the revolving system and the boy can
pull the balls closer to himself or may push them apart.
If by pulling the balls closer, the boy decreases the
moment of inertia of the system from 6 kg-m2 to 2 kg-m2,
what will be the new angular speed ?

54. A boy is standing on a platform which is free to rotate
about its axis. The boy holds an open umbrella in his
hand. The axis of the umbrella coincides with that of
the platform. The moment of inertia of “the platform

plus the boy system” is 3.0 × 10 − 3 kg–m 2 and that of the

umbrella is 2.0 × 10 − 3 kg–m 2. The boy starts spinning
the umbrella about the axis at an angular speed of 2.0
rev/s with respect to himself. Find the angular velocity
imparted to the platform.

55. A wheel of moment of inertia 0.10 kg-m2 is rotating
about a shaft at an angular speed of 160 rev/minute. A
second wheel is set into rotation at 300 rev/minute and
is coupled to the same shaft so that both the wheels
finally rotate with a common angular speed of 200
rev/minute. Find the moment of inertia of the second
wheel.

56. A kid of mass M stands at the edge of a platform of
radius R which can be freely rotated about its axis. The
moment of inertia of the platform is I. The system is at
rest when a friend throws a ball of mass m and the kid
catches it. If the velocity of the ball is v horizontally
along the tangent to the edge of the platform when it
was caught by the kid, find the angular speed of the
platform after the event.

57. Suppose the platform of the previous problem is brought
to rest with the ball in the hand of the kid standing on
the rim. The kid throws the ball horizontally to his
friend in a direction tangential to the rim with a speed
v as seen by his friend. Find the angular velocity with
which the platform will start rotating.

58. Suppose the platform with the kid in the previous
problem is rotating in anticlockwise direction at an
angular speed ω. The kid starts walking along the rim
with a speed v relative to the platform also in the
anticlockwise direction. Find the new angular speed of
the platform.

h

L

Figure 10-E9

198 Concepts of Physics



59. A uniform rod of mass m and length l is struck at an
end by a force F perpendicular to the rod for a short
time interval t. Calculate
(a) the speed of the centre of mass, (b) the angular speed
of the rod about the centre of mass, (c) the kinetic energy
of the rod and (d) the angular momentum of the rod
about the centre of mass after the force has stopped to
act. Assume that t is so small that the rod does not
appreciably change its direction while the force acts.

60. A uniform rod of length L lies on a smooth horizontal
table. A particle moving on the table strikes the rod
perpendicularly at an end and stops. Find the distance
travelled by the centre of the rod by the time it turns
through a right angle. Show that if the mass of the rod
is four times that of the particle, the collision is elastic.

61. Suppose the particle of the previous problem has a mass
m and a speed v before the collision and it sticks to the
rod after the collision. The rod has a mass M. (a) Find
the velocity of the centre of mass C of the system
constituting “the rod plus the particle”. (b) Find the
velocity of the particle with respect to C before the
collision. (c) Find the velocity of the rod with respect to
C before the collision. (d) Find the angular momentum
of the particle and of the rod about the centre of mass
C before the collision. (e) Find the moment of inertia of
the system about the vertical axis through the centre of
mass C after the collision. (f) Find the velocity of the
centre of mass C and the angular velocity of the system
about the centre of mass after the collision.

62. Two small balls A and B, each of mass m, are joined
rigidly by a light horizontal rod of length L. The rod is
clamped at the centre in such a way that it can rotate
freely about a vertical axis through its centre. The
system is rotated with an angular speed ω about the
axis. A particle P of mass m kept at rest sticks to the
ball A as the ball collides with it. Find the new angular
speed of the rod.

63. Two small balls A and B, each of mass m, are joined
rigidly to the ends of a light rod of lengh L (figure
10-E10). The system translates on a frictionless
horizontal surface with a velocity v0 in a direction
perpendicular to the rod. A particle P of mass m kept
at rest on the surface sticks to the ball A as the ball
collides with it. Find
(a) the linear speeds of the balls A and B after the
collision, (b) the velocity of the centre of mass C of the
system A + B + P and (c) the angular speed of the system
about C after the collision.

    [Hint : The light rod will exert a force on the ball B
only along its length.]

64. Suppose the rod with the balls A and B of the previous
problem is clamped at the centre in such a way that it
can rotate freely about a horizontal axis through the

clamp. The system is kept at rest in the horizontal
position. A particle P of the same mass m is dropped
from a height h on the ball B. The particle collides with
B and sticks to it. (a) Find the angular momentum and
the angular speed of the system just after the collision.
(b) What should be the minimum value of h so that the
system makes a full rotation after the collision.

65. Two blocks of masses 400 g and 200 g are connected
through a light string going over a pulley which is free
to rotate about its axis. The pulley has a moment of

inertia 1.6 × 10 − 4 kg–m 2 and a radius 2.0 cm. Find
(a) the kinetic energy of the system as the 400 g block
falls through 50 cm, (b) the speed of the blocks at this
instant.

66. The pulley shown in figure (10-E11) has a radius of
20 cm and moment of inertia 0.2 kg-m2. The string going
over it is attached at one end to a vertical spring of
spring constant 50 N/m fixed from below, and supports
a 1 kg mass at the other end. The system is released
from rest with the spring at its natural length. Find the
speed of the block when it has descended through 10 cm.
Take g = 10 m/s 2.

67. A metre stick is held vertically with one end on a rough
horizontal floor. It is gently allowed to fall on the floor.
Assuming that the end at the floor does not slip, find
the angular speed of the rod when it hits the floor.

68. A metre stick weighing 240 g is pivoted at its upper end
in such a way that it can freely rotate in a vertical plane
through this end (figure 10-E12). A particle of mass
100 g is attached to the upper end of the stick through
a light string of length l m. Initially, the rod is kept
vertical and the string horizontal when the system is
released from rest. The particle collides with the lower
end of the stick and sticks there. Find the maximum
angle through which the stick will rise.

69. A uniform rod pivoted at its upper end hangs vertically.
It is displaced through an angle of 60° and then released.
Find the magnitude of the force acting on a particle of
mass dm at the tip of the rod when the rod makes an
angle of 37° with the vertical.

70. A cylinder rolls on a horizontal plane surface. If the
speed of the centre is 25 m/s, what is the speed of the
highest point ?
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71. A sphere of mass m rolls on a plane surface. Find its
kinetic energy at an instant when its centre moves with
speed v.

72. A string is wrapped over the edge of a uniform disc and
the free end is fixed with the ceiling. The disc moves
down, unwinding the string. Find the downward
acceleration of the disc.

73. A small spherical ball is released from a point at a
height h on a rough track shown in figure (10-E13).
Assuming that it does not slip anywhere, find its linear
speed when it rolls on the horizontal part of the track.

74. A small disc is set rolling with a speed v on the
horizontal part of the track of the previous problem from
right to left. To what height will it climb up the curved
part ?

75. A sphere starts rolling down an incline of inclination .
Find the speed of its centre when it has covered a
distance l.

76. A hollow sphere is released from the top of an inclined
plane of inclination . (a) What should be the minimum
coefficient of friction between the sphere and the plane
to prevent sliding ? (b) Find the kinetic energy of the
ball as it moves down a length l on the incline if the
friction coefficient is half the value calculated in part (a).

77. A solid sphere of mass m is released from rest from the
rim of a hemispherical cup so that it rolls along the
surface. If the rim of the hemisphere is kept horizontal,
find the normal force exerted by the cup on the ball
when the ball reaches the bottom of the cup.

78. Figure (10-E14) shows a rough track, a portion of which
is in the form of a cylinder of radius R. With what
minimum linear speed should a sphere of radius r be
set rolling on the horizontal part so that it completely
goes round the circle on the cylindrical part.

79. Figure (10-E15) shows a small spherical ball of mass m
rolling down the loop track. The ball is released on the
linear portion at a vertical height H from the lowest
point. The circular part shown has a radius R.
(a) Find the kinetic energy of the ball when it is at a
point A where the radius makes an angle  with the
horizontal.
(b) Find the radial and the tangential accelerations of
the centre when the ball is at A.

(c) Find the normal force and the frictional force acting
on the ball if H  60 cm,  R  10 cm,    0 and m = 70 g.

80. A thin spherical shell of radius R lying on a rough
horizontal surface is hit sharply and horizontally by a
cue. Where should it be hit so that the shell does not
slip on the surface ?

81. A uniform wheel of radius R is set into rotation about
its axis at an angular speed . This rotating wheel is
now placed on a rough horizontal surface with its axis
horizontal. Because of friction at the contact, the wheel
accelerates forward and its rotation decelerates till the
wheel starts pure rolling on the surface. Find the linear
speed of the wheel after it starts pure rolling.

82. A thin spherical shell lying on a rough horizontal surface
is hit by a cue in such a way that the line of action
passes through the centre of the shell. As a result, the
shell starts moving with a linear speed v without any
initial angular velocity. Find the linear speed of the shell
after it starts pure rolling on the surface.

83. A hollow sphere of radius R lies on a smooth horizontal
surface. It is pulled by a horizontal force acting
tangentially from the highest point. Find the distance
travelled by the sphere during the time it makes one
full rotation.

84. A solid sphere of mass 0.50 kg is kept on a horizontal
surface. The coefficient of static friction between the
surfaces in contact is 2/7. What maximum force can be
applied at the highest point in the horizontal direction
so that the sphere does not slip on the surface ?

85. A solid sphere is set into motion on a rough horizontal
surface with a linear speed v in the forward direction
and an angular speed v/R in the anticlockwise direction
as shown in figure (10-E16). Find the linear speed of the
sphere (a) when it stops rotating and (b) when slipping
finally ceases and pure rolling starts.

86. A solid sphere rolling on a rough horizontal surface with
a linear speed v collides elastically with a fixed, smooth,
vertical wall. Find the speed of the sphere after it has
started pure rolling in the backward direction.
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ANSWERS

OBJECTIVE I

 1. (c)  2. (c)  3. (b)  4. (d)  5. (c)  6. (c)
 7. (b)  8. (a)  9. (d) 10. (c) 11. (c) 12. (a)
13. (a) 14. (a) 15. (a) 16. (d) 17. (d) 18. (b)
19. (b) 20. (c) 21. (a) 22. (d) 23. (d) 24. (d)
25. (b) 26. (b)

OBJECTIVE II

 1. (b), (d)  2. (b)   3. (b), (c), (d)
 4. (a), (b)  5. (c)  6. (b)
 7. (d)  8. (a), (c), (d)  9. (c)
10. (b) 11. (b) 12. (a), (b), (c)
13. (c) 14. (a), (b) 15. (a)

EXERCISES

 1. 25 rev/s 2,  400  rad
 2. 4 rev/s 2, 20 rev/s
 3. 800 rad
 4. 100 rad
 5. 2 5 rev/s
 6. 2 m/s, 1 m/s

 7. 16 cm/s 2,  4 cm/s 2

 8. 2 m/s

 9. 1.5  10 3 kgm 2,   4.0  10 3 kgm 2

10. 0.43 kgm 2

11. 
14 mr 2

5

12. 0.34 m
13. 2 r
14. r /2

15. ma 2/12

16. 2




Aa 4

4
  

Ba 5

5




17. mu 2 sin cos perpendicular to the plane of motion
18. wl sin, when the bob is at the lowest point
19. 1.5 N

20. 0.54 N–m

21. 
1
2

 mg a sin 

22. 
3 Ft 2

2 ml

23. 2.0  10  5 N–m

24. 0.5  10  5 N–m

25. (a) 1.0 N–m   (b) 9.0 kJ (c) 60 kg–m 2/s

26. 5.8  10 20 N–m

27. 1 rev/s 2,   5 rev/s

28. 0.87 N
29. 25 s
30. 20 s

31. 8.4 rad/s 2

32. 8.0 rad/s 2,   27.6 N,   29 N

33. 
Mg

M  m  I/r 2 

34. 0.89 m/s 2

35. 6.3 N

36. 
M  mg

M  m  2 I/R 2 

37. 10 m/s 2

38. 0.25 m/s 2

39. 0.125 m/s 2

40. 1.04 N in the left string and 1.12 N in the right
41. 745 N, 412 N, 0.553
42. 44.0 kg
43. (a) 740 N-m
   (b) 590 N vertical and 120 N horizontal
44. 43 N

45. 
L cos sin 2

2 h  L cos 2 sin

46. (a) 0.05 kg–m 2/s (b) 50 cm/s (c) 0.05 J

47. 0.5 kg–m 2/s, 75 J

48. 2.66  10  7

50. 12 rad/s
51. 19.7 rad/s
52. 2.4 rad/s
53. 360 rev/minute
54. 0.8 rev/s

55. 0.04 kg–m 2

56. 
mvR

I  M  mR 2 

57. 
mvR

I  MR 2 

58.   
MvR

I  MR 2 

59. (a) 
Ft
m

     (b) 
6 Ft
ml

     (c) 
2 F 2t 2

m
     (d) 

Flt
2

60.  L/12

61. (a) 
mv

M  m
    (b) 

Mv
M  m

    (c)  
mv

M  m
 

   (d) 
M 2mvl

2M  m 2 ,  
Mm 2vl

2M  m 2    (e) 
MM  4 mL2

12M  m

   (f) 
mv

M  m
 ,  

6 mv
M  4 mL

62. 2 /3
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63. (a) 
v0

2
 , v0   (b) 

2
3

 v0  along the initial motion of the rod

   (c) 
v0

2 L

64. (a) 
mL √gh

√2
 ,  

√8 gh
3 L

(b) 
3
2

 L

65. (a) 0.98 J  (b) 1.4 m/s
66. 0.5 m/s
67. 5.4 rad/s

68. 41°

69. 0.9 √2 dm g

70. 50 m/s

71. 
7
10

 mv 2

72. 
2
3

 g

73. √10 gh/7

74. 
3 v 2

4 g

75. √10
7

 g l sinθ

76. (a) 
2
5

 tanθ  (b) 
7
8

 mgl sinθ

77. 17 mg/7

78. √27
7

 g(R − r)

79. (a) mg(H − R − R sinθ),

   (b) 
10
7

 g 


H
R

 − 1 − sinθ


 ,  − 

5
7

 g cosθ

   (c) 4.9 N, 0.196 N upward
80. 2 R/3 above the centre
81. ωR/3

82. 3 v/5
83. 4 π R/3

84. 3.3 N
85. (a) 3 v/5 (b) 3 v/7
86. 3 v/7
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CHAPTER 11

GRAVITATION

11.1 HISTORICAL INTRODUCTION

The motion of celestial bodies such as the moon,
the earth, the planets, etc., has been a subject of great
interest for a long time. Famous Indian astronomer
and mathematician, Aryabhat, studied these motions
in great detail, most likely in the 5th century A.D.,
and wrote his conclusions in his book Aryabhatiya. He
established that the earth revolves about its own axis.
He also gave description of motion of other celestial
bodies as seen from the earth.

About a thousand years after Aryabhat, the
brilliant combination of Tycho Brahe (1546–1601) and
Johannes Kepler (1571–1630) studied the planetary
motion in great detail. Kepler formulated his
important findings in his three laws of planetary
motion :

  

The year 1665 was very fruitful for Isaac Newton
aged 23. He was forced to take rest at his home in
Lincolnshire after his college at Cambridge was closed
for an indefinite period due to plague. In this year, he
performed brilliant theoretical and experimental tasks
mainly in the field of mechanics and optics. In this
same year he focussed his attention on the motion of
the moon about the earth.

The moon makes a revolution about the earth in

T = 27.3 days. The distance of the moon from the earth

is R = 3.85 × 10 5 km. The acceleration of the moon is,
therefore,

            a = ω 2 R

    = 
4π 2 × (3.85 × 10 5 km)

(27.3 days)2
 = 0.0027 m s−2 ⋅

The first question before Newton was that what is
the force that produces this acceleration. The
acceleration is towards the centre of the orbit, that is
towards the centre of the earth. Hence the force must
act towards the centre of the earth. A natural guess
was that the earth is attracting the moon. The saying
goes that Newton was sitting under an apple tree when
an apple fell down from the tree on the earth. This
sparked the idea that the earth attracts all bodies
towards its centre. The next question was what is the
law governing this force.

Newton had to make several daring assumptions
which proved to be turning points in science and
philosophy. He declared that the laws of nature are
the same for earthly and celestial bodies. The force
operating between the earth and an apple and that
operating between the earth and the moon, must be
governed by the same laws. This statement may look
very obvious today but in the era before Newton, there
was a general belief in the western countries that the
earthly bodies are governed by certain rules and the
heavenly bodies are governed by different rules. In
particular, this heavenly structure was supposed to be
so perfect that there could not be any change in the
sky. This distinction was so sharp that when Tycho
Brahe saw a new star in the sky, he did not believe

 1. All planets move in elliptical orbits with the sun
at a focus.

 2. The radius vector from the sun to the planet
sweeps equal area in equal time.

 3. The square of the time period of a planet is
proportional to the cube of the semimajor axis
of the ellipse.

Figure 11.1



his eyes as there could be no change in the sky. So
the Newton’s declaration was indeed revolutionary.

The acceleration of a body falling near the earth’s

surface is about 9.8 ms−2. Thus,

      
aapple

amoon
 = 

9.8 m s−2

0.0027 m s−2 = 3600.

Also,

  
distance  of  the  moon  from  the  earth
distance  of  the  apple  from  the  earth

      = 
dmoon

dapple
 = 

3.85 × 10 5 km
6400 km

      = 60

Thus,    
aapple

amoon
 = 





dmoon

dapple





 2

⋅

Newton guessed that the acceleration of a body
towards the earth is inversely proportional to the
square of the distance of the body from the centre of
the earth.

Thus, a ∝ 
1

r 2
 ⋅

Also, the force is mass times acceleration and so
it is proportional to the mass of the body.

Hence,

              F∝ 
m

r 2
 ⋅

By the third law of motion, the force on a body due
to the earth must be equal to the force on the earth
due to the body. Therefore, this force should also be
proportional to the mass of the earth. Thus, the force
between the earth and a body is 

          F ∝ 
Mm
r 2

 

   or,        F = 
GMm

r 2
 ⋅ … (11.1)

Newton further generalised the law by saying that
not only the earth but all material bodies in the
universe attract each other according to equation (11.1)
with same value of G. The constant G is called
universal constant of gravitation and its value is found
to be 6.67 × 10 – 11 N–m 2/kg 2. Equation (11.1) is known
as the universal law of gravitation.

In this argument, the distance of the apple from
the earth is taken to be equal to the radius of the
earth. This means we have assumed that earth can be
treated as a single particle placed at its centre. This
is of course not obvious. Newton had spent several
years to prove that indeed this can be done. A
spherically symmetric body can be replaced by a point
particle of equal mass placed at its centre for the

purpose of calculating gravitational force. In the
process he discovered the methods of calculus that we
have already learnt in Chapter 2. There is evidence
that quite a bit of differential calculus was known to
the ancient Indian mathematicians but this literature
was almost certainly not known to Newton or other
scientists of those days.

Example 11.1

   Two particles of masses 1.0 kg and 2.0 kg are placed at
a separation of 50 cm. Assuming that the only forces
acting on the particles are their mutual gravitation, find
the initial accelerations of the two particles.

Solution : The force of gravitation exerted by one particle
on another is

     F = 
Gm1m2

r 2

= 

6.67 × 10 − 11 
N−m 2

kg 2
 × (1.0 kg) × (2.0 kg)

(0.5 m) 2

= 5.3 × 10 − 10 N.

The acceleration of 1.0 kg particle is

      a1 = 
F
m1

 = 
5.3 × 10 − 10 N

1.0 kg

= 5.3 × 10 − 10 m s−2.

This acceleration is towards the 2.0 kg particle. The
acceleration of the 2.0 kg particle is

      a2 = 
F
m2

 = 
5.3 × 10 − 10 N

2.0 kg

= 2.65 × 10 − 10 m s−2.

This acceleration is towards the 1.0 kg particle.

11.2 MEASUREMENT OF GRAVITATIONAL
     CONSTANT G

The gravitational constant G is a small quantity
and its measurement needs very sensitive
arrangement. The first important successful
measurement of this quantity was made by Cavendish
in 1736 about 71 years after the law was formulated.

In this method, two small balls of equal mass are
attached at the two ends of a light rod to form a
dumb-bell. The rod is suspended vertically by a fine
quartz wire. Two large spheres of equal mass are
placed near the smaller spheres in such a way that all
the four spheres are on a horizontal circle. The centre
of the circle is at the middle point of the rod
(figure 11.2).
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Two larger spheres lie on the opposite sides of the
smaller balls at equal distance. A small plane mirror
is attached to the vertical wire. A light beam, incident
on the mirror, falls on a scale after reflection. If the
wire rotates by an angle θ, the reflected beam rotates
by 2θ and the spot on the scale moves. By measuring
this movement of the spot on the scale and the distance
between the mirror and the scale, the angle of
deviation can be calculated. When the heavy balls are
placed close to the small balls, a torque acts on the
dumb-bell to rotate it. As the dumb-bell rotates, the
suspension wire gets twisted and produces a torque on
the dumb-bell in opposite direction. This torque is
proportional to the angle rotated. The dumb-bell stays
in equilibrium where the two torques have equal
magnitude.

Let the mass of a heavy ball = M,

the mass of a small ball = m,

the distance between the centres of a heavy ball
and the small ball placed close to it = r,

the deflection of the dumb-bell as it comes to
equilibrium = θ,

the torsional constant of the suspension wire = k,

the length of the rod = l and

the distance between the scale and the mirror = D.

The force acting on each of the small balls is

              F = G 
Mm
r 2

 ⋅

Here we have used the fact that the gravitational
force due to a uniform sphere is same as that due to
a single particle of equal mass placed at the centre of
the sphere. As the four balls are on the same
horizontal circle and the heavy balls are placed close
to the smaller balls, this force acts in a horizontal
direction perpendicular to the length of the dumb-bell.
The torque due to each of these gravitational forces
about the suspension wire is F(l/2).

The total gravitational torque on the dumb-bell is,
therefore,

           Γ = 2F(l/2)
            = Fl .
The opposing torque produced by the suspension

wire is kθ. For rotational equilibrium,
                      Fl = kθ

or, 
GMml

r 2
 = kθ

                G = 
kθr 2

Mml
 ⋅ … (i)

In an experiment, the heavy balls are placed close
to the smaller balls as shown in the figure and the
dumb-bell is allowed to settle down. The light beam is
adjusted so that the beam reflected by the plane mirror
falls on the scale. Now the heavy balls are shifted in
such a way that they are placed on the same horizontal
circle at same distance from the smaller balls but on
the opposite side. In figure (11.3), the original positions
of the heavy balls are shown by A, B and the shifted
positions by A′, B′.

As the heavy balls are shifted to the new position,
the dumb-bell rotates. If it was settled previously at
an angle θ deviated from the mean position, it will now
settle at the same angle θ on the other side. Thus, the
total deflection of the dumb-bell due to the change in
the positions of the heavy balls is 2θ. The reflected
light beam deviates by an angle of 4θ.

If the linear displacement of the light spot is d, we
have (figure 11.4)

           4θ = 
d
D

   or,          θ = 
d

4D
 ⋅

Figure 11.2
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Substituting in (i),

             G = 
kdr 2

4MmlD
 ⋅

All the quantities on the right hand side are
experimentally known and hence the value of G may
be calculated.

11.3 GRAVITATIONAL POTENTIAL ENERGY  

The concept of potential energy of a system was
introduced in Chapter-8. The potential energy of a
system corresponding to a conservative force was
defined as

        Uf − Ui = − ∫ 
i

f

 F
→

 . dr
→
.

The change in potential energy is equal to the
negative of the work done by the internal forces. We
also calculated the change in gravitational potential
energy of the earth–particle system when the particle
was raised through a small height over earth’s surface.
In this case the force mg may be treated as constant
and the change in potential energy is

Uf − Ui = mgh

where the symbols have their usual meanings. We now
derive the general expression for the change in
gravitational potential energy of a two-particle system.

Let a particle of mass m1 be kept fixed at a point
A (figure 11.5) and another particle of mass m2 is taken
from a point B to a point C. Initially, the distance
between the particles is AB = r1 and finally it becomes
AC = r2. We have to calculate the change in potential
energy of the system of the two particles as the
distance changes from r1  to  r2.

Consider a small displacement when the distance
between the particles changes from r to r + dr. In the
figure, this corresponds to the second particle going
from D to E.

The force on the second particle is

       F = 
Gm1 m2

r 2
 along DA 

→
.

The work done by the gravitational force in the
displacement is 

           dW = − 
Gm1 m2

r 2
 dr .

The increase in potential energy of the two-particle
system during this displacement is

       dU = − dW = 
Gm1 m2

r 2
 dr.

The increase in potential energy as the distance
between the particles changes from r1  to  r2 is

    U(r2) − U(r1) = ∫ dU

        = ∫ 
r1

r2

 
Gm1 m2

r 2
 dr = Gm1 m2  ∫ 

r1

r2

 
1
r 2

  dr

        = Gm1 m2 



− 

1
r



 r1

 r2

        = Gm1 m2 




1
r1

 − 
1
r2




 ⋅ … (11.2)

We choose the potential energy of the two-particle
system to be zero when the distance between them is
infinity. This means that we choose U(∞) = 0. By (11.2)
the potential energy U(r), when the separation
between the particles is r, is

U(r) = U(r) − U(∞)

= Gm1m2 




1
∞

 − 
1
r




 = − 

Gm1m2

r
 ⋅

The gravitational potential energy of a two-particle
system is

           U(r) = − 
Gm1 m2

r
… (11.3)

where m1 and m2 are the masses of the particles, r is
the separation between the particles and the potential
energy is chosen to be zero when the separation is
infinite.

We have proved this result by assuming that one
of the particles is kept at rest and the other is
displaced. However, as the potential energy depends
only on the separation and not on the location of the
particles, equation (11.3) is general.

Equation (11.3) gives the potential energy of a pair
of particles. If there are three particles A, B and C,
there are three pairs AB, AC and BC. The potential
energy of the three-particle system is equal to the sum
of the potential energies of the three pairs. For an N-
particle system there are N(N − 1)/2 pairs and the
potential energy is calculated for each pair and added
to get the total potential energy of the system.
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Figure 11.5
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Example 11.2

   Find the work done in bringing three particles, each
having a mass of 100 g, from large distances to the
vertices of an equilateral triangle of side 20 cm.

Solution : When the separations are large, the
gravitational potential energy is zero. When the particles
are brought at the vertices of the triangle ABC, three
pairs AB, BC and CA are formed. The potential energy
of each pair is − Gm1 m2/r and hence the total potential
energy becomes

U = 3 × 



− 

Gm1 m2

r




  = 3 × 



− 

6.67 × 10 − 11 N−m 2/kg 2 × (0.1 kg) × (0.1 kg)
0.20 m





  = − 1.0 × 10 − 11 J .

The work done by the gravitational forces is

W = − U = 1.0 × 10 − 11 J. If the particles are brought by
some external agency without changing the kinetic
energy, the work done by the external agency is equal

to the change in potential energy = − 1.0 × 10  − 11 J.

11.4 GRAVITATIONAL POTENTIAL

Suppose a particle of mass m is taken from a point
A to a point B while keeping all other masses fixed.
Let UA  and  UB denote the gravitational potential
energy when the mass m is at point A and point B
respectively.

We define the “change in potential” VB − VA

between the two points as

          VB − VA = 
UB − UA

m
 ⋅ … (11.4)

The equation defines only the change in potential.
We can choose any point to have zero potential. Such
a point is called a reference point. If A be the reference
point, VA = 0  and

             VB = 
UB − UA

m
 ⋅ … (11.5)

Thus, gravitational potential at a point is equal to
the change in potential energy per unit mass, as the
mass is brought from the reference point to the given
point. If the particle is slowly brought without
increasing the kinetic energy, the work done by the
external agent equals the change in potential energy.
Thus, the potential at a point may also be defined as
the work done per unit mass by an external agent in
bringing a particle slowly from the reference point to
the given point. Generally the reference point is chosen
at infinity so that the potential at infinity is zero.

The SI unit of gravitational potential is J kg–1.

11.5 CALCULATION OF GRAVITATIONAL
     POTENTIAL

(A) Potential due to a Point Mass

Suppose a particle of mass M is kept at a point A
(figure 11.6) and we have to calculate the potential at
a point P at a distance r away from A. The reference
point is at infinity.

From equation (11.5), the potential at the point
P is

         V(r) = 
U(r) − U(∞)

m
 ⋅

But   U(r) − U(∞) = − 
GMm

r
 ⋅

so that,

             V = − 
GM

r
 ⋅ … (11.6)

The gravitational potential due to a point mass M

at a distance r is − 
GM

r
 ⋅

(B) Potential due to a Uniform Ring at A Point on its
Axis

Let the mass of the ring be M and its radius be a.
We have to calculate the gravitational potential at a
point P on the axis of the ring (figure 11.7). The centre
is at O and OP = r.

Consider any small part of the ring of mass dm.

The point P is at a distance z = √a 2 + r 2  from dm. 

The potential at P due to dm is

      dV = − 
G dm

z
 = − 

G dm

√a 2 + r 2
 ⋅

The potential V due to the whole ring is obtained
by summing the contributions from all the parts. As
the potential is a scalar quantity, we have

� 
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        V   dV

               
G dm

a 2  r 2

              
G

a 2  r 2
  dm

              
GM

a 2  r 2
   (11.7)

In terms of the distance z between the point P and
any point of the ring, the expression for the potential
is given by

            V   
GM

z
   (11.8)

(C) Potential due to a Uniform Thin Spherical Shell

Let the mass of the given spherical shell be M and
the radius a. We have to calculate the potential due
to this shell at a point P. The centre of the shell is at
O and OP  r (figure 11.8).

Let us draw a radius OA making an angle  with
OP. Let us rotate this radius about OP keeping the
angle AOP fixed at value . The point A traces a circle
on the surface of the shell. Let us now consider another
radius at an angle   d and likewise rotate it about
OP. Another circle is traced on the surface of the shell.
The part of the shell included between these two circles
(shown shaded in the figure) may be treated as a ring.

The radius of this ring is a sin and hence the
perimeter is 2 a sin. The width of the ring is ad.
The area of the ring is

          2 a sin ad

          2 a 2sin d.

The total area of the shell is 4 a 2. As the shell is
uniform, the mass of the ring enclosed is

        dm  
M

4 a 2
 2a 2 sin d

             
M
2

 sin d .

Let the distance of any point of the ring from P be
AP  z. From the triangle OAP

             z 2  a 2  r 2  2ar cos
   or,    2z dz  2ar sin d

   or,  sin d  
z dz
ar

 

Thus, the mass of the ring is

        dm  
M
2

 sin d  
M

2ar
 z dz.

As the distance of any point of the ring from P is
z, the potential at P due to the ring is

        dV   
G dm

z

               
GM
2ar

 dz .

As we vary  from 0 to , the rings formed on the
shell cover up the whole shell. The potential due to
the whole shell is obtained by integrating dV within
the limits   0  to    .

Case I : P is outside the shell r > a

As figure (11.8) shows, when   0, the distance
z  AP  r  a. When   ,  it  is  z  r  a. Thus, as 
varies from 0 to , the distance z varies from r  a to
r  a. Thus,

         V   dV   
GM
2ar

     
r  a

r  a

 dz

  
GM
2ar

 [z] r  a
 r  a

  
GM
2ar

 [r  a  r  a]

  
GM

r
   (11.9)

To calculate the potential at an external point, a
uniform spherical shell may be treated as a point
particle of equal mass placed at its centre.

Case II : P is inside the shell r < a

In this case when   0, the distance z  AP
 a  r and when    it is z  a  r (figure 11.9). Thus,
as  varies from 0 to , the distance z varies from
a  r  to  a    r. Thus, the potential due to the shell is

       V   dV

                
GM
2ar

 [z] a  r
 a  r

                
GM
2ar

 [a  r  a  r]

             
GM

a
   (11.10)

Figure 11.8 
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This does not depend on r. Thus, the potential due
to a uniform spherical shell is constant throughout the
cavity of the shell.

Figure (11.10) shows graphically the variation of
potential with the distance from the centre of the shell.

Example 11.3

   A particle of mass M is placed at the centre of a uniform
spherical shell of equal mass and radius a. Find the
gravitational potential at a point P at a distance a/2
from the centre.

Solution : The gravitational potential at the point P due
to the particle at the centre is

       V1 = − 
GM
a/2

 = − 
2GM

a
 ⋅

The potential at P due to the shell is 

           V2 = − 
GM

a
 ⋅

The net potential at P is V1 + V2 = − 
3GM

a
 ⋅

(D) Potential due to a Uniform Solid Sphere

The situation is shown in figure (11.11). Let the
mass of the sphere be M and its radius a. We have to

calculate the gravitational potential at a point P. Let
OP = r.

Let us draw two spheres of radii x and x + dx
concentric with the given sphere. These two spheres
enclose a thin spherical shell of volume 4 π x 2dx. The

volume of the given sphere is 4
3
 π a 3. As the sphere is

uniform, the mass of the shell is

          dm = 
M

4
3

 πa 3
 4π x 2 dx = 

3M
a 3

 x 2 dx.

   The potential due to this shell at the point P is

   dV = − 
G dm

r
  if  x < r  and  dV = − 

G dm
x

  if  x > r.

Case I : Potential at an external point

Suppose the point P is outside the sphere (figure
11.11). The potential at P due to the shell considered is

           dV = − 
G dm

r
 ⋅

   Thus, the potential due to the whole sphere is

         V = ∫  dV = − 
G
r

 ∫  dm

           = − 
GM

r
 ⋅ … (11.11)

The gravitational potential due to a uniform sphere
at an external point is same as that due to a single
particle of equal mass placed at its centre.

Case II : Potential at an internal point

Let us divide the sphere in two parts by imagining
a concentric spherical surface passing through P. The
inner part has a mass

        M′ = 
M

4
3

 π a 3
 × 

4
3

 π r 3 = 
Mr 3

a 3
 ⋅

The potential at P due to this inner part is by
equation (11.11)

            V1 = − 
GM′

r

              = − 
GMr 2

a 3
 ⋅ … (i)
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To get the potential at P due to the outer part of
the sphere, we divide this part in concentric shells.
The mass of the shell between radii x and x + dx is

   dm = 
M

4
3

 π a 3
 4 π x 2dx = 

3Mx 2dx
a 3

 ⋅

The potential at P due to this shell is, 

     
− G dm

x
 = − 3 

GM
a 3

 xdx ⋅

The potential due to the outer part is 

       V2 = ∫ 
r

a

− 
3GM
a 3

 xdx

= − 
3GM
a 3

 



x 2

2


 r

 a

            = 
− 3GM

 2a 3
 (a 2 − r 2). … (ii)

By (i) and (ii) the total potential at P is
      V = V1 + V2

= − 
GMr 2

a 3
 − 

3GM
2a 3

 (a 2 − r 2)

          = − 
GM
2a 3

 (3a 2 − r 2). … (11.12)

At the centre of the sphere the potential is

        V = − 
3GM

2a
 ⋅

11.6 GRAVITATIONAL FIELD

We have been saying all through that a body A
exerts a force of gravitation on another body B kept
at a distance. This is called action at a distance
viewpoint. However, this viewpoint creates certain
problems when one deals with objects separated by
large distances. It is now assumed that a body can not
directly interact with another body kept at a distance.
The force between two objects is seen to be a two-step
process.

In the first step, it is assumed that the body A
creates a gravitational field in the space around it. The
field has its own existence and has energy and
momentum. This field has a definite direction at each
point of the space and its intensity varies from point
to point.

In the second step, it is assumed that when a body
B is placed in a gravitational field, this field exerts a
force on it. The direction and the intensity of the field
is defined in terms of the force it exerts on a body
placed in it. We define the intensity of gravitational
field E

→
 at a point by the equation

              E
→

 = 
F
→

m
… (11.13)

where F
→

 is the force exerted by the field on a body of
mass m placed in the field. Quite often the intensity
of gravitational field is abbreviated as gravitational
field. Its SI unit is N kg–1.

Gravitational field adds according to the rules of
vector addition. If E

→
1 is the field due to a source S1

and E
→

2 is the field at the same point due to another
source S2, the resultant field when both the sources
are present is E

→
1 + E

→
2.

If a mass m is placed close to the surface of the
earth, the force on it is mg. We say that the earth has
set up a gravitational field and this field exerts a force
on the mass. The intensity of the field is

         E
→

 = 
F
→

m
 = 

mg
→

m
 = g

→
 .

Thus, the intensity of the gravitational field near
the surface of the earth is equal to the acceleration
due to gravity. It should be clearly understood that the
intensity of the gravitational field and the acceleration
due to gravity are two separate physical quantities
having equal magnitudes and directions.

Example 11.4

   A particle of mass 50 g experiences a gravitational force
of 2.0 N when placed at a particular point. Find the
gravitational field at that point.

Solution : The gravitational field has a magnitude

     E = 
F
m

 = 
2.0 N

(50 × 10 − 3 kg)
 = 40 N kg−1 .

This field is along the direction of the force.

11.7 RELATION BETWEEN GRAVITATIONAL
     FIELD AND POTENTIAL

Suppose the gravitational field at a point r
→
 due to

a given mass distribution is E
→

. By definition (equation
11.13), the force on a particle of mass m when it is at
r
→ is

            F
→

 = mE
→

.

As the particle is displaced from r
→
  to  r

→
 + dr

→
 the

work done by the gravitational force on it is

        dW = F
→

 . dr
→

          = m E
→

 . dr
→
.

The change in potential energy during this
displacement is

dU = − dW = − mE
→

 . dr
→
.

The change in potential is, by equation (11.4),
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         dV = 
dU
m

 = − E
→

 . dr
→
. … (11.14)

Integrating between r
→

1  and  r
→

2

        V(r
→

2) − V(r
→

1) = − ∫ 
r
→

1

r
→

2

 E
→

 . dr
→
. … (11.15)

If r
→

1 is taken at the reference point, V(r
→

1) = 0. The
potential V(r

→
) at any point r

→
 is, therefore,

          V(r
→
) = − ∫ 

r
→

0

r
→

 E
→

 . dr
→

… (11.16)

where r
→

0 denotes the reference point.

If we work in Cartesian coordinates, we can write

         E
→

 = i
→
 Ex + j

→
 Ey + k

→
 Ez

and       dr
→
 = i

→
 dx + j

→
 dy + k

→
 dz

so that 

      E
→

 . dr
→
 = Ex dx + Ey dy + Ez dz .

Equation (11.14) may be written as
dV = − Ex dx − Ey dy − Ez dz.

If y and z remain constant, dy = dz = 0 .

   Thus, Ex = − 
∂V
∂x

… (11.17)

Similarly, Ey = − 
∂V
∂y

  and  Ez = − 
∂V
∂z

 ⋅

The symbol ∂
∂x

 means partial differentiation with

respect to x treating y and z to be constants. Similarly

for ∂
∂y

  and  ∂
∂z

 ⋅

If the field is known, the potential may be obtained
by integrating the field according to equation (11.16)
and if the potential is known, the field may be obtained
by differentiating the potential according to equation
(11.17).

Example 11.5

   The gravitational field due to a mass distribution is
given by E = K/x 3 in X-direction. Taking the
gravitational potential to be zero at infinity, find its value
at a distance x.

Solution : The potential at a distance x is

        V(x) = − ∫ 
∞

x

 E dx = − ∫ 
∞

x

 
K
x 3 dx

= 


K
2x 2



 ∞

 x

 = 
K

2x 2 ⋅

Example 11.6

   The gravitational potential due to a mass distribution is

V = 
A

√x 2 + a 2
 ⋅ Find the gravitational field.

Solution :    V = 
A

√x 2 + a 2
 = A(x 2 + a 2) − 1/2. 

If the gravitational field is E,

Ex = − 
∂V
∂x

 = − A


− 1

2



 (x 2 + a 2) − 3/2(2x)

= 
Ax

(x 2 + a 2) 3/2  

Ey = − 
∂V
∂y

 = 0  and  Ez = − 
∂V
∂z

 = 0.

The gravitational field is 
Ax

(x 2 + a 2) 3/2  in the x-direction.

11.8 CALCULATION OF GRAVITATIONAL FIELD

(A) Field due to a Point Mass

Suppose a particle of mass M is placed at a point O
(figure 11.13) and a second particle of mass m is placed
at a point P. Let OP = r. The mass M creates a field
E
→

 at the site of mass m and this field exerts a force

           F
→

 = mE
→

on the mass m. But the force F
→

 on the mass m due to
the mass M is

           F = 
GMm

r 2

acting along PO 
→

. Thus, the gravitational field at P is

           E = 
GM

r 2
… (11.18)

along PO 
→

. If O is taken as the origin, the position
vector of mass m is r

→
 = OP 

→
. Equation (11.18) may be

rewritten in vector form as

            = − 
GM

r 2
 e
→

r … (11.19)

where e
→

r is the unit vector along r
→
.

(B) Field due to a Uniform Circular Ring at a Point
on its Axis

Figure (11.14) shows a uniform circular ring of
radius a and mass M. Let P be a point on its axis at
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a distance r from the centre. We have to obtain the
gravitational field at P due to the ring. By symmetry
the field must be towards the centre that is along
PO 
→

.

Consider any particle of mass dm on the ring, say
at point A. The distance of this particle from P is

AP = z = √a 2 + r 2 . The gravitational field at P due to

dm is along PA 
→

 and its magnitude is

         dE = 
G dm

z 2
 ⋅

The component along PO is

       dE cosα = 
G dm

z 2
 cosα .

The net gravitational field at P due to the ring is

 E = ∫  G dm
z 2

 cosα = 
G cosα

z 2
  ∫  dm = 

GM cosα
z 2

     = 
GMr

(a 2 + r 2) 3/2
 ⋅ … (11.20)

The field is directed towards the centre of the ring.

(C) Field due to a Uniform Disc at a Point on its Axis

The situation is shown in figure (11.15). Let the
mass of the disc be M and its radius be a. Let O be
the centre of the disc and P be a point on its axis at
a distance r from the centre. We have to find the
gravitational field at P due to the disc.

Let us draw a circle of radius x with the centre at
O. We draw another concentric circle of radius
x + dx. The part of the disc enclosed between these two
circles can be treated as a uniform ring of radius x.
The point P is on its axis at a distance r from the
centre. The area of this ring is 2π x dx. The area of the

whole disc is π a 2. As the disc is uniform, the mass of
this ring is

           dm = 
M

π a 2
 2π x dx

                  = 
2M x dx

a 2
 ⋅

The gravitational field at P due to the ring is, by
equation (11.20),

           dE = 

G 



2M x dx

a 2



 r

(r 2 + x 2) 3/2
 

          = 
2GMr

a 2
 

x dx

(r 2 + x 2) 3/2
 ⋅

   As x varies from 0 to a, the rings cover up the
whole disc. The field due to each of these rings is in
the same direction PO. Thus, the net field due to the
whole disc is along PO and its magnitude is

         E = ∫ 
0

a

 
2GMr

a 2
  

x dx
(r 2 + x 2) 3/2

          = 
2GMr

a 2
  ∫ 

0

a

 
x dx

(r 2 + x 2) 3/2 ⋅ … (i)

Let r 2 + x 2 = z 2.
Then 2x dx = 2z dz and

           ∫  x dx
(r 2 + x 2) 3/2 = ∫  z dz

z 3

           = ∫  1
z 2

 dz = − 
1
z

 = − 
1

√r 2 + x 2
 ⋅

   From (i),  E = 
2GMr

a 2
 

− 

1

√r 2 + x 2


 0

 a

            = 
2GMr

a 2
 


1
r

 − 
1

√r 2 + a 2




… (11.21)

Equation (11.21) may be expressed in terms of the
angle θ subtended by a radius of the disc at P as,

             E = 
2GM
a 2

 (1 − cosθ) .

(D) Field due to a Uniform Thin Spherical Shell

We can use the construction of figure (11.8) to find
the gravitational field at a point due to a uniform thin
spherical shell. The figure is reproduced here (figure
11.16) with symbols having same meanings. The
shaded ring has mass dm = M

2
 sinθ dθ. The field at P

due to this ring is

     dE = 
Gdm

z 2
 cosα = 

GM
2

 
sinθ dθ cosα

z 2
 ⋅ … (i)
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From the triangle OAP,

         z 2  a 2  r 2  2ar cos
or,   2z dz  2ar sin d

   or,  sin d  
z dz
ar

   (ii)

Also from the triangle OAP,

a 2  z 2  r 2  2zr cos

   or, cos  
z 2  r 2  a 2

2zr
   (iii)

Putting from (ii) and (iii) in (i),

dE  
GM
4ar 2

 



1  

a 2  r 2

z 2



 dz

or,   dE  
GM
4ar 2

 



z  

a 2  r 2

z





Case I : P is outside the shell r > a

In this case z varies from r  a  to  r  a. The field
due to the whole shell is 

    E  
GM
4ar 2

 



z  

a 2  r 2

z



 r  a

 r  a

  
GM
r 2

 

We see that the shell may be treated as a point
particle of the same mass placed at its centre to
calculate the gravitational field at an external point.

Case II : P is inside the shell r < a

In this case z varies from a  r   to  a  r (figure
11.9). The field at P due to the whole shell is 

     E  
GM
4ar 2

 



z  

a 2  r 2

z



 a  r

 a  r

  0.

Hence the field inside a uniform spherical shell is
zero.

(E) Gravitational Field due to a Uniform Solid Sphere

Case I : Field at an external point

Let the mass of the sphere be M and its radius be
a. We have to calculate the gravitational field due to

the sphere at a point outside the sphere at a distance
r from the centre. Figure (11.17) shows the situation.
The centre of the sphere is at O and the field is to be
calculated at P.

Let us divide the sphere into thin spherical shells
each centred at O. Let the mass of one such shell be
dm. To calculate the gravitational field at P, we can
replace the shell by a single particle of mass dm placed
at the centre of the shell that is at O. The field at P
due to this shell is then

         dE  
G dm

r 2
 

towards PO. The field due to the whole sphere may be
obtained by summing the fields of all the shells making
the solid sphere.

Thus,     E    dE

             G dm
r 2

  
G
r 2

    dm

             
GM
r 2

   (11.23)

Thus, a uniform sphere may be treated as a single
particle of equal mass placed at its centre for
calculating the gravitational field at an external point.

This allows us to treat the earth as a point particle
placed at its centre while calculating the force between
the earth and an apple.

Case II : Field at an internal point

Suppose the point P is inside the solid sphere
(figure 11.18). In this case r  a. The sphere may be
divided into thin spherical shells all centered at O.
Suppose the mass of such a shell is dm. If the radius
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of the shell is less than r, the point P is outside the
shell and the field due to the shell is

           dE = 
G dm

r 2
  along  PO .

If the radius of the shell considered is greater than
r, the point P is internal and the field due to such a
shell is zero. The total field due to the whole sphere
is obtained by summing the fields due to all the shells.
As all these fields are along the same direction, the
net field is

      E = ∫  dE

          = ∫  G dm
r 2

 = 
G
r 2

  ∫  dm . … (i)

Only the masses of the shells with radii less than

r should be added to get ∫ dm. These shells form a

solid sphere of radius r. The volume of this sphere is
4
3
 π r 3. The volume of the whole sphere is 4

3
 π a 3. As

the given sphere is uniform, the mass of the sphere of
radius r is

       
M

4
3

 π a 3
 ⋅ 



4
3

 π r 3

 = 

Mr 3

a 3
 ⋅

   Thus,     ∫  dm = 
Mr 3

a 3

   and by (i)     E = 
G

r 2
 
Mr 3

a 3

               = 
GM
a 3

 r. … (11.24)

The gravitational field due to a uniform sphere at
an internal point is proportional to the distance of the
point from the centre of the sphere. At the centre itself,
r = 0 and the field is zero. This is also expected from
symmetry because any particle at the centre is equally
pulled from all sides and the resultant must be zero.
At the surface of the sphere, r = a and

                   E = 
GM
a 2

 ⋅

The formula (11.23) for the field at an external
point also gives  E = GM

a 
2   at the surface of the sphere.

The two formulae agree at r = a. Figure (11.19) shows
graphically the variation of gravitational field due to
a solid sphere with the distance from its centre.

Example 11.7

   Find the gravitational field due to the moon at its
surface. The mass of the moon is 7.36 × 10 22 kg and the
radius of the moon is 1.74 × 10 6 m. Assume the moon to
be a spherically symmetric body.

Solution : To calculate the gravitational field at an
external point, the moon may be replaced by a single
particle of equal mass placed at its centre. Then the field
at the surface is

     E = 
GM
a 2  

= 
6.67 × 10 − 11N−m 2/kg 2 × 7.36 × 10 22 kg

(1.74 × 10 6 m) 2  

= 1.62 N kg−1 .

This is about one sixth of the gravitational field due to
the earth at its surface.

11.9 VARIATION IN THE VALUE OF g 

The acceleration due to gravity is given by

               g = 
F
m

where F is the force exerted by the earth on an object
of mass m. This force is affected by a number of factors
and hence g also depends on these factors.

(a) Height from the Surface of the Earth

If the object is placed at a distance h above the
surface of the earth, the force of gravitation on it due
to the earth is

               F = 
GMm

(R + h) 2
 

where M is the mass of the earth and R is its radius.

   Thus, g = 
F
m

 = 
GM

(R + h) 2 ⋅

We see that the value of g decreases as one goes up.
We can write,

        g = 
GM

R 2

1 + 

h
R





 2 = 
g0




1 + 

h
R





 2 

where g0 = GM

R 
2  is the value of g at the surface of the

earth. If h << R,

         g = g0



1 + 

h
R





 − 2

 ≈ g0



1 − 

2 h
R




 ⋅

If one goes a distance h inside the earth such as in
mines, the value of g again decreases. The force by the
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earth is, by equation (11.24),

            F = 
GMm

R 3
 (R − h)

or,         g = 
F
m

 = 
GM
R 2

 




R − h
R





           = g0



1 − 

h
R




 ⋅

The value of g is maximum at the surface of the
earth and decreases with the increase in height as well
as with depth similar to that shown in figure (11.19).

Example 11.8

   Calculate the value of acceleration due to gravity at a
point (a) 5.0 km above the earth’s surface and (b) 5.0 km
below the earth’s surface. Radius of earth = 6400 km and
the value of g at the surface of the earth is 9.80 m s–2.

Solution :

(a) The value of g at a height h is (for h << R)

               g = g0



1 − 

2 h
R





          = (9.80 m s−2) 



1 − 

2 × 5.0 km
6400 km





          = 9.78 m s−2.

(b) The value at a depth h is

         g = g0 



1 − 

h
R





          = (9.8 m s−2) 

1 − 

5.0 km
6400 km





          = 9.79 m s−2.

(b) Rotation of the Earth

As the earth rotates about its own axis the frame
attached to the earth is noninertial. If we wish to use
the familiar Newton’s laws, we have to include pseudo
forces. For an object at rest with respect to the earth,
a centrifugal force mω 2r is to be added where m is the
mass of the object, ω is the angular velocity of the
earth and r is the radius of the circle in which the
particle rotates.

If the colatitude of the location of the particle is θ
(figure 11.20), r = R sin θ where R is the radius of the
earth. Acceleration of an object falling near the earth’s
surface, as measured from the earth frame, is F/m
where F is the vector sum of the gravitational force
GMm

R 
2  = mg and the centrifugal force mω 2r =

mω 2 R sin θ. The acceleration F/m = g ′ is the apparent
value of the acceleration due to gravity.

At the equator, θ = π/2 and the centrifugal force is
just opposite to the force of gravity. The resultant of
these two is
            F = mg − mω 2R

or,        g ′ = g − ω 2R.

At the poles, θ = 0 and the centrifugal force
mω 2R sin θ = 0. Thus, F = mg and g ′ = g. Thus, the
observed value of the acceleration due to gravity is
minimum at the equator and is maximum at the poles.
This effect had been discussed in the chapter on
circular motion.

(c) Nonsphericity of the Earth

All formulae and equations have been derived by
assuming that the earth is a uniform solid sphere. The
shape of the earth slightly deviates from the perfect
sphere. The radius in the equatorial plane is about
21 km larger than the radius along the poles. Due to
this the force of gravity is more at the poles and less
at the equator. The value of g is accordingly larger at
the poles and less at the equator. Note that due to
rotation of earth also, the value of g is smaller at the
equator than that at the poles.

(d) Nonuniformity of the Earth

The earth is not a uniformly dense object. There
are a variety of minerals, metals, water, oil, etc., inside
the earth. Then at the surface there are mountains,
seas, etc. Due to these nonuniformities in the mass
distribution, the value of g is locally affected.

“Weighing” the Earth

The force exerted by the earth on a body is called
the weight of the body. In this sense ‘‘weight of the
earth’’ is a meaningless concept. However, the mass of
the earth can be determined by noting the acceleration
due to gravity near the surface of the earth. We have,

              g = 
GM
R 2

 

or, M = gR 2/G

Putting g = 9.8 m s−2, R = 6400 km

� �
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and      G = 6.67 × 10 − 11 
N−m 2

kg 2
 

the mass of the earth comes out to be 5.98 × 10 24 kg.

11.10 PLANETS AND SATELLITES

Planets

Planets move round the sun due to the
gravitational attraction of the sun. The path of these
planets are elliptical with the sun at a focus. However,
the difference in major and minor axes is not large.
The orbits can be treated as nearly circular for not too
sophisticated calculations. Let us derive certain
characteristics of the planetary motion in terms of the
radius of the orbit assuming it to be perfectly circular.

Let the mass of the sun be M and that of the planet
under study be m. The mass of the sun is many times
larger than the mass of the planet. The sun may,
therefore, be treated as an inertial frame of reference.

Speed

Let the radius of the orbit be a and the speed of
the planet in the orbit be v. By Newton’s second law,
the force on the planet equals its mass times the
acceleration. Thus,

       
GMm

a 2
 = m 




v 2

a




   or, v = √GM
a

 ⋅ … (11.25)

The speed of a planet is inversely proportional to
the square root of the radius of its orbit.

Time period

The time taken by a planet in completing one
revolution is its time period T. In one revolution it
covers a linear distance of 2πa at speed v. Thus,

            T = 
2πa

v

               = 
2πa

√GM
a

 = 
2π

√GM
 a 3/2

   or,         T 2 = 
4π 2

GM
 a 3.  … (11.26)

Energy

The kinetic energy of the planet is

            K = 
1
2

 mv 2 .

Using (11.25),

               K = 
1
2

 m  
GM

a
 = 

GMm
2a

 ⋅

The gravitational potential energy of the
sun–planet system is

U = − 
GMm

a
 ⋅

The total mechanical energy of the sun–planet
system is

     E = K + U = 
GMm

2a
 − 

GMm
a

 = − 
GMm

2a
 ⋅

The total energy is negative. This is true for any
bound system if the potential energy is taken to be
zero at infinite separation.

Satellite

Satellites are launched from the earth so as to
move round it. A number of rockets are fired from the
satellite at proper time to establish the satellite in the
desired orbit. Once the satellite is placed in the desired
orbit with the correct speed for that orbit, it will
continue to move in that orbit under gravitational
attraction of the earth. All the equations derived above
for planets are also true for satellites with M
representing the mass of the earth and m representing
the mass of the satellite.

Example 11.9

   A satellite is revolving round the earth at a height of
600 km. Find (a) the speed of the satellite and (b) the
time period of the satellite. Radius of the earth
= 6400 km and mass of the earth = 6 × 10 24 kg.

Solution : The distance of the satellite from the centre of
the earth is 6400 km + 600 km = 7000 km.

The speed of the satellite is

  v = √GM
a

= √6.67 × 10 − 11 N−m 2/kg 2 × 6 × 10 24 kg
7000 × 10 3 m

= 7.6 × 10 3 m s−1 = 7.6 km s−1 .
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The time period is

      T = 
2π a

v

        = 
2π × 7000 × 10 3 m

7.6 × 10 3 m s−1  = 5.8 × 10 3 s.

Geostationary Satellite

The earth rotates about its own axis (the line
joining the north pole and the south pole) once in 24
hours. Suppose a satellite is established in an orbit in
the plane of the equator. Suppose the height is such
that the time period of the satellite is 24 hours and it
moves in the same sense as the earth. The satellite
will always be overhead a particular place on the
equator. As seen from the earth, this satellite will
appear to be stationary. Such a satellite is called
a geostationary satellite. Such satellites are used for
telecommunication, weather forecasting and other
applications.

According to equation (11.26),

           T 2 = 
4π 2

GM
 a 3

   or,     a = 




GMT 2

4π 2




1/3

.

Putting the values of G, M = (6 × 10 24 kg) and
T = (24 hours); the radius of the geostationary orbit
comes out to be a = 4.2 × 10 4 km. The height above the
surface of the earth is about 3.6 × 10 4 km.

11.11 KEPLER’S LAWS

From the observations of Tycho Brahe, Kepler
formulated the laws of planetary motion which we
have listed in the first section of this chapter. The first
law states that the path of a planet is elliptical with
the sun at a focus. Circular path is a special case of
an ellipse when the major and minor axes are equal.
For a circular path, the planet should have velocity
perpendicular to the line joining it with the sun and
the magnitude should satisfy equation (11.25), that is

v = √GM
a

 ⋅ If these conditions are not satisfied, the

planet moves in an ellipse.
The second law states that the radius vector from

the sun to the planet sweeps out equal area in equal
time. For a circular orbit, this is obvious because the
speed of the particle remains constant.

The third law of Kepler states that the square of
the time period of a planet is proportional to the cube
of the semimajor axis. For a circular orbit semimajor
axis is same as the radius. We have already proved
this law for circular orbits in equation (11.26). As M

denotes mass of the sun, 4π 
2

GM
 is fixed for all planets

and T 2∝ a 3.

11.12 WEIGHTLESSNESS IN A SATELLITE

A satellite moves round the earth in a circular
orbit under the action of gravity. The acceleration of
the satellite is GM

R 
2  towards the centre of the earth,

where M is the mass of the earth and R is the radius
of the orbit of the satellite. Consider a body of mass
m placed on a surface inside a satellite moving round
the earth. The forces on the body are
   (a) the gravitational pull of the earth = GMm

R 
2

,

   (b) the contact force N  by the surface.

By Newton’s law,

         G 
Mm
R 2

 − N  = m



GM
R 2




  or,  N  = 0.

Thus, the surface does not exert any force on the
body and hence its apparent weight is zero. No support
is needed to hold a body in the satellite. All positions
shown in figure (11.22) are equally comfortable.

One can analyse the situation from the frame of
the satellite. Working in the satellite frame we have
to add a centrifugal force on all bodies. If the mass of
a body is m, the centrifugal force is m 



GM

R 
2




 away from

the centre of the earth. This pseudo force exactly
balances the weight of the body which is GMm

R 
2  towards

the centre of the earth. A body needs no support to
stay at rest in the satellite and hence all positions are
equally comfortable. Water will not fall down from the
glass even if it is inverted. It will act like a “gravity-
free hall”. Such a state is called weightlessness.

It should be clear that the earth still attracts a
body with the same force GMm

R 
2  ⋅ The feeling of

weightlessness arises because one stays in a rotating
frame.

11.13 ESCAPE VELOCITY

When a stone is thrown up it goes up to a
maximum height and then returns. As the particle

Figure 11.22
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goes up, the gravitational potential energy increases
and the kinetic energy of the particle decreases. The
particle will continue to go up till its kinetic energy
becomes zero and will return from there.

Let the initial velocity of the particle be u. The

kinetic energy of the particle is K = 1
2
 mu 2 and the

gravitational potential energy of the earth–particle

system is U = − GMm
R

 , where M is the mass of the

earth, m is the mass of the particle and R is the radius
of the earth. When it reaches a height h above the
earth’s surface, its speed becomes v. The kinetic energy

there is 1
2
 mv 2 and the gravitational potential energy

is − GMm
R + h

 ⋅

By conservation of energy

    
1
2

 mu 2 − 
GMm

R
 = 

1
2

 mv 2 − 
GMm
R + h

   or,    
1
2

 mv 2 = 


1
2

 mu 2 − 
GMm

R



 + 

GMm
R + h

 ⋅ … (i)

The particle will reach the maximum height when
v becomes zero.

If 1
2
 mu 2 − GMm

R
 ≥ 0, the right-hand side of (i) is

greater than zero for all values of h. Thus, 1
2
 mv 2 never

becomes zero. The particle’s velocity never reaches zero
and so the particle will continue to go farther and
farther away from the earth. Thus, the particle will
never return to the earth if

       
1
2

 mu 2 − 
GMm

R
 ≥ 0

   or,      u ≥ √2GM
R

 ⋅ … (11.27)

This critical initial velocity is called the escape
velocity. Putting the values of G, M  and  R, the escape
velocity from the earth comes out to be 11.6 km s–1. In
this we have neglected the effect of other planets, stars
and other objects in space. In fact, even if the initial
velocity is somewhat less than the escape velocity, the
particle may get attracted by some other celestial
object and land up there. 

Equation (11.27) is valid for any celestial object.
For example, if something is thrown up from the
surface of the moon, it will never return to the moon

if the initial velocity is greater than √2GM
R

, where M

is the mass of the moon and R is the radius of the
moon.

Example 11.10

   Calculate the escape velocity from the moon. The mass
of the moon = 7.4 × 10 22 kg and radius of the moon
= 1740 km.

Solution : The escape velocity is

         v = √2GM
R

 = √2 × 6.67 × 10 − 11 N−m 2/kg 2 × 7.4 × 10 22 kg
1740 × 10 3 m

 = 2.4 km s−1.

11.14 GRAVITATIONAL BINDING ENERGY

We have seen that if a particle of mass m placed
on the earth is given an energy 1

2
 mu 2 = GMm

R
 or more,

it finally escapes from earth. The minimum energy
needed to take the particle infinitely away from the
earth is called the binding energy of the earth–particle
system. Thus, the binding energy of the earth–particle
system is GMm

R
 ⋅

11.15 BLACK HOLES

Consider a spherical body of mass M and radius
R. Suppose, due to some reason the volume goes on
decreasing while the mass remains the same. The

escape velocity √2GM
R

 from such a dense material will

be very high. Suppose the radius is so small that

           √2GM
R

 ≥ c

where c = 3 × 10 8 m s−1 is the speed of light. The escape
velocity for such an object is equal to or greater than
the speed of light. This means, anything starting from
the object with a speed less than the speed of light
will return to the object (neglecting the effect of other
objects in space). According to the theory of relativity
it is not possible to achieve a velocity greater than c
for any material object. Thus, nothing can escape from
such a dense material. Such objects are known as black
holes. A number of such black holes exist in space.
Even light cannot escape from a black hole.

11.16 INERTIAL AND GRAVITATIONAL MASS

Given two objects  A and B, how can we determine
the ratio of the mass of A to the mass of B. One way
is to use Newton’s second law of motion. If we apply
equal forces F on each of the two objects,

          F = mA aA    and also    F = mB aB.
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Thus,        
mA

mB
 = 

aB

aA

   or,           mA = 
aB

aA
 mB . … (i)

This equation may be used to ‘‘define the mass’’ of an
object. Taking the object B to be the standard kilogram
(mB = 1 kg), mass of any object may be obtained by
measuring their accelerations under equal force and
using (i). The mass so defined is called inertial mass.

Another way to compare masses of two objects is
based on the law of gravitation. The gravitational force
exerted by a massive body on an object is proportional
to the mass of the object. If FA and FB be the forces of
attraction on the two objects due to the earth,

          FA = 
GmA M

R 2
    and    FB = 

GmB M

R 2
 ⋅

Thus,   
mA

mB
 = 

FA

FB

   or,      mA = 
FA

FB
 mB . … (ii)

We can use this  equation to ‘‘define the mass’’ of an
object. If B is a standard unit mass, by measuring the
gravitational forces FA and FB we can obtain the mass
of the object A. The mass so defined is called
gravitational mass. When we measure the mass using
a spring balance, we actually measure the
gravitational mass.

Equivalence of Inertial and Gravitational Mass

The two definitions of mass, described above, are
quite independent of each other. There is no obvious
reason why the two should be identical. However, they
happen to be identical. Several sophisticated

experiments have been performed to test this
equivalence and none of them has supplied any
evidence against it. The general theory of relativity is
based on the principle of equivalence of inertial and
gravitational mass.

11.17 POSSIBLE CHANGES IN THE
     LAW OF GRAVITATION

There is some indication that the force between
two masses is not as described in this chapter. The
deviation from the simple law F = GMm

R 
2  is being taken

as an indication of the existence of a fifth interaction
besides gravitational, electromagnetic, nuclear and
weak. It has been reported (Phys. Rev. Lett. Jan 6,
1986) that the force between two masses may be better
represented by

     F = 
G∞ m1 m2

r 2
 

1 + 


1 + 

r
λ




 α e − 

r
λ




with α ≈ − 0.007 and λ ≈ 200 m. As α is negative, the
second term in the square bracket represents a
repulsive force. For r >> 200 m

          F = 
G∞ m1 m2

r 2
 

which is the force operative between the earth and
other objects. For r << 200 m

     F = 
G∞ m1 m2(1 + α)

r 2
 = 

G′m1 m2

r 2
 

where G′ = G∞(1 + α).

This is the force we measure in a Cavendish-
experiment. The value of G for small distances is about
1% less than the value of G for large distances.

Worked Out Examples

 1. Three particles A, B and C, each of mass m, are placed
in a line with AB = BC = d. Find the gravitational force

on a fourth particle P of same mass, placed at a distance
d from the particle B on the perpendicular bisector of the
line AC.

Solution :

           

The force at P due to A is

            FA = 
G m 2

(AP) 2 = 
G m 2

2 d 2  

along PA. The force at P due to C is

FC = 
G m 2

(CP) 2 = 
G m 2

2 d 2  

along PC. The force at P due to B is

          FB = 
G m 2

d 2   along PB.

The resultant of FA, FB and FC will be along PB.

Clearly ∠ APB = ∠ BPC = 45°.

Component of FA along PB = FA cos45° = 
G m 2

2 √2 d 2 ⋅




�
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Component of FC along PB = FC cos45° = 
G m 2

2 √2 d 2 ⋅

Component of FB along PB = 
G m 2

d 2
 ⋅

Hence, the resultant of the three forces is

  
G m 2

d 2  


1
2 √2

 + 
1

2 √2
 + 1



 = 

G m 2

d 2  

1 + 

1
√ 2




 along PB.

 2. Find the distance of a point from the earth’s centre where
the resultant gravitational field due to the earth and the
moon is zero. The mass of the earth is 6.0 × 10 24 kg and
that of the moon is 7.4 × 10 22 kg. The distance between
the earth and the moon is 4.0 × 10 5 km.

Solution : The point must be on the line joining the
centres of the earth and the moon and in between them.
If the distance of the point from the earth is x, the
distance from the moon is (4.0 × 10 5 km – x). The
magnitude of the gravitational field due to the earth is

               E1 = 
GMe

x 2
 = 

G × 6 × 10 24 kg

x 2

and magnitude of the gravitational field due to the moon
is

   E2 = 
GMm

(4.0 × 10 5 km − x) 2
 = 

G × 7.4 × 10 22 kg

(4.0 × 10 5 km − x) 2
 ⋅

These fields are in opposite directions. For the resultant
field to be zero E1 = E2 ,

or,       
6 × 10 24 kg

x 2  = 
7.4 × 10 22 kg

(4.0 × 10 5 km − x)2

or,   
x

4.0 × 10 5 km − x
  = √6 × 10 24

7.4 × 10 22  = 9

or,              x = 3.6 × 10 5 km.

 3. Two particles of equal mass go round a circle of radius
R under the action of their mutual gravitational
attraction. Find the speed of each particle.

Solution : The particles will always remain diametrically
opposite so that the force on each particle will be
directed along the radius. Consider the motion of one of

the particles. The force on the particle is F = G m 
2

4 R 
2  ⋅ If

the speed is v, its acceleration is v 2/R.
Thus, by Newton’s law,

G m 2

4 R 2  = 
m v 2

R

or,  v = √G m
4 R

⋅

 4. Two particles A and B of masses 1 kg and 2 kg
respectively are kept 1 m apart and are released to move

under mutual attraction. Find the speed of A when that
of B is 3.6 cm/hour. What is the separation between the
particles at this instant ?

Solution : The linear momentum of the pair A + B is zero
initially. As only mutual attraction is taken into account,
which is internal when A + B is taken as the system,
the linear momentum will remain zero. The particles
move in opposite directions. If the speed of A is v when
the speed of B is 3.6 cm/hour = 10 – 5 m s–1,

        (1 kg) v = (2 kg) (10 − 5 m s−1)

or,     v = 2 × 10 − 5 m s−1.

The potential energy of the pair is − 
G mA mB

R
 with usual

symbols. Initial potential energy

      = − 
6.67 × 10 − 11 N−m 2/kg 2 × 2 kg × 1 kg

1 m

           = − 13.34 × 10 − 11 J.

If the separation at the given instant is d, using
conservation of energy,

      − 13.34 × 10 − 11 J + 0

     = − 
13.34 × 10 − 11 J−m

d
 + 

1
2

 (2 kg) (10 − 5 m s−1)2 

       + 
1
2

 (1 kg) (2 × 10 − 5 m s−1) 2 

Solving this, d = 0.31 m.

 5. The gravitational field in a region is given by
E
→

 = (10 N kg−1) ( i
→
 + j

→
 ). Find the work done by an external

agent to slowly shift a particle of mass 2 kg from the
point (0,0) to a point (5 m, 4 m).

Solution : As the particle is slowly shifted, its kinetic
energy remains zero. The total work done on the particle
is thus zero. The work done by the external agent should
be negative of the work done by the gravitational field.
The work done by the field is

              ∫ 
i

f

 F
→

 ⋅ dr
→

Consider figure (11-W2). Suppose the particle is taken
from O to A and then from A to B. The force on the
particle is

   F
→

 = mE
→

 = (2 kg) (10 N kg−1) ( i
→
 + j

→
 ) = (20 N) ( i

→
 + j

→
 ).

The work done by the field during the displacement
OA is

�

������
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       W1 = ∫ 
0

5m

 Fx dx

   = ∫ 
0

5m

 (20 N) dx = 20 N × 5 m = 100 J.

Similarly, the work done in displacement AB is

W2 = ∫ 
0

4m

 Fy dy = ∫ 
0

4m

 (20 N) dy

  = (20 N) (4 m) = 80 J.

Thus, the total work done by the field, as the particle
is shifted from O to B, is 180 J.

The work done by the external agent is –180 J.

Note that the work is independent of the path so that
we can choose any path convenient to us from O to B.

 6. A uniform solid sphere of mass M and radius a is
surrounded symmetrically by a uniform thin spherical
shell of equal mass and radius 2 a. Find the gravitational

field at a distance (a) 3
2
 a from the centre, (b) 5

2
 a from

the centre.

Solution : 

Figure (11-W3) shows the situation. The point P1 is at

a distance 3
2
 a from the centre and P2 is at a distance

5
2
 a from the centre. As P1 is inside the cavity of the thin

spherical shell, the field here due to the shell is zero.
The field due to the solid sphere is

           E = 
GM





3
2

 a



 2 = 
4 GM
9 a 2  ⋅

This is also the resultant field. The direction is towards
the centre. The point P2 is outside the sphere as well as
the shell. Both may be replaced by single particles of
the same mass at the centre. The field due to each of
them is

           E′ = 
GM





5
2

 a 


 2 = 
4 GM
25 a 2 ⋅

The resultant field is E = 2 E′ = 8 GM

25 a 
2  towards the

centre.

 7. The density inside a solid sphere of radius a is given by
ρ = ρ0 a/r, where ρ0 is the density at the surface and r

denotes the distance from the centre. Find the
gravitational field due to this sphere at a distance 2 a
from its centre.

Solution : The field is required at a point outside the
sphere. Dividing the sphere  in concentric shells, each
shell can be replaced by a point particle at its centre
having mass equal to the mass of the shell. Thus, the
whole sphere can be replaced by a point particle at its
centre having mass equal to the mass of the given
sphere. If the mass of the sphere is M, the gravitational
field at the given point is

            E = 
GM

(2a) 2 = 
GM
4a 2 ⋅ … (i)

The mass M may be calculated as follows. Consider a
concentric shell of radius r and thickness dr. Its volume
is
                dV = (4πr 2) dr

and its mass is

          dM = ρdV = 



ρ0 

a
r




 (4πr 2dr)

   = 4πρ0 ar dr.

The mass of the whole sphere is

            M = ∫ 
0

a

4πρ0 ar dr

  = 2πρ0a 3.

Thus, by (i) the gravitational field is

          E = 
2πGρ0a 3

4a 2  = 
1
2

 πGρ0a.

 8. A uniform ring of mass m and radius a is placed directly
above a uniform sphere of mass M and of equal radius.
The centre of the ring is at a distance √3 a from the centre
of the sphere. Find the gravitational force exerted by the
sphere on the ring.

Solution : The gravitational field at any point on the ring
due to the sphere is equal to the field due to a single
particle of mass M placed at the centre of the sphere.
Thus, the force on the ring due to the sphere is also
equal to the force on it by a particle of mass M placed
at this point. By Newton’s third law it is equal to the
force on the particle by the ring. Now the gravitational
field due to the ring at a distance d = √3 a on its axis is

         E = 
Gmd

(a 2 + d 2) 3/2
 = 

√3 Gm

8a 2
 ⋅
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The force on a particle of mass M placed here is
            F = ME

              = 
√3GMm

8a 2  ⋅

This is also the force due to the sphere on the ring.

 9. A particle is fired vertically upward with a speed of
9.8 km s–1. Find the maximum height attained by the
particle. Radius of earth = 6400 km and g at the surface
= 9.8 m s–2. Consider only earth’s gravitation.

Solution : At the surface of the earth, the potential energy

of the earth–particle system is − G Mm
R

 with usual

symbols. The kinetic energy is 1
2
 m v0

 2 where

v0 = 9.8 km s−1. At the maximum height the kinetic
energy is zero. If the maximum height reached is H, the
potential energy of the earth–particle system at this

instant is − G M m
R + H

 ⋅ Using conservation of energy,

        − 
G M m

R
 + 

1
2

 m v0
 2 = − 

G M m
R + H

 ⋅

Writing GM = gR 2  and dividing by m,

− gR + 
v0

 2

2
 = 

− gR 2

R + H

or, 
R 2

R + H
 = R − 

v0
 2

2 g

or, R + H = 
R 2

R − 
v0

 2

2 g

 .

Putting the values of R, v0 and g on the right side,

      R + H = 
(6400 km) 2

6400 km − 
(9.8 km s−1) 2

2 × 9.8 m s−2

= 
(6400 km) 2

1500 km
 = 27300 km

or,     H = (27300 − 6400) km = 20900 km.

10. A particle hanging from a spring stretches it by 1 cm at
earth’s surface. How much will the same particle stretch
the spring at a place 800 km above the earth’s surface ?
Radius of the earth = 6400 km.

Solution : Suppose the mass of the particle is m and the
spring constant of the spring is k. The acceleration due

to gravity at earth’s surface is g = GM

R 
2  with usual

symbols. The extension in the spring is mg/k.

   Hence,       1 cm = 
GMm
k R 2  ⋅ … (i)

At a height h = 800 km, the extension is given by

               x = 
GMm

k (R + h) 2 ⋅ … (ii)

By (i) and (ii),    
x

1 cm
 = 

R 2

(R + h) 2

         
(6400 km) 2

(7200 km) 2 = 0.79.

Hence,         x = 0.79 cm.

11. A simple pendulum has a time period exactly 2 s when
used in a laboratory at north pole. What will be the time
period if the same pendulum is used in a laboratory at
equator ? Account for the earth’s rotation only. Take

g = GM

R 
2  = 9.8 m s−2 and radius of earth = 6400 km.

Solution : Consider the pendulum in its mean position at
the north pole. As the pole is on the axis of rotation, the
bob is in equilibrium. Hence in the mean position, the
tension T is balanced by earth’s attraction. Thus,

T = G M m

R 
2  = mg⋅ The time period t is

        t = 2π √l
T/m

 = 2 π √ l
g

 ⋅         … (1)

At equator, the lab and the pendulum rotate with the

earth at angular velocity ω = 
2 π  radian

24  hour
 in a circle of

radius equal to 6400 km. Using Newton’s second law,

   
G M m

R 2  − T ′ = m ω 2 R   or, T ′ = m (g − ω 2 R)

where T ′ is the tension in the string.

The time period will be

     t ′ = 2 π √l(T ′/m)
 = 2 π √lg − ω 2 R

 ⋅     … (ii)

By (i) and (ii)

      
t ′
t

 = √gg − ω 2 R
 = 




1 − 

ω 2 R
g





 − 1/2

or,     t ′ ≈ t 



1 + 

ω 2 R
2g




 ⋅

Putting the values, t ′ = 2.004 seconds.

12. A satellite is to revolve round the earth in a circle of
radius 8000 km. With what speed should this satellite
be projected into  orbit ? What will be the time period ?
Take g at the surface = 9.8 m s–2 and radius of the earth
= 6400 km.

Solution : Suppose, the speed of the satellite is v. The
acceleration of the satellite is v 2/r, where r is the radius

of the orbit. The force on the satellite is GMm

r 
2  with usual

symbols. Using Newton’s second law,

          
GM m

r 2  = m 
v 2

r
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or,     v 2 = 
GM

r
 = 

g R 2

r
 = 

(9.8 m s−2) (6400 km) 2

(8000 km)

giving    v = 7.08 km s−1.

The time period is 
2 π r

v
 = 

2 π (8000 km)
(7.08 km s−1)

 ≈ 118 minutes.

13. Two satellites S1 and S2 revolve round a planet in
coplanar circular orbits in the same sense. Their periods
of revolution are 1 h and 8 h respectively. The radius of
the orbit of S1 is 10 4 km. When S2 is closest to S1 , find
(a) the speed of S2 relative to S1 and (b) the angular speed
of S2 as observed by an astronaut in S1 .

Solution : Let the mass of the planet be M, that of S1 be
m1 and of S2 be m2 . Let the radius of the orbit of S1 be
R1 ( = 10 4 km) and of S2 be R2 .

Let v1 and v2 be the linear speeds of S1 and S2 with
respect to the planet. Figure (11-W5) shows the
situation.

As the square of the time period is proportional to the
cube of the radius,

         




R2

R1





 3

 = 




T2

T1





 2

 = 


8 h
1 h





 2

 = 64

or, 
R2

R1

 = 4

or,        R2 = 4R1 = 4 × 10 4 km.

Now the time period of S1 is 1 h. So,

            
2 π R1

v1

 = 1 h

or,                v1 = 
2 π R1

1 h
 = 2 π  × 10 4 km h−1

similarly,           v2 = 
2 π R2

8 h
 = π × 10 4 km h−1 .

(a) At the closest separation, they are moving in the
same direction. Hence the speed of S2 with respect to S1

is |v2 − v1| = π × 10 4 km h−1.

(b) As seen from S1, the satellite S2 is at a distance
R2 − R1 = 3 × 10 4 km at the closest separation. Also, it is

moving at π × 10 4 km h−1 in a direction perpendicular to
the line joining them. Thus, the angular speed of S2 as
observed by S1 is

         ω = 
π × 10 4 km h−1

3 × 10 4 km
 = 

π
3

 rad h−1.

QUESTIONS FOR SHORT ANSWERS

 1. Can two particles be in equilibrium under the action of
their mutual gravitational force ? Can three particles
be ? Can one of the three particles be ?

 2. Is there any meaning of “Weight of the earth” ?

 3. If heavier bodies are attracted more strongly by the
earth, why don’t they fall faster than the lighter bodies ?

 4. Can you think of two particles which do not exert
gravitational force on each other ?

 5. The earth revolves round the sun because the sun
attracts the earth. The sun also attracts the moon and
this force is about twice as large as the attraction of the
earth on the moon. Why does the moon not revolve round
the sun ? Or does it ?

 6. At noon, the sun and the earth pull the objects on the
earth’s surface in opposite directions. At midnight, the
sun and the earth pull these objects in same direction.
Is the weight of an object, as measured by a spring
balance on the earth’s surface, more at midnight as
compared to its weight at noon ?

 7. An apple falls from a tree. An insect in the apple finds
that the earth is falling towards it with an

acceleration g. Who exerts the force needed to accelerate
the earth with this acceleration g ?

 8. Suppose the gravitational potential due to a small
system is k/r 2 at a distance r from it. What will be the
gravitational field ? Can you think of any such system ?
What happens if there were negative masses ?

 9. The gravitational potential energy of a two-particle

system is derived in this chapter as U = − 
Gm1m2

r
 ⋅ Does

it follow from this equation that the potential energy for
r = ∞ must be zero ? Can we choose the potential energy
for r = ∞ to be 20 J and still use this formula ? If no,
what formula should be used to calculate the
gravitational potential energy at separation r ?

10. The weight of an object is more at the poles than at the
equator. Is it beneficial to purchase goods at equator and
sell them at the pole ? Does it matter whether a spring
balance is used or an equal-beam balance is used ?

11. The weight of a body at the poles is greater than the
weight at the equator. Is it the actual weight or the
apparent weight we are talking about ? Does your
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answer depend on whether only the earth’s rotation is
taken into account or the flattening of the earth at the
poles is also taken into account ?

12. If the radius of the earth decreases by 1% without
changing its mass, will the acceleration due to gravity
at the surface of the earth increase or decrease ? If so,
by what per cent ?

13. A nut becomes loose and gets detached from a satellite
revolving around the earth. Will it land on the earth ?
If yes, where will it land ? If no, how can an astronaut
make it land on the earth ?

14. Is it necessary for the plane of the orbit of a satellite to
pass through the centre of the earth ?

15. Consider earth satellites in circular orbits. A
geostationary satellite must be at a height of about
36000 km from the earth’s surface. Will any satellite
moving at this height be a geostationary satellite ? Will

any satellite moving at this height have a time period
of 24 hours ?

16. No part of India is situated on the equator. Is it possible
to have a geostationary satellite which always remains
over New Delhi ?

17. As the earth rotates about its axis, a person living in
his house at the equator goes in a circular orbit of radius
equal to the radius of the earth. Why does he/she not
feel weightless as a satellite passenger does ?

18. Two satellites going in equatorial plane have almost
same radii. As seen from the earth one moves from east
to west and the other from west to east. Will they have
the same time period as seen from the earth ? If not,
which one will have less time period ?

19. A spacecraft consumes more fuel in going from the earth
to the moon than it takes for a return trip. Comment
on this statement.

OBJECTIVE I

 1. The acceleration of moon with respect to earth is
0.0027 m s–2 and the acceleration of an apple falling on
earth’s surface is about 10 m s−2. Assume that the radius
of the moon is one fourth of the earth’s radius. If the
moon is stopped for an instant and then released, it will
fall towards the earth. The initial acceleration of the
moon towards the earth will be

(a) 10 m s−2  (b) 0.0027 m s−2  (c) 6.4 m s−2  (d) 5.0 m s−2.

 2. The acceleration of the moon just before it strikes the
earth in the previous question is

(a) 10 m s−2  (b) 0.0027 m s−2  (c) 6.4 m s−2  (d) 5.0 m s−2

 3. Suppose, the acceleration due to gravity at the earth’s
surface is 10 m s–2 and at the surface of Mars it is
4.0 m s–2. A 60 kg passenger goes from the earth to the
Mars in a spaceship moving with a constant velocity.
Neglect all other objects in the sky. Which part of figure
(11-Q1) best represents the weight (net gravitational
force) of the passenger as a function of time ?
(a) A        (b) B        (c) C        (d) D.

 4. Consider a planet in some solar system which has a
mass double the mass of the earth and density equal to
the average density of the earth. An object weighing W
on the earth will weigh
(a) W (b) 2 W (c) W/2 (d) 2 1/3 W at the planet.

 5. If the acceleration due to gravity at the surface of the
earth is g, the work done in slowly lifting a body of mass
m from the earth’s surface to a height R equal to the
radius of the earth is

(a) 1
2
 mgR    (b) 2mgR   (c) mgR   (d) 1

4
 mgR. 

 6. A person brings a mass of 1 kg from infinity to a point
A. Initially the mass was at rest but it moves at a speed
of 2 m s–1 as it reaches A. The work done by the person
on the mass is –3 J. The potential at A is
(a) –3 J kg–1  (b) –2 J kg–1  (c) –5 J kg–1  (d) none of these.

 7. Let V and E be the gravitational potential and
gravitational field at a distance r from the centre of a
uniform spherical shell. Consider the following two
statements :
(A) The plot of V against r is discontinuous.
(B) The plot of E against r is discontinuous.
   (a) Both A and B are correct.
   (b) A is correct but B is wrong.
   (c) B is correct but A is wrong.
   (d) Both A and B are wrong.

 8. Let V and E represent the gravitational potential and
field at a distance r from the centre of a uniform solid
sphere. Consider the two statements:
(A) the plot of V against r is discontinuous.
(B) The plot of E against r is discontinuous.
   (a) Both A and B are correct.
   (b) A is correct but B is wrong.
   (c) B is correct but A is wrong.
   (d) Both A and B are wrong.

 9. Take the effect of bulging of earth and its rotation in
account. Consider the following statements:
(A) There are points outside the earth where the value
of g  is equal to its value at the equator.
(B) There are points outside the earth where the value
of g  is equal to its value at the poles.
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 (a) Both A and B are correct.
 (b) A is correct but B is wrong.
 (c) B is correct but A is wrong.
 (d) Both A and B are wrong.

10. The time period of an earth-satellite in circular orbit is
independent of
(a) the mass of the satellite    (b) radius of the orbit
(c) none of them                 (d) both of them.

11. The magnitude of gravitational potential energy of the
moon–earth system is U with zero potential energy at
infinite separation. The kinetic energy of the moon with
respect to the earth is K.
(a) U < K       (b) U > K       (c) U = K.

12. Figure (11-Q2) shows the elliptical path of a planet
about the sun. The two shaded parts have equal area.
If t1 and t2 be the time taken by the planet to go from
a to b and from c to d respectively,
(a) t1 < t2       (b) t1 = t2       (c) t1 > t2

(d) insufficient information to deduce the relation
between  t1 and t2 .

13. A person sitting in a chair in a satellite feels weightless
because

(a) the earth does not attract the objects in a satellite
(b) the normal force by the chair on the person balances
the earth’s attraction
(c) the normal force is zero
(d) the person in satellite is not accelerated.

14. A body is suspended from a spring balance kept in a
satellite. The reading of the balance is W1 when the
satellite goes in an orbit of radius R and is W2 when it
goes in an orbit of radius 2 R.
(a) W1 = W2     (b) W1 < W2  (c) W1 > W2  (d) W1 ≠ W2 .

15. The kinetic energy needed to project a body of mass m
from the earth’s surface to infinity is

(a) 1
4
 mgR    (b) 1

2
 mgR    (c) mgR    (d) 2 mgR.

16. A particle is kept at rest at a distance R (earth’s radius)
above the earth’s surface. The minimum speed with which
it should be projected so that it does not return is

(a) √GM
4R

   (b) √GM
2R

   (c) √GM
R

   (d) √2GM
R

⋅

17. A satellite is orbiting the earth close to its surface. A
particle is to be projected from the satellite to just escape
from the earth. The escape speed from the earth is ve .
Its speed with respect to the satellite
(a) will be less than ve 
(b) will be more than ve 
(c) will be equal to ve 
(d) will depend on direction of projection.

OBJECTIVE II

 1. Let V and E denote the gravitational potential and
gravitational field at a point. It is possible to have
(a) V = 0 and E = 0 (b) V = 0 and E ≠ 0
(c) V ≠ 0 and E = 0 (d) V ≠ 0 and E ≠ 0.

 2. Inside a uniform spherical shell
(a) the gravitational potential is zero
(b) the gravitational field is zero
(c) the gravitational potential is same everywhere
(d) the gravitational field is same everywhere.

 3. A uniform spherical shell gradually shrinks maintaining
its shape. The gravitational potential at the centre
(a) increases                (b) decreases
(c) remains constant           (d) oscillates.

 4. Consider a planet moving in an elliptical orbit round the
sun. The work done on the planet by the gravitational
force of the sun
(a) is zero in any small part of the orbit

(b) is zero in some parts of the orbit
(c) is zero in one complete revolution
(d) is zero in no part of the motion.

 5. Two satellites A and B move round the earth in the
same orbit. The mass of B is twice the mass of A.
(a) Speeds of A and B are equal.
(b) The potential energy of earth+A is same as that of
earth+B.
(c) The kinetic energy of A and B are equal.
(d) The total energy of earth+A is same as that of
earth+B.

 6. Which of the following quantities remain constant in a
planetary motion (consider elliptical orbits) as seen from
the sun ?
(a) Speed              (b) Angular speed
(c) Kinetic Energy        (d) Angular momentum.

EXERCISES

 1. Two spherical balls of mass 10 kg each are placed 10 cm
apart. Find the gravitational force of attraction between
them.

 2. Four particles having masses m, 2m, 3m and 4m are
placed at the four corners of a square of edge a. Find
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the gravitational force acting on a particle of mass m
placed at the centre.

 3. Three equal masses m are placed at the three corners
of an equilateral triangle of side a. Find the force exerted
by this system on another particle of mass m placed at
(a) the mid-point of a side, (b) at the centre of the
triangle.

 4. Three uniform spheres each having a mass M and radius
a are kept in such a way that each touches the other
two. Find the magnitude of the gravitational force on
any of the spheres due to the other two.

 5. Four particles of equal masses M move along a circle of
radius R under the action of their mutual gravitational
attraction. Find the speed of each particle.

 6. Find the acceleration due to gravity of the moon at a
point 1000 km above the moon’s surface. The mass of

the moon is 7.4  10 22 kg and its radius is 1740 km.

 7. Two small bodies of masses 10 kg and 20 kg are kept
a distance 1.0 m apart and released. Assuming that only
mutual gravitational forces are acting, find the speeds
of the particles when the separation decreases to 0.5 m.

 8. A semicircular wire has a length L and mass M. A
particle of mass m is placed at the centre of the circle.
Find the gravitational attraction on the particle due to
the wire.

 9. Derive an expression for the gravitational field due to a
uniform rod of length L and mass M at a point on its
perpendicular bisector at a distance d from the centre.

10. Two concentric spherical shells have masses M1 , M2 and
radii R1, R2 R1  R2 . What is the force exerted by this
system on a particle of mass m if it is placed at a
distance R1  R2/2 from the centre ?

11. A tunnel is dug along a diameter of the earth. Find the
force on a particle of mass m placed in the tunnel at a
distance x from the centre.

12. A tunnel is dug along a chord of the earth at a
perpendicular distance R/2 from the earth’s centre. The
wall of the tunnel may be assumed to be frictionless.
Find the force exerted by the wall on a particle of mass
m when it is at a distance x from the centre of the
tunnel.

13. A solid sphere of mass m and radius r is placed inside
a hollow thin spherical shell of mass M and radius R as
shown in figure (11-E1). A particle of mass m is placed
on the line joining the two centres at a distance x from
the point of contact of the sphere and the shell. Find
the magnitude of the resultant gravitational force on this
particle due to the sphere and the shell if (a) r < x < 2r,
(b) 2r < x < 2R and (c) x > 2R.

14. A uniform metal sphere of radius a and mass M is
surrounded by a thin uniform spherical shell of equal
mass and radius 4a (figure 11-E2). The centre of the
shell falls on the surface of the inner sphere. Find the
gravitational field at the points P1 and P2 shown in the
figure.

15. A thin spherical shell having uniform density is cut in
two parts by a plane and kept separated as shown in
figure (11-E3). The point A is the centre of the plane
section of the first part and B is the centre of the plane
section of the second part. Show that the gravitational
field at A due to the first part is equal in magnitude to
the gravitational field at B due to the second part.

16. Two small bodies of masses 2.00 kg and 4.00 kg are kept
at rest at a separation of 2.0 m. Where should a particle
of mass 0.10 kg be placed to experience no net
gravitational force from these bodies ? The particle is
placed at this point. What is the gravitational potential
energy of the system of three particles with usual
reference level ?

17. Three particles of mass m each are placed at the three
corners of an equilateral triangle of side a. Find the work
which should be done on this system to increase the
sides of the triangle to 2a.

18. A particle of mass 100 g is kept on the surface of a
uniform sphere of mass 10 kg and radius 10 cm. Find
the work to be done against the gravitational force
between them to take the particle away from the sphere.

19. The gravitational field in a region is given by
E


  5 N kg1 i

  12 N kg1 j


 . (a) Find the magnitude of

the gravitational force acting on a particle of mass 2 kg
placed at the origin. (b) Find the potential at the points
(12 m, 0) and (0, 5 m) if the potential at the origin is
taken to be zero. (c) Find the change in gravitational
potential energy if a particle of mass 2 kg is taken from
the origin to the point (12 m, 5 m). (d) Find the change
in potential energy if the particle is taken from (12 m, 0)
to (0, 5 m).Figure 11-E1
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20. The gravitational potential in a region is given by
V = 20 N kg–1 (x + y). (a) Show that the equation is
dimensionally correct. (b) Find the gravitational field at
the point (x, y). Leave your answer in terms of the unit
vectors i


,  j

,  k

. (c) Calculate the magnitude of the

gravitational force on a particle of mass 500 g placed at
the origin. 

21. The gravitational field in a region is given by
E


   2 i

  3 j


  N kg1. Show that no work is done by the

gravitational field when a particle is moved on the line
3 y + 2 x  5.

[Hint : If a line y  mx  c makes angle  with the X-axis,
m  tan.]

22. Find the height over the earth’s surface at which the
weight of a body becomes half of its value at the surface.

23. What is the acceleration due to gravity on the top of
Mount Everest ? Mount Everest is the highest mountain
peak of the world at the height of 8848 m. The value at
sea level is 9.80 m s–2.

24. Find the acceleration due to gravity in a mine of depth
640 m if the value at the surface is 9.800 m s–2. The
radius of the earth is 6400 km.

25. A body is weighed by a spring balance to be 1.000 kg
at the north pole. How much will it weigh at the
equator ? Account for the earth’s rotation only.

26. A body stretches a spring by a particular length at the
earth’s surface at equator. At what height above the
south pole will it stretch the same spring by the same
length ? Assume the earth to be spherical.

27. At what rate should the earth rotate so that the
apparent g at the equator becomes zero ? What will be
the length of the day in this situation ?

28. A pendulum having a bob of mass m is hanging in a
ship sailing along the equator from east to west. When
the ship is stationary with respect to water the tension
in the string is T0. (a) Find the speed of the ship due to
rotation of the earth about its axis. (b) Find the
difference between T0 and the earth’s attraction on the
bob. (c) If the ship sails at speed v, what is the tension

in the string ? Angular speed of earth’s rotation is  and
radius of the earth is R.

29. The time taken by Mars to revolve round the sun is 1.88
years. Find the ratio of average distance between Mars
and the sun to that between the earth and the sun.

30. The moon takes about 27.3 days to revolve round the
earth in a nearly circular orbit of radius 3.84  10 5 km.
Calculate the mass of the earth from these data.

31. A Mars satellite moving in an orbit of radius
9.4  10 3 km takes 27540 s to complete one revolution.
Calculate the mass of Mars.

32. A satellite of mass 1000 kg is supposed to orbit the earth
at a height of 2000 km above the earth’s surface. Find
(a) its speed in the orbit, (b) its kinetic energy, (c) the
potential energy of the earth–satellite system and (d) its
time period. Mass of the earth  6  10 24 kg.

33. (a) Find the radius of the circular orbit of a satellite
moving with an angular speed equal to the angular
speed of earth’s rotation. (b) If the satellite is directly
above the north pole at some instant, find the time it
takes to come over the equatorial plane. Mass of the
earth  6  10 24 kg.

34. What is the true weight of an object in a geostationary
satellite that weighed exactly 10.0 N at the north pole ?

35. The radius of a planet is R1 and a satellite revolves
round it in a circle of radius R2 . The time period of
revolution is T. Find the acceleration due to the
gravitation of the planet at its surface.

36. Find the minimum colatitude which can directly receive
a signal from a geostationary satellite.

37. A particle is fired vertically upward from earth’s surface
and it goes up to a maximum height of 6400 km. Find
the initial speed of particle.

38. A particle is fired vertically upward with a speed of
15 km s–1. With what speed will it move in intersteller
space. Assume only earth’s gravitational field.

39. A mass of 6  10 24 kg (equal to the mass of the earth)
is to be compressed in a sphere in such a way that the
escape velocity from its surface is 3  10 8 m s–1. What
should be the radius of the sphere ?

 

ANSWERS

OBJECTIVE I

 1. (b)  2. (c)  3. (c)  4. (d)  5. (a)  6. (c)
 7. (c)  8. (d)  9. (b) 10. (a) 11. (b) 12. (b)
13. (c) 14. (a) 15. (c) 16. (c) 17. (d)

OBJECTIVE II

1. all   2. (b), (c), (d)   3. (b)   4. (b), (c)   5. (a)   6. (d)

EXERCISES

 1. 6.67  10  7 N

 2. 
42 Gm 2

a 2

 3. (a) 
4Gm 2

3a 2  , (b) zero

 4. 
3 GM 2

4a 2
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 5. GM
R

 




22  1
4





 6. 0.65 m s2

 7. 4.2  10  5 m s1  and  2.1  10  5 m s1

 8. 
2 GMm

L 2

 9. 
2 Gm

dL2  4 d 2  

10. 
4GM1m

R1  R2 
2 

11. 
GMe m

R 3  x

12. 
GMe m

2R 2

13. (a) 
Gmmx  r

r 3     (b) 
Gmm
x  r 2    (c) 

GMm
x  R 2  

Gmm
x  r 2 

14. 
GM
16a 2 ,  

61 GM
900a 2  

16. 0.83 m from the 2.00 kg body towards the other body, 

    3.06  10
  10

 J

17. 
3Gm 2

2a

18. 6.67  10  10 J

19. (a) 26 N  (b) 60 J kg1,  60 J kg1  (c)  240 J (d) zero

20. (b)  20 i

  j


  Nkg1     (c) 102 N

22. 2  1 times the radius of the earth

23. 9.77 m s2

24. 9.799 m s2

25. 0.997 kg
26. 10 km approx.

27. 1.237  10  3 rads–1, 1.41 h

28. (a) R (b) m 2R (c) T0  2 mv approx.

29. 1.52

30. 6.02  10 24 kg

31. 6.5  10 23 kg

32. (a) 6.90 kms–1 (b) 2.38  10 10 J (c)  4.76  10 10 J with
usual reference (d) 2.12 hours

33. (a) 42300 km  (b) 6 hours
34. 0.23 N

35. 
4 2R2

 3

T 2 R1
 2  

36. sin  1 0.15
37. 7.9 km s–1

38. 10.0 km s–1

39.  9 mm
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CHAPTER 12

SIMPLE HARMONIC MOTION

12.1 SIMPLE HARMONIC MOTION

When a body repeats its motion after regular time
intervals we say that it is in harmonic motion or
periodic motion. The time interval after which the
motion is repeated is called the time period. If a body
moves to and fro on the same path, it is said to perform
oscillations. Simple harmonic motion (SHM) is a
special type of oscillation in which the particle
oscillates on a straight line, the acceleration of the
particle is always directed towards a fixed point on the
line and its magnitude is proportional to the
displacement of the particle from this point. This fixed
point is called the centre of oscillation. Taking this
point as the origin and the line of motion as the X-axis,
we can write the defining equation of a simple
harmonic motion as

              a = − ω2x … (12.1)

where ω2 is a positive constant. If x is positive, a is
negative and if x is negative, a is positive. This means
that the acceleration is always directed towards the
centre of oscillation.

If we are looking at the motion from an inertial
frame,
                 a = F/m.

The defining equation (12.1) may thus be written
as
              F/m = − ω2x
   or,            F = − mω2x

   or,            F = − kx. … (12.2)

We can use equation (12.2) as the definition of
SHM. A particle moving on a straight line executes
simple harmonic motion if the resultant force acting
on it is directed towards a fixed point on the line and
is proportional to the displacement of the particle from
this fixed point. The constant k = mω2 is called the
force constant or spring constant. The resultant force
on the particle is zero when it is at the centre of
oscillation. The centre of oscillation is, therefore, the

equilibrium position. A force which takes the particle
back towards the equilibrium position is called a
restoring force. Equation (12.2) represents a restoring
force which is linear. Figure (12.1) shows the linear
restoring force graphically.

Example 12.1

   The resultant force acting on a particle executing simple
harmonic motion is 4 N when it is 5 cm away from the
centre of oscillation. Find the spring constant.

Solution : The simple harmonic motion is defined as 
            F = – k x.

The spring constant is k = 

 
F
x

 


    = 
4 N
5 cm

 = 
4 N

5 × 10 − 2 m
 = 80 N m−1.

12.2 QUALITATIVE NATURE OF
    SIMPLE HARMONIC MOTION

Let us consider a small block of mass m placed on
a smooth horizontal surface and attached to a fixed
wall through a spring as shown in figure (12.2). Let
the spring constant of the spring be k.
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The block is at a position O when the spring is at
its natural length. Suppose the block is taken to a
point P stretching the spring by the distance OP = A
and is released from there.

At any point on its path the displacement x of the
particle is equal to the extension of the spring from its
natural length. The resultant force on the particle is
given by F = – kx and hence by definition the motion
of the block is simple harmonic.

When the block is released from P, the force acts
towards the centre O. The block is accelerated in that
direction. The force continues to act towards O until
the block reaches O. The speed thus increases all the
time from P to O. When the block reaches O, its speed
is maximum and it is going towards left. As it moves
towards left from O, the spring becomes compressed.
The spring pushes the block towards right and hence
its speed decreases. The block moves to a point Q when
its speed becomes zero. The potential energy of the
system (block + spring), when the block is at P, is
1
2
 k (OP) 2  and  when  the  block  is  at Q it is

1
2
 k (OQ) 2. Since the block is at rest at P as well as at

Q, the kinetic energy is zero at both these positions.
As we have assumed frictionless surface, principle of
conservation of energy gives

         
1
2

 k (OP) 2 = 
1
2

 k (OQ) 2

or,            OP = OQ.

The spring is now compressed and hence it pushes
the block towards right. The block starts moving
towards right, its speed increases upto O and then
decreases to zero when it reaches P. Thus the particle
oscillates between P and Q. As OP = OQ, it moves
through equal distances on both sides of the centre of
oscillation. The maximum displacement on either side
from the centre of oscillation is called the amplitude.

Example 12.2

   A particle of mass 0.50 kg executes a simple harmonic
motion under a force F = – (50 N m−1)x. If it crosses the
centre of oscillation with a speed of 10 m s–1, find the
amplitude of the motion.

Solution : The kinetic energy of the particle when it is at

the centre of oscillation is E = 
1
2

 m v 2 

 = 
1
2

 (0.50 kg) (10 m s−1) 2 

 = 25 J.

The potential energy is zero here. At the maximum
displacement x = A, the speed is zero and hence the

kinetic energy is zero. The potential energy here is
1
2
 k A 2. As there is no loss of energy,

              
1
2

 k A 2 = 25 J. … (i)

The force on the particle is given by
          F = – (50 N m−1)x.

Thus, the spring constant is k = 50 N m–1.

Equation (i) gives

            
1
2

 (50 N m−1) A 2 = 25 J

or, A = 1 m.

12.3 EQUATION OF MOTION OF
    A SIMPLE HARMONIC MOTION

Consider a particle of mass m moving along the
X-axis. Suppose, a force F = – kx acts on the particle
where k is a positive constant and x is the
displacement of the particle from the assumed origin.
The particle then executes a simple harmonic motion
with the centre of oscillation at the origin. We shall
calculate the displacement x and the velocity v as a
function of time.

Suppose the position of the particle at t = 0 is x0

and its velocity is v0. Thus,

at t = 0, x = x0  and  v = v0.

The acceleration of the particle at any instant is 

        a = 
F
m

 = − 
k
m

 x = − ω 2x

  where   ω = √km−1 .

   Thus,    
dv
dt

 = − ω 2x … (12.3)

or,    
dv
dx

 
dx
dt

 = − ω 2x

or,     v 
dv
dx

 = − ω 2x

or,     vdv = − ω 2 x dx.
The velocity of the particle is v0 when the particle

is at x = x0. It becomes v when the displacement
becomes x. We can integrate the above equation and
write

         ∫ 
v0

v

v dv = ∫ 
x0

x

− ω 2 x dx

� �
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or,        



v 2

2


 v0

 v

 = − ω 2 


x 2

2


 x0

 x

or,        v 2 − v0
 2 = − ω 2(x 2 − x0

 2)

or,           v 2 = (v0
 2 + ω 2x0

 2 − ω 2x 2)

or,           v = √(v0
 2 + ω 2x0

 2) − ω 2x 2

or,           v = ω√



v0
 2

ω 2 + x0
 2


 − x 2 . 

   Writing       




v0

ω




 2

 + x0
 2 = A 2 … (12.4)

the above equation becomes

             v = ω √A 2 − x 2 .        … (12.5)

We can write this equation as

             
dx
dt

 = ω √A 2 − x 2  

   or,    
dx

√A 2 − x 2
 = ω dt.

At time t = 0 the displacement is x = x0 and at time
t the displacement becomes x. The above equation can
be integrated as

       ∫ 
x0

x

  
dx

√A 2 − x 2
 = ∫ 

0

t

 ω dt

   or,        sin − 1 
x
A

 x0

 x
 = [ωt]

 0

 t  

   or, sin − 1 
x
A

 − sin − 1 
x0

A
 = ωt.

   Writing      sin − 1 
x0

A
 = δ, this becomes

sin − 1 
x
A

 = ωt + δ

   or,            x = A sin(ωt + δ). … (12.6)

The velocity at time t is

          v = 
dx
dt

 = A ω cos(ωt + δ). … (12.7)

12.4 TERMS ASSOCIATED WITH SIMPLE
    HARMONIC MOTION

(a) Amplitude

Equation (12.6) gives the displacement of a particle
in simple harmonic motion. As sin(ωt + δ) can take
values between – 1 and + 1, the displacement x can
take values between – A and + A. This gives the
physical significance of the constant A. It is the
maximum displacement of the particle from the centre
of oscillation, i.e, the amplitude of oscillation.

(b) Time Period

A particle in simple harmonic motion repeats its
motion after a regular time interval. Suppose the
particle is at a position x and its velocity is v at a
certain time t. After some time the position of the
particle will again be x and its velocity will again be
v in the same direction. This part of the motion is
called one complete oscillation and the time taken in
one complete oscillation is called the time period T.
Thus, in figure (12.4) Q to P and then back to Q is a
complete oscillation, R to P to Q to R is a complete
oscillation, O to P to Q to O is a complete oscillation,
etc. Both the position and the velocity (magnitude as
well as direction) repeat after each complete
oscillation.

We have,
            x = A sin(ωt + δ).

If T be the time period, x should have same value
at t and t + T.

Thus,    sin(ωt + δ) = sin[ω(t + T) + δ].
   Now the velocity is (equation 12.7)

v = A ω cos(ωt + δ).

As the velocity also repeats its value after a time
period, cos(ωt + δ) = cos[ω(t + T) + δ].

Both sin(ωt + δ) and cos(ωt + δ) will repeat their
values if the angle (ωt + δ) increases by 2π or its
multiple. As T is the smallest time for repetition,
         ω(t + T) + δ = (ωt + δ) + 2π
   or, ω T = 2π

   or, T = 
2π
ω

 ⋅

   Remembering that ω = √km−1 , we can write for the
time period,

            T = 
2π
ω

 = 2π √m
k

       … (12.8)

where k is the force constant and m is the mass of the
particle.

Example 12.3

   A particle of mass 200 g executes a simple harmonic
motion. The restoring force is provided by a spring of
spring constant 80 N m–1. Find the time period.

Solution : The time period is

           T = 2π √m
k


 � � 	
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         2 200  10  3 kg
80 N m1

         2  0.05 s  0.31 s.

(c) Frequency and Angular Frequency

The reciprocal of time period is called the
frequency. Physically, the frequency represents the
number of oscillations per unit time. It is measured in
cycles per second also known as hertz and written in
symbols as Hz. Equation (12.8) shows that the
frequency is

             
1
T

  

2

  (12.9)

                
1
2

 k
m

    (12.10)

The constant  is called the angular frequency.

(d) Phase

The quantity   t   is called the phase. It
determines the status of the particle in simple
harmonic motion. If the phase is zero at a certain
instant, x  A sint    0 and v  A  cost  
 A . This means that the particle is crossing the
mean position and is going towards the positive
direction. If the phase is /2, we get x  A,  v  0 so
that the particle is at the positive extreme position.
Figure (12.5) shows the status of the particle at
different phases.

We see that as time increases the phase increases.
An increase of 2 brings the particle to the same status
in the motion. Thus, a phase t   is equivalent to a
phase t    2. Similarly, a phase change of 4,
6, 8, , etc., are equivalent to no phase change.

Figure (12.6) shows graphically the variation of
position and velocity as a function of the phase.

(e) Phase constant

The constant  appearing in equation (12.6) is
called the phase constant. This constant depends on
the choice of the instant t  0. To describe the motion
quantitatively, a particular instant should be called
t  0  and measurement of time should be made from
this instant. This instant may be chosen according to
the convenience of the problem. Suppose we choose
t  0  at an instant when the particle is passing
through its mean position and is going towards the
positive direction. The phase t   should then be
zero. As t  0 this means  will be zero. The equation
for displacement can then be written as
              x  A sint.

If we choose t  0 at an instant when the particle
is at its positive extreme position, the phase is /2 at
this instant. Thus t    /2 and hence   /2. The
equation for the displacement is x  A sint  /2
   or,           x  A cost.

Any instant can be chosen as t  0 and hence the
phase constant can be chosen arbitrarily. Quite often
we shall choose   0 and write the equation for
displacement as x  A sint. Sometimes we may have
to consider two or more simple harmonic motions
together. The phase constant of any one can be chosen
as   0. The phase constants of the rest will be
determined by the actual situation. The general
equation for displacement may be written as
          x  A sint  

              A sin



t  


2

  


              A cost  
where  is another arbitrary constant. The sine form
and the cosine form are, therefore, equivalent. The
value of phase constant, however, depends on the form
chosen.

Example 12.4

   A particle executes simple harmonic motion of amplitude
A along the X-axis. At t  0, the position of the particle
is x  A/2 and it moves along the positive x-direction.
Find the phase constant  if the equation is written as
x  A sint  .

Solution : We have x  A sint  . At t  0,  x  A/2.
Thus,        A/2  A sin
or,        sin  1/2
or,   /6   or   5/6.

The velocity is v  dx
dt

  A  cost  .

At          t  0,  v  A  cos.

Now,       cos 

6

  
3
2

  and  cos 
5
6

   
3
2

 

As v is positive at t  0,   must be equal to /6.
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12.5 SIMPLE HARMONIC MOTION AS A
    PROJECTION OF CIRCULAR MOTION

Consider a particle P moving on a circle of radius
A with a constant angular speed ω (figure 12.7). Let
us take the centre of the circle as the origin and two
perpendicular diameters as the X and Y-axes. Suppose
the particle P is on the X-axis at t = 0. The radius OP
will make an angle θ = ωt with the X-axis at time t.
Drop perpendicular PQ on X-axis and PR on Y-axis.
The x and y-coordinates of the particle at time t are

          x = OQ = OP cos ωt

   or,        x = A cos ωt … (12.11)

and        y = OR = OP sin ωt

   or,         y = A sin ωt. … (12.12)

Equation (12.11) shows that the foot of
perpendicular Q executes a simple harmonic motion
on the X-axis. The amplitude is A and the angular
frequency is ω. Similarly, equation (12.12) shows that
the foot of perpendicular R executes a simple harmonic
motion on the Y-axis. The amplitude is A and the
angular frequency is ω. The phases of the two simple
harmonic motions differ by π/2 [remember
cosωt = sin(ωt+ π/2)].

Thus, the projection of a uniform circular motion
on a diameter of the circle is a simple harmonic
motion.

12.6 ENERGY CONSERVATION IN SIMPLE
     HARMONIC MOTION

Simple harmonic motion is defined by the equation
              F = − kx.

The work done by the force F during a
displacement from x to x + dx is
             dW = F dx
                = − kx dx.

The work done in a displacement from x = 0 to x is

         W = ∫ 
0

x

 (− kx)dx = − 
1
2

kx 2.

Let U(x) be the potential energy of the system
when the displacement is x. As the change in potential

energy corresponding to a force is negative of the work
done by this force,

        U(x) − U(0) = − W = 
1
2

 kx 2.

Let us choose the potential energy to be zero when
the particle is at the centre of oscillation x = 0.

Then    U(0) = 0  and  U(x) = 
1
2

kx 2.

This expression for potential energy is same as
that for a spring and has been used so far in this
chapter.

   As      ω = √⎯⎯k
m

 ,  k =  m ω 2

   we can write U(x) = 
1
2

 m ω 2 x 2. … (12.13)

The displacement and the velocity of a particle
executing a simple harmonic motion are given by

        x = A sin(ωt + δ)
and v = A ω cos(ωt + δ).

The potential energy at time t is, therefore,

           U = 
1
2

 m ω 2 x 2

= 
1
2

 m ω 2 A 2 sin 2(ωt + δ),

and the kinetic energy at time t is

K = 
1
2

 m v 2

= 
1
2

 m A 2 ω 2 cos 2(ωt + δ).

The total mechanical energy at time t is
    E = U + K

          = 
1
2

 m ω 2 A 2 [sin 2(ωt + δ) + (cos 2(ωt + δ)]

    = 
1
2

 m ω 2 A 2. … (12.14)

We see that the total mechanical energy at time t
is independent of t. Thus, the mechanical energy
remains constant as expected.

As an example, consider a small block of mass m
placed on a smooth horizontal surface and attached to
a fixed wall through a spring of spring constant k
(figure 12.8).
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When displaced from the mean position (where the
spring has its natural length), the block executes a
simple harmonic motion. The spring is the agency
exerting a force F = − kx on the block. The potential
energy of the system is the elastic potential energy
stored in the spring.

At the mean position x = 0, the potential energy is

zero. The kinetic energy is 1
2
 m v0

 2 = 1
2
 m ω 2 A 2. All the

mechanical energy is in the form of kinetic energy
here. As the particle is displaced away from the mean
position, the kinetic energy decreases and the potential
energy increases. At the extreme positions x = ± A, the
speed v is zero and the kinetic energy decreases to
zero. The potential energy is increased to its maximum
value 1

2
 kA 2 = 1

2
 m ω 2 A 2. All the mechanical energy is

in the form of potential energy here.

Example 12.5

   A particle of mass 40 g executes a simple harmonic
motion of amplitude 2.0 cm. If the time period is 0.20 s,
find the total mechanical energy of the system.

Solution : The total mechanical energy of the system is

       E = 
1
2

 m ω 2 A 2 

 = 
1
2

 m




2π
T




 2

 A 2 = 
2π 2 m A 2

T 2  

= 
2 π 2(40 × 10 − 3 kg) (2.0 × 10 − 2 m) 2

(0.20 s) 2 

 = 7.9 × 10 − 3 J.

12.7 ANGULAR SIMPLE HARMONIC MOTION

A body free to rotate about a given axis can make
angular oscillations. For example, a hanging umbrella
makes angular oscillations when it is slightly pushed
aside and released. The angular oscillations are called
angular simple harmonic motion if

(a) there is a position of the body where the
resultant torque on the body is zero, this position is
the mean position θ = 0,

(b) when the body is displaced through an angle
from the mean position, a resultant torque acts which
is proportional to the angle displaced, and

(c) this torque has a sense (clockwise or
anticlockwise) so as to bring the body towards the
mean position.

If the angular displacement of the body at an
instant is θ, the resultant torque acting on the body
in angular simple harmonic motion should be

            Γ = − k θ.

If the moment of inertia is I, the angular
acceleration is

              α = 
Γ
I

 = − 
k
I
 θ

   or, 
d 2θ
dt 2

 = − ω 2 θ …  (12.15)

   where ω = √kI−1 .

Equation (12.15) is identical to equation (12.3)
except for the symbols. The linear displacement x in
(12.3) is replaced here by the angular displacement
θ. Thus, equation (12.15) may be integrated in the
similar manner and we shall get an equation similar
to (12.6), i.e.,
          θ = θ0 sin(ωt + δ) … (12.16)

where θ0 is the maximum angular displacement on
either side. The angular velocity at time t is given by,

           Ω = 
dθ
dt

 = θ0 ω cos(ωt + δ). … (12.17)

   The time period of oscillation is

          T = 
2 π
ω

 =  2 π √ I
k

 … (12.18)

   and the frequency of oscillation is

          ν = 
1
T

 = 
1

2 π
 √ k

I
⋅ … (12.19)

   The quantity ω = √kI −1  is the angular frequency.

Example 12.6

   A body makes angular simple harmonic motion of
amplitude π/10 rad and time period 0.05 s. If the body
is at a displacement θ = π/10 rad at t = 0, write the
equation giving the angular displacement as a function
of time.

Solution : Let the required equation be
      θ = θ 0 sin(ωt + δ).

Here   θ0 =  amplitude  = 
π

10
 rad

       ω = 
2 π
T

 = 
2 π

0.05 s
 = 40 π s − 1 

so that  θ = 




π
10

 rad



 sin 


40 π s − 1

 t + δ .        … (i)

At t = 0,  θ = π/10 rad. Putting in (i),

      
π

10
 = 




π
10




 sinδ

or,      sinδ = 1
or,         δ = π/2.
Thus by (i),

          θ = 




π
10

 rad



 sin




(40 π s − 1)t + 

π
2




      = 




π
10

 rad



 cos[(40 π s − 1) t ].
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Energy

The potential energy is

       U = 
1
2

 k θ 2 = 
1
2

 I ω 2 θ 2

   and the kinetic energy is

K = 
1
2

 I Ω 2.

   The total energy is
E = U + K

          = 
1
2

 I ω2 θ 2 + 
1
2

 I Ω 2.

Using θ = θ0 sin(ωt + δ)

 E = 
1
2

 I ω 2 θ0
 2 sin 2(ωt + δ)

                + 
1
2

 I θ 0
2 ω 2 cos 2(ωt + δ)

 = 
1
2

 I ω 2θ0 
2.  … (12.20)

12.8 SIMPLE PENDULUM

A simple pendulum consists of a heavy particle
suspended from a fixed support through a light
inextensible string. Simple pendulum is an idealised
model. In practice, one takes a small metallic sphere
and suspends it through a string. 

Figure (12.9) shows a simple pendulum in which
a particle of mass m is suspended from the fixed
support O through a light string of length l. The
system can stay in equilibrium if the string is vertical.
This is the mean or equilibrium position. If the particle
is pulled aside and released, it oscillates in a circular
arc with the centre at the point of suspension O.

The position of the particle at any time can be
described by the angle θ between the string and the
vertical. The mean position or the equilibrium position
corresponds to θ = 0. The particle makes pure rotation
about the horizontal line OA (figure 12.9) which is
perpendicular to the plane of motion.

Let us see whether the motion of the particle is
simple harmonic or not and find out its time period of
oscillation.

Let the particle be at P at a time t when the string
OP makes an angle θ with the vertical (figure 12.10).

Let OQ be the horizontal line in the plane of motion.
Let PQ be the perpendicular to OQ.

Forces acting on the particle are (a) the weight mg
and (b) the tension T.

The torque of T about OA is zero as it intersects
OA. The magnitude of the torque of mg about OA is

         Γ  = (mg) (OQ)
 = mg (OP) sinθ

= mgl sinθ.

Also, the torque tries to bring the particle back
towards θ = 0. Thus, we can write

Γ = − mgl sinθ.  … (12.21)

We see that the resultant torque is not
proportional to the angular displacement and hence
the motion is not angular simple harmonic. However,
if the angular displacement is small, sinθ is
approximately equal to θ (expressed in radians) and
equation (12.21) may be written as

Γ = − mgl θ.  … (12.22)

Thus, if the amplitude of oscillation is small, the
motion of the particle is approximately angular simple
harmonic. The moment of inertia of the particle about
the axis of rotation OA is

          I = m(OP) 2 = ml 2.

The angular acceleration is

α = 
Γ
I

 = − 
mgl θ
ml 2

 = − 
g
l
 θ 

   or, α = − ω 2 θ

where      ω = √gl −1 .

This is the equation of an angular simple harmonic
motion. The constant ω = √gl −1  represents the angular
frequency. The time period is

           T = 
2π
ω

 = 2π √l/g . … (12.23)

Example 12.7 

   Calculate the time period of a simple pendulum of length
one meter. The acceleration due to gravity at the place is
π 2 m s −2.
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Solution : The time period is
            T = 2π √lg−1

           = 2π √1.00 m
π 2 m s −2  = 2.0 s.

Simple Pendulum as a Linear
Simple Harmonic Oscillator

If the amplitude of oscillation is small, the path of
the particle is approximately a straight line and the
motion can be described as a linear simple harmonic
motion. We rederive expression (12.23) for the time
period using this approach.

Consider the situation shown in figure (12.11).

Suppose the string makes an angle θ with the
vertical at time t. The distance of the particle from the
equilibrium position along the arc is x = lθ. The speed
of the particle at time t is

                v = 
dx
dt

   and the tangential acceleration is

at = 
dv
dt

 = 
d 2x
dt 2

 ⋅ … (i)

Forces acting on the particle are (a) the weight mg
and (b) the tension T. The component of mg along the
tangent to the path is −mgsinθ and that of T is zero.
Thus, the total tangential force on the particle is
−mgsinθ. Using (i) we get

           −mgsinθ = m 
d 2x
dt 2

 

   or,           
d 2x
dt 2

 = −g sin θ. … (ii)

If the amplitude of oscillation is small,
sinθ ≈ θ = xl −1. Equation (ii) above thus becomes (for
small oscillations)

           
d 2x
dt 2

 = − 
g
l
 x

   or, 
d 2x
dt 2

 = − ω 2x

where             ω = √gl−1 .

This equation represents a simple harmonic
motion of the particle along the arc of the circle in
which it moves. The angular frequency is ω = √gl−1  and
the time period is

           T = 
2π
ω

 = 2π √lg−1  

which is same as in equation (12.23).

Determination of g in Laboratory

A simple pendulum provides an easy method to
measure the value of ‘g’ in a laboratory. A small
spherical ball with a hook is suspended from a clamp
through a light thread as shown in figure (12.12).

The lengths AC and BD are measured with slide
callipers. The length OA of the thread is measured
with a meter scale. The effective length is

     OP = OA + AP = OA + AC − 
BD
2

 ⋅

The bob is slightly pulled aside and gently released
from rest. The pendulum starts making oscillations.
The time for a number of oscillations (say 20 or 50) is
measured with a stop watch and the time period is
obtained. The value of g is calculated by equation
(12.23). The length of the thread is varied and the
experiment is repeated a number of times to minimise
the effect of random errors.

Example 12.8

   In a laboratory experiment with simple pendulum it was
found that it took 36 s to complete 20 oscillations when
the effective length was kept at 80 cm. Calculate the
acceleration due to gravity from these data.

Solution : The time period of a simple pendulum is given
by
            T = 2π √lg−1

   or, g = 
4π 2 l
T 2  ⋅ … (i)

In the experiment described in the question, the time
period is

T = 
36 s
20

 = 1.8 s.

�

�����
�����

��

�

�

Figure 12.11 

�

�

�

�

 	

Figure 12.12

236 Concepts of Physics



Thus, by (i),

     g  
4 2  0.80 m

1.8 s 2   9.75 m s2.

12.9 PHYSICAL PENDULUM

Any rigid body suspended from a fixed support
constitutes a physical pendulum. A circular ring
suspended on a nail in a wall, a heavy metallic rod
suspended through a hole in it, etc., are examples of
physical pendulum. Figure (12.13) shows a physical
pendulum. A rigid body is suspended through a hole
at O. When the centre of mass C is vertically below
O, the body may remain at rest. We call this position
  0. When the body is pulled aside and released, it
executes oscillations.

The body rotates about a horizontal axis through
O and perpendicular to the plane of motion. Let this
axis be OA. Suppose the angular displacement of the
body is  at time t. The line OC makes an angle  with
the vertical at this instant.

Forces on the body are (a) the weight mg and (b)
the contact force N  by the support at O.

The torque of N  about OA is zero as the force
N  acts through the point O. The torque of mg has
magnitude

         mg OD
 mg OC sin  mgl sin

where l  OC is the separation between the point of
suspension and the centre of mass. This torque tries
to bring the body back towards   0. Thus, we can
write
              mglsin.

If the moment of inertia of the body about OA is
I, the angular acceleration becomes

             

I

   
mgl

I
 sin.   (i)

We see that the angular acceleration is not
proportional to the angular displacement and the
motion is not strictly simple harmonic. However, for
small displacements sin   so that equation (i)

becomes
               2 

where  2  mglI 1.
Thus, for small oscillations, the motion is nearly

simple harmonic. The time period is

           T  
2


  2 I
mgl

   (12.24)

Example 12.9

   A uniform rod of length 1.00 m is suspended through an
end and is set into oscillation with small amplitude
under gravity. Find the time period of oscillation.

Solution : For small amplitude the angular motion is
nearly simple harmonic and the time period is given by

      T  2I
mgl

  2 mL 2/3
mgL/2

        22L
3g

  2 2  1.00 m
3  9.80 m s2   1.64 s.

12.10 TORSIONAL PENDULUM

In torsional pendulum, an extended body is
suspended by a light thread or a wire. The body is
rotated through an angle about the wire as the axis of
rotation (figure 12.14).

The wire remains vertical during this motion but
a twist is produced in the wire. The lower end of the
wire is rotated through an angle with the body but the
upper end remains fixed with the support. Thus, a
twist  is produced. The twisted wire exerts a restoring
torque on the body to bring it back to its original
position in which the twist  in the wire is zero. This
torque has a magnitude proportional to the angle of
twist which is equal to the angle rotated by the body.
The proportionality constant is called the torsional
constant of the wire. Thus, if the torsional constant of
the wire is k and the body is rotated through an angle
, the torque produced is    k.

If I be the moment of inertia of the body about the
vertical axis, the angular acceleration is

            

I

   
k
I
 

Figure 12.13

Figure 12.14
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              2 

 where    k
I


Thus, the motion of the body is simple harmonic
and the time period is

           T  
2


  2  I
k

   (12.25)

Example 12.10           

   A uniform disc of radius 5.0 cm and mass 200 g is fixed
at its centre to a metal wire, the other end of which is
fixed with a clamp. The hanging disc is rotated about
the wire through an angle and is released. If the disc
makes torsional oscillations with time period 0.20 s, find
the torsional constant of the wire.

Solution : The situation is shown in figure (12.15). The
moment of inertia of the disc about the wire is 

      I  
mr 2

2
  

0.200 kg 5.0  10 2 m 2

2

         2.5  10  4 kg  m 2.

The time period is given by

          T  2  I
k

or,         k  
4 2 I
T 2  

           
4  22.5  10  4 kg  m 2

0.20 s 2  

            0.25 
kg  m 2

s 2  

12.11 COMPOSITION OF TWO SIMPLE HARMONIC 
     MOTIONS

A simple harmonic motion is produced when a
restoring force proportional to the displacement acts
on a particle. If the particle is acted upon by two
separate forces each of which can produce a simple
harmonic motion, the resultant motion of the particle
is a combination of two simple harmonic motions.

Let r1


 denote the position of the particle at time t

if the force F1


 alone acts on it. Similarly, let r2


 denote

the position at time t if the force F2


 alone acts on it.

Newton’s second law gives,

            m 
d 2 r1



d t 2
  F1



and        m 
d 2 r2



d t 2
  F2


.

Adding them,

      m 
d 2 r1



dt 2
  m 

d 2 r2



dt 2
  F1


  F2



   or,    m 
d 2

dt 2
  r1


  r2


   F1


  F2


.  (i)

But F1


  F2


 is the resultant force acting on the

particle and so the position r

 of the particle when both

the forces act, is given by

        m 
d 2 r



dt 2
  F1


  F2


.  (ii)

Comparing (i) and (ii) we can show that
           r


  r1


  r2



and u


  u


1  u


2

if these conditions are met at t  0.

Thus, if two forces F1


  and  F2


 act together on a

particle, its position at any instant can be obtained as
follows. Assume that only the force F1


 acts and find

the position r1


 at that instant. Then assume that only

the force F2


 acts and find the position r2


 at that same

instant. The actual position will be the vector sum of
r1


 and r2


.

(A) Composition of two Simple Harmonic Motions
   in Same Direction

Suppose two forces act on a particle, the first alone
would produce a simple harmonic motion given by

         x1  A1 sin t

and the second alone would produce a simple harmonic
motion given by
            x2  A2 sint  .
Both the motions are along the x-direction. The
amplitudes may be different and their phases differ by
. Their frequency is assumed to be same. The
resultant position of the particle is then given by

 x  x1  x2

    A1 sin t  A2 sint  
    A1 sin t  A2 sin t cos   A2 cos t sin 
    A1  A2 cos  sin t  A2 sin  cos t

Figure 12.15
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 C sint  D cost

  C2  D2  


C

C 2  D 2
 sint 

                   
D

C 2  D 2
 cost


  (i)

where C  A1  A2 cos  and  D  A2 sin.

Now C

C 
2
  D 

2
 and D

C 
2
  D 

2
 both have magnitudes

less than 1 and the sum of their squares is 1. Thus,
we can find an angle  between 0 and 2 such that

   sin  
D

C 2  D 2
  and  cos  C

C 2  D 2
 

Equation (i) then becomes

      x  C 2  D 2  cos sint  sin cost

   or,    x  A sint    (12.26)

where

   A  C 2  D 2

  A1  A2 cos 2  A2 sin 2

  A1
 2  2A1 A2 cos  A2

 2 cos 2   A2
 2 sin 2

         A1
 2  2 A1A2 cos  A2

 2  (12.27)

   and      tan  
D
C

  
A2 sin

A1  A2 cos
   (12.28)

Equation (12.26) shows that the resultant of two
simple harmonic motions along the same direction is
itself a simple harmonic motion. The amplitude and
phase of the resultant simple harmonic motion depend
on the amplitudes of the two component simple
harmonic motions as well as the phase difference
between them.

Amplitude of The Resultant Simple Harmonic Motion

The amplitude of the resultant simple harmonic
motion is given by equation (12.27),

      A  A1
 2  2 A1A2 cos  A2

 2 .

If   0, the two simple harmonic motions are in
phase

     A  A1
 2  2 A1A2  A2

 2   A1  A2 .

The amplitude of the resultant motion is equal to
the sum of amplitudes of the individual motions. This
is the maximum possible amplitude.

If    , the two simple harmonic motions are out
of phase and

  A  A1
 2  2 A1A2  A2

 2   A1  A2  or  A2  A1.

As the amplitude is always positive we can write
A   A1  A2 .  If  A1  A2 the resultant amplitude is
zero and the particle does not oscillate at all.

For any value of  other than 0 and  the resultant
amplitude is between  A1  A2   and  A1  A2.

Example 12.11

   Find the amplitude of the simple harmonic motion
obtained by combining the motions

         x1  2.0 cm sint

and     x2  2.0 cm sint  /3.

Solution : The two equations given represent simple
harmonic motions along X-axis with amplitudes
A1  2.0 cm and A2  2.0 cm. The phase difference
between the two simple harmonic motions is /3. The
resultant simple harmonic motion will have an
amplitude A given by

   A  A1
 2  A2

 2  2 A1A2 cos

 2.0 cm 2  2.0 cm 2  2 2.0 cm 2 cos

3

 3.5 cm.

Vector Method of Combining Two Simple Harmonic Motions

There is a very useful method to remember the
equations of resultant simple harmonic motion when
two simple harmonic motions of same frequency and
in same direction combine. Suppose the two individual
motions are represented by

          x1  A1 sint

and        x2  A2 sint  .
Let us for a moment represent the first simple

harmonic motion by a vector of magnitude A1 and the
second simple harmonic motion by another vector of
magnitude A2. We draw these vectors in figure (12.16).
The vector A2 is drawn at an angle  with A1 to
represent that the second simple harmonic motion has
a phase difference of  with the first simple harmonic
motion.

The resultant A


 of these two vectors will represent
the resultant simple harmonic motion. As we know
from vector algebra, the magnitude of the resultant
vector is

        A  A1
 2  2 A1A2 cos  A2

 2

A
A

A

2

1

Figure 12.16

Simple Harmonic Motion 239



which is same as equation (12.27). The resultant A
→

makes an angle ε with A1

→
, where

            tanε = 
A2 sinδ

A1 + A2 cosδ
which is same as equation (12.28).

This method can easily be extended to more than
two vectors. Figure (12.17) shows the construction for
adding three simple harmonic motions in the same
direction.

         x1 = A1 sinωt

         x2 = A2 sin(ωt + δ1)
         x3 = A3 sin(ωt + δ2).
The resultant motion is given by x = A sin(ωt + ε).

(B) Composition of Two Simple Harmonic Motions
   in Perpendicular Directions

Suppose two forces act on a particle, the first alone
would produce a simple harmonic motion in x-direction
given by
            x = A1 sinωt … (i)

and the second would produce a simple harmonic
motion in y-direction given by
            y = A2 sin(ωt + δ). … (ii)

The amplitudes A1  and  A2 may be different and
their phases differ by δ. The frequencies of the two
simple harmonic motions are assumed to be equal. The
resultant motion of the particle is a combination of the
two simple harmonic motions. The position of the
particle at time t is (x, y) where x is given by equation
(i) and y is given by (ii). The motion is thus two-
dimensional and the path of the particle is in general
an ellipse. The equation of the path may be obtained
by eliminating t from (i) and (ii).

By (i),

             sinωt = 
x
A1

 ⋅

   Thus,        cosωt = √1 − 
x 2

A1 
2  ⋅

   Putting in (ii)
     y = A2 [sinωt cosδ + cosωt sinδ]

  = A2 








x
A1

 cosδ + √1 − 
x 2

A1
 2  sinδ








or,      


y
A2

 − 
x
A1

 cosδ


 2

 = 



1 − 

x 2

A1
 2




 sin 2δ

or,      
y 2

A2
 2 − 

2xy
A1 A2

 cosδ + 
x 2

A1
 2 cos 2δ

                = sin 2δ − 
x 2

A1 
2 sin 2δ

   or,        
x 2

A1
 2 + 

y 2

A2
 2 − 

2xy cosδ
A1 A2

 = sin 2δ. … (12.29)

This is an equation of an ellipse and hence the
particle moves in ellipse. Equation (i) shows that x
remains between − A1  and  + A1 and (ii) shows that y
remains between A2  and  − A2. Thus, the particle
always remains inside the rectangle defined by

        x = ± A1,  y = ± A2 .

The ellipse given by (12.29) is traced inside this
rectangle and touches it on all the four sides (figure
12.18).

Special Cases

(a) δδδδ ==== 0

The two simple harmonic motions are in phase.
When the x-coordinate of the particle crosses the value
0, the y-coordinate also crosses the value 0. When
x-coordinate reaches its maximum value A1, the
y-coordinate also reaches its maximum value A2 .
Similarly, when x-coordinate reaches its minimum
value − A1, the y-coordinate reaches its minimum value
− A2 .

If we substitute δ = 0 in equation (12.29) we get

         
x 2

A1
 2 + 

y 2

A2
 2 − 

2xy
A1 A2

 = 0

   or,        



x
A1

 − 
y
A2





 2

 = 0

   or,              y = 
A2

A1
 x … (iii)
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which is the equation of a straight line passing through

the origin and having a slope tan − 1 
A2

A1
 ⋅ Figure (12.19)

shows the path. Equation (iii) represents the diagonal
AC of the rectangle. The particle moves on this
diagonal.

Equation (iii) can be directly obtained by dividing
(i) by (ii) and putting δ = 0. The displacement of the
particle on this straight line at time t is

 r = √x 2 + y 2  = √(A1 sinωt) 2 + (A2 sinωt) 2

          = √(A1
 2 + A2

 2)  sinωt.

Thus, the resultant motion is a simple harmonic
motion with same frequency and phase as the
component motions. The amplitude of the resultant

simple harmonic motion is √A1
 2 + A2

 2  as is also clear
from figure (12.19).

(b) δδδδ ==== ππππ

The two simple harmonic motions are out of phase
in this case. When the x-coordinate of the particle
reaches its maximum value A1, the y-coordinate
reaches its minimum value − A2 . Similarly, when the
x-coordinate reaches its minimum value − A1 , the
y-coordinate takes its maximum value A2 .

Putting δ = π in equation (12.29) we get

    
x 2

A1
 2 + 

y 2

A2
 2 + 

2xy
A1 A2

 = 0

or, 



x
A1

 + 
y
A2





 2

 = 0

or, y = − 
A2

A1
 ⋅ x

which is the equation of the line BD in figure (12.20).

Thus the particle oscillates on the diagonal BD of
the rectangle as shown in figure (12.20).

The displacement on this line at time t may be
obtained from equation (i) and (ii) (with δ = π).

  r = √x 2 + y 2  = √[A1 sinωt] 2 + [A2 sin(ωt + π)] 2

 = √A1
 2 sin 2ωt + A2

 2 sin 2ωt  = √A1
 2 + A2

 2  sinωt.

Thus the resultant motion is a simple harmonic

motion with amplitude √A1
 2 + A2

 2 .

(c) δδδδ ==== ππππ/ 2

The two simple harmonic motions differ in phase
by π/2. Equations (i) and (ii) may be written as

         x = A1 sinωt

         y = A2 sin(ωt + π/2) = A2 cosωt.

The x-coordinate takes its maximum value x = A1

when sinωt = 1. Then cosωt = 0 and hence, the
y-coordinate is zero. The particle is at the point E in
figure (12.21). When x-coordinate reduces to 0,
sinωt = 0, and cosωt becomes 1. Then y-coordinate
takes its maximum value A2 so that the particle
reaches the point F. Then x reduces to − A1 and y
becomes 0. This corresponds to the point G of figure
(12.21). As x increases to 0 again, y takes its minimum
value − A2 , the particle is at the point H. The motion
of the particle is along an ellipse EFGHE inscribed in
the rectangle shown. The major and the minor axes of
the ellipse are along the X and Y-axes.

Putting δ = π/2 in equation (12.29) we get

          
x 2

A1
 2 + 

y 2

A2
 2 = 1

which is the standard equation of an ellipse with its
axes along X and Y-axes and with its centre at the
origin. The length of the major and minor axes are
2 A1  and  2 A2 .

If A1 = A2 = A together with δ = π/2, the rectangle
of figure (12.21) becomes a square and the ellipse
becomes a circle. Equation (12.29) becomes

           x 2 + y 2 = A 2

which represents a circle.
Thus, the combination of two simple harmonic

motions of equal amplitude in perpendicular directions
differing in phase by π/2 is a circular motion.
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The circular motion may be clockwise or
anticlockwise, depending on which component leads
the other.

12.12 DAMPED HARMONIC MOTION

A particle will execute a simple harmonic motion
with a constant amplitude if the resultant force on it
is proportional to the displacement and is directed
opposite to it. Nature provides a large number of
situations in which such restoring force acts. The
spring-mass system and the simple pendulum are
examples. However, in many of the cases some kind
of damping force is also present with the restoring
force. The damping force may arise due to friction
between the moving parts, air resistance or several
other causes. The damping force is a function of speed
of the moving system and is directed opposite to the
velocity. Energy is lost due to the negative work done
by the damping force and the system comes to a halt
in due course.

The damping force may be a complicated function
of speed. In several cases of practical interest the
damping force is proportional to the speed. This force
may then be written as

           F   bv.
The equation of motion is

         m 
dv
dt

   kx  bv.

This equation can be solved using standard
methods of calculus. For small damping the solution
is of the form

         x  A0 e
 bt

2m sin t    (12.30)

where   k/m  b/2m2   0 
2  b/2m2 .

For small b, the angular frequency
  k/m   0. Thus, the system oscillates with
almost the natural angular frequency k/m  (with
which the system will oscillate if there is no damping)
and with amplitude decreasing with time according to
the equation

              A  A0 e
 

bt
2m.

The amplitude decreases with time and finally
becomes zero. Figure (12.22) shows qualitatively the
displacement of the particle as a function of time.

If the damping is large the system may not
oscillate at all. If displaced, it will go towards the mean
position and stay there without overshooting on the
other side. The damping for which the oscillation just
ceases is called critical damping.

12.13 FORCED OSCILLATION AND RESONANCE

In certain situations apart from the restoring force
and the damping force, there is yet another force
applied on the body which itself changes periodically
with time. As a simplest case suppose a force
F  F0 sint is applied to a body of mass m on which
a restoring force –kx and a damping force bv is acting.
The equation of motion for such a body is

        m 
dv
dt

   kx  bv  F0 sint.

The motion is somewhat complicated for some time
and after this the body oscillates with the frequency  of
the applied periodic force. The displacement is given by
         x  A sint  .
Such an oscillation is called forced oscillation. The
amplitude of the oscillation is given by

        A  
F0 /m

 2  0
 22  b/m 2

 (12.31)

where 0  k/m is the natural angular frequency.

In forced oscillation the energy lost due to the
damping force is compensated by the work done by the
applied force. The oscillations with constant amplitude
are, therefore, sustained.

If we vary the angular frequency  of the applied
force, this amplitude changes and becomes maximum

when     0
 2  b 2/2m2 . This condition is called

resonance. For small damping   0 and the
resonance occurs when the applied frequency is
(almost) equal to the natural frequency.

Figure (12.23) shows the amplitude as a function
of the applied frequency. We see that the amplitude is
large if the damping is small. Also the resonance is
sharp in this case, that is the amplitude rapidly falls
if  is different from 0 .
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If the damping were ideally zero, the amplitude of
the forced vibration at resonance would be infinity by
equation (12.31). Some damping is always present in
mechanical systems and the amplitude remains finite.

However, the amplitude may become very large if
the damping is small and the applied frequency is close
to the natural frequency. This effect is important in
designing bridges and other civil constructions. On

July 1, 1940, the newly constructed Tacoma Narrows
Bridge (Washington) was opened for traffic. Only four
months after this, a mild wind set up the bridge in
resonant vibrations. In a few hours the amplitude
became so large that the bridge could not stand the
stress and a part broke off and went into the water
below.

Worked Out Examples

 1. The equation of a particle executing simple harmonic

motion is x = (5 m) sin






(π s − 1)t + 

π
3







 . Write down the

amplitude, time period and maximum speed. Also find
the velocity at t = 1 s.

Solution : Comparing with equation x = A sin(ωt + δ), we
see that
the amplitude = 5 m,

and time period = 
2π
ω

 = 
2π

π s − 1 = 2 s.

The maximum speed = Aω = 5 m × π  s − 1 = 5π m s−1.

The velocity at time t = 
dx
dt

 = Aω cos(ωt + δ) .

At   t = 1 s,

v = (5 m) (π s − 1) cos



π + 

π
3



 = − 

5π
2

 m s−1.

 2. A block of mass 5 kg executes simple harmonic motion
under the restoring force of a spring. The amplitude and
the time period of the motion are 0.1 m and 3.14 s
respectively. Find the maximum force exerted by the
spring on the block.

Solution : The maximum force exerted on the block is kA
when the block is at the extreme position.

The angular frequency ω = 
2π
T

 = 2 s − 1.

The spring constant = k = mω 2

= (5 kg) (4 s− 2) = 20 N m−1.

Maximum force = kA = (20 N m−1) (0.1 m) = 2 N.

 3. A particle executing simple harmonic motion has angular
frequency 6.28 s – 1 and amplitude 10  cm. Find (a) the
time period, (b) the maximum speed, (c) the maximum
acceleration, (d) the speed when the displacement is 6 cm
from the mean position, (e) the speed at t = 1/6 s
assuming that the motion starts from rest at t = 0.

Solution :

(a) Time period = 
2π
ω

 = 
2π

6.28
 s = 1 s.

(b) Maximum speed = Aω = (0.1 m) (6.28 s − 1)

= 0.628 m s−1.

(c) Maximum acceleration = Aω 2

             = (0.1 m) (6.28 s − 1) 2

             = 4 m s −2.

(d) v = ω √A 2 − x 2  = (6.28 s − 1) √(10 cm) 2 − (6 cm) 2

            = 50.2 cm s−1.

(e) At t = 0, the velocity is zero, i.e., the particle is at an
extreme. The equation for displacement may be written
as 

          x = A cosωt.

The velocity is v = − A ω sin ωt.

At t = 1
6
 s,  v = − (0.1 m) (6.28 s − 1) sin



6.28
6





= (− 0.628 m s−1) sin 
π
3

= − 54.4 cm s−1.

 4. A particle executes a simple harmonic motion of time
period T. Find the time taken by the particle to go directly
from its mean position to half the amplitude.

Solution : Let the equation of motion be x = A sinωt.

At t = 0,  x = 0 and hence the particle is at its mean
position. Its velocity is 

        v = A ω cosωt = A ω

which is positive. So it is going towards x = A/2.

The particle will be at x = A/2, at a time t, where

         
A
2

 = A sinωt

or, sinωt = 1/2

or, ω t = π/6.

Here minimum positive value of ωt is chosen because
we are interested in finding the time taken by the
particle to directly go from x = 0  to  x = A/2.

Thus, t = 
π

6 ω
 = 

π
6(2π/T)

 = 
T
12

 ⋅
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 5. A block of mass m hangs from a vertical spring of spring
constant k. If it is displaced from its equilibrium position,
find the time period of oscillations.

Solution : Suppose the length of the spring is stretched by
a length ∆l. The tension in the spring is k ∆l and this
is the force by the spring on the block. The other force
on the block is mg due to gravity. For equilibrium,
mg = k ∆l  or  ∆l = mg/k. Take this position of the block
as x = 0. If the block is further displaced by x, the

resultant force is k 



mg
k

 + x



 − mg = kx.

Thus, the resultant force is proportional to the
displacement. The motion is simple harmonic with a

time period T = 2π √m
k

⋅

We see that in vertical oscillations, gravity has no effect
on time period. The only effect it has is to shift the
equilibrium position by a distance mg/k as if the natural
length is increased (or decreased if the lower end of the
spring is fixed) by mg/k.

 6. A particle suspended from a vertical spring oscillates
10 times per second. At the highest point of oscillation
the spring becomes unstretched. (a) Find the maximum
speed of the block. (b) Find the speed when the spring is
stretched by 0.20 cm. Take g = π 2 m s −2.

Solution :

(a) The mean position of the particle during vertical
oscillations is mg/k distance away from its position when
the spring is unstretched. At the highest point, i.e., at
an extreme position, the spring is unstretched.

Hence the amplitude is

           A = 
mg
k

 ⋅ … (i)

The angular frequency is

         ω = √ k
m

 = 2πν = (20π) s− 1 … (ii)

   or, 
m
k

 = 
1

400 π 2
 s 2.

Putting in (i), the amplitude is 

      A = 


1
400 π 2 s 2



 

π 2 

m
s 2





= 
1

400
 m = 0.25 cm.

The maximum speed = A ω

= (0.25 cm) (20 π s − 1) = 5 π cm s−1.

(b) When the spring is stretched by 0.20 cm, the block
is 0.25 cm – 0.20 cm = 0.05 cm above the mean position.
The speed at this position will be

v = ω √A 2 − x 2

= (20 π s − 1) √(0.25 cm) 2 − (0.05 cm) 2

≅ 15.4 cm s−1.

 7. The pulley shown in figure (12-W3) has a moment of
inertia I about its axis and mass m. Find the time period
of vertical oscillation of its centre of mass. The spring
has spring constant k and the string does not slip over
the pulley.

Solution : Let us first find the equilibrium position. For
rotational equilibrium of the pulley, the tensions in the
two strings should be equal. Only then the torque on
the pulley will be zero. Let this tension be T. The
extension of the spring will be y = T/k, as the tension
in the spring will be the same as the tension in the
string. For translational equilibrium of the pulley,

     2 T = mg  or,  2 ky = mg    or,    y = 
mg
2 k

 ⋅

The spring is extended by a distance mg
2 k

 when the pulley

is in equilibrium.

Now suppose, the centre of the pulley goes down further
by a distance x. The total increase in the length of the
string plus the spring is 2x (x on the left of the pulley
and x on the right). As the string has a constant length,
the extension of the spring is 2x. The energy of the
system is

U = 
1
2

 Iω 2 + 
1
2

 mv 2 − mgx + 
1
2

 k 


mg
2 k

 + 2 x



 2
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       = 
1
2





I
r 2 + m



 v 2 + 

m 2g 2

8 k
 + 2 kx 2.

As the system is conservative, dU
dt

 = 0,

giving  0 = 


I
r 2 + m



 v 

dv
dt

 + 4 kxv

or,
dv
dt

 = − 
4 kx





I
r 

2 + m



 

or, a = − ω 2x,  where  ω 2 = 
4 k





I
r 

2 + m



 ⋅

Thus, the centre of mass of the pulley executes a simple
harmonic motion with time period

T = 2π √



I
r 2 + m



 /(4 k) .

 8. The friction coefficient between the two blocks shown in
figure (12-W4) is µ and the horizontal plane is smooth.
(a) If the system is slightly displaced and released, find
the time period. (b) Find the magnitude of the frictional
force between the blocks when the displacement from the
mean position is x. (c) What can be the maximum
amplitude if the upper block does not slip relative to the
lower block ?

Solution :

(a) For small amplitude, the two blocks oscillate
together. The angular frequency is

          ω = √k
M + m

and so the time period T = 2π √M + m
k

 ⋅

(b) The acceleration of the blocks at displacement x from
the mean position is

         a = − ω 2x = 
− kx

M + m
 ⋅

The resultant force on the upper block is, therefore,

ma = 
− mkx
M + m

 ⋅

This force is provided by the friction of the lower block.
Hence, the magnitude of the frictional force is
mk | x |
M + m

 ⋅

(c) Maximum force of friction required for simple

harmonic motion of the upper block is m k A
M + m

 at the

extreme positions. But the maximum frictional force can
only be µ mg. Hence

     
m k A
M + m

 = µ mg  or,  A = 
µ (M + m) g

k
 ⋅

 9. The left block in figure (12-W5) collides inelastically with
the right block and sticks to it. Find the amplitude of
the resulting simple harmonic motion.

Solution : Assuming the collision to last for a small
interval only, we can apply the principle of conservation
of momentum. The common velocity after the collision

is v
2
 ⋅ The kinetic energy = 1

2
 (2m) 



v
2





 2

 = 1
4
 mv 2. This is

also the total energy of vibration as the spring is
unstretched at this moment. If the amplitude is A, the

total energy can also be written as 1
2
 kA 2. Thus

       
1
2

 kA 2 = 
1
4

 mv 2,  giving A = √m
2 k

 v.

10. Describe the motion of the mass m shown in figure
(12-W6). The walls and the block are elastic.

Solution : The block reaches the spring with a speed v. It
now compresses the spring. The block is decelerated due

to the spring force, comes to rest when 1
2
 mv 2 = 1

2
 kx 2

and returns back. It is accelerated due to the spring force
till the spring acquires its natural length. The contact
of the block with the spring  is now broken. At this
instant it has regained its speed v (towards left) as the
spring is unstretched and no potential energy is stored.
This process takes half the period of oscillation, i.e.,
π √m/k . The block strikes the left wall after a time L/v
and as the collision is elastic, it rebounds with the same
speed v. After a time L/v, it again reaches the spring
and the process is repeated. The block thus undergoes

periodic motion with time period π √m/k  + 2 L
v

 ⋅

11. A block of mass m is suspended from the ceiling of a
stationary standing elevator through a spring of spring
constant k. Suddenly, the cable breaks and the elevator
starts falling freely. Show that the block now executes a

� �
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simple harmonic motion of amplitude mg/k in the
elevator.

Solution : When the elevator is stationary, the spring is
stretched to support the block. If the extension is x, the
tension is kx which should balance the weight of
the block.

Thus, x = mg/k. As the cable breaks, the elevator starts
falling with acceleration ‘g’. We shall work in the frame
of reference of the elevator. Then we have to use a
pseudo force mg upward on the block. This force will
‘balance’ the weight. Thus, the block is subjected to a
net force kx by the spring when it is at a distance x from
the position of unstretched spring. Hence, its motion in
the elevator is simple harmonic with its mean position
corresponding to the unstretched spring. Initially, the
spring is stretched by x = mg/k, where the velocity of
the block (with respect to the elevator) is zero. Thus, the
amplitude of the resulting simple harmonic motion is
mg/k.

12. The spring shown in figure (12-W8) is kept in a stretched
position with extension x0 when the system is released.
Assuming the horizontal surface to be frictionless, find
the frequency of oscillation.

Solution : Considering “the two blocks plus the spring” as
a system, there is no external resultant force on the
system. Hence the centre of mass of the system will
remain at rest. The mean positions of the two simple
harmonic motions occur when the spring becomes
unstretched. If the mass m moves towards right through
a distance x and the mass M moves towards left through
a distance X before the spring acquires natural length,

               x + X = x0. … (i)

x and X will be the amplitudes of the two blocks m and
M respectively. As the centre of mass should not change
during the motion, we should also have

              mx = MX. … (ii)

From (i) and (ii), x = 
Mx0

M + m
  and  X = 

mx0

M + m
 ⋅

Hence, the left block is x = 
Mx0

M + m
 distance away from its

mean position in the beginning of the motion. The force
by the spring on this block at this instant is equal to
the tension of spring, i.e., T = kx0.

Now  x = 
Mx0

M + m
  or,  x0 = 

M + m
M

 x

Thus, T = 
k(M + m)

M
 x  or,  a = 

T
m

 = 
k(M + m)

Mm
 x.

The angular frequency is, therefore, ω = √k(M + m)
Mm

and the frequency is ν = 
ω
2π

 = 
1
2π

 √k(M + m)
Mm

 ⋅

13. Assume that a narrow tunnel is dug between two
diametrically opposite points of the earth. Treat the earth
as a solid sphere of uniform density. Show that if a
particle is released in this tunnel, it will execute a simple
harmonic motion. Calculate the time period of this
motion.

Solution :

Consider the situation shown in figure (12-W9). Suppose
at an instant t the particle in the tunnel is at a distance
x from the centre of the earth. Let us draw a sphere of
radius x with its centre at the centre of the earth. Only
the part of the earth within this sphere will exert a net
attraction on the particle. Mass of this part is

       M′ = 

4
3

 π x 3

4
3

 π R 3
 M = 

x 3

R 3 M.

The force of attraction is, therefore,

       F = 
G(x 3/R 3) Mm

x 2  = 
GMm

R 3  x.

This force acts towards the centre of the earth. Thus,
the resultant force on the particle is opposite to the
displacement from the centre of the earth and is
proportional to it. The particle, therefore, executes a
simple harmonic motion in the tunnel with the centre
of the earth as the mean position.

The force constant is k = GMm

R 
3

 , so that the time period is

       T = 2π √m
k

 = 2π √R 3

GM
⋅
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14. A simple pendulum of length 40 cm oscillates with an
angular amplitude of 0.04 rad. Find (a) the time period,
(b) the linear amplitude of the bob, (c) the speed of the
bob when the string makes 0.02 rad with the vertical and
(d) the angular acceleration when the bob is in
momentary rest. Take g  10 m s2.

Solution :

(a) The angular frequency is

         g/l   10 m s2

0.4 m
  5 s  1.

The time period is 

       
2 


  
2 

5 s  1  1.26 s.

(b) Linear amplitude  40 cm  0.04  1.6 cm.

(c) Angular speed at displacement 0.02 rad is

      5 s  1 0.04 2  0.02 2  rad  0.17 rad s1.

Linear speed of the bob at this instant

      40 cm  0.17 s  1  6.8 cm s1.

(d) At momentary rest, the bob is in extreme position.
Thus, the angular acceleration

  0.04 rad 25 s  2  1 rad s 2.

15. A simple pendulum having a bob of mass m undergoes
small oscillations with amplitude 0 . Find the tension in
the string as a function of the angle made by the string
with the vertical. When is this tension maximum, and
when is it minimum ?

Solution : Suppose the speed of the bob at angle  is v.
Using conservation of energy between the extreme
position and the position with angle ,

            
1
2

 mv 2  mgl cos  cos0.  (i)

As the bob moves in a circular path, the force towards
the centre should be equal to mv 2/l. Thus,

         T  mg cos  mv2/l.

Using (i),

         T  mg cos  2 mg cos  cos0

or,        T  3 mg cos  2 mg cos0 .

Now cos is maximum at   0 and decreases as   
increases (for     90).

Thus, the tension is maximum when   0, i.e., at the
mean position and is minimum when    0 , i.e., at
extreme positions.

16. A simple pendulum is taken at a place where its
separation from the earth’s surface is equal to the radius
of the earth. Calculate the time period of small
oscillations if the length of the string is 1.0 m. Take
g   2 m s2 at the surface of the earth.

Solution : At a height R (radius of the earth) the
acceleration due to gravity is

           g  
GM

R  R 2
  

1
4

  
GM
R 2   g/4.

The time period of small oscillations of the simple
pendulum is

   T  2 l/g   2 1.0 m
1
4

   2 m s2
  2 



2


 s

  4 s.

17. A simple pendulum is suspended from the ceiling of a
car accelerating uniformly on a horizontal road. If the
acceleration is a0 and the length of the pendulum is l,
find the time period of small oscillations about the mean
position.

Solution : We shall work in the car frame. As it is
accelerated with respect to the road, we shall have to
apply a pseudo force ma0 on the bob of mass m.

For mean position, the acceleration of the bob with
respect to the car should be zero. If  be the angle made
by the string with the vertical, the tension, weight and
the pseudo force will add to zero in this position.

Suppose, at some instant during oscillation, the string
is further deflected by an angle  so that the
displacement of the bob is x. Taking the components
perpendicular to the string,
component of T  0,
component of mg  mg sin   and
component of ma0   ma0 cos  .
Thus, the resultant component F

     m[g sin    a0 cos  ].

Expanding the sine and cosine and putting cos  1,
sin    x/l, we get

     F  m 

g sin  a0 cos  g cos  a0 sin x

l



 .  (i)

�
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At x = 0, the force F on the bob should be zero, as this
is the mean position. Thus by (i),

               0 = m[g sinθ − a0 cosθ] … (ii)

   giving       tanθ = 
a0

g

   Thus,     sinθ = 
a0

√a0
 2 + g 2

 … (iii)

            cosθ = 
g

√a0
 2 + g 2

 ⋅ … (iv)

Putting (ii), (iii) and (iv) in (i), F = m √g 2 + a0
 2   

x
l

or,       F = m ω 2x,  where  ω 2 = 
√g 2 + a0

 2

l
 ⋅

This is an equation of simple harmonic motion with time
period

          t = 
2π
ω

 = 2π 
√l


g 2 + a0

 2


1/4
 ⋅

An easy working rule may be found out as follows. In
the mean position, the tension, the weight and the
pseudo force balance.

From figure (12-W12), the tension is

       T = √(ma0) 
2 + (mg) 2

or,         
T
m

 = √a0
 2 + g 2 ⋅

               

This plays the role of effective ‘g’. Thus the time period is

     t = 2π √l
T/m

 = 2π 
√l

[g 2 + a0
 2] 1/4 ⋅

18. A uniform meter stick is suspended through a small pin
hole at the 10 cm mark. Find the time period of small
oscillation about the point of suspension.

Solution : Let the mass of the stick be m. The moment of
inertia of the stick about the axis of rotation through
the point of suspension is

             I = 
ml 2

12
 + md 2,

where l = 1 m and d = 40 cm.

The separation between the centre of mass of the stick
and the point of suspension is d = 40 cm. The time period
of this physical pendulum is

        T = 2 π √I
mgd

         = 2π √



ml 2

12
 + md 2 




/(mgd)

    = 2π 









√



1
12

 + 0.16


/4










 s = 1.55 s.

19. The moment of inertia of the disc used in a torsional
pendulum about the suspension wire is 0.2 kg-m 2.  It
oscillates with a period of 2 s. Another disc is placed over
the first one and the time period of the system becomes
2.5 s. Find the moment of inertia of the second disc about
the wire.

Solution :

Let the torsional constant of the wire be k. The moment

of inertia of the first disc about the wire is 0.2 kg–m2.
Hence, the time period is

     2 s = 2π √ I
K

           = 2π√0.2 kg–m 2

k
 ⋅ … (i)

When the second disc having moment of inertia I1 about
the wire is added, the time period is

          2.5 s = 2π √0.2 kg–m 2 + I1

k
… (ii)

From (i) and (ii), 
6.25

4
 = 

0.2 kg–m 2 + I1

0.2 kg–m 2
 ⋅

This gives I1 ≈ 0.11 kg-m 2.

20. A uniform rod of mass m and length l is suspended
through a light wire of length l and torsional constant k
as shown in figure (12-W15). Find the time period if the
system makes (a) small oscillations in the vertical plane
about the suspension point and (b) angular oscillations
in the horizontal plane about the centre of the rod.
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Figure 12-W12
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Figure 12-W14
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 Solution :

(a) The oscillations take place about the horizontal line
through the point of suspension and perpendicular to
the plane of the figure. The moment of inertia of the rod
about this line is

        
ml 2

12
 + ml 2 = 

13
12

 ml 2.

The time period = 2π √⎯⎯I
mgl

 = 2π√⎯⎯⎯13 ml 2

12 mgl

           = 2π √⎯⎯13 l
12 g

 ⋅

(b) The angular oscillations take place about the
suspension wire. The moment of inertia about this line
is ml 2/12. The time period is

        2π √⎯ I
k

 = 2π √⎯⎯ml 2

12 k
⋅

21. A particle is subjected to two simple harmonic motions
         x1 = A1 sinωt
and       x2 = A2 sin(ωt + π/3).
Find (a) the displacement at t = 0, (b) the maximum speed
of the particle and (c) the maximum acceleration of the
particle.

Solution :
(a) At t = 0,   x1 = A1 sinωt = 0

and x2 = A2 sin(ωt + π/3)

= A2 sin (π/3) = 
A2 √3

2
 ⋅

Thus, the resultant displacement at t = 0 is

       x = x1 + x2 = 
A2 √3

2
 ⋅           

(b) The resultant of the two motions is a simple
harmonic motion of the same angular frequency ω. The
amplitude of the resultant motion is

      A = √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯A1
 2 + A2

 2 + 2 A1 A2 cos(π/3)

= √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯A1
 2 + A2

 2 + A1 A2 .

The maximum speed is

        vmax = A ω = ω √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯A1
 2 + A2

 2 + A1 A2 .

(c) The maximum acceleration is 

amax = A ω 2 = ω 2 √⎯⎯⎯⎯⎯⎯⎯⎯⎯A1
2 + A2

2 + A1A2 .

22. A particle is subjected to two simple harmonic motions
in the same direction having equal amplitudes and equal
frequency. If the resultant amplitude is equal to the
amplitude of the individual motions, find the phase
difference between the individual motions.

Solution : Let the amplitudes of the individual motions be
A each. The resultant amplitude is also A. If the phase
difference between the two motions is δ,

         A = √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯A 2 + A 2 + 2A . A . cosδ

or, = A √⎯⎯⎯⎯⎯⎯⎯⎯⎯2(1 + cosδ)  = 2A cos 
δ
2

or, cos 
δ
2

 = 
1
2

or, δ = 2π/3.

QUESTIONS FOR SHORT ANSWER

 1. A person goes to bed at sharp 10.00 pm every day. Is it
an example of periodic motion ? If yes, what is the time
period ? If no, why ?

 2. A particle executing simple harmonic motion comes to
rest at the extreme positions. Is the resultant force on
the particle zero at these positions according to Newton’s
first law ?

 3. Can simple harmonic motion take place in a noninertial
frame? If yes, should the ratio of the force applied with
the displacement be constant ?

 4. A particle executes simple harmonic motion. If you are
told that its velocity at this instant is zero, can you say
what is its displacement ? If you are told that its velocity

at this instant is maximum, can you say what is its
displacement ?

 5. A small creature moves with constant speed in a vertical
circle on a bright day. Does its shadow formed by the
sun on a horizontal plane move in a simple harmonic
motion ?

 6. A particle executes simple harmonic motion. Let P be a
point near the mean position and Q be a point near an
extreme. The speed of the particle at P is larger than
the speed at Q. Still the particle crosses P and Q equal
number of times in a given time interval. Does it make
you unhappy ?

k

m

Figure 12-W15
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 7. In measuring time period of a pendulum, it is advised
to measure the time between consecutive passage
through the mean position in the same direction. This
is said to result in better accuracy than measuring time
between consecutive passage through an extreme
position. Explain.

 8. It is proposed to move a particle in simple harmonic
motion on a rough horizontal surface by applying an
external force along the line of motion. Sketch the graph
of the applied force against the position of the particle.
Note that the applied force has two values for a given
position depending on whether the particle is moving in
positive  or negative direction.

 9. Can the potential energy in a simple harmonic motion
be negative ? Will it be so if we choose zero potential
energy at some point other than the mean position ?

10. The energy of a system in simple harmonic motion is

given by E = 1
2
 m ω 2A 2. Which of the following two

statements is more appropriate ?
(A) The energy is increased because the amplitude is
increased.

   (B) The amplitude is increased because the energy is
increased.

11. A pendulum clock gives correct time at the equator. Will
it gain time or loose time as it is taken to the poles ?

12. Can a pendulum clock be used in an earth-satellite ?

13. A hollow sphere filled with water is used as the bob of
a pendulum. Assume that the equation for simple
pendulum is valid with the distance between the point
of suspension and centre of mass of the bob acting as
the effective length of the pendulum. If water slowly
leaks out of the bob, how will the time period vary ?

14. A block of known mass is suspended from a fixed support
through a light spring. Can you find the time period of
vertical oscillation only by measuring the extension of
the spring when the block is in equilibrium ?

15. A platoon of soldiers marches on a road in steps
according to the sound of a marching band. The band is
stopped and the soldiers are ordered to break the steps
while crossing a bridge. Why ?

16. The force acting on a particle moving along X-axis is
F = − k(x − v0 t) where k is a positive constant. An
observer moving at a constant velocity v0 along the
X-axis looks at the particle. What kind of motion does
he find for the particle ?

OBJECTIVE I

 1. A student says that he had applied a force F = − k√x on
a particle and the particle moved in simple harmonic
motion. He refuses to tell whether k is a constant or not.
Assume that he has worked only with positive x and no
other force acted on the particle.
(a) As x increases k increases.
(b) As x increases k decreases.
(c) As x increases k remains constant.
(d) The motion cannot be simple harmonic.

 2. The time period of a particle in simple harmonic motion
is equal to the time between consecutive appearances of
the particle at a particular point in its motion. This point
is
(a) the mean position       (b) an extreme position
(c) between the mean position and the positive extreme
(d) between the mean position and the negative
extreme.

 3. The time period of a particle in simple harmonic motion
is equal to the smallest time between the particle
acquiring a particular velocity v

→
. The value of v is

(a) vmax              (b) 0
(c) between 0 and vmax    (d) between 0 and −vmax.

 4. The displacement of a particle in simple harmonic
motion in one time period is
(a) A     (b) 2A     (c) 4A     (d) zero.

 5. The distance moved by a particle in simple harmonic
motion in one time period is
(a) A     (b) 2A       (c) 4A     (d) zero.

 6. The average acceleration in one time period in a simple
harmonic motion is
(a) A ω 2   (b) A ω 2/2   (c) A ω 2/√2    (d) zero.

 7. The motion of a particle is given by
x = A sinωt + B cosωt. The motion of the particle is
(a) not simple harmonic
(b) simple harmonic with amplitude A + B
(c) simple harmonic with amplitude (A + B) / 2

(d) simple harmonic with amplitude  √A 2 + B 2 .

 8. The displacement of a particle is given by
r
→
 = A(i

→
 cosωt + j

→
 sinωt). The motion of the particle is

(a) simple harmonic    (b) on a straight line
(c) on a circle       (d) with constant acceleration.

 9. A particle moves on the X-axis according to the equation
x = A + B sinωt. The motion is simple harmonic with
amplitude

(a) A    (b) B    (c) A + B    (d) √A 2 + B 2 .

10. Figure (12-Q1) represents two simple harmonic motions.

   

�

�

Figure 12-Q1
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The parameter which has different values in the two
motions is
(a) amplitude            (b) frequency
(c) phase               (d) maximum velocity.

11. The total mechanical energy of a spring-mass system in

simple harmonic motion is E = 1
2
 m ω 2A 2. Suppose the

oscillating particle is replaced by another particle of
double the mass while the amplitude A remains the
same. The new mechanical energy will
(a) become 2E           (b) become E/2
(c) become √2E           (d) remain E.

12. The average energy in one time period in simple
harmonic motion is

(a) 
1
2

 m ω 2 A 2            (b) 
1
4

 m ω 2 A 2 

(c) m ω 2 A 2             (d) zero.

13. A particle executes simple harmonic motion with a
frequency ν. The frequency with which the kinetic
energy oscillates is
(a) ν/2     (b) ν      (c) 2 ν     (d) zero.

14. A particle executes simple harmonic motion under the
restoring force provided by a spring. The time period is
T. If the spring is divided in two equal parts and one
part is used to continue the simple harmonic motion, the
time period will
(a) remain T          (b) become 2T
(c) become T/2         (d) become T/√2.

15. Two bodies A and B of equal mass are suspended from
two separate massless springs of spring constant k1 and
k2 respectively. If the bodies oscillate vertically such that
their maximum velocities are equal, the ratio of the
amplitude of A to that of B is
(a) k1 /k2             (b) √k1 /k2

(c) k2 /k1              (d) √k2 /k1 .    

16. A spring-mass system oscillates with a frequency ν. If
it is taken in an elevator slowly accelerating upward,
the frequency will
(a) increase           (b) decrease
(c) remain same        (d) become zero.

17. A spring-mass system oscillates in a car. If the car
accelerates on a horizontal road, the frequency of
oscillation will
(a) increase           (b) decrease
(c) remain same        (d) become zero.

18. A pendulum clock that keeps correct time on the earth
is taken to the moon. It will run
(a) at correct rate        (b) 6 times faster
(c) √6 times faster      (d) √6 times slower.

19. A wall clock uses a vertical spring-mass system to
measure the time. Each time the mass reaches an
extreme position, the clock advances by a second. The
clock gives correct time at the equator. If the clock is
taken to the poles it will
(a) run slow           (b) run fast
(c) stop working         (d) give correct time.

20. A pendulum clock keeping correct time is taken to high
altitudes,
(a) it will keep correct time
(b) its length should be increased to keep correct time
(c) its length should be decreased to keep correct time
(d) it cannot keep correct time even if the length is
changed.

21. The free end of a simple pendulum is attached to the
ceiling of a box. The box is taken to a height and the
pendulum is oscillated. When the bob is at its lowest
point, the box is released to fall freely. As seen from the
box during this period, the bob will
(a) continue its oscillation as before
(b) stop 
(c) will go in a circular path
(d) move on a straight line.

OBJECTIVE II

 1 Select the correct statements.
(a) A simple harmonic motion is necessarily periodic.
(b) A simple harmonic motion is necessarily oscillatory.
(c) An oscillatory motion is necessarily periodic.
(d) A periodic motion is necessarily oscillatory.

 2. A particle moves in a circular path with a uniform speed.
Its motion is
(a) periodic         (b) oscillatory
(c) simple harmonic     (d) angular simple harmonic.

 3. A particle is fastened at the end of a string and is
whirled in a vertical circle with the other end of the
string being fixed. The motion of the particle is
(a) periodic          (b) oscillatory
(c) simple harmonic   (d) angular simple harmonic.

 4. A particle moves in a circular path with a continuously
increasing speed. Its motion is

(a) periodic          (b) oscillatory
(c) simple harmonic    (d) none of them.

 5. The motion of a torsional pendulum is
(a) periodic          (b) oscillatory
(c) simple harmonic    (d) angular simple harmonic.

 6. Which of the following quantities are always negative in
a simple harmonic motion ?

(a) F
→

 . a
→

.     (b) v
→
 . r

→
.     (c) a

→
 . r

→
.     (d) F

→
 . r

→
.

 7. Which of the following quantities are always positive in
a simple harmonic motion ?

(a) F
→

 . a
→

.     (b) v
→
 . r

→
.     (c) a

→
 . r

→
.     (d) F

→
 . r

→
.

 8. Which of the following quantities are always zero in a
simple harmonic motion ?

(a) F
→

 × a
→

.     (b) v
→
 × r

→
.     (c) a

→
 × r

→
.      (d) F

→
 × r

→
.

 9. Suppose a tunnel is dug along a diameter of the earth.
A particle is dropped from a point, a distance h directly
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above the tunnel. The motion of the particle as seen from
the earth is
(a) simple harmonic           (b) parabolic
(c) on a straight line           (d) periodic.

10. For a particle executing simple harmonic motion, the
acceleration is proportional to
(a) displacement from the mean position
(b) distance from the mean position
(c) distance travelled since t = 0
(d) speed.

11. A particle moves in the X-Y plane according to the
equation
           r

→
 = (i

→
 + 2 j

→
 ) A cosωt.

The motion of the particle is
(a) on a straight line     (b) on an ellipse
(c) periodic           (d) simple harmonic.

12. A particle moves on the X-axis according to the equation
x = x0 sin 2 ωt. The motion is simple harmonic
(a) with amplitude x0     (b) with amplitude 2x0

(c) with time period 
2π
ω

   (d) with time period 
π
ω

 ⋅

13. In a simple harmonic motion
(a) the potential energy is always equal to the kinetic
energy
(b) the potential energy is never equal to the kinetic
energy

(c) the average potential energy in any time interval is
equal to the average kinetic energy in that time interval
(d) the average potential energy in one time period is
equal to the average kinetic energy in this period.

14. In a simple harmonic motion
(a) the maximum potential energy equals the maximum
kinetic energy
(b) the minimum potential energy equals the minimum
kinetic energy
(c) the minimum potential energy equals the maximum
kinetic energy
(d) the maximum potential energy equals the minimum
kinetic energy.

15. An object is released from rest. The time it takes to fall
through a distance h and the speed of the object as it
falls through this distance are measured with a
pendulum clock. The entire apparatus is taken on the
moon and the experiment is repeated
(a) the measured times are same
(b) the measured speeds are same
(c) the actual times in the fall are equal
(d) the actual speeds are equal.

16. Which of the following will change the time period as
they are taken to moon ?
(a) A simple pendulum    (b) A physical pendulum
(c) A torsional pendulum    (d) A spring-mass system

EXERCISES

 1. A particle executes simple harmonic motion with an
amplitude of 10 cm and time period 6 s. At t = 0 it is at
position x = 5 cm going towards positive x-direction.
Write the equation for the displacement x at time t. Find
the magnitude of the acceleration of the particle at
t = 4 s.

 2. The position, velocity and acceleration of a particle
executing simple harmonic motion are found to have
magnitudes 2 cm, 1 m s–1 and 10 m s –2 at a certain
instant. Find the amplitude and the time period of the motion.

 3. A particle executes simple harmonic motion with an
amplitude of 10 cm. At what distance from the mean
position are the kinetic and potential energies equal ?

 4. The maximum speed and acceleration of a particle
executing simple harmonic motion are 10 cm s–1 and
50 cm s –2. Find the position(s) of the particle when the
speed is 8 cm s–1.

 5. A particle having mass 10 g oscillates according to the
equation x = (2.0 cm) sin[(100 s − 1)t + π/6]. Find (a) the
amplitude, the time period and the spring constant
(b) the position, the velocity and the acceleration at t = 0.

 6. The equation of motion of a particle started at t = 0 is
given by x = 5 sin (20 t + π/3), where x is in centimetre
and t in second. When does the particle
(a) first come to rest

(b) first have zero acceleration
(c) first have maximum speed ?

 7. Consider a particle moving in simple harmonic motion
according to the equation

          x = 2.0 cos(50 π t + tan − 1 0.75)
where x is in centimetre and t in second. The motion is
started at t = 0. (a) When does the particle come to rest
for the first time ? (b) When does the acceleration have
its maximum magnitude for the first time ? (c) When
does the particle come to rest for the second time ?

 8. Consider a simple harmonic motion of time period T.
Calculate the time taken for the displacement to change
value from half the amplitude to the amplitude.

 9. The pendulum of a clock is replaced by a  spring-mass
system with the spring having spring constant

0.1 N m−1. What mass should be attached to the spring ?

10. A block suspended from a vertical spring is in
equilibrium. Show that the extension of the spring
equals the length of an equivalent simple pendulum, i.e.,
a pendulum having frequency same as that of the block.

11. A block of mass 0.5 kg hanging from a vertical spring
executes simple harmonic motion of amplitude 0.1 m and
time period 0.314 s. Find the maximum force exerted by
the spring on the block.

12. A body of mass 2 kg suspended through a vertical spring
executes simple harmonic motion of period 4 s. If the
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oscillations are stopped and the body hangs in
equilibrium, find the potential energy stored in the
spring.

13. A spring stores 5 J of energy when stretched by 25 cm.
It is kept vertical with the lower end fixed. A block
fastened to its other end is made to undergo small
oscillations. If the block makes 5 oscillations each
second, what is the mass of the block ?

14. A small block of mass m is kept on a bigger block of
mass M which is attached to a vertical spring of spring
constant k as shown in the figure. The system oscillates
vertically. (a) Find the resultant force on the smaller
block when it is displaced through a distance x above
its equilibrium position. (b) Find the normal force on the
smaller block at this position. When is this force smallest
in magnitude ? (c) What can be the maximum amplitude
with which the two blocks may oscillate together ?

15. The block of mass m1 shown in figure (12-E2) is fastened
to the spring and the block of mass m2 is placed against
it. (a) Find the compression of the spring in the
equilibrium position. (b) The blocks are pushed a further
distance (2/k) (m1 + m2)g sinθ against the spring and
released. Find the position where the two blocks
separate. (c) What is the common speed of blocks at the
time of separation ?

16. In figure (12-E3) k = 100 N m−1, M = 1 kg and F = 10 N.
(a) Find the compression of the spring in the equilibrium
position. (b) A sharp blow by some external agent
imparts a speed of 2 m s–1 to the block towards left. Find
the sum of the potential energy of the spring and the
kinetic energy of the block at this instant. (c) Find the
time period of the resulting simple harmonic motion.
(d) Find the amplitude. (e) Write the potential energy of
the spring when the block is at the left extreme. (f) Write
the potential energy of the spring when the block is at
the right extreme.
The answers of (b), (e) and (f) are different. Explain why
this does not violate the principle of conservation of
energy.

17. Find the time period of the oscillation of mass m in
figures 12-E4 a, b, c. What is the equivalent spring
constant of the pair of springs in each case ?

18. The spring shown in figure (12-E5) is unstretched when
a man starts pulling on the cord. The mass of the block
is M. If the man exerts a constant force F, find (a) the
amplitude and the time period of the motion of the block,
(b) the energy stored in the spring when the block passes
through the equilibrium position and (c) the kinetic
energy of the block at this position.

19. A particle of mass m is attatched to three springs A, B
and C of equal force constants k as shown in figure
(12-E6). If the particle is pushed slightly against the
spring C and released, find the time period of oscillation.

20. Repeat the previous exercise if the angle between each
pair of springs is 120° initially.

21. The springs shown in the figure (12-E7) are all
unstretched in the beginning when a man starts pulling
the block. The man exerts a constant force F on the
block. Find the amplitude and the frequency of the
motion of the block.

22. Find the elastic potential energy stored in each spring
shown in figure (12-E8), when the block is in
equilibrium. Also find the time period of vertical
oscillation of the block.
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23. The string, the spring and the pulley shown in figure
(12-E9) are light. Find the time period of the mass m.

24. Solve the previous problem if the pulley has a moment of
inertia I about its axis and the string does not slip over it.

25. Consider the situation shown in figure (12-E10). Show
that if the blocks are displaced slightly in opposite
directions and released, they will execute simple
harmonic motion. Calculate the time period.

26. A rectangular plate of sides a and b is suspended from
a ceiling by two parallel strings of length L each (figure
12-E11). The separation between the strings is d. The
plate is displaced slightly in its plane keeping the strings
tight. Show that it will execute simple harmonic motion.
Find the time period.

27. A 1 kg block is executing simple harmonic motion of
amplitude 0.1 m on a smooth horizontal surface under
the restoring force of a spring of spring constant
100 N m–1. A block of mass 3 kg is gently placed on it
at the instant it passes through the mean position.
Assuming that the two blocks move together, find the
frequency and the amplitude of the motion.

28. The left block in figure (12-E13) moves at a speed v
towards the right block placed in equilibrium. All
collisions to take place are elastic and the surfaces are
frictionless. Show that the motions of the two blocks are
periodic. Find the time period of these periodic motions.
Neglect the widths of the blocks.

29. Find the time period of the motion of the particle shown
in figure (12-E14). Neglect the small effect of the bend
near the bottom.

30. All the surfaces shown in figure (12-E15) are frictionless.
The mass of the car is M, that of the block is m and the
spring has spring constant k. Initially, the car and the
block are at rest and the spring is stretched through a
length x0 when the system is released. (a) Find the
amplitudes of the simple harmonic motion of the block
and of the car as seen from the road. (b) Find the time
period(s) of the two simple harmonic motions.

31. A uniform plate of mass M stays horizontally and
symmetrically on two wheels rotating in opposite
directions (figure 12-E16). The separation between the
wheels is L. The friction coefficient between each wheel
and the plate is  Find the time period of oscillation of
the plate if it is slightly displaced along its length and
released.

32. A pendulum having time period equal to two seconds is
called a seconds pendulum. Those used in pendulum
clocks are of this type. Find the length of a seconds
pendulum at a place where g  2 m s –2.

33. The angle made by the string of a simple pendulum with

the vertical depends on time as   

90

 sin[ s  1 t]. Find

the length of the pendulum if g   2 m s –2.
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34. The pendulum of a certain clock has time period 2.04 s.
How fast or slow does the clock run during 24 hours ?

35. A pendulum clock giving correct time at a place where
g = 9.800 m s –2 is taken to another place where it loses
24 seconds during 24 hours. Find the value of g at this
new place.

36. A simple pendulum is constructed by hanging a heavy
ball by a 5.0 m long string. It undergoes small
oscillations. (a) How many oscillations does it make per
second ? (b) What will be the frequency if the system is
taken on the moon where acceleration due to gravitation
of the moon is 1.67 m s –2 ?

37. The maximum tension in the string of an oscillating
pendulum is double of the minimum tension. Find the
angular amplitude.

38. A small block oscillates back and forth on a smooth
concave surface of radius R (figure 12-E17). Find the
time period of small oscillation.

39. A spherical ball of mass m and radius r rolls without
slipping on a rough concave surface of large radius R.
It makes small oscillations about the lowest point. Find
the time period.

40. A simple pendulum of length 40 cm is taken inside a
deep mine. Assume for the time being that the mine is
1600 km deep. Calculate the time period of the
pendulum there. Radius of the earth = 6400 km.

41. Assume that a tunnel is dug across the earth
(radius = R) passing through its centre. Find the time a
particle takes to cover the length of the tunnel if (a) it
is projected into the tunnel with a speed of √gR  (b) it
is released from a height R above the tunnel (c) it is
thrown vertically upward along the length of tunnel with
a speed of √gR .

42. Assume that a tunnel is dug along a chord of the earth,
at a perpendicular distance R/2 from the earth’s centre
where R is the radius of the earth. The wall of the tunnel
is frictionless. (a) Find the gravitational force exerted by
the earth on a particle of mass m placed in the tunnel
at a distance x from the centre of the tunnel. (b) Find
the component of this force along the tunnel and
perpendicular to the tunnel. (c) Find the normal force
exerted by the wall on the particle. (d) Find the resultant
force on the particle. (e) Show that the motion of the
particle in the tunnel is simple harmonic and find the
time period.

43. A simple pendulum of length l is suspended through the
ceiling of an elevator. Find the time period of small
oscillations if the elevator (a) is going up with an
acceleration a0 (b) is going down with an acceleration
a0 and (c) is moving with a uniform velocity.

44. A simple pendulum of length 1 feet suspended from the
ceiling of an elevator takes π/3 seconds to complete one
oscillation. Find the acceleration of the elevator.

45. A simple pendulum fixed in a car has a time period of
4 seconds when the car is moving uniformly on a
horizontal road. When the accelerator is pressed, the
time period changes to 3.99 seconds. Making an
approximate analysis, find the acceleration of the car.

46. A simple pendulum of length l is suspended from the
ceiling of a car moving with a speed v on a circular
horizontal road of radius r. (a) Find the tension in the
string when it is at rest with respect to the car. (b) Find
the time period of small oscillation.

47. The ear-ring of a lady shown in figure (12-E18) has a
3 cm long light suspension wire. (a) Find the time period
of small oscillations if the lady is standing on the ground.
(b) The lady now sits in a merry-go-round moving at
4 m s–1 in a circle of radius 2 m. Find the time period
of small oscillations of the ear-ring.

48. Find the time period of small oscillations of the following
systems. (a) A metre stick suspended through the 20 cm
mark. (b) A ring of mass m and radius r suspended
through a point on its periphery. (c) A uniform square
plate of edge a suspended through a corner. (d) A
uniform disc of mass m and radius r suspended through
a point r/2 away from the centre.

49. A uniform rod of length l is suspended by an end and
is made to undergo small oscillations. Find the length
of the simple pendulum having the time period equal to
that of the rod.

50. A uniform disc of radius r is to be suspended through a
small hole made in the disc. Find the minimum possible
time period of the disc for small oscillations. What
should be the distance of the hole from the centre for it
to have minimum time period ?

51. A hollow sphere of radius 2 cm is attached to an 18 cm
long thread to make a pendulum. Find the time period
of oscillation of this pendulum. How does it differ from
the time period calculated using the formula for a simple
pendulum ?

52. A closed circular wire hung on a nail in a wall undergoes
small oscillations of amplitude 20 and time period 2 s.
Find (a) the radius of the circular wire, (b) the speed of
the particle farthest away from the point of suspension
as it goes through its mean position, (c) the acceleration
of this particle as it goes through its mean position and
(d) the acceleration of this particle when it is at an
extreme position. Take g = π 2 m s −2.

53. A uniform disc of mass m and radius r is suspended
through a wire attached to its centre. If the time period
of the torsional oscillations be T, what is the torsional
constant of the wire?

Figure 12-E17

Figure 12-E18

Simple Harmonic Motion 255



54. Two small balls, each of mass m are connected by a light
rigid rod of length L. The system is suspended from its
centre by a thin wire of torsional constant k. The rod is
rotated about the wire through an angle 0 and released.
Find the force exerted by the rod on one of the balls as
the system passes through the mean position.

55. A particle is subjected to two simple harmonic motions
of same time period in the same direction. The
amplitude of the first motion is 3.0 cm and that of the
second is 4.0 cm. Find the resultant amplitude if the

phase difference between the motions is (a) 0, (b) 60,
(c) 90.

56. Three simple harmonic motions of equal amplitudes A
and equal time periods in the same direction combine.
The phase of the second motion is 60 ahead of the first
and the phase of the third motion is 60 ahead of the
second. Find the amplitude of the resultant motion.

57. A particle is subjected to two simple harmonic motions
given by

   x1  2.0 sin100  t  and  x2  2.0 sin120  t  /3,
where x is in centimeter and t in second. Find the
displacement of the particle at (a) t  0.0125,
(b) t  0.025.

58. A particle is subjected to two simple harmonic motions,
one along the X-axis and the other on a line making an
angle of 45 with the X-axis. The two motions are given
by
         x  x0 sint  and  s  s0 sint
Find the amplitude of the resultant motion.

ANSWERS

OBJECTIVE I

 1. (a)  2. (b)  3. (a)  4. (d)  5. (c)  6. (d)
 7. (d)  8. (c)  9. (b) 10. (c) 11. (d) 12. (a)
13. (c) 14. (d) 15. (d) 16. (c) 17. (c) 18. (d)
19. (d) 20. (c) 21. (c).

OBJECTIVE II

 1. (a), (b)  2. (a)  3. (a)
 4. (d)  5. (a), (b), (d)  6. (c), (d)
 7. (a)  8. all  9. (c), (d)
10. (a) 11. (a), (c), (d) 12. (d)
13. (d) 14. (a), (b) 15. (a), (b)
16. (a), (b).

EXERCISES

 1. x  10 cm sin 




2 
6 s

 t  

6



 ,  11 cm s 2

 2. 4.9 cm,  0.28 s
 3. 52 cm

 4.  1.2 cm from the mean position

 5. (a) 2.0 cm,  0.063 s,  100 N m1 

    (b) 1.0 cm,  1.73 m s 1,  100 m s 2

 6. (a) 


120
 s (b) 


30

 s (c) 


30
 s

 7. (a) 1.6  10 – 2 s (b) 1.6  10 – 2 s (c) 3.6  10 – 2 s

 8. T/6

 9.  10 g

11. 25 N

12. 40 J

13. 0.16 kg

14. (a) 
mkx

M  m
 (b) mg  

mkx
M  m

 , at the highest point

   (c) g 
M  m

k

15. (a) 
m1  m2g sin 

k

   (b) When the spring acquires its natural length

   (c) 3
k

 m1  m2  g sin

16. (a) 10 cm (b) 2.5 J (c) /5 s

   (d) 20 cm (e) 4.5 J (f) 0.5 J

17. (a) 2 mk1  k2

 (b) 2 mk1  k2

 (c) 2 mk1  k2
k1k2

18. (a) 
F
k

 , 2  M
k

, (b) 
F 2

2 k
 (c) 

F 2

2 k

19. 2  m
2 k

20. 2  2 m
3 k

��

���
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21. 
Fk2  k3

k1k2  k2k3  k3k1

 ,  
1

2 
 k1k2  k2k3  k3k1

Mk2  k3

22. 
M 2g 2

2 k1
 ,  

M 2g 2

2 k2
  and  

M 2g 2

2 k3
 from above, time period

        2  M 


1
k1

  
1
k2

  
1
k3





23. 2  m
k

24. 2  m  I/r 2
k

25. 2  m
2 k

26. 2  L
g

27. 
5

2 
 Hz, 5 cm

28. 






 m

k
  

2 L
v








29.  0.73 s

30. (a) 
Mx0

M  m
 ,  

mx0

M  m
  (b) 2  mM

kM  m

31. 2  L
2  g

32. 1 m
33. 1 m
34. 28.3 minutes slow

35. 9.795 m s 2

36. (a) 0.70/ (b) 1/2  3 Hz

37. cos – 1 3/4
38. 2 R/g

39. 2  7R  r
5 g

40. 1.47 s

41. 

2

 R
g

 in each case

42. (a) 
GMm

R 3  x 2  R 2/4  (b) 
GMm

R 3  x, 
GMm
2 R 2  

   (c) 
GMm
2 R 2  , (d) 

GMm
R 3  x (e) 2  R 3/GM

43. (a) 2  l
g  a0

   (b) 2  l
g  a0

   (c) 2   l
g

44. 4 f s –2 upwards
45. g/10

46. (a) ma (b) 2  l/a ,  where  a  



g 2  

v 4

r 2





 1/2

47. (a) 0.34 s (b) 0.30 s

48. (a) 1.51 s (b) 2  2 r
g

 (c) 2  8 a
3 g

 (d) 2  3 r
2 g

49. 2l/3

50. 2  r2 
g

 ,  r/2

51. 0.89 s, it is about 0.3% larger than the calculated value
52. (a) 50 cm (b) 11 cm s–1 
   (c) 1.2 cm s–2 towards the point of suspension
   (d) 34 cm s–2 towards the mean position

53. 
2  2mr 2

T 2  

54. 




k 2 0
 4

L2   m 2g 2



 1/2

55. (a) 7.0 cm (b) 6.1 cm (c) 5.0 cm
56. 2 A

57. (a)  2.41 cm (b) 0.27 cm

58. x0
 2  s0

 2  2 x0 s0
 1/2
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CHAPTER 13

FLUID MECHANICS

13.1 FLUIDS

Matter is broadly divided into three categories,
solid, liquid and gas. The intermolecular forces are
strong in solids, so that the shape and size of solids
do not easily change. This force is comparatively less
in liquids and so the shape is easily changed. Although
the shape of a liquid can be easily changed, the volume
of a given mass of a liquid is not so easy to change.
It needs quite a good effort to change the density of
liquids. In gases, the intermolecular forces are very
small and it is simple to change both the shape and
the density of a gas. Liquids and gases together are
called fluids, i.e., that which can flow.

In this chapter we shall largely deal with liquids.
The equations derived may be applicable to gases in
many cases with some modifications. We shall assume
that the liquids we deal with are incompressible and
nonviscous. The first condition means that the density
of the liquid is independent of the variations in
pressure and always remains constant. The second
condition means that parts of the liquid in contact do
not exert any tangential force on each other. The force
by one part of the liquid on the other part is
perpendicular to the surface of contact. Thus, there is
no friction between the adjacent layers of a liquid.

13.2 PRESSURE IN A FLUID

Consider a point A in the fluid (figure 13.1).
Imagine a small area ∆S containing the point A. The
fluid on one side of the area presses the fluid on the
other side and vice versa. Let the common magnitude

of the forces be F. We define the pressure of the fluid
at the point A as

             P = Lim
∆S→0

  
F

∆S
… (13.1)

For a homogeneous and nonviscous fluid, this
quantity does not depend on the orientation of ∆S and
hence we talk of pressure at a point. For such a fluid,
pressure is a scalar quantity having only magnitude.

Unit of Pressure

The SI unit of pressure is N m −2 called pascal and
abbreviated as Pa.

Variation of Pressure with Height

Let us consider two points A and B (figure 13.2)
separated by a small vertical height dz. Imagine a
horizontal area ∆S1 containing A and an identical
horizontal area ∆S2 containing B. The area
∆S1 = ∆S2 = ∆S. Consider the fluid enclosed between
the two surfaces ∆S1, ∆S2 and the vertical boundary
joining them. The vertical forces acting on this fluid
are

(a) F1, vertically upward by the fluid below it

(b) F2, vertically downward by the fluid above it
and

(c) weight W, vertically downward.
Let the pressure at the surface A be P and the

pressure at B be P + dP. Then

�

Figure 13.1
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          F1  P S

and F2  P  dPS.

The volume of the fluid considered is S dz. If the
density of the fluid at A is , the mass of the fluid
considered is S dz and hence its weight W is

   W   S dz g.
For vertical equilibrium,
          F1  F2  W

or, P S  P  dP S   gdz S

   or,  dP   g dz .  (13.2)

As we move up through a height dz the pressure
decreases by g dz, where  is the density of the fluid
at that point.

Now consider two points at z  0 and z  h. If the
pressure at z  0 is P1 and that at z  h is P2 , then
from equation (13.2)

          
P1

P2

dP   
0

z

 g dz

   or,  P2  P1   
0

z

 g dz .

If the density is same everywhere
   P2  P1   gz

   or,     P1  P2  gz .  (13.3)

Next consider two points A and B in the same
horizontal line inside a fluid. Imagine a small vertical
area S1 containing the point A and a similar vertical
area S2 containing the point B.

The area S1  S2  S. Consider the liquid
contained in the horizontal cylinder bounded by S1

and S2 . If the pressures at A and B are P1 and P2

respectively, the forces in the direction AB are
(a) P1S towards right and

(b) P2S towards left.

If the fluid remains in equilibrium,
          P1S  P2S .

or,   P1  P2

Thus, the pressure is same at two points in the
same horizontal level.

13.3 PASCAL’S LAW

We have seen in the previous section that the
pressure difference between two points in a liquid at
rest depends only on the difference in vertical height
between the points. The difference is in fact gz, where
 is the density of the liquid (assumed constant) and
z is the difference in vertical height.  Suppose by some
means the pressure at one point of the liquid is
increased. The pressure at all other points of the liquid
must also increase by the same amount because the
pressure difference must be the same between two
given points. This is the content of Pascal’s law which
may be stated as follows :

If the pressure in a liquid is changed at a
particular point, the change is transmitted to the entire
liquid without being diminished in magnitude.

As an example, suppose a flask fitted with a piston
is filled with a liquid as shown in figure (13.4). Let an
external force F be applied on the piston. If the
cross-sectional area of the piston is A, the pressure
just below the piston is increased by F/A. By Pascal’s
law, the pressure at any point B will also increase by
the same amount F/A. This is because the pressure
at B has to be gz more than the pressure at the
piston, where z  is the vertical distance of B below the
piston. By applying the force we do not appreciably
change z (as the liquid is supposed to be
incompressible) and hence the pressure difference
remains unchanged. As the pressure at the piston is
increased by F/A, the pressure at B also increases by
the same amount.

Pascal’s law has several interesting applications.
Figure (13.5) shows the principle of a hydraulic lift
used to raise  heavy loads such as a car.

� �

� �

Figure 13.3

�

�

�

Figure 13.4

Figure 13.5
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It consists of two vertical cylinders A and B of
different cross-sectional areas A1 and A2 connected by
a horizontal tube. Pistons are fitted in both the
cylinder. The load is kept on a platform fixed with the
piston of larger area. A liquid is filled in the
equipment. A valve V is fitted in the horizontal tube
which allows the liquid to go from A to B when pressed
from the A-side. The piston A is pushed by a force
F1. The pressure in the liquid increases everywhere by
an amount F1 /A1. The valve V is open and the liquid
flows into the cylinder B. It exerts an extra force

F2 = A2 





F1

A1




 on the larger piston in the upward direction

which raises the load upward.
The advantage of this method is that if A2 is much

larger than A1 , even a small force F1 is able to
generate a large force F2 which can raise the load. It
may be noted that there is no gain in terms of work.
The work done by F1 is same as that by F2 . The piston
A has to traverse a larger downward distance as
compared to the height raised by B.

13.4 ATMOSPHERIC PRESSURE AND BAROMETER

The atmosphere of the earth is spread up to a
height of about 200 km. This atmosphere presses the
bodies on the surface of the earth. The force exerted
by the air on any body is perpendicular to the surface
of the body. We define atmospheric pressure as follows.
Consider a small surface ∆S in contact with air. If the
force exerted by the air on this part is F, the
atmospheric pressure is

            P0 = Lim
∆S→0

 
F

∆S
 ⋅

Atmospheric pressure at the top of the atmosphere
is zero as there is nothing above it to exert the force.
The pressure at a distance z below the top will be

∫ 
0

z
 ρg dz. Remember, neither ρ nor g can be treated as

constant over large variations in heights. However, the
density of air is quite small and so the atmospheric
pressure does not vary appreciably over small
distances. Thus, we say that the atmospheric pressure
at Patna is 76 cm of mercury without specifying
whether it is at Gandhi Maidan or at the top of
Golghar.

Torricelli devised an ingenious way to measure the
atmospheric pressure. The instrument is known as
barometer.

In this, a glass tube open at one end and having
a length of about a meter is filled with mercury. The
open end is temporarily closed (by a thumb or
otherwise) and the tube is inverted in a cup of
mercury. With the open end dipped into the cup, the

temporary closure is removed. The mercury column in
the tube falls down a little and finally stays there.

Figure (13.6) shows schematically the situation.
The upper part of the tube contains vacuum as the
mercury goes down and no air is allowed in. Thus, the
pressure at the upper end A of the mercury column
inside the tube is PA = zero. Let us consider a point C
on the mercury surface in the cup and another point
B in the tube at the same horizontal level. The
pressure at C is equal to the atmospheric pressure. As
B and C are in the same horizontal level, the pressures
at B and C are equal. Thus, the pressure at B is equal
to the atmospheric pressure P0 in the lab.

Suppose the point B is at a depth H below A. If ρ
be the density of mercury,

         PB = PA + ρgH

   or,  P0 = ρgH . … (13.4)

The height H of the mercury column in the tube above
the surface in the cup is measured. Knowing the
density of mercury and the acceleration due to gravity,
the atmospheric pressure can be calculated using
equation (13.4).

The atmospheric pressure is often given as the
length of mercury column in a barometer. Thus, a
pressure of 76 cm of mercury means

  P0 = (13.6 × 10 3 kg m−3) (9.8 m s−2) (0.76 m)

  = 1.01 × 10 5 Pa.
This pressure is written as 1 atm. If the tube is

insufficient in length, the mercury column will not fall
down and no vacuum will be created. The inner surface
of the tube will be in contact with the mercury at the
top and will exert a pressure PA on it.

Example 13.1

   Water is filled in a flask up to a height of 20 cm. The
bottom of the flask is circular with radius 10 cm. If the
atmospheric pressure is 1.01 × 10 5 Pa, find the force

exerted by the water on the bottom. Take g = 10 m s−2 and

density of water = 1000 kg m−3.

Solution : The pressure at the surface of the water is equal
to the atmospheric pressure P0 . The pressure at the
bottom is
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  P  P0  hg

   1.01  10 5 Pa  0.20 m 1000 kg m3 10 m s2

   1.01  10 5 Pa  0.02  10 5 Pa

   1.03  10 5 Pa.

The area of the bottom   r 2  3.14  0.1 m 2

 0.0314 m 2 .

The force on the bottom is, therefore,
              F  P  r 2

 1.03  10 5 Pa  0.0314 m 2  3230 N.

Manometer

Manometer is a simple device to measure the
pressure in a closed vessel containing a gas. It consists
of a U-tube having some liquid. One end of the tube
is open to the atmosphere and the other end is
connected to the vessel (figure 13.7).

The pressure of the gas is equal to the pressure
at A
                 pressure at B

  pressure at C  hg
  P0  hg

when P0 is the atmospheric pressure, h  BC is the
difference in levels of the liquid in the two arms and
 is the density of the liquid.

The excess pressure P  P0 is called the quage
pressure.

13.5 ARCHIMEDES’ PRINCIPLE

When a body is partially or fully dipped into a
fluid, the fluid exerts forces on the body. At any small
portion of the surface of the body, the force by the fluid
is perpendicular to the surface and is equal to the
pressure at that point multiplied by the area (figure
13.8). The resultant of all these contact forces is called
the force of buoyancy or buoyant force.

Archimedes’ principle states that when a body is
partially or fully dipped into a fluid at rest, the fluid
exerts an upward force of buoyancy equal to the weight
of the displaced fluid.

Archimedes’ principle is not an independent
principle and may be deduced from Newton’s laws of
motion.

Consider the situation shown in figure (13.8) where
a body is shown dipped into a fluid. Suppose the body
dipped in the fluid is replaced by the same fluid of
equal volume. As the entire fluid now becomes
homogeneous, all parts will remain in equilibrium. The
part of the fluid substituting the body also remains in
equilibrium. Forces acting on this substituting fluid
are

(a) the weight mg of this part of the fluid, and

(b) the resultant B of the contact forces by the
remaining fluid.

As the substituting fluid is in equilibrium, these
two should be equal and opposite. Thus,

              B  mg  (13.5)

and it acts in the vertically upward direction. 

Now the substituting fluid just occupies the space
which was previously occupied by the body. Hence, the
shape of the boundary of the substituting fluid is same
as the boundary of the body. Thus, the magnitude and
direction of the force due to the pressure on any small
area of the boundary is same for the body as for the
substituting fluid. The force of buoyancy on the body
is, therefore, same as the force of buoyancy B on the
substituting fluid.

From equation (13.5) the force of buoyancy on a
dipped body is equal to the weight mg of the displaced
fluid and acts along the vertically upward direction.
This is Archimedes’ principle.

Note that in this derivation we have assumed that
the fluid is in equilibrium in an inertial frame. If it is
not so, the force of buoyancy may be different from the
weight of the displaced fluid.

Floatation

When a solid body is dipped into a fluid, the fluid
exerts an upward force of buoyancy on the solid. If the
force of buoyancy equals the weight of the solid, the
solid will remain in equilibrium. This is called
floatation. When the overall density of the solid is
smaller than the density of the fluid, the solid floats
with a part of it in the fluid. The fraction dipped is
such that the weight of the displaced fluid equals the
weight of the solid.

� �

�

�
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Example 13.2

   A 700 g solid cube having an edge of length 10 cm floats
in water. How much volume of the cube is outside the
water ? Density of water  1000 kg m3.

Solution : The weight of the cube is balanced by the
buoyant force. The buoyant force is equal to the weight
of the water displaced. If a volume V of the cube is inside
the water, the weight of the displaced water  Vg,
where  is the density of water. Thus,

   Vg  0.7 kg g

or, V  
0.7 kg


  

0.7 kg

1000 kg m3  7  10   4 m 3  700 cm 3.

The total volume of the cube  10 cm 3  1000 cm 3 .

The volume outside the water is

1000 cm 3  700 cm 3  300 cm 3.

13.6 PRESSURE DIFFERENCE AND BUOYANT
     FORCE IN ACCELERATING FLUIDS

Equations (13.3) and (13.5) were derived by
assuming that the fluid under consideration is in
equilibrium in an inertial frame. If this is not the case,
the equations must be modified. We shall discuss some
special cases of accelerating fluids.

A Liquid Placed in an Elevator

(a) Pressure Difference

Suppose a beaker contains some liquid and it is
placed in an elevator which is going up with an
acceleration a0 (figure 13.9). Let A and B be two points
in the liquid, B being at a vertical height z above A.
Construct a small horizontal area S around A and an
equal horizontal area around B. Construct a vertical
cylinder with the two areas as the faces. Consider the
motion of the liquid contained within this cylinder. Let
P1 be the pressure at A and P2 be the pressure at B.

Forces acting on the liquid contained in the
cylinder, in the vertical direction, are :

(a) P1S, upward due to the liquid below it

(b) P2S, downward due to the liquid above it and

(c) weight mg  Szg downward, where  is the
density of the liquid.

Under the action of these three forces the liquid is
accelerating upward with an acceleration a0. From
Newton’s second law

      P1S  P2S  mg  ma0

or, P1  P2S  mg  a0  Szg  a0
   or, P1  P2  g  a0z .  (13.6)

(b) Buoyant Force

Now suppose a body is dipped inside a liquid of
density  placed in an elevator going up with an
acceleration a0. Let us calculate the force of buoyancy
B on this body. As was done earlier, let us suppose
that we substitute the body into the liquid by the same
liquid of equal volume. The entire liquid becomes a
homogenous mass and hence the substituted liquid is
at rest with respect to the rest of the liquid. Thus, the
substituted liquid is also going up with an acceleration
a0 together with the rest of the liquid.

The forces acting on the substituted liquid are
(a) the buoyant force B and
(b) the weight mg of the substituted liquid.
From Newton’s second law
          B  mg  ma0

   or, B  mg  a0  (13.7)

Equation (13.6) and (13.7) are similar to the
corresponding equations for unaccelerated liquid with
the only difference that g + a takes the role of g.

B Free Surface of a Liquid in Horizontal Acceleration

Consider a liquid placed in a beaker which is
accelerating horizontally with an acceleration a0

(figure 13.10). Let A and B be two points in the liquid
at a separation l in the same horizontal line along the
acceleration a0. We shall first obtain the pressure
difference between the points A and B.

Construct a small vertical area S around A and
an equal area around B. Consider the liquid contained
in the horizontal cylinder with the two areas as the
flat faces. Let the pressure at A be P1 and the pressure
at B be P2. The forces along the line AB are

(a) P1S towards right due to the liquid on the left
and

(b) P2S towards left due to the liquid on the right.
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Under the action of these forces, the liquid
contained in the cylinder is accelerating towards right.
From Newton’s second law,

        P1∆S − P2∆S = ma0

or, (P1 − P2)∆S = (∆S)lρa0

   or, P1 − P2 = lρa0 .  … (13.8)

The two points in the same horizontal line do not
have equal pressure if the liquid is accelerated
horizontally.

As there is no vertical acceleration, the equation
(13.3) is valid. If the atmospheric pressure is P0, the
pressure at A is P1 = P0 + h1ρg and the pressure at B
is P2 = P0 + h2ρg, where h1 and h2 are the depths of A
and B from the free surface. Substituting in (13.8)

h1ρg − h2ρg = lρa0

or, 
h1 − h2

l
 = 

a0

g

   or, tanθ = 
a0

g

where θ is the inclination of the free surface with the
horizontal.

13.7 FLOW OF FLUIDS

The flow of fluid is in general a complex branch of
mechanics. If you look at the motion of water in a fall
(like Rallah fall near Manali or Kemti fall near
Moussurie) the view is very pleasant. The water falls
from a height and then proceeds on a flat bed or a
slope with thumping, jumping and singing if you can
appreciate the music. But if you try to analyse the
motion of each particle on the basis of laws of
mechanics, the task is tremendously difficult. Other
examples of fluid flow are the sailing of clouds and the
motion of smoke when a traditional Chulha using coal,
wood or goitha (prepared from cowdung) in an Indian
village is lit. The motion of each smoke particle is
governed by the same Newton’s laws but to predict the
motion of a particular particle is not easy.

13.8 STEADY AND TURBULENT FLOW

Consider a liquid passing through a glass tube
(figure 13.11). Concentrate on a particular point A in
the tube and look at the particles arriving at A. If the
velocity of the liquid is small, all the particles which
come to A will have same speed and will move in same
direction. As a particle goes from A to another point
B, its speed and direction may change, but all the
particles reaching A will have the same speed at A and
all the particles reaching B will have the same speed
at B. Also, if one particle passing through A has gone

through B, then all the particles passing through A go
through B. Such a flow of fluid is called a steady flow.

In steady flow the velocity of fluid particles
reaching a particular point is the same at all time.
Thus, each particle follows the same path as taken by
a previous particle passing through that point.

If the liquid is pushed in the tube at a rapid rate,
the flow may become turbulent. In this case, the
velocities of different particles passing through the
same point may be different and change erratically
with time. The motion of water in a high fall or a fast
flowing river is, in general, turbulent.

Steady flow is also called streamline flow.

Line of Flow : Streamline

The path taken by a particle in flowing fluid is
called its line of flow. The tangent at any point on the
line of flow gives the direction of motion of that particle
at that point. In the case of steady flow, all the
particles passing through a given point follow the same
path and hence we have a unique line of flow passing
through a given point. In this case, the line of flow is
also called a streamline. Thus, the tangent to the
streamline at any point gives the direction of all the
particles passing through that point. It is clear that
two streamlines cannot intersect, otherwise, the
particle reaching at the intersection will have two
different directions of motion.

Tube of Flow

Consider an area S in a fluid in steady flow. Draw
streamlines from all the points of the periphery of S.
These streamlines enclose a tube, of which S is a cross-
section. Such a tube is called a tube of flow. As the
streamlines do not cross each other, fluid flowing
through differnt tubes of flow cannot intermix,
although there is no physical partition between the
tubes. When a liquid is passed slowly through a pipe,
the pipe itself is one tube of flow.

�

�

Figure 13.11

�

Figure 13.12

Fluid Mechanics 263



13.9 IRROTATIONAL FLOW OF AN
     INCOMPRESSIBLE AND NONVISCOUS FLUID

The analysis of the flow of a fluid becomes much
simplified if we consider the fluid to be incompressible
and nonviscous and that the flow is irrotational.
Incompressibility means that the density of the fluid
is same at all the points and remains constant as time
passes. This assumption is quite good for liquids and
is valid in certain cases of flow of gases. Viscosity of
a fluid is related to the internal friction when a layer
of fluid slips over another layer. Mechanical energy is
lost against such viscous forces. The assumption of a
nonviscous fluid will mean that we are neglecting the
effect of such internal friction. Irrotational flow means
there is no net angular velocity of fluid particles. When
you put some washing powder in a bucket containing
water and mix it by rotating your hand in circular
path along the wall of the bucket, the water comes into
rotational motion. Quite often water flowing in rivers
show small vortex formation where it goes in rotational
motion about a centre.  Now onwards we shall consider
only the irrotational motion of an incompressible and
nonviscous fluid.

13.10 EQUATION OF CONTINUITY

We have seen that the fluid going through a tube
of flow does not intermix with fluid in other tubes. The
total mass of fluid going into the tube through any
cross section should, therefore, be equal to the total
mass coming out of the same tube from any other cross
section in the same time. This leads to the equation
of continuity.

Let us consider two cross sections of a tube of flow
at the points A and B (figure 13.13). Let the area of
cross section at A be A1 and that at B be A2. Let the
speed of the fluid be v1 at A and v2 at B.

How much fluid goes into the tube through the
cross section at A in a time interval ∆t ? Let us
construct a cylinder of length v1∆t at A as shown in
the figure. As the fluid at A has speed v1, all the fluid
included in this cylinder will cross through A1 in the
time interval ∆t. Thus, the volume of the fluid going
into the tube through the cross section at A is
A1v1∆t. Similarly, the volume of the fluid going out of

the tube through the cross section at B is A2v2∆t. If
the fluid is incompressible, we must have
             A1v1∆t = A2v2 ∆t
   or, A1v1 = A2v2 . … (13.9)

The product of the area of cross section and the
speed remains the same at all points of a tube of flow.
This is called the equation of continuity and expresses
the law of conservation of mass in fluid dynamics.

Example 13.3

   Figure (13.14) shows a liquid being pushed out of a tube
by pressing a piston. The area of cross section of the
piston is 1.0 cm 2 and that of the tube at the outlet is
20 mm 2. If the piston is pushed at a speed of 2 cm s–1,
what is the speed of the outgoing liquid ?

Solution : From the equation of continuity
              A1v1 = A2v2

or,     (1.0 cm 2) (2 cm s−1) = (20 mm 2)v2

or,         v2 = 
1.0 cm 2

20 mm 2 × 2 cm s−1

              = 
100 mm 2

20 mm 2  × 2 cm s−1 = 10 cm s−1 ⋅

13.11 BERNOULLI EQUATION

Bernoulli equation relates the speed of a fluid at a
point, the pressure at that point and the height of that
point above a reference level. It is just the application of
work–energy theorem in the case of fluid flow.

We shall consider the case of irrotational and
steady flow of an incompressible and nonviscous liquid.
Figure (13.15) shows such a flow of a liquid in a tube
of varying cross section and varying height. Consider
the liquid contained between the cross sections A and
B of the tube. The heights of A and B are h1  and  h2

respectively from a reference level. This liquid
advances into the tube and after a time ∆t is contained
between the cross sections A′ and B′ as shown in figure.
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Suppose the area of cross section at A = A1

      the area of cross section at B = A2

      the speed of the liquid at A = v1

      the speed of the liquid at B = v2

      the pressure at A = P1

      the pressure at B = P2

   and the density of the liquid = ρ.
The distance AA′ = v1∆t and the distance

BB′ = v2∆t. The volume between A and A′ is A1v1∆t and
the volume between B and B′ is A2v2∆t. By the equation
of continuity,
              A1v1∆t = A2v2∆t .

The mass of this volume of liquid is
         ∆m = ρA1v1∆t = ρA2v2∆t. … (i)

Let us calculate the total work done on the part
of the liquid just considered.

The forces acting on this part of the liquid are 
(a) P1 A1, by the liquid on the left
(b) P2 A2, by the liquid on the right

(c) (∆m)g, the weight of the liquid considered and
(d) N , contact forces by the walls of the tube.

In time ∆t, the point of application of P1 A1 is
displaced by AA′ = v1∆t. Thus, the work done by P1 A1

in time ∆t is

        W1 = (P1 A1) (v1∆t) = P1 




∆m
ρ




 .

Similarly, the work done by P2 A2 in time ∆t is

W2 =  − (P2 A2) (v2∆t) =  − P2 




∆m
ρ




 .

The work done by the weight is equal to the
negative of the change in gravitational potential
energy.

The change in potential energy (P.E.) in time ∆t is
      P. E.  of  A′ BB′ − P. E.  of  A A′B
     = P. E.  of  A′B + P. E.  of  BB′

              − P. E.  of  AA′ − P. E.  of  A′B
      = P. E.  of  BB′ − P. E.  of  AA′
         = (∆m)gh2 − (∆m)gh1.

Thus, the work done by the weight in time ∆t is
          W3 = (∆m)gh1 − (∆m)gh2.

The contact force N  does no work on the liquid
because it is perpendicular to the velocity.

The total work done on the liquid considered, in
the time interval ∆t is

W = W1 + W2 + W3

    = P1 




∆m
ρ




 − P2 





∆m
ρ




 + (∆m)gh1 − (∆m)gh2 … (ii)

The change in kinetic energy (K.E.) of the same
liquid in time ∆t is

K.E. of A′BB′ − K.E. of AA′B

  = K.E. of A′B + K.E. of BB′ − K.E. of AA′ − K.E. of A′B

= K.E. of BB′ − K.E. of AA′

 = 
1
2

 (∆m) v2
 2 − 

1
2

 (∆m)v1
 2. … (iii)

Since the flow is assumed to be steady, the speed
at any point remains constant in time and hence the
K.E. of the part A′B is same at initial and final time
and cancels out when change in kinetic energy of the
system is considered.

By the work–energy theorem, the total work done
on the system is equal to the change in its kinetic
energy. Thus,

      P1 




∆m
ρ




 − P2 





∆m
ρ




 + (∆m)gh1 − (∆m)gh2

               = 
1
2

 (∆m)v2
 2 − 

1
2

 (∆m)v1
 2

   or,     
P1

ρ
 + gh1 + 

1
2

 v1
 2 = 

P2

ρ
 + gh2 + 

1
2

 v2
 2

   or, P1 + ρgh1 + 
1
2

 ρv1
 2 = P2 + ρgh2 + 

1
2

 ρv2
 2 … (13.10)

   or,     P + ρgh + 
1
2

 ρv 2 = constant … (13.11)

This is known as Bernoulli equation.

Example13.4

   Figure (13.16) shows a liquid of density 1200 kg m−3

flowing steadily in a tube of varying cross section. The
cross section at a point A is 1.0 cm2 and that at B is
20 mm2, the points A and B are in the same horizontal
plane. The speed of the liquid at A is 10 cm s–1. Calculate
the difference in pressures at A and B.

Solution : From equation of continuity, the speed v2 at B
is given by,
                 A1v1 = A2v2

or,           (1.0 cm 2) (10 cm s−1) = (20 mm 2)v2

or,     v2 = 
1.0 cm 2

20 mm 2 × 10 cm s−1 = 50 cm s−1 .

By Bernoulli equation,

      P1 + ρgh1 + 
1
2

 ρv1
 2 = P2 + ρgh2 + 

1
2

 ρv2
 2 .

� �
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Here h1 = h2. Thus,

P1 − P2 = 
1
2

 ρv2
 2 − 

1
2

 ρv1
 2 

= 
1
2

 × (1200 kg m−3) (2500 cm2 s−2 − 100 cm2 s−2)

= 600 kg m−3 × 2400 cm2 s−2 = 144 Pa.

13.12 APPLICATIONS OF BERNOULLI EQUATION

(a) Hydrostatics

If the speed of the fluid is zero everywhere, we get
the situation of hydrostatics. Putting v1 = v2 = 0 in the
Bernoulli equation (13.10)

         P1 + ρgh1 = P2 + ρgh2

or, P1 − P2 = ρ g(h2 − h1)
as expected from hydrostatics.

(b) Speed of Efflux

Consider a liquid of density ρ filled in a tank of
large cross-sectional area A1. There is a hole of
cross-sectional area A2 at the bottom and the liquid
flows out of the tank through the hole. The situation
is shown in figure (13.17). Suppose A2 << A1.

Let v1  and  v2 be the speeds of the liquid at
A1  and  A2. As both the cross sections are open to the
atmosphere, the pressures there equals the
atmospheric pressure P0. If the height of the free
surface above the hole is h, Bernoulli equation gives

        P0 + 
1
2

 ρv1
 2 + ρgh = P0 + 

1
2

 ρv2
 2. … (i)

By the equation of continuity

             A1v1 = A2v2 .

Putting v1 in terms of v2 in (i),

        
1
2

 ρ




A2

A1





 2

v2
 2 + ρgh = 

1
2

 ρv2
 2

or, 



1 − 





A2

A1





 2



 v2

 2 = 2 gh.

If A2 << A1, this equation reduces to v2
 2 = 2 gh

or, v2 = √2 gh  .

The speed of liquid coming out through a hole at
a depth h below the free surface is the same as that of
a particle fallen freely through the height h under
gravity. This is known as Torricelli’s theorem. The
speed of the liquid coming out is called the speed of
efflux.

Example 13.5

   A water tank is constructed on the top of a building.
With what speed will the water come out of a tap 6.0 m
below the water level in the tank ? Assume steady flow
and that the pressure above the water level is equal to
the atmospheric pressure.

Solution : The velocity is given by Torricelli’s theorem
       v = √2 gh

= √2 × (9.8 m s−2) × (6.0 m)  ≈ 11 m s−1.

(c) Ventury Tube

A ventury tube is used to measure the flow speed
of a fluid in a tube. It consists of a constriction or a
throat in the tube. As the fluid passes through the
constriction, its speed increases in accordance with the
equation of continuity. The pressure thus decreases as
required by Bernoulli equation.

Figure (13.18) shows a ventury tube through which
a liquid of density ρ is flowing. The area of cross
section is A1 at the wider part and A2 at the
constriction. Let the speeds of the liquid at A1 and
A2 be v1  and  v2 and the pressures at A1 and A2 be
P1 and P2 respectively. By the equation of continuity 

             A1v1 = A2v2 … (i)

and by Bernoulli equation,

         P1 + 
1
2

 ρv1
 2 = P2 + 

1
2

 ρv2
 2

   or, (P1 − P2) = 
1
2

 ρ
v2

 2 − v1
 2
 . … (ii)

Figure (13.18) also shows two vertical tubes
connected to the ventury tube at A1  and  A2. If the
difference in heights of the liquid levels in these tubes
is h, we have

P1 − P2 = ρgh.

�

�

�

�

�

Figure 13.17

�

	

�
�

�

�

�

	�

�
�

�

�

Figure 13.18

266 Concepts of Physics



Putting in (ii),

            2 gh = v2
 2 − v1

 2 … (iii)

Knowing A1  and  A2, one can solve equations (i)
and (iii) so as to get v1  and  v2. This allows one to know
the rate of flow of liquid past a cross section.

(d) Aspirator Pump

When a fluid passes through a region at a large
speed, the pressure there decreases. This fact finds a
number of useful applications. In an aspirator pump a
barrel A terminates in a small constriction B (figure
13.19). A narrow tube C connects the constriction to a
vessel containing the liquid to be sprayed. The air in
the barrel A is pushed by the operator through a
piston. As the air passes through the constriction B,
its speed is considerably increased and consequently
the pressure drops. Due to reduced pressure in the
constriction B, the liquid is raised from the vessel and
is sprayed with the expelled air.

(e) Change of Plane of Motion of a Spinning Ball

Quite often when swing bowlers of cricket deliver
the ball, the ball changes its plane of motion in air.

Such a deflection from the plane of projection may be
explained on the basis of Bernoulli equation.

Suppose a ball spinning about the vertical direction
is going ahead with some velocity in the horizontal
direction in otherwise still air. Let us work in a frame
in which the centre of the ball is at rest. In this frame
the air moves past the ball at a speed v in the opposite
direction. The situation is shown in (13.20).

The plane of the figure represents horizontal plane.
The air that goes from the A side of the ball in the
figure is dragged by the spin of the ball and its speed
increases. The air that goes from the B side of the ball
in the figure suffers an opposite drag and its speed
decreases. The pressure of air is reduced on the A side
and is increased on the B side as required by the
Bernoulli’s theorem. As a result, a net force F acts on
the ball from the B side to the A side due to this
pressure difference. This force causes the deviation of
the plane of motion.

Worked Out Examples

 1. A beaker of circular cross section of radius 4 cm is filled
with mercury up to a height of 10 cm. Find the force
exerted by the mercury on the bottom of the beaker. The
atmospheric pressure = 10 5 N m−2. Density of mercury

= 13600 kg m−3. Take g =10 m s−2.

Solution : The pressure at the surface 

              =  atmospheric pressure

      = 10 5 N m−2.

The pressure at the bottom

= 10 5 N m−2 + hρg

       = 10 5 N m−2 + (0.1 m) (13600 kg m−3) (10 m s−2)

= 10 5 N m−2 + 13600 N m−2

= 1.136 × 10 5 N m−2 .

The force exerted by the mercury on the bottom

= (1.136 × 10 5 N m−2) × (3.14 × 0.04 m × 0.04 m)
= 571 N.

 2. The density of air near earth’s surface is 1.3 kg m−3 and
the atmospheric pressure is 1.0 × 10 5 N m–2. If the
atmosphere had uniform density, same as that observed
at the surface of the earth, what would be the height of
the atmosphere  to exert the same pressure ?

Solution : Let the uniform density be ρ and atmospheric
height be h. The pressure at the surface of the earth
would be
            p = ρgh

or,   1.0 × 10 5 N m−2 = (1.3 kg m−3) (9.8 m s−2) h

or,            h = 
1.0 × 10 5 N m−2

(1.3 kg m−3) (9.8 m s−2)
 = 7850 m.

Even Mount Everest (8848 m) would have been outside
the atmosphere.
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 3. The liquids shown in figure (13-W1) in the two arms are
mercury (specific gravity  13.6) and water. If the
difference of heights of the mercury columns is 2 cm, find
the height h of the water column.

Solution : Suppose the atmospheric pressure  P0 .

Pressure at A  P0  h 1000 kg m3 g .

Pressure at B  P0  0.02 m13600 kg m3 g .

These pressures are equal as A and B are at the same
horizontal level. Thus,

        h  0.02 m  13.6

           0.27 m  27 cm.

 4. A cylindrical vessel containing a liquid is closed by a
smooth piston of mass m as shown in the figure. The
area of cross section of the piston is A. If the atmospheric
pressure is P0 , find the pressure of the liquid just below
the piston.

Solution : Let the pressure of the liquid just below the
piston be P. The forces acting on the piston are

(a) its weight, mg (downward)

(b) force due to the air above it, P0 A (downward)

(c) force due to the liquid below it, PA (upward).

If the piston is in equilibrium,

           PA  P0 A  mg

or, P  P0  
mg
A

 

 5. The area of cross section of the two arms of a hydraulic
press are 1 cm 2  and  10 cm 2 respectively (figure 13-W3).
A force of 5 N is applied on the water in the thinner arm.
What force should be applied on the water in the thicker
arm so that the water may remain in equilibrium ?

Solution : In equilibrium, the pressures at the two
surfaces should be equal as they lie in the same
horizontal level. If the atmospheric pressure is P0 and a
force F is applied to maintain the equilibrium, the
pressures are

      P0  
5 N

1 cm 2  and  P0  
F

10 cm 2  respectively.

This gives F  50 N.

 6. A copper piece of mass 10 g is suspended by a vertical
spring. The spring elongates 1 cm over its natural length
to keep the piece in equilibrium. A beaker containing
water is now placed below the piece so as to immerse
the piece completely in water. Find the elongation of the
spring. Density of copper  9000 kg m3. Take g  10 m s2.

Solution : Let the spring constant be k. When the piece is
hanging in air, the equilibrium condition gives

       k1 cm  0.01 kg 10 m s2

   or k1 cm  0.1 N .  (i)

The volume of the copper piece

         
0.01 kg

9000 kg m3  
1
9

  10  5 m 3.

This is also the volume of water displaced when the piece
is immersed in water. The force of buoyancy

          weight of the liquid displaced

       
1
9

  10  5 m 3  1000 kg m3  10 m s2

    0.011 N.

If the elongation of the spring is x when the piece is
immersed in water, the equilibrium condition of the
piece gives,

      kx  0.1 N  0.011 N  0.089 N.  (ii)

By (i) and (ii),

     x  
0.089
0.1

 cm  0.89 cm.

 7. A cubical block of wood of edge 3 cm floats in water. The
lower surface of the cube just touches the free end of a
vertical spring fixed at the bottom of the pot. Find the
maximum weight that can be put on the block without
wetting it. Density of wood  800 kg m3 and spring

constant of the spring  50 N m1. Take g  10 m s2.
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Solution : The specific gravity of the block = 0.8. Hence the
height inside water = 3 cm × 0.8 = 2.4 cm. The height
outside water = 3 cm – 2.4 = 0.6 cm. Suppose the
maximum weight that can be put without wetting it is
W. The block in this case is completely immersed in the
water. The volume of the displaced water

            =  volume  of  the  block = 27 × 10 − 6 m 3.

Hence, the force of  buoyancy

        = (27 × 10 − 6 m 3) × (1000 kg m−3) × (10 m s−2)

= 0.27 N .

The spring is compressed by 0.6 cm and hence the
upward force exerted by the spring

        = 50 N m−1 × 0.6 cm = 0.3 N.

The force of buoyancy and the spring force taken
together balance the weight of the block plus the weight
w put on the block. The weight of the block is

     W = (27 × 10 − 6 m) × (800 kg m−3) × (10 m s−2)

         = 0.22 N .

Thus,   w = 0.27 N + 0.3 N − 0.22 N

         = 0.35 N .

 8. A wooden plank of length 1 m and uniform cross section
is hinged at one end to the bottom of a tank as shown
in figure (13-W5). The tank is filled with water up to a
height of 0.5 m. The specific gravity of the plank is 0.5.
Find the angle θ that the plank makes with the vertical
in the equilibrium position. (Exclude the case θ = 0.)

 Solution : The forces acting on the plank are shown in
the figure. The height of water level is l = 0.5 m. The
length of the plank is 1.0 m = 2l. The weight of the plank
acts through the centre B of the plank. We have
OB = l. The buoyant force F acts through the point A
which is the middle point of the dipped part OC of the
plank.

We have    OA = 
OC
2

 = 
l

2 cosθ
 ⋅

Let the mass per unit length of the plank be ρ. 

Its weight mg = 2lρg.

The mass of the part OC of the plank = ⎛⎜
⎝

l
cosθ

⎞
⎟
⎠
 ρ.

The mass of water displaced = 
1

0.5
 

l
cosθ

 ρ = 
2lρ
cosθ

 ⋅

The buoyant force F is, therefore, F = 
2lρg
cosθ

 ⋅

Now, for equilibrium, the torque of mg about O should
balance the torque of F about O.

So,    mg(OB)sinθ = F(OA) sinθ

or,       (2lρ)l = 
⎛
⎜
⎝

2lρ
cosθ

⎞
⎟
⎠
 ⎛⎜
⎝

l
2 cosθ

⎞
⎟
⎠

or, cos 2θ = 
1
2

or, cosθ = 
1

√2
 ,  or,  θ = 45°.

 9. A cylindrical block of wood of mass M is floating in water
with its axis vertical. It is depressed a little and then
released. Show that the motion of the block is simple
harmonic and find its frequency.

Solution : Suppose a height h of the block is dipped in the
water in equilibrium position. If r be the radius of the
cylindrical block, the volume of the water displaced
 = πr 2h. For floating in equilibrium

              πr 2hρg = W … (i)

where ρ is the density of water and W the weight of the
block.

Now suppose during the vertical motion, the block is
further dipped through a distance x at some instant. The
volume of the displaced water is πr 2(h + x). The forces
acting on the block are, the weight W vertically
downward and the buoyancy πr 2(h + x) ρg vertically
upward.

Net force on the block at displacement x from the
equilibrium position is

          F = W − πr 2(h + x)ρg

= W − πr 2hρg − πr 2ρxg

Using (i),

F = − πr 2ρgx = − kx,  where  k = πr 2ρg.

Thus, the block executes SHM with frequency

      ν = 
1
2π

 √⎯⎯ k
M

 = 
1
2π

 √⎯⎯⎯πr 2ρg
M

⋅

10. Water flows in a horizontal tube as shown in figure
(13-W6). The pressure of water changes by 600 N m−2

                 

Figure 13-W4
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between A and B where the areas of cross section are
30 cm2 and 15 cm2 respectively. Find the rate of flow of
water through the tube.

Solution : Let the velocity at A  vA and that at B  vB

By the equation of continuity, 
vB

vA

  
30 cm2

15 cm2  2 .

By Bernoulli equation,

         PA  
1
2

 vA
 2  PB  

1
2

 vB
 2 

or, PA  PB  
1
2

 2vA 
2  

1
2

 vA
  2  

3
2

 vA
  2 ,

or,        600 N m2  
3
2

 1000 kg m3 vA
 2

or,        vA  0.4 m2 s2   0.63 m s1

The rate of flow  30 cm2 0.63 m s1  1890 cm3s1.

11. The area of cross section of a large tank is 0.5 m2. It has
an opening near the bottom having area of cross section
1 cm 2. A load of 20 kg is applied on the water at the
top. Find the velocity of the water coming out of the
opening at the time when the height of water level is
50 cm above the bottom. Take g  10 m s2.

Solution :

   As the area of cross section of the tank is large compared
to that of the opening, the speed of water in the tank
will be very small as compared to the speed at the
opening. The pressure at the surface of water in the tank
is that due to the atmosphere plus due to the load.

    PA  P0  
20 kg 10 m s2

0.5 m 2   P0  400 N m2.

At the opening, the pressure is that due to the
atmosphere.

Using Bernoulli equation 

       PA  gh  
1
2

 vA
 2  PB  

1
2

 vB
 2 

or,  P0  400 N m2  1000 kg m3 10 m s2 0.5 m  0

                P0  
1
2

 1000 kg m3vB
 2 

or,       5400 N m2  500 kg m3 3 vB
 2

or,            vB  3.3 m s1.

QUESTIONS FOR SHORT ANSWER

 1. Is it always true that the molecules of a dense liquid
are heavier than the molecules of a lighter liquid ?

 2. If someone presses a pointed needle against your skin,
you are hurt. But if someone presses a rod against your
skin with the same force, you easily tolerate. Explain.

 3. In the derivation of P1  P2  gz, it was assumed that
the liquid is incompressible. Why will this equation not
be strictly valid for a compressible liquid ?

 4. Suppose the density of air at Madras is 0 and
atmospheric pressure is P0. If we go up, the density and
the pressure both decrease. Suppose we wish to calculate
the pressure at a height 10 km above Madras. If we use
the equation P0  P  0 gz, will we get a pressure more
than the actual or less than the actual ? Neglect the
variation in g. Does your answer change if you also
consider the variation in g ?

 5. The free surface of a liquid resting in an inertial frame
is horizontal. Does the normal to the free surface pass
through the centre of the earth ? Think separately if the

liquid is  (a) at the equator (b) at a pole (c) somewhere
else.

 6. A barometer tube reads 76 cm of mercury. If the tube
is gradually inclined keeping the open end immersed in
the mercury reservoir, will the length of mercury column
be 76 cm, more than 76 cm or less than 76 cm ?

 7. A one meter long glass tube is open at both ends. One
end of the tube is dipped into a mercury cup, the tube
is kept vertical and the air is pumped out of the tube
by connecting the upper end to a suction pump. Can
mercury be pulled up into the pump by this process ?

 8. A satellite revolves round the earth. Air pressure inside
the satellite is maintained at 76 cm of mercury. What
will be the height of mercury column in a barometer
tube 1 m long placed in the satellite ?

 9. Consider the barometer shown in figure (13-Q1). If a
small hole is made at a point P in the barometer tube,
will the mercury come out from this hole ?

�
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10. Is Archimedes’ principle valid in an elevator accelerating
up ? In a car accelerating on a level road ?

11. Why is it easier to swim in sea water than in fresh
water ?

12. A glass of water has an ice cube floating in water. The
water level just touches the rim of the glass. Will the
water overflow when the ice melts ?

13. A ferry boat loaded with rocks has to pass under a
bridge. The maximum height of the rocks is slightly
more than the height of the bridge so that the boat just
fails to pass under the bridge. Should some of the rocks
be removed or some more rocks be added ?

14. Water is slowly coming out from a vertical pipe. As the
water descends after coming out, its area of cross section
reduces. Explain this on the basis of the equation of
continuity.

15. While watering a distant plant, a gardener partially
closes the exit hole of the pipe by putting his finger on
it. Explain why this results in the water stream going
to a larger distance.

16. A Gipsy car has a canvass top. When the car runs at
high speed, the top bulges out. Explain.

OBJECTIVE I

 1. A liquid can easily change its shape but a solid can not
because
(a) the density of a liquid is smaller than that of a solid
(b) the forces between the molecules is stronger in solid
than in liquids
(c) the atoms combine to form bigger molecules in a solid
(d) the average separation between the molecules is
larger in solids.

 2. Consider the equations

         P = Lim
∆s → 0

 
F

∆S
  and  P1 − P2 = ρgz.

In an elevator accelerating upward 
(a) both the equations are valid
(b) the first is valid but not the second
(c) the second is valid but not the first
(d) both are invalid.

 3. The three vessels shown in figure (13-Q2) have same
base area. Equal volumes of a liquid are poured in the
three vessels. The force on the base will be
(a) maximum in vessel A  (b) maximum in vessel B
(c) maximum in vessel C   (d)  equal in all the vessels.

 4. Equal mass of three liquids are kept in three identical
cylindrical vessels A, B and C. The densities are
ρA, ρB, ρC with ρA < ρB < ρC. The force on the base will be
(a) maximum in vessel A  (b) maximum in vessel B
(c) maximum in vessel C   (d) equal in all the vessels.

 5. Figure (13-Q3) shows a siphon. The liquid shown is
water. The pressure difference PB − PA between the
points A and B is

(a) 400 N m−2              (b) 3000 N m−2 
(c) 1000 N m−2              (d) zero.

 6. A beaker containing a liquid is kept inside a big closed
jar. If the air inside the jar is continuously pumped out,
the pressure in the liquid near the bottom of the liquid
will
(a) increase    (b) decrease    (c) remain constant
(d) first decrease and then increase.

 7. The pressure in a liquid at two points in the same
horizontal plane are equal. Consider an elevator
accelerating upward and a car accelerating on a
horizontal road. The above statement is correct in
(a) the car only
(b) the elevator only
(c)  both of them
(d) neither of them.

 8. Suppose the pressure at the surface of mercury in a
barometer tube is P1 and the pressure at the surface of
mercury in the cup is P2.
(a) P1 = 0, P2 = atmospheric pressure
(b) P1 = atmospheric pressure, P2 = 0
(c) P1 = P2 = atmospheric pressure
(d) P1 = P2 = 0.

 9. A barometer kept in an elevator reads 76 cm when it is
at rest. If the elevator goes up with increasing speed,
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the reading will be
(a) zero   (b) 76 cm   (c) < 76 cm   (d) > 76 cm.

10. A barometer kept in an elevator accelerating upward
reads 76 cm. The air pressure in the elevator is
(a) 76 cm  (b) < 76 cm  (c) > 76 cm    (d) zero.

11. To construct a barometer, a tube of length 1 m is filled
completely with mercury and is inverted in a mercury
cup. The barometer reading on a particular day is 76 cm.
Suppose a 1 m tube is filled with mercury up to 76 cm
and then closed by a cork. It is inverted in a mercury
cup and the cork is removed. The height of mercury
column in the tube over the surface in the cup will be
(a) zero   (b) 76 cm   (c) > 76 cm   (d) < 76 cm.

12. A 20 N metal block is suspended by a spring balance. A
beaker containing some water is placed on a weighing
machine which reads 40 N. The spring balance is now
lowered so that the block gets immersed in the water.
The spring balance now reads 16 N. The reading of the
weighing machine will be
(a) 36 N   (b) 60 N    (c) 44 N     (d) 56 N.

13. A piece of wood is floating in water kept in a bottle. The
bottle is connected to an air pump. Neglect the
compressibility of water. When more air is pushed into
the bottle from the pump, the piece of wood will float
with
(a) larger part in the water (b) lesser part in the water
(c) same part in the water   (d) it will sink.

14. A metal cube is placed in an empty vessel. When water
is filled in the vessel so that the cube is completely
immersed in the water, the force on the bottom of the
vessel in contact with the cube
(a)  will increase            (b) will decrease
(c) will remain the same    (d) will become zero.

15. A wooden object floats in water kept in a beaker. The
object is near a side of the beaker (figure 13-Q4). Let
P1, P2, P3 be the pressures at the three points A, B and
C of the bottom as shown in the figure.

     (a) P1 = P2 = P3.           (b) P1 < P2 < P3. 
(c) P1 > P2 > P3.           (d) P2 = P3 ≠ P1.

16. A closed cubical box is completely filled with water and
is accelerated horizontally towards right with an
acceleration a. The resultant normal force by the water
on the top of the box
(a) passes through the centre of the top
(b) passes through a point to the right of the centre
(c) passes through a point to the left of the centre
(d) becomes zero.

17. Consider the situation of the previous problem. Let the
water push the left wall by a force F1 and the right wall
by a force F2.
(a) F1 = F2     (b) F1 > F2     (c) F1 < F2

(d) the information is insufficient to know the relation
between F1  and  F2.

18. Water enters through end A with a speed v1 and leaves
through end B with a speed v2 of a cylindrical tube AB.
The tube is always completely filled with water. In case
I the tube is horizontal, in case II it is vertical with the
end A upward and in case III it is vertical with the end
B upward. We have v1 = v2 for
(a) case I  (b) case II  (c) case III  (d) each case.

19. Bernoulli theorem is based on conservation of
(a) momentum          (b) mass
(c) energy             (d) angular momentum.

20. Water is flowing through a long horizontal tube. Let
PA and PB be the pressures at two points A and B of the
tube.
(a) PA must be equal to PB.
(b) PA must be greater than PB.
(c) PA must be smaller than PB.
(d) PA = PB only if the cross-sectional area at A and B
are equal.

21. Water and mercury are filled in two cylindrical vessels
up to same height. Both vessels have a hole in the wall
near the bottom. The velocity of water and mercury
coming out of the holes are v1  and  v2 respectively.

(a) v1 = v2.              (b) v1 = 13.6 v2.

(c) v1 = v2/13.6.           (d) v1 = √13.6  v2.

22. A large cylindrical tank has a hole of area A at its
bottom. Water is poured in the tank by a tube of equal
cross-sectional area A ejecting water at the speed v.
(a) The water level in the tank will keep on rising.
(b) No water can be stored in the tank
(c) The water level will rise to a height v2/2 g and then
stop.
(d) The water level will oscillate.

OBJECTIVE II

 1. A solid floats in a liquid in a partially dipped position.
(a) The solid exerts a force equal to its weight on the
liquid.
(b) The liquid exerts a force of buoyancy on the solid
which is equal to the weight of the solid.

(c) The weight of the displaced liquid equals the weight
of the solid.
(d) The weight of the dipped part of the solid is equal
to the weight of the displaced liquid.

� � 
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 2. The weight of an empty balloon on a spring balance is
W1 . The weight becomes W2 when the balloon is filled
with air. Let the weight of the air itself be w. Neglect
the thickness of the balloon when it is filled with air.
Also neglect the difference in the densities of air inside
and outside the balloon.
(a) W2 = W1.           (b) W2 = W1 + w.
(c) W2 < W1 + w.          (d) W2 > W1.

 3. A solid is completely immersed in a liquid. The force
exerted by the liquid on the solid will
(a) increase if it is pushed deeper inside the liquid
(b) change if its orientation is changed
(c) decrease if it is taken partially out of the liquid
(d) be in the vertically upward direction.

 4. A closed vessel is half filled with water. There is a hole
near the top of the vessel and air is pumped out from
this hole.
(a) The water level will rise up in the vessel.
(b) The pressure at the surface of the water will
decrease.
(c) The force by the water on the bottom of the vessel
will decrease.
(d) The density of the liquid will decrease.

 5. In a streamline flow,
(a) the speed of a particle always remains same
(b) the velocity of a particle always remains same
(c) the kinetic energies of all the particles arriving at a

given point are the same
(d) the momenta of all the particles arriving at a given
point are the same.

 6. Water flows through two identical tubes A and B. A
volume V0 of water passes through the tube A and
2 V0 through B in a given time. Which of the following
may be correct ?
(a) Flow in both the tubes are steady.
(b) Flow in both the tubes are turbulent.
(c) Flow is steady in A but turbulent in B.
(d) Flow is steady in B but turbulent in A.

 7. Water is flowing in streamline motion through a tube
with its axis horizontal. Consider two points A and B in
the tube at the same horizontal level.
(a) The pressures at A and B are equal for any shape
of the tube.
(b) The pressures are never equal.
(c) The pressures are equal if the tube has a uniform
cross section.
(d) The pressures may be equal even if the tube has a
nonuniform cross section.

 8. There is a small hole near the bottom of an open tank
filled with a liquid. The speed of the water ejected does
not depend on
(a) area of the hole     (b) density of the liquid
(c) height of the liquid from the hole
(d) acceleration due to gravity.

EXERCISES

 1. The surface of water in a water tank on the top of a
house is 4 m above the tap level. Find the pressure of
water at the tap when the tap is closed. Is it necessary
to specify that the tap is closed ? Take g = 10 m s−2.

 2. The heights of mercury surfaces in the two arms of the
manometer shown in figure (13-E1) are 2 cm and 8 cm.

Atmospheric pressure = 1.01 × 10 5 N m−2. Find (a) the
pressure of the gas in the cylinder and (b) the pressure
of mercury at the bottom of the U tube.

 3. The area of cross section of the wider tube shown in
figure (13-E2) is 900 cm 2. If the boy standing on the

     piston weighs 45 kg, find the difference in the levels of
water in the two tubes.

 4. A glass full of water has a bottom of area 20 cm 2, top
of area 20 cm 2, height 20 cm and volume half a litre.
(a) Find the force exerted by the water on the bottom.
(b) Considering the equilibrium of the water, find the
resultant force exerted by the sides of the glass on the
water. Atmospheric pressure = 1.0 × 10 5 N m–2. Density
of water = 1000 kg m−3  and  g = 10 m s−2. Take   all num-
bers to be exact.

 5. Suppose the glass of the previous problem is covered by
a jar and the air inside the jar is completely pumped
out.   (a) What  will be  the answers to  the  problem ?
(b) Show that the answers do not change if a glass of
different shape is used provided the height, the bottom
area and the volume are unchanged.

 6. If water be used to construct a barometer, what would
be the height of water column at standard atmospheric
pressure (76 cm of mercury) ?
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 7. Find the force exerted by the water on a 2 m 2 plane
surface of a large stone placed at the bottom of a sea
500 m deep. Does the force depend on the orientation of
the surface ?

 8. Water is filled in a rectangular tank of size
3 m × 2 m × 1 m. (a) Find the total force exerted by the
water on the bottom surface of the tank. (b) Consider a
vertical side of area 2 m × 1 m. Take a horizontal strip
of width δx metre in this side, situated at a depth of x
metre from the surface of water. Find the force by the
water on this strip. (c) Find the torque of the force
calculated in part (b) about the bottom edge of this side.
(d) Find  the  total force  by the  water on this  side.
(e) Find the total torque by the water on the side about
the bottom edge. Neglect the atmospheric pressure and
take g = 10 m s−2.

 9. An ornament weighing 36 g in air, weighs only 34 g in
water. Assuming that some copper is mixed with gold
to prepare the ornament, find the amount of copper in
it. Specific gravity of gold is 19.3 and that of copper is
8.9.

10. Refer to the previous problem. Suppose, the goldsmith
argues that he has not mixed copper or any other
material with gold, rather some cavities might have been
left inside the ornament. Calculate the volume of the
cavities left that will allow the weights given in that
problem.

11. A metal piece of mass 160 g lies in equilibrium inside
a glass of water (figure 13-E4). The piece touches the
bottom of the glass at a small number of points. If the
density of the metal is 8000 kg m−3, find the normal force
exerted by the bottom of the glass on the metal piece.

12. A ferry boat has internal volume 1 m 3 and weight 50 kg.
(a) Neglecting the thickness of the wood, find the
fraction of the volume of the boat immersed in water.
(b) If a leak develops in the bottom and water starts
coming in, what fraction of the boat’s volume will be
filled with water before water starts coming in from the
sides ?

13. A cubical block of ice floating in water has to support a
metal piece weighing 0.5 kg. What can be the minimum
edge of the block so that it does not sink in water ?
Specific gravity of ice = 0.9.

14. A cube of ice floats partly in water and partly in K.oil
(figure 13-E5). Find the ratio of the volume of ice
immersed in water to that in K.oil. Specific gravity of
K.oil is 0.8 and that of ice is 0.9.

15. A cubical box is to be constructed with iron sheets 1 mm
in thickness. What can be the minimum value of the
external edge so that the cube does not sink in water ?
Density of iron = 8000 kg m−3 and density of water
= 1000 kg m−3.

16. A cubical block of wood weighing 200 g has a lead piece
fastened underneath. Find the mass of the lead piece
which will just allow the block to float in water. Specific
gravity of wood is 0.8 and that of lead is 11.3.

17. Solve the previous problem if the lead piece is fastened
on the top surface of the block and the block is to float
with its upper surface just dipping into water.

18. A cubical metal block of edge 12 cm floats in mercury
with one fifth of the height inside the mercury. Water
is poured till the surface of the block is just immersed
in it. Find the height of the water column to be poured.
Specific gravity of mercury = 13.6.

19. A hollow spherical body of inner and outer radii 6 cm
and 8 cm respectively floats half-submerged in water.
Find the density of the material of the sphere.

20. A solid sphere of radius 5 cm floats in water. If a
maximum load of 0.1 kg can be put on it without wetting
the load, find the specific gravity of the material of the
sphere.

21. Find the ratio of the weights, as measured by a spring
balance, of a 1 kg block of iron and a 1 kg block of wood.
Density of iron = 7800 kg m−3, density of wood
= 800 kg m−3 and density of air = 1.293 kg m–3.

22. A cylindrical object of outer diameter 20 cm and mass
2 kg floats in water with its axis vertical. If it is slightly
depressed and then released, find the time period of the
resulting simple harmonic motion of the object.

23. A cylindrical object of outer diameter 10 cm, height
20 cm and density 8000 kg m−3 is supported by a vertical
spring and is half dipped in water as shown in
figure(13-E6). (a) Find the elongation of the spring in
equilibrium condition. (b) If the object is slightly
depressed and released, find the time period of resulting
oscillations of the object. The spring constant
= 500 N m−1.
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24. A wooden block of mass 0.5 kg and density 800 kg m3

is fastened to the free end of a vertical spring of spring
constant 50 N m1 fixed at the bottom. If the entire
system is completely immersed in water, find (a) the
elongation (or compression) of the spring in equilibrium
and (b) the time-period of vertical oscillations of the
block when it is slightly depressed and released.

25. A cube of ice of edge 4 cm is placed in an empty
cylindrical glass of inner diameter 6 cm. Assume that
the ice melts uniformly from each side so that it always
retains its cubical shape. Remembering that ice is lighter
than water, find the length of the edge of the ice cube
at the instant it just leaves contact with the bottom of
the glass.

26. A U-tube containing a liquid is accelerated horizontally
with a constant acceleration a0. If the separation
between the vertical limbs is l, find the difference in the
heights of the liquid in the two arms.

27. At Deoprayag (Garhwal) river Alaknanda mixes with the
river Bhagirathi and becomes river Ganga. Suppose
Alaknanda has a width of 12 m, Bhagirathi has a width
of 8 m and Ganga has a width of 16 m. Assume that
the depth of water is same in the three rivers. Let the
average speed of water in Alaknanda be 20 km h–1 and
in Bhagirathi be 16 km h–1. Find the average speed of
water in the river Ganga.

28. Water flows through a horizontal tube of variable cross
section (figure 13-E7). The area of cross section at A and
B are 4 mm 2  and  2 mm 2 respectively. If 1 cc of water
enters per second through A, find (a) the speed of water
at A, (b) the speed of water at B and (c) the pressure
difference PA  PB.

29. Suppose the tube in the previous problem is kept vertical
with A upward but the other conditions remain the
same. The separation between the cross sections at A
and B is 15/16 cm. Repeat parts (a), (b) and (c) of the
previous problem. Take g  10 m s2.

30. Suppose the tube in the previous problem is kept vertical
with B upward. Water enters through B at the rate of
1 cm3 s1.  Repeat parts (a), (b) and (c). Note that the
speed decreases as the water falls down.

31. Water flows through a tube shown in figure (13-E8). The
areas of cross section at A and B are 1 cm 2 and 0.5 cm 2

respectively. The height difference between A and B is
5 cm. If the speed of water at A is 10 cm s1, find (a) the
speed at B and (b) the difference in pressures at A and B.

32. Water flows through a horizontal tube as shown in figure
(13-E9). If the difference of heights of water column in
the vertical tubes is 2 cm, and the areas of cross section
at A and B are 4 cm 2 and 2 cm 2 respectively, find the
rate of flow of water across any section.

33. Water flows through the tube shown in figure (13-E10).
The areas of cross section of the wide and the narrow
portions of the tube are 5 cm2 and 2 cm2 respectively.
The rate of flow of water through the tube is 500 cm3 s–1.
Find the difference of mercury levels in the U-tube.

34. Water leaks out from an open tank through a hole of
area 2 mm 2 in the bottom. Suppose water is filled up to
a height of 80 cm and the area of cross section of the
tank is 0.4 m 2. The pressure at the open surface and at
the hole are equal to the atmospheric pressure. Neglect
the small velocity of the water near the open surface in
the tank. (a) Find the initial speed of water coming out
of the hole. (b) Find the speed of water coming out when
half of water has leaked out. (c) Find the volume of water
leaked out during a time interval dt after the height
remained is h. Thus find the decrease in height dh in
terms of h and dt.
(d) From the result of part (c) find the time required for
half of the water to leak out.

35. Water level is maintained in a cylindrical vessel up to
a fixed height H. The vessel is kept on a horizontal
plane. At what height above the bottom should a hole
be made in the vessel so that the water stream coming
out of the hole strikes the horizontal plane at the
greatest distance from the vessel (figure 13-E11)?
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ANSWERS

OBJECTIVE I

 1. (b)  2. (b)  3. (c)  4. (d)  5. (d)  6. (b)
 7. (b)  8. (a)  9. (c) 10. (c) 11. (d) 12. (c)
13. (c) 14. (c) 15. (a) 16. (c) 17. (b) 18. (d)
19. (c) 20. (d) 21. (a) 22. (c)

OBJECTIVE II

 1. (a), (b), (c)  2. (a), (c)  3. (c), (d)
 4. (b), (c)  5. (c), (d)  6. (a), (b), (c)
 7. (c), (d)  8. (a), (b)

EXERCISES

 1. 40000 N/m2, Yes

 2. (a) 1.09  10 5 N/m2 (b) 1.12  10 5 N/m2

 3. 50 cm
 4. (a) 204 N (b) 1 N upward
 5. 4 N, 1 N upward

 6. 1033.6 cm

 7. 10 7 N, No
 8. (a) 60000 N,  (b) 20000 x x N

    (c) 20000  1  xx Nm (d) 10000 N,
    (e) 10000/3 Nm
 9. 2.2 g

10. 0.112 cm 3

11. 1.4 N

12. (a) 
1
20

(b) 
19
20

13. 17 cm
14. 1 : 1
15. 4.8  cm
16. 54.8 g
17. 50 g

18. 10.4 cm

19. 865 kg m3

20. 0.8
21. 1.0015
22. 0.5 s
23. (a) 23.5 cm (b) 0.93 s
24. (a) 2.5 cm (b)  / 5 s

25. 2.26 cm
26. a0 l/g

27. 23 km/h

28. (a) 25 cm/s, (b) 50 cm/s (c) 94 N/m2

29. (a) 25 cm/s, (b) 50 cm/s, (d) zero

30. (a) 25 cm/s, (b) 50 cm/s, (c) 188 N/m2

31. (a) 20 cm/s, (b) 485 N/m2

32. 146 cc/s
33. 2.13 cm
34. (a) 4 m/s, (b) 8 m/s

    (c) 2 mm 2 2 gh  dt,   2 gh   5  10  6 dt

    (d) 6.5 hours
35. H/2.
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CHAPTER 14

SOME MECHANICAL PROPERTIES
OF MATTER

14.1 MOLECULAR STRUCTURE OF A MATERIAL 

Matter is made of molecules and atoms. An atom
is made of a nucleus and electrons. The nucleus
contains positively charged protons and neutrons,
collectively called nucleons. Nuclear forces operating
between different nucleons are responsible for the
structure of the nucleus. Electromagnetic forces
operate between a pair of electrons and between an
electron and the nucleus. These forces are responsible
for the structure of an atom. The forces between
different atoms are responsible for the structure of a
molecule and the forces between the molecules are
responsible for the structure of the material as seen
by us.

Interatomic and Intermolecular Forces

The force between two atoms can be typically
represented by the potential energy curve shown in
figure (14.1). The horizontal axis represents the
separation between the atoms. The zero of potential
energy is taken when the atoms are widely separated
(r = ∞) .

As the separation between the atoms is decreased
from a large value, the potential energy also decreases,
becoming negative. This shows that the force between
the atoms is attractive in this range. As the separation
is decreased to a particular value r0, the potential
energy is minimum. At this separation, the force is
zero and the atoms can stay in equilibrium. If the

separation is further decreased, the potential energy
increases. This means a repulsive force acts between
the atoms at small separations.

A polyatomic molecule is formed when the atoms
are arranged in such a fashion that the total potential
energy of the system is minimum.

The force between two molecules has the same
general nature as shown in figure (14.1). At large
separation, the force between two molecules is weak
and attractive. The force increases as the separation
is decreased to a particular value and then decreases
to zero at r = r0 . If the separation is further decreased,
the force becomes repulsive.

Bonds

The atoms form molecules primarily due to the
electrostatic interaction between the electrons and the
nuclei. These interactions are described in terms of
different kinds of bonds. We shall briefly discuss two
important bonds that frequently occur in materials.

Ionic Bond

In an ionic bond two atoms come close to each
other and an electron is completely transferred from
one atom to the other. This leaves the first atom
positively charged and the other one negatively
charged. There is an electrostatic attraction between
the ions which keeps them bound. For example, when
a sodium atom comes close to a chlorine atom, an
electron of the sodium atom is completely transferred
to the chlorine atom. The positively charged sodium
ion and the negatively charged chlorine ion attract
each other to form an ionic bond resulting in sodium
chloride molecule.

Covalent Bond

In many of the cases a complete transfer of electron
from one atom to another does not take place to form

�

��
�

Figure 14.1



a bond. Rather, electrons from neighbouring atoms are
made available for sharing between the atoms. Such
bonds are called covalent bond. When two hydrogen
atoms come close to each other, both the electrons are
available to both the nuclei. In other words, each
electron moves through the total space occupied by the
two atoms. Each electron is pulled by both the nuclei.
Chlorine molecule is also formed by this mechanism.
Two chlorine atoms share a pair of electrons to form
the bond. Another example of covalent bond is
hydrogen chloride (HCl) molecule.

Three States of Matter

If two molecules are kept at a separation r = r0,
they will stay in equilibrium. If they are slightly pulled
apart so that r > r0 , an attractive force will operate
between them. If they are slightly pushed so that
r < r0, a repulsive force will operate. Thus, if a molecule
is slightly displaced from its equilibrium position, it
will oscillate about its mean position. This is the
situation in a solid. The molecules are close to each
other, very nearly at the equilibrium separations. The
amplitude of vibrations is very small and the molecules
remain almost fixed at their positions. This explains
why a solid has a fixed shape if no external forces act
to deform it.

In liquids, the average separation between the
molecules is somewhat larger. The attractive force is
weak and the molecules are more free to move inside
the whole mass of the liquid. In gases, the separation
is much larger and the molecular force is very weak.

Solid State

In solids, the intermolecular forces are so strong
that the molecules or ions remain almost fixed at their
equilibrium positions. Quite often these equilibrium
positions have a very regular three-dimensional
arrangement which we call crystal. The positions
occupied by the molecules or the ions are called lattice
points. Because of this long range ordering, the
molecules or ions combine to form large rigid solids.

The crystalline solids are divided into four
categories depending on the nature of the bonding
between the basic units.

Molecular Solid

In a molecular solid, the molecules are formed due
to covalent bonds between the atoms. The bonding
between the molecules depends on whether the
molecules are polar or nonpolar as discussed below. If
the centre of negative charge in a molecule coincides
with the centre of the positive charge, the molecule is
called nonpolar. Molecules of hydrogen, oxygen,
chlorine, etc., are of this type. Otherwise, the molecule

is called a polar molecule. Water molecule is polar. The
bond between polar molecules is called a dipole–dipole
bond. The bond between nonpolar molecules is called
a van der Waals bond. Molecular solids are usually
soft and have low melting point. They are poor
conductors of electricity.

Ionic Solid

In an ionic solid, the lattice points are occupied by
positive and negative ions. The electrostatic attraction
between these ions binds the solid. These attraction
forces are quite strong so that the material is usually
hard and has fairly high melting point. They are poor
conductors of electricity.

Covalent Solid

In a covalent solid, atoms are arranged in the
crystalline form. The neighbouring atoms are bound
by shared electrons. Such covalent bonds extend in
space so as to form a large solid structure. Diamond,
silicon, etc., are examples of covalent solids. Each
carbon atom is bonded to four neighbouring carbon
atoms in a diamond structure. They are quite hard,
have high melting point and are poor conductors of
electricity.

Metallic Solid

In a metallic solid, positive ions are situated at the
lattice points. These ions are formed by detaching one
or more electrons from the constituent atoms. These
electrons are highly mobile and move throughout the
solid just like a gas. They are very good conductors of
electricity.

Amorphous or Glassy State

There are several solids which do not exhibit a long
range ordering. However, they still show a local
ordering so that some molecules (say 4–5) are bonded
together to form a structure. Such independent units
are randomly arranged to form the extended solid. In
this respect the amorphous solid is similar to a liquid
which also lacks any long range ordering. However,
the intermolecular forces in amorphous solids are
much stronger than those in liquids. This prevents the
amorphous solid to flow like a fluid. A typical example
is glass made of silicon and oxygen together with some
other elements like calcium and sodium. The structure
contains strong Si−O−Si bonds, but the structure does
not extend too far in space.

The amorphous solids do not have a well-defined
melting point. Different bonds have different strengths
and as the material is heated the weaker bonds break
earlier starting the melting process. The stronger
bonds break at higher temperatures to complete the
melting process.
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14.2 ELASTICITY

We have used the concept of a rigid solid body in
which the distance between any two particles is always
fixed. Real solid bodies do not exactly fulfil this
condition. When external forces are applied, the body
may get deformed. When deformed, internal forces
develop which try to restore the body in its original
shape. The extent to which the shape of a body is
restored when the deforming forces are removed varies
from material to material. The property to restore the
natural shape or to oppose the deformation is called
elasticity. If a body completely gains its natural shape
after the removal of the deforming forces, it is called
a perfectly elastic body.  If a body remains in the
deformed state and does not even partially regain its
original shape after the removal of the deforming
forces, it is called a perfectly inelastic or plastic body.
Quite often, when the deforming forces are removed,
the body partially regains the original shape. Such
bodies are partially elastic.

Microscopic Reason of Elasticity

A solid body is composed of a great many molecules
or atoms arranged in a particular fashion. Each
molecule is acted upon by the forces due to the
neighbouring molecules. The solid takes such a shape
that each molecule finds itself in a position of stable
equilibrium. When the body is deformed, the molecules
are displaced from their original positions of stable
equilibrium. The intermolecular distances change and
restoring forces start acting on the molecules which
drive them back to their original positions and the
body takes its natural shape.

One can compare this situation to a spring-mass
system. Consider a particle connected to several
particles through springs. If this particle is displaced
a little, the springs exert a resultant force which tries
to bring the particle towards its natural position. In
fact, the particle will oscillate about this position. In
due course, the oscillations will be damped out and the
particle will regain its original position.

14.3 STRESS

Longitudinal and Shearing Stress

Consider a body (figure 14.2) on which several
forces are acting. The resultant of these forces is zero

so that the centre of mass remains at rest. Due to the
forces, the body gets deformed and internal forces
appear. Consider any cross-sectional area S of the
body. The parts of the body on the two sides of S
exert forces F


,   F


 on each other. These internal forces

F


,   F


 appear because of the deformation.

The force F


 may be resolved in two components,
Fn normal to S and Ft tangential to S. We define
the normal stress or longitudinal stress over the area
as

             n  
Fn

S
 (14.1)

and the tangential stress or shearing stress over the
area as

             t  
Ft

S
   (14.2)

The longitudinal stress can be of two types. The
two parts of the body on the two sides of S may pull
each other. The longitudinal stress is then called the
tensile stress. This is the case when a rod or a wire is
stretched by equal and opposite forces (figure 14.3). In
case of tensile stress in a wire or a rod, the force Fn

is just the tension.

If the rod is pushed at the two ends with equal
and opposite forces, it will be under compression.
Taking any cross section S of the rod the two parts
on the two sides push each other. The longitudinal
stress is then called compressive stress.

If the area is not specifically mentioned, a cross
section perpendicular to the length is assumed.

Example 14.1

   A load of 4.0 kg is suspended from a ceiling through a
steel wire of radius 2.0 mm. Find the tensile stress
developed in the wire when equilibrium is achieved. Take

g  3.1 m s2.

Solution : Tension in the wire is

            F  4.0  3.1 N .

The area of cross section is

        A   r 2    2.0  10 3 m2

         4.0   10 6 m2 .

Thus, the tensile stress developed
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           
F
A

  
4.0  3.1 

4.0   10  6
 N m2

           3.1  10 6 N m2.

Volume Stress

Another type of stress occurs when a body is acted
upon by forces acting everywhere on the surface in
such a way that (a) the force at any point is normal
to the surface and (b) the magnitude of the force on
any small surface area is proportional to the area. This
is the case when a small solid body is immersed in a
fluid. If the pressure at the location of the solid is P,
the force on any area S is PS directed
perpendicularly to the area. The force per unit area is
then called volume stress (figure 14.4). It is

              v  
F
A

 (14.3)

which is same as the pressure.

14.4 STRAIN

Associated with each type of stress defined above,
there is a corresponding type of strain.

Longitudinal Strain

Consider a rod of length l being pulled by equal
and opposite forces. The length of the rod increases
from its natural value L to L  L. The fractional
change L/L is called the longitudinal strain.

        Longitudinal strain = L/L .  (14.4)

If the length increases from its natural length, the
longitudinal strain is called tensile strain. If the length
decreases from its natural length, the longitudinal
strain is called compressive strain.

Shearing Strain

This type of strain is produced when a shearing
stress is present over a section. Consider a body with
square cross section and suppose forces parallel to the
surfaces are applied as shown in figure (14.5). Note
that the resultant of the four forces shown is zero as
well as the total torque of the four forces is zero.

This ensures that the body remains in
translational and rotational equilibrium after the
deformation. Because of the tangential forces parallel
to the faces, these faces are displaced. The shape of
the cross section changes from a square to a
parallelogram. In figure (14.5a) the dotted area
represents the deformed cross section. To measure the
deformation, we redraw the dotted area by rotating it
a little so that one edge AB coincides with its
undeformed position AB. The drawing is presented in
part (b) of figure (14.5).

We define the shearing strain as the displacement
of a layer divided by its distance from the fixed layer.
In the situation of figure (14.5),

     Shearing strain  DD/DA  x/h .
Shearing strain is also called shear.

Volume Strain

When a body is subjected to a volume stress, its
volume changes. The volume strain is defined as the
fractional change in volume. If V is the volume of
unstressed body and V  V is the volume when the
volume stress exists, the volume strain is defined as

       Volume strain  V/V.

14.5 HOOKE’S LAW AND
     THE MODULII OF ELASTICITY

If the deformation is small, the stress in a body is
proportional to the corresponding strain.

This fact is known as Hooke’s law. Thus, if a rod
is stretched by equal and opposite forces F each, a
tensile stress F/A is produced in the rod where A is
the area of cross section. The length of the rod
increases from its natural value L to L  L. Tensile
strain is L/L.

By Hooke’s law, for small deformations,

            
Tensile stress
Tensile strain

  Y  (14.5)

is a constant for the given material. This ratio of
tensile stress over tensile strain is called  Young
modulus for the material. In the situation described
above, the Young modulus is
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         Y = 
F/A

ΔL/L
 = FL

AΔL
 ⋅ … (14.6)

If the rod is compressed, compressive stress and
compressive strain appear. Their ratio Y is same as
that for the tensile case.

Example 14.2

   A load of 4.0 kg is suspended from a ceiling through a
steel wire of length 20 m and radius 2.0 mm. It is found
that the length of the wire increases by 0.031 mm as
equilibrium is achieved. Find Young modulus of steel.
Take g = 3.1 π m s–2.

Solution : The longitudinal stress = 
(4.0 kg) (3.1 π m s−2)

π (2.0 × 10 − 3 m) 2

                     = 3.1 × 10 6 N m−2 .

The longitudinal strain = 
0.031 × 10 − 3 m

2.0 m

                = 0.0155 × 10 − 3

Thus Y = 
3.1 × 10 6 N m−2

0.0155 × 10 − 3  = 2.0 × 10 11 N m−2.

The ratio of shearing stress over shearing strain
is called the Shear modulus, Modulus of rigidity or
Torsional modulus. In the situation of figure (14.5) the
shear modulus is

          η = 
F/A
x/h

 = Fh
Ax

 ⋅ … (14.7)

The ratio of volume stress over volume strain is
called Bulk modulus. If P be the volume stress (same
as pressure) and ΔV be the increase in volume, the
Bulk modulus is defined as

           B = − 
P

ΔV/V
 ⋅ … (14.8)

The minus sign makes B positive as volume actually
decreases on applying pressure. Quite often, the
change in volume is measured corresponding to a
change in pressure. The bulk modulus is then defined
as

      B = − 
ΔP

ΔV/V
 = − V 

dP
dV

 ⋅

Compressibility K is defined as the reciprocal of the
bulk modulus.

          K = 
1
B

 = − 1
V

 
dV
dP

 ⋅ … (14.9)

Yet another kind of modulus of elasticity is
associated with the longitudinal stress and strain.
When a rod or a wire is subjected to a tensile stress,
its length increases in the direction of the tensile force.
At the same time the length perpendicular to the

tensile force decreases. For a cylindrical rod, the length
increases and the diameter decreases when the rod is
stretched (Figure 14.6).

The fractional change in the transverse length is
proportional to the fractional change in the
longitudinal length. The constant of proportionality is
called Poisson ratio. Thus, Poisson ratio is

            σ = − 
Δd/d
ΔL/L

 ⋅ … (14.10)

The minus sign ensures that σ is positive. Table
(14.1) lists the elastic constants of some of the common
materials. Table (14.2) lists compressibilities of some
liquids.

Table 14.1 : Elastic constants

Material Young
Modulus Y
10 11 N m−2

Shear
Modulus η 
10 11 N m−2

Bulk
Modulus B
10 11 N m−2

Poisson
ratio σ

Aluminium 0.70 0.30 0.70 0.16

Brass 0.91 0.36 0.61 0.26

Copper 1.1 0.42 1.4 0.32

Iron 1.9 0.70 1.0 0.27

Steel 2.0 0.84 1.6 0.19

Tungsten 3.6 1.5 2.0 0.20

Table 14.2 : Compressibilities of liquids

Liquid Compressibility K
   10− 11 m2 N − 1

Carbon disulphide      64

Ethyl alcohol     110

Glycerine      21

Mercury       3.7

Water      49

14.6 RELATION BETWEEN LONGITUDINAL STRESS
    AND STRAIN

For a small deformation, the longitudinal stress is
proportional to the longitudinal strain. What happens
if the deformation is not small ? The relation of stress
and strain is much more complicated in such a case
and the nature depends on the material under study.
We describe here the behaviour for two representative
materials, a metal wire and a rubber piece.

Figure 14.6
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Metal Wire

Suppose a metal wire is stretched by equal forces
at the ends so that its length increases from its natural
value. Figure (14.7) shows qualitatively the relation
between the stress and the strain as the deformation
gradually increases.

When the strain is small (say < 0.01), the stress
is proportional to the strain. This is the region where
Hooke’s law is valid and where Young’s modulus is
defined. The point a on the curve represents the
proportional limit up to which stress and strain are
proportional.

If the strain is increased a little bit, the stress is
not proportional to the strain. However, the wire still
remains elastic. This means, if the stretching force is
removed, the wire acquires its natural length. This
behaviour is shown up to a point b on the curve known
as the elastic limit or the yield point. If the wire is
stretched beyond the elastic limit, the strain increases
much more rapidly. If the stretching force is removed,
the wire does not come back to its natural length. Some
permanent increase in length takes place. In figure
(14.7), we have shown this behaviour by the dashed
line from c. The behaviour of the wire is now plastic.
If the deformation is increased further, the wire breaks
at a point d known as fracture point. The stress
corresponding to this point is called breaking stress.

If large deformation takes place between the
elastic limit and the fracture point, the material is
called ductile. If it breaks soon after the elastic limit
is crossed, it is called brittle.

Rubber

A distinctly different stress–strain relation exists
for vulcanized rubber, the behaviour is qualitatively
shown in figure (14.8). The material remains elastic

even when it is stretched to over several times its
original length. In the case shown in figure (14.8), the
length is increased to 8 times its natural length, even
then if the stretching forces are removed, it will come
back to its original length.

In this respect rubber is more elastic than a ductile
metal like steel. However, the magnitude of stress for
a given strain is much larger in steel than in rubber.
This means large internal forces appear if the steel
wire is deformed. In this sense, steel is more elastic
than rubber. There are two important phenomena to
note from figure (14.8). Firstly, in no part of this large
deformation stress is proportional to strain. There is
almost no region of proportionality. Secondly, when the
deforming force is removed the original curve is not
retraced although the sample finally acquires its
natural length. The work done by the material in
returning to its original shape is less than the work
done by the deforming force when it was deformed. A
particular amount of energy is, thus, absorbed by the
material in the cycle which appears as heat. This
phenomenon is called elastic hysteresis.

Elastic hysteresis has an important application in
shock absorbers. If a padding of vulcanized rubber is
given between a vibrating system and, say, a flat
board, the rubber is compressed and released in every
cycle of vibration. As energy is absorbed in the rubber
in each cycle, only a part of the energy of vibrations
is transmitted to the board.

14.7 ELASTIC POTENTIAL ENERGY
     OF A STRAINED BODY

When a body is in its natural shape, its potential
energy corresponding to the molecular forces is
minimum. We may take the potential energy in this
state to be zero. When deformed, internal forces appear
and work has to be done against these forces. Thus,
the potential energy of the body is increased. This is
called the elastic potential energy. We shall derive an
expression for the increase in elastic potential energy
when a wire is stretched from its natural length.

Suppose a wire having natural length L and
cross-sectional area A is fixed at one end and is stretched
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by an external force applied at the other end (figure 14.9).
The force is so adjusted that the wire is only slowly
stretched. This ensures that at any time during the
extension the external force equals the tension in the
wire. When the extension is x, the wire is under a
longitudinal stress F/A, where F is the tension at this
time. The strain is x/L.

If Young modulus is Y,

          
F/A
x/L

 = Y

   or,           F = 
AY
L

 x. … (i)

The work done by the external force in a further
extension dx is
           dW = F dx.
   Using (i),

              dW = 
AY
L

 x dx .

The total work by the external force in an
extension 0 to l is

            W = ∫ 
0

l

 
AY
L

 x dx

            = 
AY
2L

 l 2.

This work is stored into the wire as its elastic
potential energy.

Thus, the elastic potential energy of the stretched
wire is,

             U = 
AY
2L

 l 2 . … (14.11)

This may be written as

   U = 
1
2

 

AY 

l
L




 l

      = 
1
2

 (maximum stretching force) (extension).

Equation (14.11) may also be written as

          U = 
1
2

 

Y 

l
L




 
l
L

 (AL)

   or, Potential energy = 
1
2

 × stress × strain × volume.

… (14.12)

Example 14.3

   A steel wire of length 2.0 m is stretched through 2.0 mm.
The cross-sectional area of the wire is 4.0 mm 2 .
Calculate the elastic potential energy stored in the wire
in the stretched condition. Young modulus of steel
= 2.0 × 10 11 N m–2.

Solution : The strain in the wire 
∆l
l

 = 
2.0 mm
2.0 m

 = 10− 3 .

The stress in the wire = Y × strain

    = 2.0 × 10 11 N m−2 × 10 − 3 = 2.0 × 108 N m−2 .

The volume of the wire = (4 × 10 − 6 m 2) × (2.0 m)

                = 8.0 × 10 − 6 m3 .

The elastic potential energy stored

    = 
1
2

 × stress × strain × volume

    = 
1
2

 × 2.0 × 108 N m−2 × 10− 3 × 8.0 × 10− 6 m3 

    = 0.8 J.

14.8 DETERMINATION OF YOUNG MODULUS
     IN LABORATORY

Figure (14.10) shows the experimental set up of a
simple method to determine Young modulus in a
laboratory. A long wire A (say 2–3 m) is suspended from
a fixed support. It carries a fixed graduated scale and
below it a heavy fixed load. This load keeps the wire
straight and free from kinks. The wire itself serves as a
reference. The experimental wire B of almost equal
length is also suspended from the same support close to
the reference wire. A vernier scale is attached at the free
end of the experimental wire. This vernier scale can slide
against the main scale attached to the reference wire.
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A hanger is attached at the lower end of the
vernier scale. A number of slotted half kilogram or one
kilogram weights may be slipped into the hanger.

First of all, the radius of the experimental wire is
measured at several places with a screw gauge. From
the average radius r, the breaking weight is
determined using the standard value of the breaking
stress for the material. Half of this breaking weight is
the permissible weight.

Some initial load, say 1 kg or 2 kg, is kept on the
hanger (this should be much smaller than the
permissible weight). This keeps the experimental wire
straight and kink-free. The reading of the main scale
and vernier coincidence are noted. A known weight say
1/2 kg or 1 kg is slipped into the hanger. The set up
is left for about a minute so that the elongation takes
place fully. The reading on the scale are noted. The
difference of the scale readings gives the extension due
to the extra weight put. The weight is gradually
increased up to the permissible weight and every time
the extension is noted.

The experiment is repeated in reverse order
decreasing the weight gradually in the same steps and
everytime noting the extension.

From the data, extension versus load curve is plotted.
This curve should be a straight line passing through the
origin (figure 14.11). The slope of this line gives

              tanθ = 
l

Mg
 ⋅

Now the stress due to the weight Mg at the end is

             stress = 
Mg
π r 2

   and        strain = 
l
L

 ⋅

   Thus,        Y = 
MgL

π r 2 l
 = 

L
π r 2 tanθ

 ⋅

All the quantities on the right-hand side are known
and hence Young modulus Y may be calculated.

14.9 SURFACE TENSION

The properties of a surface are quite often
markedly different from the properties of the bulk

material. A molecule well inside a body is surrounded
by similar particles from all sides. But a molecule on
the surface has particles of one type on one side and
of a different type on the other side. Figure (14.12)
shows an example. A molecule of water well inside the
bulk experiences forces from water molecules from all
sides but a molecule at the surface interacts with air
molecules from above and water molecules from below.
This asymmetric force distribution is responsible for
surface tension.

By a surface we shall mean a layer approximately
10–15 molecular diameters. The force between two
molecules decreases as the separation between them
increases. The force becomes negligible if the
separation exceeds 10–15 molecular diameters. Thus,
if we go 10–15 molecular diameters deep, a molecule
finds equal forces from all directions.

Imagine a line AB drawn on the surface of a liquid
(figure 14.13). The line divides the surface in two parts,
surface on one side and the surface on the other side
of the line. Let us call them surface to the left of the
line and surface to the right of the line. It is found
that the two parts of the surface pull each other with
a force proportional to the length of the line AB. These
forces of pull are perpendicular to the line separating
the two parts and are tangential to the surface. In this
respect the surface of the liquid behaves like a
stretched rubber sheet. The rubber sheet which is
stretched from all sides is in the state of tension. Any
part of the sheet pulls the adjacent part towards itself.

Let F be the common magnitude of the forces
exerted on each other by the two parts of the surface
across a line of length l. We define the surface tension
S of the liquid as

            S = F/l. … (14.13)

The SI unit of surface tension is N m–1.
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Example 14.4

   Water is kept in a beaker of radius 5.0 cm. Consider a
diameter of the beaker on the surface of the water. Find
the force by which the surface on one side of the diameter
pulls the surface on the other side. Surface tension of
water = 0.075 N m–1.

Solution : The length of the diameter is 
               l = 2r = 10 cm

= 0.1 m.

The surface tension is S = F/l. Thus,  

                 F = Sl

 = (0.075 N m−1) × (0.1 m) = 7.5 × 10− 3 N.

The fact that a liquid surface has the property of
surface tension can be demonstrated by a number of
simple experiments.

(a) Take a ring of wire and dip it in soap solution.
When the ring is taken out, a soap film bounded by
the ring is formed. Now take a loop of thread, wet it
and place it gently on the soap film. The loop stays on
the film in an irregular fashion as it is placed. Now
prick a hole in the film inside the loop with a needle.
The thread is radially pulled by the film surface
outside and it takes a circular shape (figure 14.14).

Before the pricking, there were surfaces both
inside and outside the thread loop. Taking any small
part of the thread, surfaces on both sides pulled it and
the net force was zero. The thread could remain in any
shape. Once the surface inside was punctured, the
outside surface pulled the thread to take the circular
shape.

(b) Take a U-shaped frame of wire on which a light
wire can slide (figure 14.15). Dip the frame in a soap
solution and take it out. A soap film is formed between

the frame and the sliding wire. If the frame is kept in
a horizontal position and the friction is negligible, the
sliding wire quickly slides towards the closing arm of
the frame. This shows that the soap surface in contact
with the wire pulls it parallel to the surface. If the
frame is kept vertical with the sliding wire at the lower
position, one can hang some weight from it to keep it
in equilibrium. The force due to surface tension by the
surface in contact with the sliding wire balances the
weight.

Tendency to Decrease the Surface Area

The property of surface tension may also be
described in terms of the tendency of a liquid to
decrease its surface area. Because of the existence of
forces across any line in the surface, the surface tends
to shrink whenever it gets a chance to do so. The two
demonstrations described above may help us in
understanding the relation between the force of surface
tension and the tendency to shrink the surface.

In the first example, the soap film is pricked in
the middle. The remaining surface readjusts its shape
so that a circular part bounded by the thread loop is
excluded. The loop has a fixed length and the largest
area that can be formed with a fixed periphery is a
circle. This ensures that the surface of the soap
solution takes the minimum possible area.

In the second example, the wire can slide on the
frame. When kept in horizontal position, the wire
slides to the closing arm of the U-shaped frame so that
the surface shrinks.

There are numerous examples which illustrate
that the surface of a liquid tries to make its area
minimum. When a painting brush is inside a liquid,
the bristles of the brush wave freely. When the brush
is taken out of the liquid, surfaces are formed between
the bristles. To minimise the area of these surfaces,
they stick together.

A small drop of liquid takes a nearly spherical
shape. This is because, for a given volume, the sphere
assume the smallest surface area. Because of gravity
there is some deviation from the spherical shape, but
for small drops this may be neglected. 

Table 14.3 gives the values of surface tension of
some liquids.

Table 14.3 : Surface tension

Liquid Surface
tension N m–1

Liquid Surface
Tension N m–1

Mercury 0⋅465 Glycerine 0⋅063

Water 0⋅075 Carbon tetra
chloride

0⋅027

Soap solution 0⋅030 Ethyl alcohol 0⋅022

Figure 14.14
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14.10 SURFACE ENERGY

We have seen that a molecule well within the
volume of a liquid is surrounded by the similar liquid
molecules from all sides and hence there is no
resultant force on it (figure 14.12). On the other hand,
a molecule in the surface is surrounded by similar
liquid molecules only on one side of the surface while
on the other side it may be surrounded by air
molecules or the molecules of the vapour of the liquid
etc. These vapours having much less density exert only
a small force. Thus, there is a resultant inward force
on a molecule in the surface. This force tries to pull
the molecule into the liquid. Thus, the surface layer
remains in microscopic turbulence. Molecules are
pulled back from the surface layer to the bulk and new
molecules from the bulk go to the surface to fill the
empty space.

When a molecule is taken from the inside to the
surface layer, work is done against the inward
resultant force while moving up in the layer. The
potential energy is increased due to this work. A
molecule in the surface has greater potential energy
than a molecule well inside the liquid. The extra
energy that a surface layer has is called the surface
energy. The surface energy is related to the surface
tension as discussed below.

Consider a U-shaped frame with a sliding wire on
its arm. Suppose it is dipped in a soap solution, taken
out and placed in a horizontal position (figure 14.16).

The soap film that is formed may look quite thin,
but on the molecular scale its thickness is not small.
It may have several hundred thousands molecular
layers. So it has two surfaces enclosing a bulk of soap
solution. Both the surfaces are in contact with the
sliding wire and hence exert forces of surface tension
on it. If S be the surface tension of the solution and l
be the length of the sliding wire, each surface will pull
the wire parallel to itself with a force Sl. The net force
of pull F on the wire due to both the surfaces is

            F  2 Sl .

One has to apply an external force equal and
opposite to F so as to keep the wire in equilibrium.

Now suppose the wire is slowly pulled out by the
external force through a distance x so that the area of
the frame is increased by lx. As there are two surfaces

of the solution, a new surface area 2lx is created. The
liquid from the inside is brought to create the new
surface.

The work done by the external force in the
displacement is

        W  F x  2Sl x  S 2lx .
As there is no change in kinetic energy, the work

done by the external force is stored as the potential
energy of the new surface.

The increase in surface energy is
            U  W  S 2lx .

Thus,        
U

2lx
  S

   or,           
U
A

  S.  (14.14)

We see that the surface tension of a liquid is equal
to the surface energy per unit surface area.

In this interpretation, the SI unit of surface
tension may be written as J m–2. It may be verified
that N m–1 is equivalent to J m–2.

Example 14.5

   A water drop of radius 10 – 2 m is broken into 1000 equal
droplets. Calculate the gain in surface energy. Surface
tension of water is 0.075 N m–1.

Solution : The volume of the original drop is

              V  
4
3

  R 3, where R  10  2 m.

If r is the radius of each broken droplet, the volume is also

            V  1000  4
3

  r 3.

Thus,      1000 r 3  R 3

or,            r  R/10.

The surface area of the original drop is A1  4R 2 and
the surface area of the 1000 droplets is

        A2  1000  4  r 2  40  R 2. 

The increase in area is

     A  A2  A1  40 R 2  4 R 2  36 R 2.

The gain in surface energy is

      U  A S  36 R2S

          36  3.14  10  4 m 2  0.075 N m1

           8.5  10 4 J

14.11 EXCESS PRESSURE INSIDE A DROP

Let us consider a spherical drop of liquid of radius
R (figure 14.17). If the drop is small, the effect of
gravity may be neglected and the shape may be
assumed to be spherical.

2S F

Figure 14.16
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Imagine a diametric cross section ABCD of the
drop which divides the drop in two hemispheres. The
surfaces of the two hemispheres touch each other along
the periphery ABCDA. Each hemispherical surface
pulls the other hemispherical surface due to the
surface tension.

Consider the equilibrium of the hemispherical
surface ABCDE. Forces acting on this surface are

(i) F1, due to the surface tension of the surface
ABCDG in  contact,

(ii) F2, due to the air outside the surface ABCDE
and

(iii) F3, due to the liquid inside the surface ABCDE.

The force due to surface tension acts on the points
of the periphery ABCDA. The force on any small part
dl of this periphery is S dl (figure 14.18) and acts
parallel to the symmetry axis OX. The resultant of all
these forces due to surface tension is

         F1  2RS

along OX.
Now consider the forces due to the air outside the

surface ABCDE. Consider a small part S of the
surface as shown in figure (14.19).

If the pressure just outside the surface is P1, the
force on this surface S is P1S along the radial
direction. By symmetry, the resultant of all such forces
acting on different parts of the hemispherical surface
must be along OX.

If the radius through S makes an angle  with
OX, the component of P1S along OX will be
P1S cos. If we project the area S on the diametric
plane ABCD, the area of projection will be S cos.
Thus, we can write,

component of P1S along OX

      P1 (projection of S on the plane ABCD).

When components of all the forces P1S on
different S are added, we get the resultant force due
to the air outside the hemispherical surface. This
resultant is then

F2  P1 (Projection of the hemispherical surface
         ABCDE  on the plane ABCD).

The projection of the hemispherical surface on the
plane ABCD is the circular disc ABCD itself, having
an area R 2. Thus,

           F2  P1 R 2.

Similarly, the resultant force on this surface due
to the liquid inside is F3  P2  R 2, where P2 is the
pressure just inside the surface. This force will be in
the direction OX .

For equilibrium of the hemispherical surface
ABCDE we should have,

           F1  F2  F3

or,     2RS  P1R 2  P2R 2

   or, P2  P1  2S/R .  (14.15)

The pressure inside the surface is greater than the
pressure outside the surface by an amount 2S/R.

In the case of a drop, there is liquid on the concave
side of the surface and air on the convex side. The
pressure on the concave side is greater than the
pressure on the convex side. This result is true in all
cases. If we have an air bubble inside a liquid (figure
14.20), a single surface is formed. There is air on the
concave side and liquid on the convex side. The
pressure in the concave side (that is in the air) is
greater than the pressure in the convex side (that is
in the liquid) by an amount 2S/R.

Figure 14.17
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Example 14.6

   Find the  excess  pressure  inside  a  mercury  drop  of
radius 2.0 mm.  The   surface  tension  of  mercury
= 0.464 N m–1.

Solution : The excess pressure inside the drop is
            P2 − P1 = 2S/R

      = 
2 × 0.464 N m−1

2.0 × 10 − 3 m
 = 464 N m−2.

14.12 EXCESS PRESSURE IN A SOAP BUBBLE

Soap bubbles can be blown by dipping one end of
a glass tube in a soap solution for a short time and
then blowing air in it from the other end. Such a
bubble has a small thickness and there is air both
inside the bubble and outside the bubble. The
thickness of the bubble may look small to eye but it
still has hundreds of thousands of molecular layers. So
it has two surface layers, one towards the outside air
and the other towards the enclosed air. Between these
two surface layers there is bulk soap solution.

Let the pressure of the air outside the bubble be
P1, that within the soap solution be P′ and that of the
air inside the bubble be P2. Looking at the outer
surface, the solution is on the concave side of the
surface, hence

           P′ − P1 = 2S/R
where R is the radius of the bubble. As the thickness
of the bubble is small on a macroscopic scale, the
difference in the radii of the two surfaces will be
negligible.

Similarly, looking at the inner surface, the air is
on the concave side of the surface, hence

           P2 − P′ = 2S/R.

Adding the two equations
              P2 − P1 = 4S/R. … (14.16)

The pressure inside a bubble is greater than the
pressure outside by an amount 4S/R.

Example 14.7

   A 0.02 cm liquid column balances the excess pressure
inside a soap bubble of radius 7.5 mm. Determine the

density of the  liquid.  Surface tension of soap solution
= 0.03 N m–1.

Solution : The excess pressure inside a soap bubble is

        ∆P = 4S/R = 
4 × 0.03 N m−1

7.5 × 10 − 3 m
 = 16 N m−2.

The pressure due to 0.02 cm of the liquid column is

       ∆P = hρg

           = (0.02 × 10 − 2 m) ρ (9.8 m s−2).

Thus, 16 N m−2 = (0.02 × 10 − 2 m) ρ (9.8 m s−2)

or,        ρ = 8.2 × 10 3 kg m−3.

14.13 CONTACT ANGLE

When a liquid surface touches a solid surface, the
shape of the liquid surface near the contact is generally
curved. When a glass plate is immersed in water, the
surface near the plate becomes concave as if the water
is pulled up by the plate (figure 14.22). On the other
hand, if a glass plate is immersed in mercury, the
surface is depressed near the plate.

The angle between the tangent planes at the solid
surface and the liquid surface at the contact is called
the contact angle. In this the tangent plane to the solid
surface is to be drawn towards the liquid and the
tangent plane to the liquid is to be drawn away from
the solid. Figure (14.22) shows the construction of
contact angle. For the liquid that rises along the solid
surface, the contact angle is smaller than 90°. For the
liquid that is depressed along the solid surface, the
contact angle is greater than 90°. Table (14.4) gives
the contact angles for some of the pairs of solids and
liquids.

Table 14.4 : Contact angles

Substance Contact
angle

Substance Contact
angle

Water with glass   0° Water with
paraffin

107°

Mercury with
glass

140° Methylene iodide
with glass

 29°

Let us now see why the liquid surface bends near
the contact with a solid. A liquid in equilibrium cannot
sustain tangential stress. The resultant force on any
small part of the surface layer must be perpendicular
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to the surface there. Consider a small part of the liquid
surface near its contact with the solid (figure 14.23).

The forces acting on this part are

 (a) Fs, attraction due to the molecules of the solid
surface near it,

 (b) Fl, the force due to the liquid molecules near
this part, and

 (c) W, the weight of the part considered.

The force between the molecules of the same
material is known as cohesive force and the force
between the molecules of different kinds of material is
called adhesive force. Here Fs is adhesive force and
Fl is cohesive force.

As is clear from the figure, the adhesive force Fs

is perpendicular to the solid surface and is into the
solid. The cohesive force Fl is in the liquid, its direction
and magnitude depends on the shape of the liquid
surface as this determines the distribution of the
molecules attracting the part considered. Of course,
Fs and Fl depend on the nature of the substances
especially on their densities.

The direction of the resultant of Fs, Fl and W
decides the shape of the surface near the contact. The
liquid rests in such a way that the surface is
perpendicular to this resultant. If the resultant passes
through the solid (figure 14.23a), the surface is concave
upward and the liquid rises along the solid. If the
resultant passes through the liquid (figure 14.23b), the
surface is convex upward and the liquid is depressed
near the solid.

If a solid surface is just dipped in liquid (figure
14.24) so that it is not projected out, the force Fs will
not be perpendicular to the solid. The actual angle
between the solid surface and the liquid surface may
be different from the standard contact angle for the
pair.

14.14 RISE OF LIQUID IN A CAPILLARY TUBE

When one end of a tube of small radius (known as
a capillary tube) is dipped into a liquid, the liquid rises
or is depressed in the tube. If the contact angle is less
than 90, the liquid rises. If it is greater than 90, it
is depressed.

Suppose a tube of radius r is dipped into a liquid
of surface tension S and density . Let the angle of
contact between the solid and the liquid be . If the
radius of the tube is small, the surface in the tube is
nearly spherical. Figure (14.25) shows the situation.

Consider the equilibrium of the part of liquid
raised in the tube. In figure (14.25) this liquid is
contained in the volume ABEF. Forces on this part of
the liquid are

(a) F1, by the surface of the tube on the surface
ABCD of the liquid,

(b) F2, due to the pressure of the air above the
surface ABCD,

(c) F3, due to the pressure of the liquid below EF and

(d) the weight W of the liquid ABEF.
ABCD is the surface of the liquid inside the

capillary tube. It meets the wall of the tube along a
circle of radius r. The angle made by the liquid surface
with the surface of the tube is equal to the contact
angle .

Consider a small part dl of the periphery 2r along
which the surface of the liquid and the tube meet. The
liquid surface across this pulls the tube surface by a
force S dl tangentially along the liquid surface. From
Newton’s third law, the tube surface across this small
part pulls the liquid surface by an equal force S dl in
opposite direction. The vertical component of this force
is S dl cos. The total force exerted on the liquid
surface by the tube surface across the contact circle is

         F1   S dl cos

            S cos  dl

            2r S cos.  (i)
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The horizontal component Sdl sin adds to zero
when summed over the entire periphery.

The force F2 due to the pressure of the air outside

the surface ABCD is P. r2 where P is the atmospheric
pressure. (This result was derived for hemispherical
surface while deducing the excess pressure inside a
drop. Same derivation works here.)

This force acts vertically downward. The pressure
at EF is equal to the atmospheric pressure P. This is
because EF is in the same horizontal plane as the free
surface outside the tube and the pressure there is P.
The force due to the liquid below EF is, therefore,
P r2 in vertically upward direction.

Thus, F2 and F3 cancel each other and the force
F1  2r S cos balances the weight W in equilibrium.
If the height raised in the tube is h and if we neglect
the weight of the liquid contained in the meniscus, the
volume of the liquid raised is  r2h. The weight of this
part is then

            W   r2hg.  (ii)

Thus,    r2hg  2r S cos

   so that      h  
2S cos

rg
   (14.17)

We see that the height raised is inversely
proportional to the radius of the capillary. If the
contact angle  is greater than 90, the term cos is
negative and hence h is negative. The expression then
gives the depression of the liquid in the tube.

The correction due to the weight of the liquid
contained in the meniscus can be easily made if the
contact angle is zero. This is the case with water rising
in a glass capillary. The meniscus is then
hemispherical (Figure 14.26).

The volume of the shaded part is

       r2r  
1
2

 


4
3

  r3


  

1
3

  r3.

The weight of the liquid contained in the meniscus
is 1

3
  r3g. Equation (ii) is then replaced by

 r2hg  1
3
  r3g  2 r S

   or,         h  
2S
rg

  
r
3

   (14.18)

Example 14.8

   A capillary tube of radius 0.20 mm is dipped vertically
in water. Find the height of the water column raised in
the tube. Surface tension of water  0.075 N m–1 and

density of water  1000  kg m3. Take g  10 m s2.

Solution : We have,

    h  
2S cos

rg

      
2  0.075 N m1  1

0.20  10 3 m  1000 kg m3 10 m s2

       0.075 m  7.5 cm.

Tube of Insufficient Length

Equation (14.17) or (14.18) gives the height raised
in a capillary tube. If the tube is of a length less than
h, the liquid does not overflow. The angle made by the
liquid surface with the tube changes in such a way
that the force 2rS cos equals the weight of the liquid
raised.

14.15 VISCOSITY 

When a layer of a fluid slips or tends to slip on
another layer in contact, the two layers exert
tangential forces on each other. The directions are such
that the relative motion between the layers is opposed.
This property of a fluid to oppose relative motion
between its layers is called viscosity. The forces
between the layers opposing relative motion between
them are known as the forces of viscosity. Thus,
viscosity may be thought of as the internal friction of
a fluid in motion.

If a solid surface is kept in contact with a fluid
and is moved, forces of viscosity appear between the
solid surface and the fluid layer in contact. The fluid
in contact is dragged with the solid. If the viscosity is
sufficient, the layer moves with the solid and there is
no relative slipping. When a boat moves slowly on the
water of a calm river, the water in contact with the
boat is dragged with it, whereas the water in contact
with the bed of the river remains at rest. Velocities of
different layers are different. Let v be the velocity of
the layer at a distance z from the bed and v  dv be
the velocity at a distance z  dz.  (figure 14.27).
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Thus, the velocity differs by dv in going through a
distance dz perpendicular to it. The quantity dv/dz is
called the velocity gradient.

The force of viscosity between two layers of a fluid
is proportional to the velocity gradient in the direction
perpendicular to the layers. Also, the force is
proportional to the area of the layer.

Thus, if F is the force exerted by a layer of area
A on a layer in contact,

        F ∝ A  and  F ∝ dv/dz

   or,       F = − η A dv/dz. … (14.19)

The negative sign is included as the force is
frictional in nature and opposes relative motion. The
constant of proportionality η is called the coefficient of
viscosity.

The SI unit of viscosity can be easily worked out
from equation (14.19). It is N–s m–2. However, the
corresponding CGS unit dyne–s cm–2 is in common use
and is called a poise in honour of the French scientist
Poiseuille. We have

        1 poise = 0.1 N−s m−2.

Dimensions of the Coefficient of Viscosity

Writing dimensions of different variables in
equation (14.19),

        MLT − 2 = [η] L2 ⋅ L/T
L

or,           [η] = 
MLT − 2

L2 T − 1

   or,          [η] = ML− 1 T − 1. … (14.20)

The coefficient of viscosity strongly depends on
temperature. Table (14.5) gives the values for some of
the commom fluids.

Table 14.5 : Coefficient of viscosity

Temperature
°C

Viscosity of
castor oil,
poise

Viscosity of
water, centi-
poise

Viscosity of
air, micro-
poise

  0   53 1.792 171

 20 9.86 1.005 181

 40 2.31 0.656 190

 60 0.80 0.469 200

 80 0.30 0.357 209

100 0.17 0.284 218

14.16 FLOW THROUGH A NARROW TUBE :
     POISEUILLE’S EQUATION

Suppose a fluid flows through a narrow tube in
steady flow. Because of viscosity, the layer in contact
with the wall of the tube remains at rest and the layers
away from the wall move fast. Poiseuille derived a

formula for the rate of flow of viscous fluid through a
cylindrical tube. We shall try to obtain the formula
using dimensional analysis.

Suppose a fluid having coefficient of viscosity η and
density ρ is flowing through a cylindrical tube of radius
r and length l. Let P be the pressure difference in the
liquid at the two ends. It is found that the volume of
the liquid flowing per unit time through the tube
depends on the pressure gradient P/l, the coefficient
of viscosity η and the radius r. If V be the volume
flowing in time t, we guess that

             
V
t

 = k 



P
l





 a

 η br c … (i)

where k is a dimensionless constant.
Taking dimensions,

        L3 T − 1 = 



ML− 1 T − 2

L




 a

(ML− 1 T − 1) b Lc

   or,    L3 T − 1 = M a + b L− 2a − b + c T − 2a − b

Equating the exponents of M, L and T we get,
               0 = a + b
   3 = − 2a − b + c
   − 1 = − 2a − b.

Solving these equations,
       a = 1,  b = − 1   and   c = 4.

Thus,

             
V
t

 = k 
Pr 4

ηl
 ⋅

The dimensionless constant k is equal to π/8 and
hence the rate of flow is

             
V
t

 = 
πPr 4

8ηl
 ⋅ … (14.21)

This is Poiseuille’s formula.

14.17 STOKES’ LAW

When a solid body moves through a fluid, the fluid
in contact with the solid is dragged with it. Relative
velocities are established between the layers of the
fluid near the solid so that the viscous forces start
operating. The fluid exerts viscous force on the solid
to oppose the motion of the solid. The magnitude of
the viscous force depends on the shape and size of the
solid body, its speed and the coefficient of viscosity of
the fluid.

Suppose a spherical body of radius r moves at a
speed v through a fluid of viscosity η. The viscous force
F acting on the body depends on r, v and η. Assuming
that the force is proportional to various powers of these
quantities, we can obtain the dependence through
dimensional analysis.
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   Let        F  k r a v b  c  (i)

where k is a dimensionless constant. Taking
dimensions on both sides,
       M L T  2   La LT  1b ML 1 T  1 c.

Comparing the exponents of M, L and T,
                1  c
                1  a  b  c
                2   b  c

Solving these equations, a  1, b  1  and  c  1.

Thus, by (i), F  k r v .

The dimensionless constant k equals 6 , so that
the equation becomes
             F  6   r v.  (14.22) 

This equation is known as Stokes’ law.

Example 14.9

   An air bubble of diameter 2 mm rises steadily through
a solution of density 1750 kg m–3 at the rate of 0.35 cm s–1.
Calculate the coefficient of viscosity of the solution. The
density of air is negligible.

Solution : The force of buoyancy B is equal to the weight
of the displaced liquid. Thus,

              B  
4
3

  r3g.

This force is upward. The viscous force acting downward
is
              F  6  rv.

The weight of the air bubble may be neglected as the
density of air is small. For uniform velocity
      F  B

or, 6  rv  
4
3

  r3 g

or,       
2r2g

9v

       
2  1  10  3 m2  1750 kg m3 9.8 m s2

9  0.35  10 2 m s1
         11 poise.

This appears to be a highly viscous liquid.

14.18 TERMINAL VELOCITY

The viscous force on a solid moving through a fluid
is proportional to its velocity. When a solid is dropped
in a fluid, the forces acting on it are

 (a) weight W acting vertically downward,
 (b) the viscous force F acting vertically upward

and
 (c) the buoyancy force B acting vertically upward.
The weight W and the buoyancy B are constant

but the force F is proportional to the velocity v.

Initially, the velocity and hence the viscous force F is
zero and the solid is accelerated due to the force W–B.
Because of the acceleration the velocity increases.
Accordingly, the viscous force also increases. At a
certain instant the viscous force becomes equal to
W–B. The net force then becomes zero and the solid
falls with constant velocity. This constant velocity is
known as the terminal velocity.

 Consider a  spherical body  falling through a
liquid. Suppose the density of the body  , density of
the liquid   , radius of the sphere  r and the
terminal velocity  v0 . The viscous force is

                   F  6 rv0. 

The weight W  
4
3

  r3g

and the buoyancy force B  
4
3

  r3g. 

We have

   6 rv0  W  B  
4
3

 r3g  
4
3

 r3g

   or,    v0  
2 r2  g

9 
   (14.23)

14.19 MEASURING COEFFICIENT OF VISCOSITY
     BY STOKES’ METHOD

Viscosity of a liquid may be determined by
measuring the terminal velocity of a solid sphere in it.
Figure (14.28) shows the apparatus. A test tube A
contains the experimental liquid and is fitted into a
water bath B. A thermometer T measures the
temperature of the bath. A tube C is fitted in the cork
of the test tube A. There are three equidistant marks
P, Q and R on the test tube well below the tube C.

A spherical metal ball is dropped in the tube C.
The time interval taken by the ball to pass through
the length PQ and through the length QR are noted
with the help of a stop watch. If these two are not

�
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equal, a smaller metal ball is tried. The process is
repeated till the two time intervals are the same. In
this case the ball has achieved its terminal velocity
before passing through the mark P. The radius of the
ball is determined by a screw guage. Its mass m is
determined by weighing it. The length PQ = QR is
measured with a scale.

Let r = radius of the spherical ball
     m = mass of the ball
      t = time interval in passing through the length
           PQ or QR
      d = length  PQ = QR
       η = coefficient of viscosity of the liquid
      σ = density of the liquid.

The density of the solid is ρ = 
m

4
3
 π r3

 and the

terminal velocity is v0 = d/t. Using equation (14.23)

          η = 
2
9

 
(ρ − σ)gr2

d/t
 ⋅

This method is useful for a highly viscous liquid such
as Castor oil.

14.20 CRITICAL VELOCITY AND
     REYNOLDS NUMBER

When a fluid flows in a tube with small velocity,
the flow is steady. As the velocity is gradually
increased, at one stage the flow becomes turbulent.
The largest velocity which allows a steady flow is
called the critical velocity.

Whether the flow will be steady or turbulent
mainly depends on the density, velocity and the
coefficient of viscosity of the fluid as well as the
diameter of the tube through which the fluid is flowing.
The quantity

              N = 
ρvD

η
… (14.24)

is called the Reynolds number and plays a key role in
determining the nature of flow. It is found that if the
Reynolds number is less than 2000, the flow is steady.
If it is greater than 3000, the flow is turbulent. If it
is between 2000 and 3000, the flow is unstable. In this
case it may be steady and may suddenly change to
turbulent or it may be turbulent and may suddenly
change to steady.

Worked Out Examples

 1 One end of a wire 2 m long and 0.2 cm 2 in cross section
is fixed in a ceiling and a load of 4.8 kg is attached to
the free end. Find the extension of the wire. Young
modulus of steel = 2.0 × 1011 N m–2.  Take g = 10 m s–2.

Solution : We have

          Y = 
stress
strain

 = 
T/A
l/L

with symbols having their usual meanings. The
extension is

 l = 
TL
AY

 ⋅

As the load is in equilibrium after the extension, the
tension in the wire is equal to the weight of the load

      = 4.8 kg × 10 m s−2 = 48 N

Thus, l = 
(48 N) (2 m)

(0.2 × 10 − 4 m 2) × (2.0 × 10 11 N m−2)

= 2.4 × 10 − 5 m.

 2. One end of a nylon rope of length 4.5 m and diameter
6 mm is fixed to a tree-limb. A monkey weighing 100 N
jumps to catch the free end and stays there. Find
the elongation of the rope and the corresponding
change in the diameter. Young modulus of nylon

= 4.8 × 10 11 N m−2 and Poisson ratio of nylon = 0.2.

Solution : As the monkey stays in equilibrium, the tension
in the rope equals the weight of the monkey. Hence,

        Y = 
stress
strain

 = 
T/A
l/L

or, l = 
TL
AY

or,  elongation = l = 
(100 N) × (4.5 m)

(π × 9 × 10  − 6 m 2) × (4.8 × 10 11 N m−2)

= 3.32 × 10 − 5 m.

Again, Poisson ratio = 
∆d/d
l/L

 = 
(∆d)L

ld

or, 0.2 = 
∆d × 4.5 m

(3.32 × 10 − 5 m) × (6 × 10 − 3 m)

or, ∆d = 
0.2 × 6 × 3.32 × 10 − 8 m

4.5
 

 = 8.8 × 10 − 9 m.

 3. Two blocks of masses 1 kg and 2 kg are connected by
a metal wire going over a smooth pulley as shown in
figure (14-W1). The breaking stress of the metal is
2 × 10 9 N m−2. What should be the minimum radius of
the wire used if it is not to break ? Take g = 10 m s–2.

����

����

Figure 14-W1
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Solution : The stress in the wire = 
Tension

Area  of  cross section
 ⋅

To avoid breaking, this stress should not exceed the
breaking stress.
Let the tension in the wire be T. The equations of motion
of the two blocks are,

           T − 10 N = (1 kg) a
and 20 N − T = (2 kg) a.

Eliminating a from these equations,
T = (40/3) N.

The stress = 
(40/3) N

π r 2  ⋅

If the minimum radius needed to avoid breaking is r,

2 × 10 9 
N

m 2 = 
(40/3) N

π r 2

Solving this,

           r = 4.6 × 10 − 5 m.

 4. Two wires of equal cross section but one made of steel
and the other of copper, are joined end to end. When the
combination is kept under tension, the elongations in the
two wires are found to be equal. Find the ratio of the
lengths of the two wires. Young modulus of steel
= 2.0 × 10 11 N m–2 and that of copper = 1.1 × 10 11 N m–2.

Solution : As the cross sections of the wires are equal and
same tension exists in both, the stresses developed are
equal. Let the original lengths of the steel wire and the
copper wire be Ls  and  Lc respectively and the elongation
in each wire be l.

            
l

Ls

 = 
stress

2.0 × 10 11 N m−2 … (i)

   and 
l

Lc

 = 
stress

1.1 × 10 11 N m−2 ⋅ … (ii)

Dividing (ii) by (i),

 Ls/Lc = 2.0/1.1 = 20 : 11.

 5. Find the decrease in the volume of a sample of water
from the following data. Initial volume = 1000 cm3,

initial pressure = 10 5 N m−2, final pressure = 10 6 N m−2,

compressibility of water = 50 × 10 − 11 m 2 N − 1 .

Solution : The change in pressure
       = ∆P = 10 6 N m−2 − 10 5 N m−2

= 9 × 10 5 N m−2.

     Compressibility = 
1

Bulk  modulus
 = − 

∆V/V
∆P

or,   50 × 10 − 11 m2 N − 1 = − 
∆V

(10 − 3 m3) × (9 × 10 5 N m−2)
or,   ∆V = − 50 × 10 − 11 × 10 − 3 × 9 × 10 5 m 3

       = − 4.5 × 10 − 7 m3 = − 0.45 cm3.

Thus the decrease in volume is 0.45 cm3.

 6. One end of a metal wire is fixed to a ceiling and a load
of 2 kg hangs from the other end. A similar wire is
attached to the bottom of the load and another load of
1 kg hangs from this lower wire. Find the longitudinal
strain in both the wires. Area of cross section of each
wire is 0.005 cm 2 and Young modulus of the metal is
2.0 × 10 11 N m–2.  Take g = 10 m s−2.

Solution : The situation is described in figure (14-W2). As
the 1 kg mass is in equilibrium, the tension in the lower
wire equals the weight of the load.

Thus         T1 = 10 N

Stress = 10 N/0.005 cm 2

= 2 × 10 7 N m−2.

Longitudinal strain = 
stress

Y
 = 

2 × 10 7 N m−2

2 × 10 11 N m−2 = 10 − 4.

Considering the equilibrium of the upper block, we can
write,

            T2 = 20 N + T1,     or,    T2 = 30 N.

Stress = 30 N/0.005 cm2

= 6 × 10 7 N m−2.

Longitudinal strain = 
6 × 10 7 N m−2

2 × 10 11 N m−2 = 3 × 10 − 4 .

 7. Each of the three blocks P, Q and R shown in figure
(14-W3) has a mass of 3 kg. Each of the wires A and B
has cross-sectional area 0.005 cm 2 and Young modulus
2 × 10 11 N m−2. Neglect friction. Find the longitudinal
strain developed in each of the wires. Take g = 10 m s–2.

Solution : The block R will descend vertically and the
blocks P and Q will move on the frictionless horizontal
table. Let the common magnitude of the acceleration be
a. Let the tensions in the wires A and B be TA and TB

respectively.
Writing the equations of motion of the blocks P, Q and
R, we get,

               TA = (3 kg) a … (i)
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             TB − TA = (3 kg) a … (ii)

   and (3 kg) g − TB = (3 kg) a. … (iii)

By (i) and (ii),
         TB = 2 TA .

By (i) and (iii),
              TA + TB = (3 kg) g = 30 N
or, 3 TA = 30 N
or,    TA = 10 N  and  TB = 20 N.

Longitudinal  strain = 
Longitudinal  stress

Young  modulus

Strain  in  wire  A = 
10 N/0.005 cm2

2 × 10 11 N m−2
 = 10 − 4

and strain  in  wire  B = 
20 N/0.005 cm2

2 × 10 11 N m−2
 = 2 × 10− 4.

 8. A wire of area of cross section 3.0 mm 2 and natural
length 50 cm is fixed at one end and a mass of 2.1 kg is
hung from the other end. Find the elastic potential energy
stored in the wire in steady state. Young modulus of the
material of the wire = 1.9 × 10 11 N m–2. Take
g = 10 m s−2.

Solution : The volume of the wire is

       V = (3.0 mm2) (50 cm)

     = (3.0 × 10 − 6 m2) (0.50 m) = 1.5 × 10 − 6 m3.

Tension in the wire is
T = mg

= (2.1 kg) (10 m s−2) = 21 N.

The stress = T/A

= 
21 N

3.0 mm 2
 = 7.0 × 10 6 N m−2.

The strain = stress/Y

= 
7.0 × 10 6 N m−2

1.9 × 10 11 N m−2
 = 3.7 × 10 − 5.

The elastic potential energy of the wire is

    U = 
1
2

 (stress) (strain) (volume)

= 
1
2

 (7.0 × 10 6 N m−2) (3.7 × 10 − 5) (1.5 × 10 − 6 m3)

     = 1.9 × 10 − 4 J.

 9. A block of weight 10 N is fastened to one end of a wire
of cross-sectional area 3 mm 2 and is rotated in a vertical
circle of radius 20 cm. The speed of the block at the
bottom of the circle is 2 m s–1. Find the elongation of the
wire when the block is at the bottom of the circle. Young
modulus of the material of the wire = 2 × 10 11 N m−2.

Solution : Forces acting on the block are (a) the tension T
and (b) the weight W. At the lowest point, the resultant

force is T − W towards the centre. As the block is going
in a circle, the net force towards the centre should be
mv2/r with usual symbols. Thus,

         T − W = mv2/r

or,         T = W + mv2/r

= 10 N + 
(1 kg) (2 m s−1)2

0.2 m
 = 30 N

We have Y = 
T/A
l/L

or, l = 
TL
AY

= 
30 N × (20 cm)

(3 × 10 − 6 m2) × (2 × 1011 N m−2)
= 5 × 10 − 5 × 20 cm = 10 − 3 cm.

10. A uniform heavy rod of weight W, cross-sectional area A
and length L is hanging from a fixed support. Young
modulus of the material of the rod is Y. Neglect the
lateral contraction. Find the elongation of the rod.

Solution : Consider a small length dx of the rod at a
distance x from the fixed end. The part below this small
element has length L − x. The tension T of the rod at
the element equals the weight of the rod below it.

            T = (L − x) W
L

 ⋅

Elongation in the element is given by
       elongation = original length × stress/Y

= 
T dx
AY

 = 
(L − x) W dx

LAY
 ⋅

The total elongation = ∫ 
0

L

 
(L − x) W dx

LAY

= 
W

LAY
 



Lx − 

x 2

2


 0

 L

 = 
WL
2AY

 ⋅

11. There is an air bubble of radius 1.0 mm in a liquid of
surface tension 0.075 N m–1 and density 1000 kg m–3. The
bubble is at a depth of 10 cm below the free surface. By
what amount is the pressure inside the bubble greater

than the atmospheric pressure ? Take g = 9.8 m s−2.
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Solution :

Let the atmospheric pressure be P0. The pressure of the
liquid just outside the bubble is (figure 14-W5)

           P = P0 + hρg.

The pressure inside the bubble is 

 P ′ = P + 
2 S
r

 = P0 + hρg + 
2 S
r

or, P ′ − P0

    = (10 cm) (1000 kg m−3) (9.8 m s−2) + 
2 × 0.075 N m−1

1.0 × 10 − 3 m

   = 980 N m−2 + 150 N m−2

        = 1130 Pa.

12. A light wire AB of length 10 cm can slide on a vertical
frame as shown in figure (14-W6). There is a film of soap
solution trapped between the frame and the wire. Find
the load W that should be suspended from the wire to
keep it in equilibrium. Neglect friction. Surface tension
of soap solution = 25 dyne cm–1. Take g = 10 m s–2.

Solution : Soap solution film will be formed on both sides
of the frame. Each film is in contact with the wire along
a distance of 10 cm. The force exerted by the film on
the wire

       = 2 × (10 cm) × (25 dyne cm−1)

= 500 dyne = 5 × 10 − 3 N.

This force acts vertically upward and should be balanced
by the load. Hence the load that should be suspended is
5 × 10 − 3 N. The mass of the  load  should be

5 × 10 − 3 N
10 m s−2  = 5 × 10 − 4 kg = 0.5 g.

13. The lower end of a capillary tube is dipped into water
and it is seen that the water rises through 7.5 cm in the
capillary. Find the radius of the capillary. Surface
tension of water = 7.5 × 10 – 2 N m–1. Contact angle
between water and glass = 0°. Take g = 10 m s−2.

Solution : We have,

       h = 
2 S cosθ

rρg

or, r = 
2 S cosθ

hρg

     = 
2 × (7.5 × 10 − 2 N m−1) × 1

(0.075 m) × (1000 kg m−3) × (10 m s−2)

= 2 × 10 − 4 m = 0.2 mm.

14. Two mercury drops each of radius r merge to form a
bigger drop. Calculate the surface energy released.

Solution :

Surface area of one drop before merging   = 4πr 2.

Total surface area of both the drops = 8πr 2.

Hence, the surface energy before merging = 8πr 2S.

When the drops merge, the volume of the bigger drop

         = 2 × 
4
3

 πr 3 = 
8
3

 π r 3.

If the radius of this new drop is R,

           
4
3

 π R 3 = 
8
3

 π r 3

or, R = 2 1/3r

or, 4π R 2 = 4 × 2 2/3 × π r 2.

Hence, the surface energy    = 4 × 2 2/3 × π r 2S.

The released surface energy = 8π r 2S − 4 × 2 2/3 π r 2S

≈ 1.65 π r 2S.

15. A large wooden plate of area 10 m 2 floating on the
surface of a river is made to move horizontally with a
speed of 2 m s–1 by applying a tangential force. If the river
is 1 m deep and the water in contact with the bed is
stationary, find the tangential force needed to keep the
plate moving. Coefficient of viscosity of water at the
temperature of the river = 10 − 2 poise.

Solution : The velocity decreases from 2 m s–1 to zero in
1 m of perpendicular length. Hence, velocity gradient

          = dv/dx = 2 s − 1.

Now,           η = 


F/A
dv/dx





or, 10 − 3 
N−s
m 2  = 

F
(10 m 2) (2 s − 1)

or, F = 0.02 N.

16. The velocity of water in a river is 18 km h–1 near the
surface. If the river is 5 m deep, find the shearing stress
between the horizontal layers of water. The coefficient of
viscosity of water = 10 − 2 poise.

Solution : The velocity gradient in vertical direction is
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dv
dx

 = 
18 km h−1

5 m
 = 1.0 s − 1.

The magnitude of the force of viscosity is

      F = ηA 
dv
dx

The shearing stress is

     F/A = η 
dv
dx

 = (10 − 2 poise) (1.0 s − 1) = 10 − 3 N m−2.

17. Find the terminal velocity of a rain drop of radius
0.01 mm. The coefficient of viscosity of air is 1.8 × 10 – 5

N–s m–2 and its density is 1.2 kg m–3. Density of water
= 1000 kg m–3. Take g = 10 m s–2.

Solution : The forces on the rain drop are

(a) the weight 
4
3

 π r 3ρ g downward,

(b) the force of buoyancy 
4
3

 π r 3 σ g upward,

(c) the force of viscosity 6πηrv upward.

Here ρ is the density of water and σ is the density of
air. At terminal velocity the net force is zero. As the
density of air is much smaller than the density of water,
the force of buoyance may be neglected.

Thus, at terminal velocity

   6πηrv = 
4
3

 πr 3ρg

or, v = 
2 r 2 ρ g

9η
 ⋅

= 
2 × (0.01 mm) 2 × (1000 kg m−3) (10 m s−2)

9 × (1.8 × 10 − 5 N−s m−2)

≈ 1.2 cm s−2.

QUESTIONS FOR SHORT ANSWER

 1. The ratio stress/strain remains constant for small
deformation of a metal wire. When the deformation is
made larger, will this ratio increase or decrease ?

 2. When a block of mass M is suspended by a long wire of
length L, the elastic potential energy stored in the wire

is 1
2
 × stress × strain × volume. Show that it is equal to

1
2
 Mgl, where l is the extension. The loss in gravitational

potential energy of the mass earth system is Mgl. Where

does the remaining 1
2
 Mgl energy go ?

 3. When the skeleton of an elephant and the skeleton of a
mouse are prepared in the same size, the bones of the
elephant are shown thicker than those of the mouse.
Explain why the bones of an elephant are thicker than
proportionate. The bones are expected to withstand the
stress due to the weight of the animal.

 4. The yield point of a typical solid is about 1%. Suppose
you are lying horizontally and two persons are pulling
your hands and two persons are pulling your legs along
your own length. How much will be the increase in your
length if the strain is 1% ? Do you think your yield point
is 1% or much less than that ?

 5. When rubber sheets are used in a shock absorber, what
happens to the energy of vibration ?

 6. If a compressed spring is dissolved in acid, what happens
to the elastic potential energy of the spring ?

 7. A steel blade placed gently on the surface of water floats
on it. If the same blade is kept well inside the water, it
sinks. Explain.

 8. When some wax is rubbed on a cloth, it becomes
waterproof. Explain.

 9. The contact angle between pure water and pure silver
is 90°. If a capillary tube made of silver is dipped at one
end in pure water, will the water rise in the capillary ?

10. It is said that a liquid rises or is depressed in a capillary
due to the surface tension. If a liquid neither rises nor
depresses in a capillary, can we conclude that the surface
tension of the liquid is zero ?

11. The contact angle between water and glass is 0°. When
water is poured in a glass to the maximum of its
capacity, the water surface is convex upward. The angle
of contact in such a situation is more than 90°. Explain.

12. A uniform vertical tube of circular cross section contains
a liquid. The contact angle is 90°. Consider a diameter
of the tube lying in the surface of the liquid. The surface
to the right of this diameter pulls the surface on the left
of it. What keeps the surface on the left in equilibrium ?

13. When a glass capillary tube is dipped at one end in
water, water rises in the tube. The gravitational
potential energy is thus increased. Is it a violation of
conservation of energy ?

14. If a mosquito is dipped into water and released, it is not
able to fly till it is dry again. Explain.

15. The force of surface tension acts tangentially to the
surface whereas the force due to air pressure acts
perpendicularly on the surface. How is then the force
due to excess pressure inside a bubble balanced by the
force due to the surface tension ?

16. When the size of a soap bubble is increased by pushing
more air in it, the surface area increases. Does it mean
that the average separation between the surface
molecules is increased ?
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17. Frictional force between solids operates even when they
do not move with respect to each other. Do we have
viscous force acting between two layers even if there is
no relative motion ?

18. Water near the bed of a deep river is quiet while that
near the surface flows. Give reasons.

19. If water in one flask and castor oil in other are violently
shaken and kept on a table, which will come to rest
earlier ?

 OBJECTIVE I

 1. A rope 1 cm in diameter breaks if the tension in it
exceeds 500 N. The maximum tension that may be given
to a similar rope of diameter 2 cm is
(a) 500 N   (b) 250 N   (c) 1000 N   (d) 2000 N.

 2. The breaking stress of a wire depends on
(a) material of the wire  (b) length of the wire
(c) radius of the wire   (d) shape of the cross section.

 3. A wire can sustain the weight of 20 kg before breaking.
If the wire is cut into two equal parts, each part can
sustain a weight of
(a) 10 kg    (b) 20 kg    (c) 40 kg    (d) 80 kg.

 4. Two wires A and B are made of same material. The wire
A has a length l and diameter r while the wire B has a
length 2l and diameter r/2. If the two wires are stretched
by the same force, the elongation in A divided by the
elongation in B is
(a) 1/8       (b) 1/4      (c) 4       (d) 8.

 5. A wire elongates by 1.0 mm when a load W is hung from
it. If this wire goes over a pulley and two weights W
each are hung at the two ends, the elongation of the
wire will be
(a) 0.5 m     (b) 1.0 mm   (c) 2.0 mm   (d) 4.0 mm.

 6. A heavy uniform rod is hanging vertically from a fixed
support. It is stretched by its own weight. The diameter
of the rod is
(a) smallest at the top and gradually increases down the
rod
(b) largest at the top and gradually decreases down the
rod
(c) uniform everywhere
(d) maximum in the middle.

 7. When a metal wire is stretched by a load, the fractional
change in its volume ∆V/V is proportional to

(a) 
∆l
l

    (b) 




∆l
l





 2

   (c) √∆l/l    (d) none of these.

 8. The length of a metal wire is l1 when the tension in it
is T1 and is l2 when the tension is T2. The natural length
of the wire is

(a) 
l1 + l2

2
   (b) √l1l2    (c) 

l1T2 − l2T1

T2 − T1

   (d) 
l1T2 + l2T1

T2 + T1

 ⋅

 9. A heavy mass is attached to a thin wire and is whirled
in a vertical circle. The wire is most likely to break
(a) when the mass is at the highest point
(b) when the mass is at the lowest point
(c) when the wire is horizontal
(d) at an angle of cos − 1(1/3) from the upward vertical.

10. When a metal wire elongates by hanging a load on it,
the gravitational potential energy is decreased.
(a) This energy completely appears as the increased
kinetic  energy of the block.
(b) This energy completely appears as the increased
elastic  potential energy of the wire.
(c) This energy completely appears as heat.
(d) None of these.

11. By a surface of a liquid we mean
(a) a geometrical plane like x = 0
(b) all molecules exposed to the atmosphere
(c) a layer of thickness of the order of 10 − 8 m
(d) a layer of thickness of the order of 10 − 4 m.

12 An ice cube is suspended in vacuum in a gravity free
hall. As the ice melts it
(a) will retain its cubical shape
(b) will change its shape to spherical
(c) will fall down on the floor of the hall
(d) will fly up.

13. When water droplets merge to form a bigger drop
(a) energy is liberated         (b) energy is absorbed
(c) energy is neither liberated nor absobred
(d) energy may either be liberated or absorbed
depending on  the nature of the liquid.

14. The dimension ML− 1 T − 2 can correspond to
(a) moment of a force      (b) surface tension
(c) modulus of elasticity     (d) coefficient of viscosity.

15. Air is pushed into a soap bubble of radius r to double
its radius. If the surface tension of the soap solution is
S, the work done in the process is
(a) 8 π r 2S   (b) 12 π r 2S   (c) 16 π r 2S  (d) 24 π r 2S.

16. If more air is pushed in a soap bubble, the pressure in
it
(a) decreases               (b) increases
(c) remains same            (d) becomes zero.

17. If two soap bubbles of different radii are connected by
a tube,
(a) air flows from bigger bubble to the smaller bubble
till  the sizes become equal
(b) air flows from bigger bubble to the smaller bubble
till  the sizes are interchanged
(c) air flows from the smaller bubble to the bigger
(d) there is no flow of air.

18. Figure (14-Q1) shows a capillary tube of radius r dipped
into water. If the atmospheric pressure is P0 , the
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pressure at point A is

(a) P0   (b) P0  
2 S
r

   (c) P0  
2 S
r

   (d) P0  
4 S
r

 

19. The excess pressure inside a soap bubble is twice the
excess pressure inside a second soap bubble. The volume
of the first bubble is n times the volume of the second
where n is
(a) 4      (b) 2       (c) 1      (d) 0.125.

20. Which of the following graphs may represent the relation
between the capillary rise h and the radius r of the
capillary ?

21. Water rises in a vertical capillary tube up to a length
of 10 cm. If the tube is inclined at 45, the length of
water risen in the tube will be
(a) 10 cm                  (b) 102 cm 
(c) 10/2 cm                (d) none of these.

22. A 20 cm long capillary tube is dipped in water. The
water rises up to 8 cm. If the entire arrangement is put
in a freely falling elevator, the length of water column
in the capillary tube will be
(a) 8 cm    (b) 6 cm    (c) 10 cm    (d) 20 cm.

23. Viscosity is a property of
(a) liquids only          (b) solids only
(c) solids and liquids only  (d) liquids and gases only.

24. The force of viscosity is
(a) electromagnetic (b) gravitational (c) nuclear (d) weak.

25. The viscous force acting between two layers of a liquid

is given by 
F
A

    dv
dz

  This F/A may be called

(a) pressure             (b) longitudinal stress
(c) tangential stress        (d) volume stress.

26. A raindrop falls near the surface of the earth with
almost uniform velocity because
(a) its weight is negligible
(b) the force of surface tension balances its weight
(c) the force of viscosity of air balances its weight
(d) the drops are charged and atmospheric electric field
balances its weight.

27. A piece of wood is taken deep inside a long column of
water and released. It will move up
(a) with a constant upward acceleration
(b) with a decreasing upward acceleration
(c) with a deceleration
(d) with a uniform velocity.

28. A solid sphere falls with a terminal velocity of 20 m s–1

in air. If it is allowed to fall in vacuum,
(a) terminal velocity will be 20 m s–1

(b) terminal velocity will be less than 20 m s–1

(c) terminal velocity will be more than 20 m s–1

(d) there will be no terminal velocity.
29. A spherical ball is dropped in a long column of a viscous

liquid. The speed of the ball as a function of time may
be best represented by the graph
(a) A       (b) B       (c) C       (d) D.

OBJECTIVE II

 1. A student plots a graph from his readings on the
determination of Young modulus of a metal wire but
forgets to put the labels (figure 14-Q4). The quantities
on X and Y-axes may be respectively
(a) weight hung and length increased
(b) stress applied and length increased
(c) stress applied and strain developed
(d) length increased and the weight hung.

 2. The properties of a surface are different from those of
the bulk liquid because the surface molecules
(a) are smaller than other molelcules
(b) acquire charge due to collision from air molecules
(c) find different type of molecules in their range of
influence
(d) feel a net force in one direction.

 3. The rise of a liquid in a capillary tube depends on
(a) the material     (b) the length
(c) the outer radius   (d) the inner radius of the tube.

 4. The contact angle between a solid and a liquid is a
property of
(a) the material of the solid
(b) the material of the liquid
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(c) the shape of the solid
(d) the mass of the solid.

 5. A liquid is contained in a vertical tube of semicircular
cross section (figure 14-Q5). The contact angle is zero.
The force of surface tension on the curved part and on
the flat part are in ratio
(a) 1 : 1     (b) 1 : 2     (c)  : 2     (d) 2 : .

 6. When a capillary tube is dipped into a liquid, the liquid
neither rises nor falls in the capillary.
(a) The surface tension of the liquid must be zero.
(b) The contact angle must be 90.
(c) The surface tension may be zero.
(d) The contact angle may be 90.

 7. A solid sphere moves at a terminal velocity of 20 m s–1

in air at a place where g  9.8 m s–2. The sphere is taken
in a gravity-free hall having air at the same pressure
and pushed down at a speed of 20 m s–1.
(a) Its initial acceleration will be 9.8 m s–2 downward.
(b) Its initial acceleration will be 9.8 m s–2 upward.
(c) The magnitude of acceleration will decrease as the
time  passes.
(d) It will eventually stop.

EXERCISES

 1. A load of 10 kg is suspended by a metal wire 3 m long
and having a cross-sectional area 4 mm 2. Find (a) the
stress (b) the strain and (c) the elongation. Young
modulus of the metal is 2.0  10 11 N m–2.

 2. A vertical metal cylinder of radius 2 cm and length 2 m
is fixed at the lower end and a load of 100 kg is put on
it. Find (a) the stress (b) the strain and (c) the
compression of the cylinder. Young modulus of the metal
 2  10 11 N m2.

 3. The elastic limit of steel is 8  10 8 N m2 and its Young
modulus 2  10 11 N m2. Find the maximum elongation
of a half-metre steel wire that can be given without
exceeding the elastic limit.

 4. A steel wire and a copper wire of equal length and equal
cross-sectional area are joined end to end and the
combination is subjected to a tension. Find the ratio of
(a) the stresses developed in the two wires and (b) the
strains developed. Y of steel  2  1011 N m2. Y of copper
 1.3  1011 N m–2.

 5. In figure (14-E1) the upper wire is made of steel and
the lower of copper. The wires have equal cross section.
Find the ratio of the longitudinal strains developed in
the two wires.

 6. The two wires shown in figure (14-E2) are made of the

   same material which has a breaking stress of
8  10 8 N m2. The area of cross section of the upper wire
is 0.006 cm 2 and that of the lower wire is 0.003 cm 2.
The mass  m1  10 kg,  m2  20 kg and the hanger is
light. (a) Find the maximum load that can be put on the
hanger without breaking a wire. Which wire will break
first if the load is increased ? (b) Repeat the above part
if m1  10 kg  and  m2  36 kg.

 7. Two persons pull a rope towards themselves. Each
person exerts a force of 100 N on the rope. Find the
Young modulus of the material of the rope if it extends
in length by 1 cm. Original length of the rope  2 m and
the area of cross section  2 cm 2.

 8. A steel rod of cross-sectional area 4 cm 2 and length 2 m
shrinks by 0.1 cm as the temperature decreases in night.
If the rod is clamped at both ends during the day hours,
find the tension developed in it during night hours.
Young modulus of steel  1.9  10 11 N m–2.

 9. Consider the situation shown in figure (14-E3). The force
F is equal to the m2 g/2. If the area of cross section of
the string is A and its Young modulus Y, find the strain
developed in it. The string is light and there is no friction
anywhere.

10. A sphere of mass 20 kg is suspended by a metal wire
of unstretched length 4 m and diameter 1 mm. When in
equilibrium, there is a clear gap of 2 mm between the
sphere and the floor. The sphere is gently pushed aside
so that the wire makes an angle  with the vertical and
is released. Find the maximum value of  so that the
sphere does not rub the floor. Young modulus of the
metal of the wire is 2.0 10 11 N m–2. Make appropriate
approximations.
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11. A steel wire of original length 1 m and cross-sectional
area 4.00 mm2 is clamped at the two ends so that it lies
horizontally and without tension. If a load of 2.16 kg is
suspended from the middle point of the wire, what would
be its vertical depression ?

Y of the steel  2.0  1011 N m2. Take g  10 m s–2.
12. A copper wire of cross-sectional area 0.01 cm 2 is under

a tension of 20 N. Find the decrease in the
cross-sectional area. Young modulus of copper
 1.1  1011 N m–2 and Poisson ratio  0.32.

                        [Hint : 
A
A

  2 
r
r

]

13. Find the increase in pressure required to decrease the
volume of a water sample by 0.01%. Bulk modulus of
water  2.1  10 9 N m–2.

14. Estimate the change in the density of water in ocean at
a depth of 400 m below the surface. The density of water
at the surface  1030 kg m3 and the bulk modulus of
water  2  10 9 N m2.

15. A steel plate of face area 4 cm2 and thickness 0.5 cm is
fixed rigidly at the lower surface. A tangential force of
10 N is applied on the upper surface. Find the lateral
displacement of the upper surface with respect to the
lower surface. Rigidity modulus of steel

 8.4  1010 N m2.
16. A 5.0 cm long straight piece of thread is kept on the

surface of water. Find the force with which the surface
on one side of the thread pulls it. Surface tension of
water  0.076 N m–1.

17. Find the excess pressure inside (a) a drop of mercury of
radius 2 mm (b) a soap bubble of radius 4 mm and (c) an
air bubble of radius 4 mm formed inside a tank of water.
Surface tension of mercury, soap solution and water are
0.465 N m–1, 0.03 N m–1 and 0.076 N m–1 respectively.

18. Consider a small surface area of 1 mm 2 at the top of a
mercury drop of radius 4.0 mm. Find the force exerted
on this area (a) by the air above it (b) by the mercury
below it and (c) by the mercury surface in contact with
it. Atmospheric pressure  1.0  10 5 Pa and surface
tension of mercury  0.465 N m–1. Neglect the effect of
gravity. Assume all numbers to be exact.

19. The capillaries shown in figure (14-E4) have inner radii
0.5 mm, 1.0 mm and 1.5 mm respectively. The liquid in
the beaker is water. Find the heights of water level in
the capillaries. The surface tension of water is
7.5  10– 2 N m–1.

20. The lower end of a capillary tube is immersed in
mercury. The level of mercury in the tube is found to
be 2 cm below the outer level. If the same tube is
immersed in water, up to what height will the water
rise in the capillary ?

21. A barometer is constructed with its tube having radius
1.0 mm. Assume that the surface of mercury in the tube
is spherical in shape. If the atmospheric pressure is
equal to 76 cm of mercury, what will be the height raised
in the barometer tube? The contact angle of mercury
with glass  135 and surface tension of mercury
 0.465 N m–1. Density of mercury  13600 kg m3.

22. A capillary tube of radius 0.50 mm is dipped vertically
in a pot of water. Find the difference between the
pressure of the water in the tube 5.0 cm below the
surface and the atmospheric pressure. Surface tension
of water  0.075 N m–1.

23. Find the surface energy of water kept in a cylindrical
vessel of radius 6.0 cm. Surface tension of water
 0.075 J m–2.

24. A drop of mercury of radius 2 mm is split into 8 identical
droplets. Find the increase in surface energy. Surface
tension of mercury  0.465 J m–2.

25. A capillary tube of radius 1 mm is kept vertical with
the lower end in water. (a) Find the height of water
raised in the capillary. (b) If the length of the capillary
tube is half the answer of part (a), find the angle  made
by the water surface in the capillary with the wall.

26. The lower end of a capillary tube of radius 1 mm is
dipped vertically into mercury. (a) Find the depression
of mercury column in the capillary. (b) If the length
dipped inside is half the answer of part (a), find the
angle made by the mercury surface at the end of the
capillary with the vertical. Surface tension of mercury
 0.465 N m–1 and the contact angle of mercury with
glass  135.

27. Two large glass plates are placed vertically and parallel
to each other inside a tank of water with separation
between the plates equal to 1 mm. Find the rise of water
in the space between the plates. Surface tension of water
 0.075 N m–1.

28. Consider an ice cube of edge 1.0 cm kept in a gravity-free
hall. Find the surface area of the water when the ice melts.
Neglect the difference in densities of ice and water.

29. A wire forming a loop is dipped into soap solution and
taken out so that a film of soap solution is formed. A
loop of 6.28 cm long thread is gently put on the film and
the film is pricked with a needle inside the loop. The
thread loop takes the shape of a circle. Find the tension
in the thread. Surface tension of soap solution
 0.030 N m–1.

30. A metal sphere of radius 1 mm and mass 50 mg falls
vertically in glycerine. Find (a) the viscous force exerted
by the glycerine on the sphere when the speed of the
sphere is 1 cm s–1, (b) the hydrostatic force exerted by
the glycerine on the sphere and (c) the terminal velocity
with which the sphere will move down without
acceleration. Density of glycerine  1260 kg m3 and its
coefficient of viscosity at room temperature  8.0 poise.

31. Estimate the speed of vertically falling raindrops from
the following data. Radius of the drops  0.02 cm,
viscosity of air  1.8  10 4 poise, g = 10 m s2 and density
of water  1000 kg m3.
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32. Water flows at a speed of 6 cm s–1 through a tube of
radius 1 cm. Coefficient of viscosity of water at room

temperature is 0.01 poise. Calculate the Reynolds
number. Is it a steady flow ?

ANSWERS

OBJECTIVE I

 1. (d)  2. (a)  3. (b)  4. (a)  5. (b)  6. (a)
 7. (a)  8. (c)  9. (b) 10. (d) 11. (c) 12. (b)
13. (a) 14. (c) 15. (d) 16. (a) 17. (c) 18. (c)
19. (d) 20. (c) 21. (b) 22. (d) 23. (d) 24. (a)
25. (c) 26. (c) 27. (b) 28. (d) 29. (b)

OBJECTIVE II

 1. all  2. (c), (d)  3. (a), (b), (d)
 4. (a), (b)  5. (c)  6. (c), (d)
 7. (b), (c), (d)

EXERCISES

 1. (a) 2.5  107 N m2    (b) 1.25  10  4   (c) 3.75  10  4 m

 2. (a) 7.96  10 5 N m2  (b) 4  10  6      (c) 8  10  6 m

 3. 2 mm

 4. (a) 1  (b) 
strain  in  copper  wire
strain  in  steel  wire

  
20
13

 5. 
strain  in  copper  wire
strain  in  steel  wire

  1.54

 6. (a) 14 kg, lower   (b) 2 kg, upper

 7. 1  108 N m2

 8. 3.8  104 N

 9. 
m2 g2m1  m2
2 AYm1  m2

10. 36.4

11. 1.5 cm

12. 1.164  10 6 cm2

13. 2.1  10 6 N m2

14. 2 kg m3

15. 1.5  10  9 m

16. 3.8  10  3 N

17. (a) 465 N m2 (b) 30 N m2

   (c) 38 N m2

18. (a) 0.1 N (b) 0.10023 N
    (c) 0.00023 N
19. 3 cm in A, 1.5 cm in B, 1 cm in C
20. 5.73 cm
21. 75.5 cm

22. 190 N m2

23. 8.5  10 – 4 J

24. 23.4  J

25. (a) 1.5 cm (b) 60
26. (a) 4.93 mm (b) 111
27. 1.5  cm

28. 36 1/3 cm 2

29. 6  10  4 N

30. (a) 1.5  10  4 N  (b) 5.2  10 – 5 N  (c) 2.9 cm s–1

31. 5 m s–1

32. 1200, yes.
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CHAPTER 15

WAVE MOTION AND WAVES
ON A STRING

15.1 WAVE MOTION

When a particle moves through space, it carries
kinetic energy with itself. Wherever the particle goes,
the energy goes with it. The energy is associated with
the particle and is transported from one region of the
space to the other together with the particle just like
we ride a car and are taken from Lucknow to Varanasi
with the car.

There is another way to transport energy from one
part of space to the other without any bulk motion of
material together with it. Sound is transmitted in air
in this manner. When you say “Hello” to your friend,
no material particle is ejected from your lips and falls
on your friend’s ear. You create some disturbance in
the part of the air close to your lips. Energy is
transferred to these air particles either by pushing
them ahead or pulling them back. The density of the
air in this part temporarily increases or decreases.
These disturbed particles exert force on the next layer
of air, transferring the disturbance to that layer. In
this way, the disturbance proceeds in air and finally
the air near the ear of the listener gets disturbed.

The disturbance produced in the air near the
speaker travels in air, the air itself does not move. The
air that is near the speaker at the time of uttering a
word remains all the time near the speaker even when
the message reaches the listener. This type of motion
of energy is called a wave motion.

To give another example of propagation of energy
without bulk motion of matter, suppose many persons
are standing in a queue to buy cinema tickets from
the ticket counter. It is not yet time, the counter is
closed and the persons are getting annoyed. The last
person in the queue is somewhat unruly, he leans
forward pushing the man in front of him and then
stands straight. The second last person, getting the
jerk from behind, is forced to lean forward and push
the man in front. This second last person manages to

stand straight again but the third last person
temporarily loses balance and leans forward. The jerk
thus travels down the queue and finally the person at
the front of the queue feels it. With the jerk, travels
the energy down the queue from one end to another
though the last person and the first person are still in
their previous positions.

The world is full of examples of wave motion. When
raindrops hit the surface of calm water, circular waves
can be seen travelling on the surface. Any particle of
water is only locally displaced for a short time but the
disturbance spreads and the particles farther and
farther get disturbed when the wave reaches them.
Another common example of wave motion is the wave
associated with light. One speciality about this wave
is that it does not require any material medium for its
propagation. The waves requiring a medium are called
mechanical waves and those which do not require a
medium are called nonmechanical waves.

In the present chapter, we shall study the waves
on a stretched string, a mechanical wave in one
dimension.

15.2 WAVE PULSE ON A STRING

Let us consider a long string with one end fixed to
a wall and the other held by a person. The person pulls
on the string keeping it tight. Suppose the person
snaps his hand a little up and down producing a bump
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in the string near his hand (Figure 15.2). The
operation takes a very small time, say, one-tenth of a
second after which the person stands still holding the
string tight in his hand. What happens as time
passes ?

Experiments show that if the vertical displacement
given is small, the disturbance travels down the string
with constant speed. Figure (15.2) also shows the
status of the string at successive instants. As time
passes, the “bump” travels on the string towards right.
For an elastic and homogeneous string, the bump
moves with constant speed to cover equal distances in
equal time. Also, the shape of the bump is not altered
as it moves, provided the bump is small. Notice that
no part of the string moves from left to right. The
person is holding the left end tight and the string
cannot slip from his hand. The part of the string,
where the bump is present at an instant, is in up–down
motion. As time passes, this part again regains its
normal position. The person does some work on the
part close to his hand giving some energy to that part.
This disturbed part exerts elastic force on the part to
the right and transfers the energy, the bump thus
moves on to the right. In this way, different parts of
the string are successively disturbed, transmitting the
energy from left to right.

When a disturbance is localised only to a small
part of the space at a time, we say that a wave pulse
is passing through that part of the space. This happens
when the source producing the disturbance (hand in
this case) is active only for a short time. If the source
is active for some extended time repeating its motion
several times, we get a wave train or a wave packet.
For example, if the person in figure (15.2) decides to
vibrate his hand up and down 10 times and then stop,
a wave train consisting of 10 loops will proceed on the
string.

Equation of a Travelling Wave

Suppose, in the example of figure (15.2), the man
starts snapping his hand at t = 0 and finishes his job
at t = ∆t. The vertical displacement y of the left end of
the string is a function of time. It is zero for t < 0, has
nonzero value for 0 < t < ∆t and is again zero for
t > ∆t. Let us represent this function by f(t). Take the
left end of the string as the origin and take the X-axis

along the string towards right. The function f(t)
represents the displacement y of the particle at x = 0
as a function of time
             y(x = 0, t) = f(t).

The disturbance travels on the string towards right
with a constant speed v. Thus, the displacement,
produced at the left end at time t, reaches the point x
at time t + x/v. Similarly, the displacement of the
particle at point x at time t was originated at the left
end at the time t − x/v. But the displacement of the
left end at time t − x/v is f(t − x/v). Hence,

          y(x, t) = y(x = 0, t − x/v)
           = f(t − x/v).

The displacement of the particle at x at time t, i.e.,
y(x, t) is generally abbreviated as y and the wave
equation is written as
            y = f(t − x/v). … (15.1)

Equation (15.1) represents a wave travelling in the
positive x-direction with a constant speed v. Such a
wave is called a travelling wave  or a progressive wave.
The function f is arbitrary and depends on how the
source moves. The time t and the position x must
appear in the wave equation in the combination
t − x/v only. For example,

      y = A sin
(t − x/v)

T
 ,  y = A e

 − 
(t − x/v)

T

are valid wave equations. They represent waves
travelling in positive x-direction with constant speed.

The equation y = A sin 
(x 

2
 − v 

2
t 

2
)

L
2

 does not represent a

wave travelling in x-direction with a constant speed.

If a wave travels in negative x-direction with speed
v, its general equation may be written as
            y = f(t + x/v). … (15.2)

The wave travelling in positive x-direction (equation
15.1) can also be written as

             y = f 



vt − x
v





   or,         y = g(x − vt) , … (15.3)

where g is some other function having the following
meaning. If we put t = 0 in equation (15.3), we get the
displacement of various particles at t = 0, i.e.,
            y(x,  t = 0) = g(x).

Thus, g(x) represents the shape of the string at
t = 0. If the displacement of the different particles at
t = 0 is represented by the function g(x), the
displacement of the particle at x at time t will be
y = g(x − vt). Similarly, if the wave is travelling along
the negative x-direction and the displacement of

���

���

���

Figure 15.2
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different particles at t  0 is gx, the displacement of
the particle at x at time t will be
            y  gx  vt.  (15.4)

Thus, the function f in equations (15.1) and (15.2)
represents the displacement of the point x  0 as time
passes and g in (15.3) and (15.4) represents the
displacement at t  0 of different particles.

Example 15.1

   A wave is propagating on a long stretched string along
its length taken as the positive x-axis. The wave equation
is given as

             y  y0 e
  




t
T

  
x





2

, 

where y0  4 mm, T  1.0 s and   4 cm. (a) Find the
velocity of the wave. (b) Find the function ft giving the
displacement of the particle at x  0. (c) Find the function
gx giving the shape of the string at t  0. (d) Plot the
shape gx of the string at t  0. (e) Plot the shape of the
string at t  5 s.

Solution : (a) The wave equation may be written as

       y  y0 e
  

1

T
 2 



t  

x
/T





 2

.

Comparing with the general equation y  ft  x/v, we
see that

v  

T

  
4 cm
1.0 s

  4 cm s1.

(b) Putting x  0 in the given equation,

         ft  y0 e
  t/T

 2

.  (i)

(c) Putting t  0 in the given equation

         gx  y0 e
  x/

 2

.  (ii)

(d)

(e)

15.3 SINE WAVE TRAVELLING ON A STRING

What happens if the person holding the string in
figure (15.2) keeps waving his hand up and down
continuously. He keeps doing work on the string and

the energy is continuously supplied to the string. Any
part of the string continues to vibrate up and down
once the first disturbance has reached it. It receives
energy from the left, transmits it to the right and the
process continues till the person is not tired. The
nature of vibration of any particle is similar to that of
the left end, the only difference being that the motion
is repeated after a time delay of x/v.

A very important special case arises when the
person vibrates the left end x  0 in a simple harmonic
motion. The equation of motion of this end may then
be written as
            ft  A sin t,  (15.5)

where A represents the amplitude and  the angular
frequency. The time period of oscillation is T  2/
and the frequency of oscillation is   1/T  /2. The
wave produced by such a vibrating source is called a
sine wave or sinusoidal wave.

Since the displacement of the particle at x  0 is
given by (15.5), the displacement of the particle at x
at time t will be
            y  ft  x/v
   or,        y  A sin t  x/v.  (15.6)

This follows from the fact that the wave moves
along the string with a constant speed v and the
displacement of the particle at x at time t was
originated at x  0 at time t  x/v.

The velocity of the particle at x at time t is given
by

          
y
t

  A  cos t  x/v.  (15.7)

The symbol 
t

 is used in place of d
dt

 to indicate that

while differentiating with respect to t, we should treat
x as constant. It is the same particle whose displacement
should be considered as a function of time.

This velocity is totally different from the wave
velocity v. The wave moves on the string at a constant
velocity v along the x-axis, but the particle moves up and

down with velocity y
t

 which changes with x and t

according to (15.7).
Figure (15.4) shows the shape of the string as time

passes. Each particle of the string vibrates in simple
harmonic motion with the same amplitude A and
frequency . The phases of the vibrations are, however,
different. When a particle P (figure 15.4) reaches its
extreme position in upward direction, the particle Q
little to its right, is still coming up and the particle R
little to its left, has already crossed that phase and is
going down. The phase difference is larger if the
particles are separated farther.

x = 0

Figure 15.3(a)

x = 20 cmx = 0

Figure 15.3(b)
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Each particle copies the motion of another particle
at its left with a time delay of x/v, where x is the
separation between the two particles. For the particles
P and W, shown in figure (15.4), the separation is
∆x = vT and the particle W copies the motion of P after
a time delay of ∆x/v = T. But the motion of any particle
at any instant is identical in all respects to its motion
a time period T later. So, a delay of one time period
is equivalent to no delay and hence, the particles P
and W vibrate in the same phase. They reach their
extreme positions together, they cross their mean
positions together, their displacements are identical
and their velocities are identical at any instant. Same
is true for any pair of particles separated by a distance
vT.   This separation is called the wavelength of the
wave and is denoted by the Greek letter λ. Thus,
λ = vT.

The above relation can easily be derived
mathematically. Suppose, the particles at x and x + L
vibrate in the same phase. By equation (15.6) and
(15.7),

      A sin


ω



t − 

x
v








 = A sin




ω




t − 

x + L
v









and   A ω cos


ω



t − 

x
v








 = A ω cos




ω




t − 

x + L
v








 .

This gives

       ω


t − 

x
v




 = ω




t − 

x + L
v




 + 2 n π,

where n is an integer,

   or,         0 = − 
ωL
v

 + 2 n π

   or,         L = 
v
ω

 2 n π.

The minimum separation between the particles
vibrating in same phase is obtained by putting n = 1
in the above equation. Thus, the wavelength is

           λ = 
v
ω

 2π = vT. … (15.8)

   Also,       v = λ/T = νλ, … (15.9)

where ν = 1/T is the frequency of the wave.
This represents an important relation between the

three characteristic parameters of a sine wave namely,
the wave velocity, the frequency and the wavelength.

The quantity 2π/λ is called the wave number and
is generally denoted by the letter k.

Thus,      k = 
2 π
λ

 = 
2πν
v

 = 
ω
v

 ⋅

The segment where the disturbance is positive is
called a crest of the wave and the segment where the
disturbance is negative is called a trough. The
separation between consecutive crests or between
consecutive troughs is equal to the wavelength.

Alternative Forms of Wave Equation

We have written the wave equation of a wave
travelling in x-direction as

       y = A sin ω(t − x/v).
This can also be written in several other forms

such as,
           y = A sin (ωt − kx) … (15.10)

          = A sin 2π



t
T

 − 
x
λ





… (15.11)

          = A sin k(vt − x). … (15.12)

Also, it should be noted that we have made our
particular choice of t = 0 in writing equation (15.5)
from which the wave equation is deduced. The origin
of time is chosen at an instant when the left end
x = 0 is crossing its mean position y = 0 and is going
up. For a general choice of the origin of time, we will
have to add a phase constant so that the equation will
be
         y = A sin[ω(t − x/v) + φ]. … (15.13)

The constant φ will be π/2 if we choose t = 0 at an
instant when the left end reaches its extreme position
y = A. The equation will then be

          y = A cos ω(t − x/v). … (15.14)

If t = 0 is taken at the instant when the left end
is crossing the mean position from upward to
downward direction, φ will be π and the equation will
be

          y = A sin ω



x
v

 − t


   or,        y = A sin(kx − ωt). … (15.15)

Example 15.2

   Consider the wave y = (5 mm) sin[(1 cm − 1)x − (60 s − 1)t].
Find (a) the amplitude, (b) the wave number, (c) the
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wavelength, (d) the frequency, (e) the time period and (f)
the wave velocity.

Solution : Comparing the given equation with equation
(15.15), we find
(a) amplitude   A  5 mm

(b) wave number k  1 cm 1

(c) wavelength   
2
k

  2 cm

(d) frequency   


2 
  

60
2 

 Hz

                  
30


 Hz

(e) time period T  
1


  


30
 s

(f) wave velocity  v     60 cm s1.

15.4 VELOCITY OF A WAVE ON A STRING

The velocity of a wave travelling on a string
depends on the elastic and the inertia properties of the
string. When a part of the string gets disturbed, it
exerts an extra force on the neighbouring part because
of the elastic property. The neighbouring part responds
to this force and the response depends on the inertia
property. The elastic force in the string is measured
by its tension F and the inertia by its mass per unit
length. We have used the symbol F for tension and not
T in order to avoid confusion with the time period.

Suppose a wave y  f 


t  x

v



 is travelling on the

string in the positive x-direction with a speed v. Let
us choose an observer who is riding on a car that
moves along the x-direction with the same velocity v
(figure 15.5). Looking from this frame, the pattern of
the string is at rest but the entire string is moving
towards the negative x-direction with a speed v. If a
crest is opposite to the observer at any instant, it will
always remain opposite to him with the same shape
while the string will pass through this crest in opposite
direction like a snake.

Consider a small element AB of the string of length
l at the highest point of a crest. Any small curve may
be approximated by a circular arc. Suppose the small
element l forms an arc of radius R. The particles of
the string in this element go in this circle with a speed
v as the string slides through this part. The general
situation is shown in figure (15.5a) and the expanded
view of the part near l is shown in figure (15.5b).

We assume that the displacements are small so
that the tension in the string does not appreciably
change because of the disturbance. The element AB is
pulled by the parts of the string to its right and to its
left. Resultant force on this element is in the
downward direction as shown in figure (15.5b) and its
magnitude is
       Fr  F sin  F sin  2F sin.
   As l is taken small,  will be small and

            sin  
l/2

R
   so that the resultant force on l is

           Fr  2F




l/2
R




  Fl/R.

If  be the mass per unit length of the string, the
element AB has a mass m  l . Its downward
acceleration is

          a  
Fr

m
  

Fl/R
 l

  
F
R

 

But the element is moving in a circle of radius R with
a constant speed v. Its acceleration is, therefore,

a  v 
2

R
  The above equation becomes

            
v 2

R
  F

R

   or,            v  F/ .  (15.16)

The velocity of the wave on a string thus depends
only on the tension F and the linear mass density .
We have used the approximation that the tension F
remains almost unchanged as the part of the string
vibrates up and down. This approximation is valid only
for small amplitudes because as the string vibrates,
the lengths of its parts change during the course of
vibration and hence, the tension changes.

Example 15.3

   Figure (15.6) shows a string of linear mass density
1.0 g cm–1 on which a wave  pulse  is travelling. Find the

            

(b)

(a)

v

y = f(t x/v)

Y

X
x

0

R

A B

FF

Figure 15.5
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time taken by the pulse in travelling through a distance
of 50 cm on the string. Take g  10 m s2.

Solution : The tension in the string is F  mg  10 N. The

mass per unit length is   1.0 g cm1  0.1 kg m1. The

wave velocity is, therefore, v  F/   10 N
0.1 kg m1

 10 m s1. The time taken by the pulse in travelling
through 50 cm is, therefore, 0.05 s.

15.5 POWER TRANSMITTED ALONG THE STRING
     BY A SINE WAVE

When a travelling wave is established on a string,
energy is transmitted along the direction of
propagation of the wave. Consider again a sine wave
travelling along a stretched string in x-direction. The
equation for the displacement in y-direction is

          y  A sin t  x/v.  (i)

Figure (15.7) shows a portion of the string at a
time t to the right of position x. The string on the left
of the point x exerts a force F on this part. The
direction of this force is along the tangent to the string
at position x. The component of the force along the
Y-axis is

     Fy   F sin   F tan   F 
y
x

 

The power delivered by the force F to the string
on the right of position x is, therefore,

         P  



 F 

y
x



 
y
t

 

By (i), it is

  F 







 

v



 A cos t  x/v




  A cos t  x/v

 
 2 A 2 F

v
 cos 2 t  x/v.

This is the rate at which energy is being
transmitted from left to right across the point at x.
The cos2 term oscillates between 0 and 1 during a cycle
and its average value is 1/2. The average power
transmitted across any point is, therefore,

      Pav  
1
2

 
 2A 2 F

v
  2 2  v A 2  2.  (15.17)

The power transmitted along the string is
proportional to the square of the amplitude and square
of the frequency of the wave.

Example 15.4

   The average power transmitted through a given point on
a string supporting a sine wave is 0.20 W when the
amplitude of the wave is 2.0 mm. What power will be
transmitted through this point if the amplitude is
increased to 3.0 mm.

Solution : Other things remaining the same, the power
transmitted is proportional to the square of the
amplitude.
Thus,

             
P2

P1

  
A2

 2

A1
 2 

or,         
P2

0.20 W
  

9
4

  2.25

or,            P2  2.25  0.20 W  0.45 W. 

15.6 INTERFERENCE AND
     THE PRINCIPLE OF SUPERPOSITION

So far we have considered a single wave passing
on a string. Suppose two persons are holding the string
at the two ends and snap their hands to start a wave
pulse each. One pulse starts from the left end and
travels on the string towards right, the other starts at
the right end and travels towards left. The pulses
travel at same speed although their shapes depend on
how the persons snap their hands. Figure (15.8) shows
the shape of the string as time passes.

The pulses travel towards each other, overlap and
recede from each other. The remarkable thing is that
the shapes of the pulses, as they emerge after the
overlap, are identical to their original shapes. Each
pulse has passed the overlap region so smoothly as if
the other pulse was not at all there. After the
encounter, each pulse looks just as it looked before and
each pulse travels just as it did before. The waves can
pass through each other freely without being modified.

�

�
�

�
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This is a unique property of the waves. The particles
cannot pass through each other, they collide and their
course of motion changes. How do we determine the
shape of the string at the time when the pulses
actually overlap ? The mechanism to know the
resultant displacement of a particle which is acted
upon by two or more waves simultaneously is very
simple. The displacement of the particle is equal to the
sum of the displacements the waves would have
individually produced. If the first wave alone is
travelling, let us say it displaces the particle by 0.2 cm
upward and if the second wave alone is travelling,
suppose the displacement of this same particle is
0.4 cm upward at that instant. The displacement of
the particle at that instant will be 0.6 cm upward if
both the waves pass through that particle
simultaneously. The displacement of the particles, if
the first wave alone were travelling, may be written as

          y1 = f1(t − x/v)

and the displacement if the second wave alone were
travelling may be written as

          y2 = f2(t + x/v).

If both the waves are travelling on the string, the
displacement of its different particles will be given by

     y = y1 + y2 = f1(t − x/v) + f2(t + x/v).

The two individual displacements may be in
opposite directions. The magnitude of the resulting
displacement may be smaller than the magnitudes of
the individual displacements.

If two wave pulses, approaching each other, are
identical in shape except that one is inverted with
respect to the other, at some instant the displacement
of all the particles will be zero. However, the velocities
of the particles will not be zero as the waves will
emerge in the two directions shortly. Such a situation
is shown in figure (15.8b). We see that there is an
instant when the string is straight every where. But
soon the wave pulses emerge which move away from
each other.

Suppose one person snaps the end up and down
whereas the other person snaps his end sideways. The
displacements produced are at right angles to each
other as indicated in figure (15.9). When the two waves
overlap, the resultant displacement of any particle is
the vector sum of the two individual displacements.

The above observations about the overlap of the
waves may be summarised in the following statement
which is known as the principle of superposition.

 When two or more waves simultaneously pass
through a point, the disturbance at the point is given
by the sum of the disturbances each wave would
produce in absence of the other wave(s).

In general, the principle of superposition is valid
for small disturbances only. If the string is stretched
too far, the individual displacements do not add to give
the resultant displacement.  Such waves are called
nonlinear waves. In this course, we shall only be
talking about linear waves which obey the
superposition principle.

When two or more waves pass through the same
region simultaneously we say that the waves interfere
or the interference of waves takes place. The principle
of superposition says that the phenomenon of wave
interference is remarkably simple. Each wave makes
its own contribution to the disturbance no matter what
the other waves are doing.

15.7 INTERFERENCE OF WAVES
     GOING IN SAME DIRECTION

Suppose two identical sources send sinusoidal
waves of same angular frequency ω in positive
x-direction. Also, the wave velocity and hence, the
wave number k is same for the two waves. One source
may be started a little later than the other or the two
sources may be situated at different points. The two
waves arriving at a point then differ in phase. Let the
amplitudes of the two waves be A1 and A2 and the two
waves differ in phase by an angle δ. Their equations
may be written as

         y1 = A1 sin(kx − ωt)
and       y2 = A2 sin(kx − ωt + δ).
According to the principle of superposition, the

resultant wave is represented by
y = y1 + y2 = A1 sin(kx − ωt) + A2 sin(kx − ωt + δ)
 = A1 sin(kx − ωt) + A2 sin(kx − ωt) cosδ

                      + A2 cos(kx − ωt)sinδ
 = sin(kx − ωt) (A1 + A2cosδ) + cos(kx − ωt) (A2sinδ).

We can evaluate it using the method described in
Chapter-12 to combine two simple harmonic motions.

If we write
          A1 + A2 cosδ = A cos ε … (i)

   and         A2 sinδ = A sin ε, … (ii)

we get
  y = A [sin(kx − ωt) cos ε + cos(kx − ωt) sin ε]

   = A sin(kx − ωt + ε).
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Figure 15.9 
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Thus, the resultant is indeed a sine wave of amplitude
A with a phase difference ε with the first wave. By (i)
and (ii),

     A 2 = A 2 cos 2ε + A 2 sin 2ε

        = (A1 + A2 cosδ) 2 + (A2 sinδ) 2

        = A1
 2 + A2

 2 + 2A1 A2 cosδ

   or,     A = √A1
 2 + A2

 2 + 2 A 1 A2 cosδ . … (15.18)

   Also, tan ε = 
A sin ε
A cos ε

 = 
A2 sinδ

A1 + A2 cosδ
 ⋅ … (15.19)

As discussed in Chapter-12, these relations may be
remembered by using a geometrical model. We draw
a vector of length A1 to represent y1 = A1 sin(kx − ωt)
and another vector of length A2 at an angle δ with the
first one to represent y2 = A2 sin(kx − ωt + δ). The
resultant of the two vectors then represents the
resultant wave y = A sin(kx − ωt + ε). Figure (15.10)
shows the construction.

Constructive and Destructive Interference

We see from equation (15.18) that the resultant
amplitude A is maximum when cosδ = + 1, or
δ = 2 n π and is minimum when cosδ = − 1, or
δ = (2 n + 1) π, where n is an integer. In the first case,
the amplitude is A1 + A2 and in the second case, it is
|A1 − A2|. The two cases are called constructive and
destructive interferences respectively. The conditions
may be written as,
constructive  interference : δ = 2 n π
destructive  interference   : δ = (2 n + 1) π 


… (15.20)

Example 15.5

   Two waves are simultaneously passing through a string.
The equations of the waves are given by
          y1 = A1 sin k(x − vt)
and        y2 = A2 sin k(x − vt + x0),

where the wave number k = 6.28 cm − 1 and x0 = 1.50 cm.
The amplitudes are A1 = 5.0 mm and A2 = 4.0 mm. Find
the phase difference between the waves and the amplitude
of the resulting wave.

Solution : The phase of the first wave is k (x − vt) and of
the second is k (x − vt + x0).
The phase difference is, therefore,

   δ = k x0 = (6.28 cm − 1) (1.50 cm) = 2 π × 1.5 = 3 π.

The waves satisfy the condition of destructive
interference. The amplitude of the resulting wave is
given by

    |A1 − A2| =  5.0 mm − 4.0 mm = 1.0 mm.

15.8 REFLECTION AND TRANSMISSION OF WAVES

In figure (15.2), a wave pulse was generated at the
left end which travelled on the string towards right.
When the pulse reaches a particular element, the
forces on the element from the left part of the string
and from the right part act in such a way that the
element is disturbed according to the shape of the
pulse.

The situation is different when the pulse reaches
the right end which is clamped at the wall. The
element at the right end exerts a force on the clamp
and the clamp exerts equal and opposite force on the
element. The element at the right end is thus acted
upon by the force from the string left to it and by the
force from the clamp. As this end remains fixed, the
two forces are opposite to each other. The force from
the left part of the string transmits the forward wave
pulse and hence, the force exerted by the clamp sends
a return pulse on the string whose shape is similar to
the original pulse but is inverted. The original pulse
tries to pull the element at the fixed end up and the
return pulse sent by the clamp tries to pull it down.
The resultant displacement is zero. Thus, the wave is
reflected from the fixed end and the reflected wave is
inverted with respect to the original wave. The shape
of the string at any time, while the pulse is being
reflected, can be found by adding an inverted image
pulse to the incident pulse (figure 15.11).

Let us now suppose that the right end of the string
is attached to a light frictionless ring which can freely
move on a vertical rod. A wave pulse is sent on the
string from left (Figure 15.12). When the wave reaches
the right end, the element at this end is acted on by
the force from the left to go up. However, there is no
corresponding restoring force from the right as the rod
does not exert a vertical force on the ring. As a result,
the right end is displaced in upward direction more
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than the height of the pulse, i.e., it overshoots the
normal maximum displacement. The lack of restoring
force from right can be equivalently described in the
following way. An extra force acts from right which
sends a wave from right to left with its shape identical
to the original one. The element at the end is acted
upon by both the incident and the reflected wave and
the displacements add. Thus, a wave is reflected by
the free end without inversion.

Quite often, the end point is neither completely
fixed nor completely free to move. As an example,
consider a light string attached to a heavier string as
shown in figure (15.13). If a wave pulse is produced
on the light string moving towards the junction, a part
of the wave is reflected and a part is transmitted on
the heavier string. The reflected wave is inverted with
respect to the original one (figure 15.13a).

On the other hand, if the wave is produced on the
heavier string, which moves towards the junction, a
part will be reflected and a part transmitted, no
inversion of wave shape will take place (figure 15.13b).

The rule about the inversion at reflection may be
stated in terms of the wave velocity. The wave velocity
is smaller for the heavier string v  F/ and larger
for the lighter string. The above observation may be
stated as follows.

If a wave enters a region where the wave velocity
is smaller, the reflected wave is inverted. If it enters a
region where the wave velocity is larger, the reflected
wave is not inverted. The transmitted wave is never
inverted.

15.9 STANDING WAVES

Suppose two sine waves of equal amplitude and
frequency propagate on a long string in opposite
directions. The equations of the two waves are given by

         y1  A sint  kx

and          y2  A sint  kx  .
These waves interfere to produce what we call

standing waves. To understand these waves, let us
discuss the special case when   0.

The resultant displacements of the particles of the
string are given by the principle of superposition as

       y  y1  y2

         A [sint  kx  sint  kx]
         2 A sin t cos kx

or,         y  2 A cos kx sin t.  (15.21)

This equation can be interpreted as follows. Each
particle of the string vibrates in a simple harmonic
motion with an amplitude |2 A cos kx|. The
amplitudes are not equal for all the particles. In
particular, there are points where the amplitude
|2 A cos kx|  0. This will be the case when

        cos kx  0

or,         kx  



n  

1
2



 

or,          x  



n  

1
2



 

2

 ,

where n is an integer.

For these particles, cos kx  0 and by equation
(15.21) the displacement y is zero all the time.
Although these points are not physically clamped, they
remain fixed as the two waves pass them
simultaneously. Such points are known as nodes.

For the points where | cos kx |  1, the amplitude
is maximum. Such points are known as antinodes.

We also see from equation (15.21) that at a time
when sin t  1, all the particles for which cos kx is
positive reach their positive maximum displacement.
At this particular instant, all the particles for which
cos kx is negative, reach their negative maximum
displacement. At a time when sin t  0, all the
particles cross their mean positions. Figure (15.14a)
shows the change in the shape of the string as time
passes. The time t  0 in this figure corresponds to the
instant when particles are at their maximum
displacements. Figure (15.14b) shows the external
appearance of the vibrating string. This type of wave
is called a standing wave or a stationary wave. The
particles at nodes do not move at all and the particles
at the antinodes move with maximum amplitude.

It is clear that the separation between consecutive
nodes or consecutive antinodes is /2. As the particles
at the nodes do not move at all, energy cannot be
transmitted across them. The main differences

Figure 15.12
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between a standing wave and a travelling wave are
summarised below.

1. In a travelling wave, the disturbance produced
in a region propagates with a definite velocity but in
a standing wave, it is confined to the region where it
is produced.

2. In a travelling wave, the motion of all the
particles are similar in nature. In a standing wave,
different particles move with different amplitudes.

3. In a standing wave, the particles at nodes
always remain in rest. In travelling waves, there is no
particle which always remains in rest.

4. In a standing wave, all the particles cross their
mean positions together. In a travelling wave, there is
no instant when all the particles are at the mean
positions together.

5. In a standing wave, all the particles between
two successive nodes reach their extreme positions
together, thus moving in phase. In a travelling wave,
the phases of nearby particles are always different.

6. In a travelling wave, energy is transmitted from
one region of space to other but in a standing wave,
the energy of one region is always confined in that
region.

Example 15.6

   Two travelling waves of equal amplitudes and equal
frequencies move in opposite directions along a string.
They interfere to produce a standing wave having the
equation
            y  A cos kx sin t

in which A  1.0 mm, k  1.57 cm 1 and   78.5 s 1.
(a) Find the velocity of the component travelling waves.
(b) Find the node closest to the origin in the region
x > 0. (c) Find the antinode closest to the origin in the
region x > 0. (d) Find the amplitude of the particle at
x  2.33 cm.

Solution : (a) The standing wave is formed by the
superposition of the waves

       y1  
A
2

 sint  kx    and

       y2  
A
2

 sint  kx.

The wave velocity (magnitude) of either of the waves is

      v  

k

  
78.5 s1

1.57 cm1  50 cm s1.

(b) For a node, cos kx  0.

The smallest positive x satisfying this relation is given
by

       kx  

2

or,       x  


2 k
  

3.14
2  1.57 cm  1  1 cm.

(c) For an antinode, |cos kx|  1.

The smallest positive x satisfying this relation is given
by
           kx  

or,           x  

k

  2 cm.

(d) The amplitude of vibration of the particle at x is
given by |A cos kx|. For the given point,

   kx  1.57 cm  1 2.33 cm  
7
6

     

6

 

Thus, the amplitude will be

1.0 mm | cos  /6 |  
3
2

 mm  0.86 mm.

15.10 STANDING WAVES ON A STRING FIXED
     AT BOTH ENDS (QUALITATIVE DISCUSSION)

Consider a string of length L fixed at one end to
a wall and the other end tied to a tuning fork which
vibrates longitudinally with a small amplitude (figure
15.15). The fork produces sine waves of amplitude A
which travel on the string towards the fixed end and

Figure 15.14
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get reflected from this end. The reflected waves which
travel towards the fork are inverted in shape because
they are reflected from a fixed end. These waves are
again reflected from the fork. As the fork is heavy and
vibrates longitudinally with a small amplitude, it acts
like a fixed end and the waves reflected here are again
inverted in shape. Therefore, the wave produced
directly by the fork at this instant and the twice
reflected wave have same shape, except that the twice
reflected wave has already travelled a length 2L.

Suppose the length of the string is such that
2L = λ. The two waves interfere constructively and the
resultant wave that proceeds towards right has an
amplitude 2A. This wave of amplitude 2A is again
reflected by the wall and then by the fork. This twice
reflected wave again interferes constructively with the
oncoming new wave and a wave of amplitude 3A is
produced. Thus, as time passes, the amplitude keeps
on increasing. The string gets energy from the
vibrations of the fork and the amplitude builds up.
Same arguments hold if 2L is any integral multiple of
λ that is L = nλ/2, where n is an integer.

In the above discussion, we have neglected any loss
of energy due to air viscosity or due to lack of flexibility
of string. In actual practice, energy is lost by several
processes and the loss increases as the amplitude of
vibration increases. Ultimately, a balance is reached
when the rate of energy received from the fork equals
the rate of energy lost due to various damping
processes. In the steady state, waves of constant
amplitude are present on the string from left to right
as well as from right to left. These waves, propagating
in opposite directions, produce standing waves on the
string. Nodes and antinodes are formed and the
amplitudes of vibration are large at antinodes. We say
that the string is in resonance with the fork. The
condition, L = nλ/2, for such a resonance may be stated
in a different way. We have from equation (15.9)

           v = νλ
   or,          λ = v/ν.

The condition for resonance is, therefore,

             L = n 
λ
2

   or,         L = 
n v
2 ν

   or,         ν = 
n v
2 L

 = 
n

2 L
 √F/µ . … (15.22)

The lowest frequency with which a standing wave can
be set up in a string fixed at both the ends is thus

             ν0 = 
1

2 L
 √F/µ . … (15.23)

This is called the fundamental frequency of the string.
The other possible frequencies of standing waves are
integral multiples of the fundamental frequency. The
frequencies given by equation (15.22) are called the
natural frequencies, normal frequencies or resonant
frequencies.

Example 15.7

   A 50 cm long wire of mass 20 g supports a mass of 1.6 kg
as shown in figure (15.16). Find the fundamental
frequency of the portion of the string between the wall
and the pulley. Take g = 10 m s−2.

Solution : The tension in the string is F = (1.6 kg)(10 m s−2)
                        = 16 N.

The linear mass density is µ = 
20 g

50 cm
 = 0.04 kg m−1.

The fundamental frequency is

           ν0 = 
1

2 L
 √F/µ

       = 
1

2 × (0.4 m)
 √16 N

0.04 kg m−1  = 25 Hz.

What happens if the resonance condition (15.23) is
not met? The phase difference between the twice
reflected wave and the new wave is not an integral
multiple of 2 π.

In fact, the phase difference with the new wave
then depends on the number of reflections suffered by
the original wave and hence, depends on time. At
certain time instants, the amplitude is enhanced and
at some other time instants, the amplitude is
decreased. Thus, the average amplitude does not
increase by interference and the vibrations are small.
The string absorbs only a little amount of energy from
the source.

Figure 15.15
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15.11 ANALYTIC TREATMENT OF VIBRATION
     OF A STRING FIXED AT BOTH ENDS

Suppose a string of length L is kept fixed at the
ends x = 0  and  x = L and sine waves are produced on
it. For certain wave frequencies, standing waves are
set up in the string. Due to the multiple reflection at
the ends and damping effects, waves going in the
positive x-direction interfere to give a resultant wave

        y1 = A sin(kx − ωt).
Similarly, the waves going in the negative x-direction
interfere to give the resultant wave

        y2 = A sin(kx + ωt + δ).
The resultant displacement of the particle of the string
at position x and at time t is given by the principle of
superposition as

y = y1 + y2 = A sin(kx − ωt) + A sin(kx + ωt + δ)

          = 2A sin
⎛
⎜
⎝
kx + 

δ
2

⎞
⎟
⎠
 cos

⎛
⎜
⎝
ωt + 

δ
2

⎞
⎟
⎠
 .  … (i)

If standing waves are formed, the ends x = 0 and
x = L must be nodes because they are kept fixed. Thus,
we have the boundary conditions
   y = 0  at  x = 0   for  all  t
   and y = 0  at  x = L   for  all  t.
The first boundary condition is satisfied by equation

(i) if sin δ
2
 = 0,

or,           δ = 0.
Equation (i) then becomes

          y = 2A sin kx cos ωt. … (15.24)

The second boundary condition will be satisfied if
       sin kL = 0
or,        kL = n π,   where n = 1,2,3,4,5, …

or, 
2 π L

λ
 = n π

   or,       L = 
n λ
2

 ⋅ … (15.25)

If the length of the string is an integral multiple
of λ/2, standing waves are produced. Again writing

λ = vT = v
ν
 , equation (15.25) becomes

        ν = 
n v
2 L

 = 
n

2 L
 √⎯⎯⎯⎯F/μ

which is same as equation (15.22).
The lowest possible frequency is

         ν0 = 
v

2 L
 = 

1
2 L

 √⎯⎯⎯⎯F/μ . … (15.26)

This is the fundamental frequency of the string.
The other natural frequencies with which standing

waves can be formed on the string are

ν1 = 2 ν0 = 
2

2 L
 √⎯⎯⎯⎯F/μ 1st overtone, or

2nd harmonic,

ν2 = 3 ν0 = 
3

2 L
 √⎯⎯⎯⎯F/μ 2nd overtone, or

3rd harmonic,

ν3 = 4 ν0 = 
4

2 L
 √⎯⎯⎯⎯F/μ 3rd overtone, or

4th harmonic,
etc. In general, any integral multiple of the
fundamental frequency is an allowed frequency. These
higher frequencies are called overtones. Thus,
ν1 = 2 ν0 is the first overtone, ν2 = 3 ν0 is the second
overtone, etc. An integral multiple of a frequency is
called its harmonic. Thus, for a string fixed at both the
ends, all the overtones are harmonics of the
fundamental frequency and all the harmonics of the
fundamental frequency are overtones.

This property is unique to the string and makes it
so valuable in musical instruments such as violin,
guitar, sitar, santoor, sarod.

Normal Modes of Vibration

When a string vibrates according to equation
(15.24) with some natural frequency, it is said to
vibrate in a normal mode. For the nth normal mode

k = nπ
L

 and the equation for the displacement is, from

equation (15.24),

         y = 2 A sin 
n π x

L
 cos ωt. … (15.27)

For fundamental mode, n = 1 and the equation of
the standing wave is, from (15.27),

          y = 2 A sin 
π x
L

 cos ωt.

The amplitude of vibration of the particle at x is
2A sin(π x/L) which is zero at x = 0 and at x = L. It is
maximum at x = L/2 where sin(π x/L) = 1. Thus, we
have nodes at the ends and just one antinode at the
middle point of the string.

In the first overtone, also known as the second
harmonic, the constant n is equal to 2 and
equation(15.27) becomes

          y = 2 A sin 
2 π x

L
 cos ωt.

The amplitude 2A sin2 π x
L

 is zero at x = 0, L/2 and L

and is maximum at L/4 and 3L/4. The middle point of
the string is also a node and is not displaced during
the vibration. The points x = L/4  and  x = 3L/4 are the
antinodes.

In the second overtone, n = 3 and equation(15.27)
becomes

          y = 2A sin
3 π x

L
 cos ωt.
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The nodes are at x = 0, L/3, 2L/3 and L, where

sin 3 π x
L

 = 0. There are two nodes in between the ends.

Antinodes occur midway between the nodes, i.e., at
x = L/6, L/2 and 5L/6.

Similarly, in the nth overtone, there are n nodes
between the ends and n+1 antinodes midway between
the nodes. The shape of the string as it vibrates in a
normal mode is shown in figure (15.17) for some of the
normal modes.

When the string of a musical instrument such as
a sitar is plucked aside at some point, its shape does
not correspond to any of the normal modes discussed
above. In fact, the shape of the string is a combination
of several normal modes and thus, a combination of
frequencies are emitted.

15.12 VIBRATION OF A STRING FIXED AT ONE END

Standing waves can be produced on a string which
is fixed at one end and whose other end is free to move
in a transverse direction. Such a free end can be nearly
achieved by connecting the string to a very light
thread.

If the vibrations are produced by a source of
“correct” frequency, standing waves are produced. If
the end x = 0 is fixed and x = L is free, the equation is
again given by (15.24)

         y = 2A sin kx cos ωt

with the boundary condition that x = L is an antinode.
The boundary condition that x = 0 is a node is
automatically satisfied by the above equation. For
x = L to be an antinode,

           sin kL = ± 1

or,        kL = 

n + 

1
2




 π

or,          
2πL

λ
 = 


n + 

1
2




 π

or,       
2Lν

v
 = n + 

1
2

   or,    ν = 

n + 

1
2




 

v
2L

 = 
n + 

1
2

2L
 √F/µ . … (15.28)

These are the normal frequencies of vibration. The
fundamental frequency is obtained when n = 0, i.e.,

          ν0 = v/4L.

The overtone frequencies are

          ν1 = 
3v
4L

 = 3ν0 ,

          ν2 = 
5v
4L

 = 5ν0 ,

          ν3 = 
7v
4L

 = 7ν0 ,  etc.

We see that all the harmonics of the fundamental
are not the allowed frequencies for the standing waves.
Only the odd harmonics are the overtones. Figure
(15.18) shows shapes of the string for some of the
normal modes.

15.13 LAWS OF TRANSVERSE VIBRATIONS
     OF A STRING : SONOMETER

The fundamental frequency of vibration of a string
fixed at both ends is given by equation (15.26). From
this equation, one can immediately write the following
statements known as “Laws of transverse vibrations
of a string”.

(a) Law of length – The fundamental frequency of
vibration of a string (fixed at both ends) is inversely
proportional to the length of the string provided its
tension and its mass per unit length remain the same.

     ν ∝ 1/L if F and µ are constants.

(b) Law of tension – The fundamental frequency of
a string is proportional to the square root of its tension
provided its length and the mass per unit length
remain the same.

     ν ∝ √F  if L and µ are constants.

(c) Law of mass – The fundamental frequency of a
string is inversely proportional to the square root of the
linear mass density, i.e., mass per unit length, provided
the length and the tension remain the same.
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   ν ∝ 
1

√µ
 if L and F are constants.

These laws may be experimentally studied with an
apparatus called sonometer.

A typical design of a sonometer is shown in figure
(15.19). One has a wooden box, also called the sound
box, on which two bridges A and B are fixed at the
ends. A metal wire C is welded with the bridges and
is kept tight. This wire C is called the auxiliary wire.
Another wire D, called the experimental wire is fixed
at one end to the bridge A and passes over the second
bridge B to hold a hanger H on which suitable weights
can be put. Two small movable bridges C1  and  C2 may
slide under the auxiliary wire and another two
movable bridges D1  and  D2 may slide under the
experimental wire.

The portion of the wire between the movable
bridges forms the “string” fixed at both ends. By sliding
these bridges, the length of the wire may be changed.
The tension of the experimental wire D may be
changed by changing the weights on the hanger. One
can remove the experimental wire itself and put
another wire in its place thereby changing the mass
per unit length.

The waves can be produced on the wire by
vibrating a tuning fork (by holding its stem and gently
hitting a prong on a rubber pad) and pressing its stem
on the platform of the sound box of the sonometer. The
simple harmonic disturbance is transmitted to the wire
through the bridges. The frequency of vibration is
same as that of the tuning fork. If this frequency
happens to be equal to one of the natural frequencies
of the wire, standing waves with large amplitudes are
set up on it. The tuning fork is then said to be in 
“resonance” or in “unison” with the wire.

How can one identify whether the tuning fork is
in resonance with the wire or not ? A simple method
is to place a small piece of paper (called a paper rider)
at the middle point of the wire between the movable
bridges. When vibrations in the wire are induced by
putting the tuning fork in contact with the board, the
paper-piece also vibrates. If the tuning fork is in
resonance with the fundamental mode of vibration of

the wire, the paper-piece is at the antinode. Because
of the large amplitude of the wire there, it violently
shakes and quite often jumps off the wire. Thus, the
resonance can be detected just by visible inspection.

The paper-piece is also at an antinode if the wire
is vibrating in its 3rd harmonic, although the
amplitude will not be as large as it would be in the
fundamental mode. The paper-piece may shake but not
that violently.

Another good method to detect the resonance is
based on the interference of sound waves of different
frequencies. The tuning fork is sounded by gently
hitting a prong on a rubber pad and the wire is plucked
by hand. The resultant sound shows a periodic increase
and decrease in intensity if the frequency of the fork
is close (but not exactly equal) to one of the natural
frequencies of the wire. This periodic variation in
intensity is called beats that we shall study in the next
chapter. The length is then only slightly varied till the
beats disappear and that ensures resonance.

Law of Length

To study the law of length, only the experimental
wire is needed. The wire is put under a tension by
placing suitable weights (say 3 to 4 kg) on the hanger.

A tuning fork is vibrated and the length of the wire
is adjusted by moving the movable bridges such that
the fork is in resonance with the fundamental mode
of vibration of the wire. The frequency ν of the tuning
fork and the length l of the wire resonating with it are
noted. The experiment is repeated with different
tuning forks and the product νl is evaluated for each
fork which should be a constant by the law of length.

Law of Tension

To study the law of tension, one may proceed as
follows. A particular length of the experimental wire
is selected by keeping the movable bridges D1 ,  D2

fixed. The auxiliary wire is plucked. The vibration is
transmitted to the experimental wire through the
sound box. By adjusting the movable bridges
C1  and  C2 , the fundamental frequency of the auxiliary
wire is made equal to the fundamental frequency of
the experimental wire by testing that the two wires
resonate with each other. The tension in the
experimental wire is changed and the length of the
auxiliary wire is again adjusted to resonate with it.
The experiment is repeated several times with
different tensions and the corresponding lengths of the
auxiliary wire are noted. Suppose l′ represents the
length of the auxiliary wire resonating with the fixed
length of the experimental wire when the tension in
it is T. Also suppose ν is the frequency of vibration of
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the wires in their fundamental modes in this situation.
Then,

   ν ∝ 
1
l′

 according to the law of length

and ν ∝ √T  according to the law of tension.

Hence, l′ ∝ 1/√T .

The product l′√T  may be evaluated from the
experiments which should be a constant.

Why do we have to use the auxiliary wire in the
above scheme and not a tuning fork ? That is because,
to adjust for the resonance, the variable quantity
should be continuously changeable. As the length of
the experimental wire is kept fixed and its frequency
is to be compared as a function of tension, we need a
source whose frequency can be continuously changed.
Choosing different tuning forks to change the
frequency will not work as the forks are available for
discrete frequencies only.

Law of Mass

To study the law of mass, the length and the
tension are to be kept constant and the mass per unit
length is to be changed. Again, the auxiliary wire is
used to resonate with the fixed length of the
experimental wire as was suggested during the study
of the law of tension. A fixed length of the
experimental wire is chosen between the bridges
D1  and  D2 and a fixed tension is applied to it. The
auxiliary wire is given a tension by hanging a certain
load and its length is adjusted so that it resonates with
the experimental wire. The experiment is repeated
with different experimental wires keeping equal
lengths between the movable bridges and applying
equal tension. Each time the length l′ of the auxiliary
wire is adjusted to bring it in resonance with the
experimental wire. The mass per unit length of each
experimental wire is obtained by weighing a known
length of the wire. We have

  ν ∝ 1/l′  according to the law of length

and ν ∝ 1/√µ  according to the law of mass.

Thus, l′ ∝ √µ .

The law of mass is thus studied by obtaining l′
√µ

each time which should be a constant.

Example 15.8

   In a sonometer experiment, resonance is obtained when
the experimental wire has a length of 21 cm between the
bridges and the vibrations are excited by a tuning fork
of frequency 256 Hz. If a tuning fork of frequency 384 Hz
is used, what should be the length of the experimental
wire to get the resonance.

Solution : By the law of length, l1 ν1 = l2 ν2

or,      l2 = 
ν1

ν2

 l1 = 
256
384

 × 21 cm = 14 cm.

15.14 TRANSVERSE AND LONGITUDINAL WAVES

The wave on a string is caused by the
displacements of the particles of the string. These
displacements are in a direction perpendicular to the
direction of propagation of the wave. If the disturbance
produced in a wave has a direction perpendicular to
the direction of propagation of the wave, the wave is
called a transverse wave. The wave on a string is a
transverse wave. Another example of transverse wave
is the light wave. It is the electric field which changes
its value with space and time and the changes are
propagated in space. The direction of the electric field
is perpendicular to the direction of propagation of light
when light travels in free space.

Sound waves are not transverse. The particles of
the medium are pushed and pulled along the direction
of propagation of sound. We shall study in some detail
the mechanism of sound waves in the next chapter. If
the disturbance produced as the wave passes is along
the direction of the wave propagation, the wave is
called a longitudinal wave. Sound waves are
longitudinal.

All the waves cannot be characterised as either
longitudinal or transverse. A very common example of
a wave that is neither longitudinal nor transverse is
a wave on the surface of water. When water in a steady
lake is disturbed by shaking a finger in it, waves are
produced on the water surface. The water particles
move in elliptic or circular path as the wave passes
through them. The elliptic motion has components both
along and perpendicular to the direction of propagation
of the wave.

15.15 POLARIZATION OF WAVES

Suppose a stretched string goes through a slit
made in a cardboard which is placed perpendicular to
the string (figure 15.20). If we take the X-axis along
the string, the cardboard will be in Y-Z plane. Suppose
the particles of the string are displaced in y-direction
as the wave passes. If the slit in the cardboard is also
along the Y-axis, the part of the string in the slit can

�
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�

�

!

Figure 15.20
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vibrate freely in the slit and the wave will pass
through the slit. However, if the cardboard is rotated
by 90° in its plane, the slit will point along the Z-axis.
As the wave arrives at the slit, the part of the string
in it tries to move along the Y-axis but the contact
force by the cardboard does not allow it. The wave is
not able to pass through the slit. If the slit is inclined
to the Y-axis at some other angle, only a part of the
wave is transmitted and in the transmitted wave the
disturbance is produced parallel to the slit. Figure
(15.21) suggests the same arrangement with two
chairs.

If the disturbance produced is always along a fixed
direction, we say that the wave is linearly polarized in
that direction. The waves considered in this chapter
are linearly polarized in y-direction. Similarly, if a
wave produces displacement along the z-direction, its
equation is given by z = A sin ω(t − x/v) and it is a
linearly polarized wave, polarized in z-direction.
Linearly polarized waves are also called plane
polarized.

If each particle of the string moves in a small circle
as the wave passes through it, the wave is called
circularly polarized. If each particle goes in ellipse, the
wave is called elliptically polarized.

Finally, if the particles are randomly displaced in
the plane perpendicular to the direction of propagation,
the wave is called unpolarized.

A circularly polarized or unpolarized wave passing
through a slit does not show change in intensity as
the slit is rotated in its plane. But the transmitted
wave becomes linearly polarized in the direction
parallel to the slit.

Worked Out Examples

 1. The displacement of a particle of a string carrying a
travelling wave is given by

       y = (3.0 cm) sin 6.28(0.50x − 50 t),
where x is in centimetre and t in second. Find (a) the
amplitude, (b) the wavelength, (c) the frequency and (d)
the speed of the wave.

Solution : Comparing with the standard wave equation 

        y = Asin(kx − ωt)

= Asin2π 


x
λ

 − 
t
T





we see that,

amplitude = A = 3.0 cm,

wavelength = λ = 
1

0.50
 cm = 2.0 cm,

and the frequency = ν = 
1
T

 = 50 Hz.

The speed of the wave is v = νλ

= (50 s − 1) (2.0 cm)

= 100 cm s−1.

 2. The equation for a wave travelling in x-direction on a
string is

    y = (3.0 cm) sin[(3.14 cm − 1) x − (314 s − 1)t].

   (a) Find the maximum velocity of a particle of the string.

(b) Find the acceleration of a particle at x = 6.0 cm at
time t = 0.11 s.

Solution :

(a) The velocity of the particle at x at time t is

v = 
∂y
∂t

 = (3.0 cm) (− 314 s − 1) cos[(3.14 cm − 1) x − (314 s − 1)t]

= (− 9.4 m s−1) cos[(3.14 cm− 1) x − (314 s− 1)t].

The maximum velocity of a particle will be

    v = 9.4 m s−1.

(b) The acceleration of the particle at x at time t is

a = 
∂v
∂t

 = − (9.4 m s−1) (314 s−1) sin[(3.14 cm−1) x − (314 s−1)t]

= − (2952 m s−2) sin[(3.14 cm−1) x − (314 s−1)t].

The acceleration of the particle at x = 6.0 cm at time

t = 0.11 s is a = − (2952 m s−2) sin[6π − 11π] = 0.

Figure 15.21
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 3. A long string having a cross-sectional area 0.80 mm2 and
density 12.5 g cm–3, is subjected to a tension of 64 N along
the X-axis. One end of this string is attached to a vibrator
moving in transverse direction at a frequency of 20 Hz.
At t  0, the source is at a maximum displacement
y  1.0 cm. (a) Find the speed of the wave travelling on
the string. (b) Write the equation for the wave. (c) What
is the displacement of the particle of the string at
x  50 cm at time t  0.05 s ? (d) What is the velocity of
this particle at this instant ?

Solution : 
(a) The mass of 1 m long part of the string is

    m  0.80 mm2  1 m  12.5 g cm3

 0.80  10  6 m3  12.5  10 3 kg m3

 0.01 kg.

The linear mass density is   0.01 kg m1. The wave
speed is v  F/

         64 N
0.01 kg m1   80 m s1.

(b) The amplitude of the source is A  1.0 cm and the
frequency is   20 Hz. The angular frequency is
  2  40 s 1. Also at t  0, the displacement is equal
to its amplitude, i.e., at t  0, y  A. The equation of
motion of the source is, therefore,

          y  1.0 cm cos[40 s 1 t]  (i)

The equation of the wave travelling on the string along
the positive X-axis is obtained by replacing t with
t  x/v in equation (i). It is, therefore,

   y  1.0 cm cos

40 s 1 


t  

x
v







  1.0 cm cos



40 s 1t  






2

 m 1


 x



 ,  (ii)

where the value of v has been put from part (a).

(c) The displacement of the particle at x  50 cm at time

t  0.05 s is by equation (ii),

    y  1.0 cm cos[40 s  1 0.05 s  





2

 m  1


 0.5 m]

 1.0 cm cos



2  


4




 
1.0 cm
2

  0.71 cm.

(d) The velocity of the particle at position x at time t is,
by equation (ii),

 v  
y
t

   1.0 cm 40 s  1 sin 


40 s  1 t  






2

 m  1


 x



 .

Putting the values of x and t,

      v   40 cm s1 sin



2  


4




 
40
2

 cm s1  89 cm s1.

 4. The speed of a transverse wave, going on a wire having
a length 50 cm and mass 5.0 g, is 80 m s–1. The area of
cross section of the wire is 1.0 mm 2 and its Young
modulus is 16  10 11 N m2. Find the extension of the wire
over its natural length.

Solution : The linear mass density is

        
5  10  3 kg
50  10  2 m

  1.0  10  2 kg m1 

The wave speed is v  F/ .

Thus, the tension is F  v 2

      1
.0  10  2 kg m1

  6400 m2 s2  64 N.

The Young modulus is given by

Y  
F/A
L/L

 

The extension is, therefore,

L  
FL
AY

      
64 N 0.50 m

1.0  10  6m 2  16  10 11 N m2
  0.02 mm.

 5. A uniform rope of length 12 m and mass 6 kg hangs
vertically from a rigid support. A block of mass 2 kg is
attached to the free end of the rope. A transverse pulse
of wavelength 0.06 m is produced at the lower end of the
rope. What is the wavelength of the pulse when it reaches
the top of the rope ?

Solution : As the rope is heavy, its tension will be different
at different points. The tension at the free end will be
(2 kg)g and that at the upper end it will be (8 kg)g.

We have,          v  

or, F/   
   or, F/   .  (i)

The frequency of the wave pulse will be the same
everywhere on the rope as it depends only on the
frequency of the source. The mass per unit length is also
the same throughout the rope as it is uniform. Thus, by

(i), 
F


 is constant.

Hence,        
2 kgg
0.06 m

  
8 kgg

1

 ,

where 1 is the wavelength at the top of the rope. This
gives 1  0.12 m.

����

����

Figure 15-W1
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 6. Two waves passing through a region are represented by

     y = (1.0 cm) sin[(3.14 cm − 1)x − (157 s − 1)t]

and  y = (1.5 cm) sin[(1.57 cm − 1)x − (314 s − 1)t].

Find the displacement of the particle at x = 4.5 cm at time
t = 5.0 ms.

Solution : According to the principle of superposition, each
wave produces its disturbance independent of the other
and the resultant disturbance is equal to the vector sum
of the individual disturbances. The displacements of the
particle at x = 4.5 cm at time t = 5.0 ms due to the two
waves are,

    y1 = (1.0 cm) sin[(3.14 cm − 1) (4.5 cm)

                − (157 s − 1) (5.0 × 10 − 3 s)]

 = (1.0 cm) sin
⎡
⎢
⎣
4.5π − 

π
4

⎤
⎥
⎦

 = (1.0 cm) sin[4π + π/4] = 
1.0 cm

√2
 

and 

y2 = (1.5 cm) sin[(1.57 cm − 1) (4.5 cm)

                − (314 s − 1) (5.0 × 10 − 3 s)]

= (1.5 cm) sin
⎡
⎢
⎣
2.25π − 

π
2

⎤
⎥
⎦

= (1.5 cm) sin[2π − π/4]

= − (1.5 cm) sin 
π
4

 = − 
1.5 cm

√2
 ⋅

The net displacement is

y = y1 + y2 = 
− 0.5 cm

√2
 = − 0.35 cm.

 7. The vibrations of a string fixed at both ends are described
by the equation

   y = (5.00 mm) sin[(1.57 cm − 1) x] sin[(314 s − 1) t]

   (a) What is the maximum displacement of the particle at
x = 5.66 cm ? (b) What are the wavelengths and the wave
speeds of the two transverse waves that combine to give
the above vibration ? (c) What is the velocity of the
particle at x = 5.66 cm at time t = 2.00 s ? (d) If the length
of the string is 10.0 cm, locate the nodes and the
antinodes. How many loops are formed in the vibration ?

Solution : 
(a) The amplitude of the vibration of the particle at
position x is

       A = ⎪ (5.00 mm) sin[(1.57 cm − 1) x] ⎪

For x = 5.66 cm,

A = 
⎪
⎪
⎪
 (5.00 mm) sin 

⎡
⎢
⎣

π
2

 × 5.66 
⎤
⎥
⎦

⎪
⎪
⎪

    = 
⎪
⎪
⎪
 (5.00 mm) sin 

⎛
⎜
⎝
2.5 π + 

π
3

 
⎞
⎟
⎠

⎪
⎪
⎪

      = 
⎪
⎪
⎪
 (5.00 mm) cos 

π
3

 
⎪
⎪
⎪
 = 2.50 mm.

(b) From the given equation, the wave number

k = 1.57 cm− 1 and the angular frequency ω = 314 s − 1.
Thus, the wavelength is

       λ = 
2π
k

 = 
2 × 3.14

1.57 cm − 1 = 4.00 cm

and the frequency is ν = 
ω
2π

 = 
314 s − 1

2 × 3.14
 = 50 s − 1.

The wave speed is v = νλ = (50 s−1) (4.00 cm) = 2.00 m s−1.

(c) The velocity of the particle at position x at time t is
given by

        v = 
∂y
∂t

 = (5.00 mm) sin[(1.57 cm − 1) x]

                     [314 s − 1 cos(314 s − 1) t]

          = (157 cm s−1) sin(1.57 cm − 1) x cos(314 s − 1)t.

Putting x = 5.66 cm and t = 2.00 s, the velocity of this
particle at the given instant is

         (157 cm s−1) sin
⎛
⎜
⎝

5π
2

 + 
π
3

⎞
⎟
⎠
 cos(200 π)

           = (157 cm s−1) × cos 
π
3

 × 1 = 78.5 cm s−1.

(d) The nodes occur where the amplitude is zero, i.e.,

           sin(1.57 cm − 1) x = 0.

or,              
⎛
⎜
⎝

π
2

 cm − 1⎞
⎟
⎠
 x = nπ,

where n is an integer.

Thus,           x = 2 n cm.

The nodes, therefore, occur at x = 0, 2 cm, 4 cm, 6 cm,
8 cm  and  10 cm. Antinodes occur in between them, i.e.,
at x = 1 cm, 3 cm, 5 cm, 7 cm and 9 cm. The string
vibrates in 5 loops.

 8. A guitar string is 90 cm long and has a fundamental
frequency of 124 Hz. Where should it be pressed to
produce a fundamental frequency of 186 Hz ?

Solution : The fundamental frequency of a string fixed at
both ends is given by

                ν = 
1

2 L
 √⎯F

μ
⋅

As F and μ are fixed, 
ν1

ν2

 = 
L2

L1

or,  L2 = 
ν1

ν2

 L1 = 
124 Hz
186 Hz

 (90 cm) = 60 cm.

Thus, the string should be pressed at 60 cm from an
end.
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 9. A sonometer wire has a total length of 1 m between the
fixed ends. Where should the two bridges be placed below
the wire so that the three segments of the wire have their
fundamental frequencies in the ratio 1 : 2 : 3 ? 

Solution : Suppose the lengths of the three segments are
L1, L2  and  L3 respectively. The fundamental frequencies
are

          ν1 = 
1

2 L1

 √F/µ

ν2 = 
1

2 L2

 √F/µ

ν3 = 
1

2 L3

 √F/µ

   so that ν1L1 = ν2L2 = ν3L3 . … (i)

As ν1 : ν2 : ν3 = 1 : 2 : 3, we have

      ν2 = 2 ν1  and  ν3 = 3 ν1  so that by (i)

L2 = 
ν1

ν2

 L1 = 
L1

2

and     L3 = 
ν1

ν3

 L1 = 
L1

3
 ⋅

As L1 + L2 + L3 = 1 m,

we get   L1



1 + 

1
2

 + 
1
3




 = 1 m

or,               L1 = 
6
11

 m.

Thus,          L2 = 
L1

2
 = 

3
11

 m

and        L3 = 
L1

3
 = 

2
11

 m.

One bridge should be placed at 6
11

 m from one end and

the other should be placed at 2
11

 m from the other end.

10. A wire having a linear mass density 5.0 × 10 − 3 kg m−1 is
stretched between two rigid supports with a tension of
450 N. The wire resonates at a frequency of 420 Hz. The
next higher frequency at which the same wire resonates
is 490 Hz. Find the length of the wire.

Solution : Suppose the wire vibrates at 420 Hz in its nth
harmonic and at 490 Hz in its (n + 1)th harmonic.

          420 s − 1 = 
n

2 L
 √F/µ … (i)

   and 490 s − 1 = 
(n + 1)

2 L
 √F/µ . … (ii)

This gives 
490
420

 = 
n + 1

n

or, n = 6.

Putting the value in (i),

    420 s− 1 = 
6

2 L
 √450 N

5.0 × 10 − 3 kg m−1  = 
900
L

 m s−1

 or,      L = 
900
420

 m = 2.1 m.

QUESTIONS FOR SHORT ANSWER

 1. You are walking along a seashore and a mild wind is
blowing. Is the motion of air a wave motion ?

 2. The radio and TV programmes, telecast at the studio,
reach our antenna by wave motion. Is it a mechanical
wave or nonmechanical ?

 3. A wave is represented by an equation
y = c1 sin (c2x + c3t). In which direction is the wave going ?
Assume that c1, c2  and  c3 are all positive.

 4. Show that the particle speed can never be equal to the
wave speed in a sine wave if the amplitude is less than
wavelength divided by 2π. 

 5. Two wave pulses identical in shape but inverted with
respect to each other are produced at the two ends of a
stretched string. At an instant when the pulses reach
the middle, the string becomes completely straight.
What happens to the energy of the two pulses ?

 6. Show that for a wave travelling on a string

           
ymax

vmax
 = 

vmax

amax
 ,

where the symbols have usual meanings. Can we use
componendo and dividendo taught in algebra to write

ymax + vmax

ymax − vmax
 = 

vmax + amax

vmax − amax
        ?

 7. What is the smallest positive phase constant which is
equivalent to 7.5 π ?

 8. A string clamped at both ends vibrates in its
fundamental mode. Is there any position (except the
ends) on the string which can be touched without
disturbing the motion ? What if the string vibrates in
its first overtone ?
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OBJECTIVE I

 1. A sine wave is travelling in a medium. The minimum
distance between the two particles, always having same
speed, is
(a) λ/4      (b) λ/3      (c) λ/2      (d) λ.

 2. A sine wave is travelling in a medium. A particular
particle has zero displacement at a certain instant. The
particle closest to it having zero displacement is at a
distance
(a) λ/4      (b) λ/3      (c) λ/2      (d) λ.

 3. Which of the following equations represents a wave
travelling along Y-axis ?
(a) x = A sin (ky − ωt)      (b) y = A sin (kx − ωt)
(c) y = A sin ky cos ωt      (d) y = A cos ky sin ωt.

 4. The equation y = A sin 2(kx − ωt) represents a wave
motion with
(a) amplitude A, frequency ω/2π
(b) amplitude A/2, frequency ω/π
(c) amplitude 2A, frequency ω/4π
(d) does not represent a wave motion.

 5. Which of the following is a mechanical wave ?
(a) Radio waves           (b) X-rays
(c) Light waves          (d) Sound waves.

 6. A cork floating in a calm pond executes simple harmonic
motion of frequency ν when a wave generated by a boat
passes by it. The frequency of the wave is
(a) ν     (b) ν/2     (c) 2ν     (d) √2ν.

 7. Two strings A and B, made of same material, are
stretched by same tension. The radius of string A is
double of the radius of B. A transverse wave travels on
A with speed vA and on B with speed vB . The ratio
vA/vB is
(a) 1/2      (b) 2      (c) 1/4      (d) 4.

 8. Both the strings, shown in figure (15-Q1), are made of
same material and have same cross section. The pulleys
are light. The wave speed of a transverse wave in the
string AB is v1 and in CD it is v2 . Then v1 /v2 is
(a) 1      (b) 2      (c) √2      (d) 1/√2.

 9. Velocity of sound in air is 332 m s–1. Its velocity in
vacuum will be
(a) > 332 m s–1            (b) = 332 m s−1

(c) < 332 m s–1            (d) meaningless.
10. A wave pulse, travelling on a two-piece string, gets

partially reflected and partially transmitted at the
junction. The reflected wave is inverted in shape as
compared to the incident one. If the incident wave has
wavelength λ and the transmitted wave λ′,

(a) λ′ > λ        (b) λ′ = λ        (c) λ′ < λ 
(d) nothing can be said about the relation of λ  and  λ′.

11. Two waves represented by y = a sin(ωt − kx) and
y = a cos(ωt − kx) are superposed. The resultant wave
will have an amplitude
(a) a      (b) √2a      (c) 2a      (d) 0.

12. Two wires A and B, having identical geometrical
construction, are stretched from their natural length by
small but equal amount. The Young modulus of the
wires are YA  and  YB whereas the densities are
ρA  and  ρB. It is given that YA > YB  and  ρA > ρB. A
transverse signal started at one end takes a time t1 to
reach the other end for A and t2 for B.
(a) t1 < t2         (b) t1 = t2        (c) t1 > t2

(d) the information is insufficient to find the relation
between t1  and  t2 .

13. Consider two waves passing through the same string.
Principle of superposition for displacement says that the
net displacement of a particle on the string is sum of
the displacements produced by the two waves
individually. Suppose we state similar principles for the
net velocity of the particle and the net kinetic energy of
the particle. Such a principle will be valid for
(a) both the velocity and the kinetic energy
(b) the velocity but not for the kinetic energy
(c) the kinetic energy but not for the velocity
(d) neither the velocity nor the kinetic energy.

14. Two wave pulses travel in opposite directions on a string
and approach each other. The shape of one pulse is
inverted with respect to the other.
(a) The pulses will collide with each other and vanish
after  collision.
(b) The pulses will reflect from each other, i.e., the pulse
going towards right will finally move towards left and
vice versa.
(c) The pulses will pass through each other but their
shapes  will be modified.
(d) The pulses will pass through each other without any
change in their shapes.

15. Two periodic waves of amplitudes A1  and  A2 pass
through a region. If A1 > A2 , the difference in the
maximum and minimum resultant amplitude possible is
(a) 2A1     (b) 2A2     (c) A1 + A2     (d) A1 − A2.

16. Two waves of equal amplitude A,  and equal frequency
travel in the same direction in a medium. The amplitude
of the resultant wave is
(a) 0    (b) A     (c) 2A    (d) between 0 and 2A.

17. Two sine waves travel in the same direction in a
medium. The amplitude of each wave is A and the phase
difference between the two waves is 120°. The resultant
amplitude will be
(a) A    (b) 2A    (c) 4A     (d) √2A.

18. The fundamental frequency of a string is proportional
to
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(a) inverse of its length   (b) the diameter
(c) the tension          (d) the density.

19. A tuning fork of frequency 480 Hz is used to vibrate a
sonometer wire having natural frequency 240 Hz. The
wire will vibrate with a frequency of
(a) 240 Hz             (b) 480 Hz
(c) 720 Hz            (d) will not vibrate.

20. A tuning fork of frequency 480 Hz is used to vibrate a
sonometer wire having natural frequency 410 Hz. The
wire will vibrate with a frequency
(a) 410 Hz   (b) 480 Hz   (c) 820 Hz   (d) 960 Hz.

21. A sonometer wire of length l vibrates in fundamental
mode when excited by a tuning fork of frequency 416 Hz.

If the length is doubled keeping other things same, the
string will
(a) vibrate with a frequency of 416 Hz
(b) vibrate with a frequency of 208 Hz
(c) vibrate with a frequency of 832 Hz
(d) stop vibrating.

22. A sonometer wire supports a 4 kg load and vibrates in
fundamental mode with a tuning fork of frequency
416 Hz. The length of the wire between the bridges is
now doubled. In order to maintain fundamental mode,
the load should be changed to
(a) 1 kg    (b) 2 kg    (c) 8 kg    (d) 16 kg.

OBJECTIVE II

 1. A mechanical wave propagates in a medium along the
X-axis. The particles of the medium
(a) must move on the X-axis
(b) must move on the Y-axis
(c) may move on the X-axis
(d) may move on the Y-axis.

 2. A transverse wave travels along the Z-axis. The particles
of the medium must move
(a) along the Z-axis        (b) along the X-axis
(c) along the Y-axis        (d) in the X-Y plane.

 3. Longitudinal waves cannot
(a) have a unique wavelength     (b) transmit energy
(c) have a unique wave velocity   (d) be polarized.

 4. A wave going in a solid
(a) must be longitudinal      (b) may be longitudinal
(c) must be transverse        (d) may be transverse.

 5. A wave moving in a gas
(a) must be longitudinal      (b) may be longitudinal
(c) must be transverse       (d) may be transverse.

 6. Two particles A and B have a phase difference of π when
a sine wave passes through the region.
(a) A oscillates at half the frequency of B.
(b) A and B move in opposite directions.
(c) A and B must be separated by half of the
wavelength.
(d) The displacements at A and B have equal
magnitudes.

 7. A wave is represented by the equation

    y = (0.001 mm) sin[(50 s − 1)t + (2.0 m − 1)x].

   (a) The wave velocity = 100 m s−1.
(b) The wavelength = 2.0 m.
(c) The frequency = 25/π Hz.
(d) The amplitude = 0.001 mm.

 8. A standing wave is produced on a string clamped at one
end and free at the other. The length of the string
(a) must be an integral multiple of λ/4
(b) must be an integral multiple of λ/2
(c) must be an integral multiple of λ
(d) may be an integral multiple of λ/2.

 9. Mark out the correct options.
(a) The energy of any small part of a string remains
constant  in a travelling wave.
(b) The energy of any small part of a string remains
constant  in a standing wave.
(c) The energies of all the small parts of equal length
are  equal in a travelling wave.
(d) The energies of all the small parts of equal length
are  equal in a standing wave.

10. In a stationary wave,
(a) all the particles of the medium vibrate in phase
(b) all the antinodes vibrate in phase
(c) the alternate antinodes vibrate in phase
(d) all the particles between consecutive nodes vibrate
in  phase.

EXERCISES

 1. A wave pulse passing on a string with a speed of

40 cm s−1 in the negative x-direction has its maximum at
x = 0 at t = 0. Where will this maximum be located at

t = 5 s ?

 2. The equation of a wave travelling on a string stretched
along the X-axis is given by

             y = A e
− 





x
a

 + 
t
T





 2

.

   (a) Write the dimensions of A, a and T. (b) Find the
wave speed. (c) In which direction is the wave

travelling ? (d) Where is the maximum of the pulse
located at t = T ? At t = 2 T ?

 3. Figure (15-E1) shows a wave pulse at t = 0. The pulse
moves to the right with a speed of 10 cm s–1. Sketch the
shape of the string at t = 1 s, 2 s and 3 s.
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 4. A pulse travelling on a string is represented by the
function

           y = 
a 3

(x − vt) 2 + a 2 ,

   where a = 5 mm  and  v = 20 cm s−1. Sketch the shape of
the string at t = 0, 1 s and 2 s. Take x = 0 in the middle
of the string.

 5. The displacement of the particle at x = 0 of a stretched
string carrying a wave in the positive x-direction is given
by f(t) = A sin(t/T). The wave speed is v. Write the wave
equation.

 6. A wave pulse is travelling on a string with a speed v
towards the positive X-axis. The shape of the string at
t = 0 is given by g(x) = A sin(x/a), where A and a are
constants.
(a) What are the dimensions of A and a ? (b) Write the
equation of the wave for a general time t, if the wave
speed is v.

 7. A wave propagates on a string in the positive x-direction
at a velocity v. The shape of the string at t = t0 is given
by g(x, t0) = A sin(x/a) . Write the wave equation for a
general time t.

 8. The equation of a wave travelling on a string is

    y = (0.10 mm) sin[(31.4 m − 1)x + (314 s − 1)t].

   (a) In which direction does the wave travel ? (b) Find
the wave speed, the wavelength and the frequency of
the wave. (c) What is the maximum displacement and
the maximum speed of a portion of the string ?

 9. A wave travels along the positive x-direction with a
speed of 20 m s–1. The amplitude of the wave is 0.20 cm
and the wavelength 2.0 cm. (a) Write a suitable wave
equation which describes this wave. (b) What is the
displacement and velocity of the particle at x = 2.0 cm at
time t = 0 according to the wave equation written ? Can
you get different values of this quantity if the wave
equation is written in a different fashion ?

10. A wave is described by the equation 

      y = (1.0 mm) sin π 


x
2.0 cm

 − 
t

0.01 s



 .

   (a) Find the time period and the wavelength ? (b) Write
the equation for the velocity of the particles. Find the
speed of the particle at x = 1.0 cm at time t = 0.01 s.
(c) What are the speeds of the particles at x = 3.0 cm,
5.0 cm and 7.0 cm at t = 0.01 s ?
(d) What are the speeds of the particles at x = 1.0 cm at
t = 0.011, 0.012, and 0.013 s ?

11. A particle on a stretched string supporting a travelling
wave, takes 5.0 ms to move from its mean position to
the extreme position. The distance between two
consecutive particles, which are at their mean positions,
is 2.0 cm. Find the frequency, the wavelength and the
wave speed.

12. Figure (15-E2) shows a plot of the transverse
displacements of the particles of a string at t = 0 through
which a travelling wave is passing in the positive
x-direction. The wave speed is 20 cm s–1. Find (a) the
amplitude, (b) the wavelength, (c) the wave number and
(d) the frequency of the wave.

13. A wave travelling on a string at a speed of 10 m s–1

causes each particle of the string to oscillate with a time
period of 20 ms. (a) What is the wavelength of the wave ?
(b) If the displacement of a particle is 1.5 mm at a
certain instant, what will be the displacement of a
particle 10 cm away from it at the same instant ?

14. A steel wire of length 64 cm weighs 5 g. If it is stretched
by a force of 8 N, what would be the speed of a
transverse wave passing on it ? 

15. A string of length 20 cm and linear mass density
0.40 g cm–1 is fixed at both ends and is kept under a
tension of 16 N. A wave pulse is produced at t = 0 near
an end as shown in figure (15-E3), which travels towards
the other end. (a) When will the string have the shape
shown in the figure again ? (b) Sketch the shape of the
string at a time half of that found in part (a).

16. A string of linear mass density 0.5 g cm–1 and a total
length 30 cm is tied to a fixed wall at one end and to a
frictionless ring at the other end (figure 15-E4). The ring
can move on a vertical rod. A wave pulse is produced
on the string which moves towards the ring at a speed
of 20 cm s–1. The pulse is symmetric about its maximum
which is located at a distance of 20 cm from the end
joined to the ring. (a) Assuming that the wave is
reflected from the ends without loss of energy, find the
time taken by the string to regain its shape. (b) The
shape of the string changes periodically with time. Find
this time period. (c) What is the tension in the string ?

17. Two wires of different densities but same area of cross
section are soldered together at one end and are
stretched to a tension T. The velocity of a transverse
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wave in the first wire is double of that in the second
wire. Find the ratio of the density of the first wire to
that of the second wire.

18. A transverse wave described by

      y = (0.02 m) sin[(1.0 m − 1) x + (30 s − 1)t]

   propagates on a stretched string having a linear mass
density of 1.2 × 10 – 4 kg m–1. Find the tension in the
string.

19. A travelling wave is produced on a long horizontal string
by vibrating an end up and down sinusoidally. The
amplitude of vibration is 1.0 cm and the displacement
becomes zero 200 times per second. The linear mass
density of the string is 0.10 kg m–1 and it is kept under
a tension of 90 N. (a) Find the speed and the wavelength
of the wave. (b) Assume that the wave moves in the
positive x-direction and at t = 0, the end x = 0 is at its
positive extreme position. Write the wave equation. (c)
Find the velocity and acceleration of the particle at
x = 50 cm at time t = 10 ms.

20. A string of length 40 cm and weighing 10 g is attached
to a spring at one end and to a fixed wall at the other
end. The spring has a spring constant of 160 N m–1 and
is stretched by 1.0 cm. If a wave pulse is produced on
the string near the wall, how much time will it take to
reach the spring ?

21. Two blocks each having a mass of 3.2 kg are connected
by a wire CD and the system is suspended from the
ceiling by another wire AB (figure 15-E5). The linear
mass density of the wire AB is 10 g m–1 and that of CD
is 8 g m–1. Find the speed of a transverse wave pulse
produced in AB and in CD.

22. In the arrangement shown in figure (15-E6), the string
has a mass of 4.5 g. How much time will it take for a
transverse disturbance produced at the floor to reach the
pulley ? Take g = 10 m s–2.

23. A 4.0 kg block is suspended from the ceiling of an
elevator through a string having a linear mass density
of 19.2 × 10 –3 kg m–1. Find the speed (with respect to the
string) with which a wave pulse can proceed on the
string if the elevator accelerates up at the rate of
2.0 m s–2.  Take g = 10 m s–2. 

24. A heavy ball is suspended from the ceiling of a motor
car through a light string. A transverse pulse travels at
a speed of 60 cm s–1 on the string when the car is at rest
and 62 cm s–1 when the car accelerates on a horizontal
road. Find the acceleration of the car. Take g = 10 m s−2.

25. A circular loop of string rotates about its axis on a
frictionless horizontal plane at a uniform rate so that
the tangential speed of any particle of the string is v. If
a small transverse disturbance is produced at a point of
the loop, with what speed (relative to the string) will
this disturbance travel on the string ?

26. A heavy but uniform rope of length L is suspended from
a ceiling. (a) Write the velocity of a transverse wave
travelling on the string as a function of the distance
from the lower end. (b) If the rope is given a sudden
sideways jerk at the bottom, how long will it take for
the pulse to reach the ceiling ? (c) A particle is dropped
from the ceiling at the instant the bottom end is given
the jerk. Where will the particle meet the pulse ?

27. Two long strings A and B, each having linear mass
density 1.2 × 10 – 2 kg m–1, are  stretched  by  different
tensions 4.8 N and 7.5 N respectively and are kept
parallel to each other with their left ends at x = 0. Wave
pulses are produced on the strings at the left ends at
t = 0 on string A and at t = 20 ms on string B. When and
where will the pulse on B overtake that on A ?

28. A transverse wave of amplitude 0.50 mm and frequency
100 Hz is produced on a wire stretched to a tension of
100 N. If the wave speed is 100 m s–1, what average
power is the source transmitting to the wire ?

29. A 200 Hz wave with amplitude 1 mm travels on a long
string of linear mass density 6 g m–1 kept under a tension
of 60 N. (a) Find the average power transmitted across a
given point on the string. (b) Find the total energy
associated with the wave in a 2.0 m long portion of the
sring.

30. A tuning fork of frequency 440 Hz is attached to a long
string of linear mass density 0.01 kg m–1 kept under a
tension of 49 N. The fork produces transverse waves of
amplitude 0.50 mm on the string. (a) Find the wave
speed and the wavelength of the waves. (b) Find the
maximum speed and acceleration of a particle of the
string. (c) At what average rate is the tuning fork
transmitting energy to the string ?

31. Two waves, travelling in the same direction through the
same region, have equal frequencies, wavelengths and
amplitudes. If the amplitude of each wave is 4 mm and
the phase difference between the waves is 90°, what is
the resultant amplitude ?

32. Figure (15-E7) shows two wave pulses at t = 0 travelling
on a string in opposite directions with the same wave
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   speed 50 cm s–1. Sketch the shape of the string at
t = 4 ms, 6 ms, 8 ms, and 12 ms.

33. Two waves, each having a frequency of 100 Hz and a
wavelength of 2.0 cm, are travelling in the same
direction on a string. What is the phase difference
between the waves (a) if the second wave was produced
0.015 s later than the first one at the same place, (b) if
the two waves were produced at the same instant but
the first one was produced a distance 4.0 cm behind the
second one ? (c) If each of the waves has an amplitude
of 2.0 mm, what would be the amplitudes of the
resultant waves in part (a) and (b) ?

34. If the speed of a transverse wave on a stretched string
of length 1 m is 60 m s–1, what is the fundamental
frequency of vibration ?

35. A wire of length 2.00 m is stretched to a tension of
160 N. If the fundamental frequency of vibration is
100 Hz, find its linear mass density.

36. A steel wire of mass 4.0 g and length 80 cm is fixed at
the two ends. The tension in the wire is 50 N. Find the
frequency and wavelength of the fourth harmonic of the
fundamental.

37. A piano wire weighing 6.00 g and having a length of
90.0 cm emits a fundamental frequency corresponding
to the “Middle C” (ν = 261.63 Hz). Find the tension in
the wire.

38. A sonometer wire having a length of 1.50 m between
the bridges vibrates in its second harmonic in resonance
with a tuning fork of frequency 256 Hz. What is the
speed of the transverse wave on the wire ?

39. The length of the wire shown in figure (15-E8) between
the pulley is 1.5 m and its mass is 12.0 g. Find the
frequency of vibration with which the wire vibrates in
two loops leaving the middle point of the wire between
the pulleys at rest.

40. A one-metre long stretched string having a mass of 40 g
is attached to a tuning fork. The fork vibrates at 128 Hz
in a direction perpendicular to the string. What should
be the tension in the string if it is to vibrate in four
loops ?

41. A wire, fixed at both ends is seen to vibrate at a resonant
frequency of 240 Hz and also at 320 Hz. (a) What could
be the maximum value of the fundamental frequency ?
(b) If transverse waves can travel on this string at a
speed of 40 m s–1, what is its length ? 

42. A string, fixed at both ends, vibrates in a resonant mode
with a separation of 2.0 cm between the consecutive
nodes. For the next higher resonant frequency, this
separation is reduced to 1.6 cm. Find the length of the
string.

43. A 660 Hz tuning fork sets up vibration in a string
clamped at both ends. The wave speed for a transverse

wave on this string is 220 m s–1 and the string vibrates
in three loops. (a) Find the length of the string. (b) If
the maximum amplitude of a particle is 0.5 cm, write a
suitable equation describing the motion.

44. A particular guitar wire is 30.0 cm long and vibrates at
a frequency of 196 Hz when no finger is placed on it.
The next higher notes on the scale are 220 Hz, 247 Hz,
262 Hz and 294 Hz. How far from the end of the string
must the finger be placed to play these notes ?

45. A steel wire fixed at both ends has a fundamental
frequency of 200 Hz. A person can hear sound of
maximum frequency 14 kHz. What is the highest
harmonic that can be played on this string which is
audible to the person ?

46. Three resonant frequencies of a string are 90, 150 and
210 Hz. (a) Find the highest possible fundamental
frequency of vibration of this string. (b) Which harmonics
of the fundamental are the given frequencies ? (c) Which
overtones are these frequencies ? (d) If the length of the
string is 80 cm, what would be the speed of a transverse
wave on this string ? 

47. Two wires are kept tight between the same pair of
supports. The tensions in the wires are in the ratio 2 : 1,
the radii are in the ratio 3 : 1 and the densities are in
the ratio 1 : 2. Find the ratio of their fundamental
frequencies.

48. A uniform horizontal rod of length 40 cm and mass
1.2 kg is supported by two identical wires as shown in
figure (15-E9). Where should a mass of 4.8 kg be placed
on the rod so that the same tuning fork may excite the
wire on left into its fundamental vibrations and that on
right into its first overtone ? Take g = 10 m s−2.

49. Figure (15-E10) shows an aluminium wire of length
60 cm joined to a steel wire of length 80 cm and
stretched between two fixed supports. The tension
produced is 40 N. The cross-sectional area of the steel
wire is 1.0 mm2 and that of the aluminium wire is
3.0 mm 2. What could be the minimum frequency of a
tuning fork which can produce standing waves in the
system with the joint as a node ? The density of
aluminium is 2.6 g cm–3 and that of steel is 7.8 g cm–3.

50. A string of length L fixed at both ends vibrates in its
fundamental mode at a frequency ν and a maximum
amplitude A. (a) Find the wavelength and the wave
number k. (b) Take the origin at one end of the string
and the X-axis along the string. Take the Y-axis along
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the direction of the displacement. Take t  0 at the
instant when the middle point of the string passes
through its mean position and is going towards the
positive y-direction. Write the equation describing the
standing wave.

51. A 2 m-long string fixed at both ends is set into vibrations
in its first overtone. The wave speed on the string is
200 m s–1 and the amplitude is 0.5 cm. (a) Find the
wavelength and the frequency. (b) Write the equation
giving the displacement of different points as a function
of time. Choose the X-axis along the string with the
origin at one end and t  0 at the instant when the point
x  50 cm has reached its maximum displacement. 

52. The equation for the vibration of a string, fixed at both
ends vibrating in its third harmonic, is given by

   y  0.4 cm sin[0.314 cm  1 x] cos[600 s  1t].

   (a) What is the frequency of vibration ? (b) What are the
positions of the nodes ? (c) What is the length of the
string ? (d) What is the wavelength and the speed of two
travelling waves that can interfere to give this
vibration ? 

53. The equation of a standing wave, produced on a string
fixed at both ends, is

   y  0.4 cm sin[0.314 cm  1 x] cos[600 s  1t].

   What could be the smallest length of the string ?
54. A 40 cm wire having a mass of 3.2 g is stretched between

two fixed supports 40.05 cm apart. In its fundamental
mode, the  wire vibrates at 220 Hz. If the area of cross
section of the wire is 1.0 mm 2, find its Young modulus.

55. Figure (15-E11) shows a string stretched by a block
going over a pulley. The string vibrates in its tenth

harmonic in unison with a particular tuning fork. When
a beaker containing water is brought under the block so
that the block is completely dipped into the beaker, the
string vibrates in its eleventh harmonic. Find the
density of the material of the block.

56. A 2.00 m-long rope, having a mass of 80 g, is fixed at
one end and is tied to a light string at the other end.
The tension in the string is 256 N. (a) Find the
frequencies of the fundamental and the first two
overtones. (b) Find the wavelength in the fundamental
and the first two overtones.

57. A heavy string is tied at one end to a movable support
and to a light thread at the other end as shown in figure
(15-E12). The thread goes over a fixed pulley and
supports a weight to produce a tension. The lowest
frequency with which the heavy string resonates is
120 Hz. If the movable support is pushed to the right
by 10 cm so that the joint is placed on the pulley, what
will be the minimum frequency at which the heavy
string can resonate ?

ANSWERS

OBJECTIVE I

 1. (c)  2. (c)  3. (a)  4. (b)  5. (d)  6. (a)
 7. (a)  8. (d)  9. (d) 10. (c) 11. (b) 12. (d)

13. (b) 14. (d) 15. (b) 16. (d) 17. (a) 18. (a)
19. (b) 20. (b) 21. (a) 22. (d)

OBJECTIVE II

 1. (c), (d)  2. (d)  3. (d)
 4. (b), (d)  5. (a)  6. (b), (c), (d)
 7. (c), (d)  8. (a)  9. (b)
10. (c), (d)

EXERCISES

 1. At x   2 m

 2. (a) L, L, T (b) a/T
   (c) negative x-direction (d) x   a  and  x   2 a

 5. fx, t  A sin


t
T

  
x

vT




 6. (a) L, L (b) fx, t  A sin 
x  vt

a

 7. fx, t  A sin 
x  vt  t0

a

 8. (a) negative x-direction (b) 10 m s–1, 20 cm, 50 Hz
   (c) 0.10 mm, 3.14 cm s–1

 9. (a) y  0.20 cm sin[ cm  1 x  2  10 3 s  1t]
   (b) zero, 4 m s1
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10. (a) 20 ms, 4.0 cm   (b) zero
   (c) zero     (d) 9.7 cm s–1, 18 cm s–1, 25 cm s–1

11. 50 Hz, 4.0 cm, 2.0 m s–1

12. (a) 1.0 mm    (b) 4 cm (c) 1.6 cm  1 (d) 5 Hz

13. (a) 20 cm (b)  1.5 mm

14. 32 m s–1

15. (a) 0.02 s

16. (a) 2 s (b) 3 s (c) 2  10  3 N

17. 0.25
18. 0.108 N
19. (a) 30 m s–1, 30 cm

   (b) y  1.0 cm cos 2 


x
30 cm

  
t

0.01 s




   (c)  5.4 m s1, 2.0 km s2

20. 0.05 s
21. 79 m s–1 and 63 m s–1

22. 0.02 s
23. 50 m s–1

24. 3.7 m s2

25. v
26. (a) gx  (b)  4 L/g  

    (c) at a distance 
L
3

 from the bottom

27. at t  100 ms at x  2.0 m

28. 49 mW
29. (a) 0.47 W     (b) 9.4 mJ
30. (a) 70 m s–1, 16 cm (b) 1.4 m s–1, 3.8 km s–2 (c) 0.67 W
31. 42 mm

33. (a) 3          (b) 4        (c) zero, 4.0 mm
34. 30 Hz
35. 1.00 g m–1

36. 250 Hz, 40 cm
37. 1480 N
38. 384 m s–1

39. 70 Hz
40. 164 N
41. (a) 80 Hz    (b) 25 cm
42. 8.0 cm
43. (a) 50 cm

   (b) 0.5 cm sin[0.06 cm  1x]  cos[1320 s  1t]
44. 26.7 cm, 23.8 cm, 22.4 cm and 20.0 cm
45. 70
46. (a) 30 Hz      (b) 3rd, 5th and 7th 
   (c) 2nd, 4th and 6th   (d) 48 m s–1

47. 2 : 3
48. 5 cm from the left end
49. 180 Hz
50. (a) 2L, /L       (b) y  A sinx/L sin2t
51. (a) 2 m, 100 Hz

   (b) 0.5 cm sin[m  1 x] cos[200 s  1t]
52. (a) 300 Hz      (b) 0, 10 cm, 20 cm, 30 cm
   (c) 30 cm      (d) 20 cm, 60 m/s
53. 10 cm

54. 1.98  10 11 N m2

55. 5.8  10 3 kg m3

56. (a) 10 Hz, 30 Hz, 50 Hz  (b) 8.00 m, 2.67 m, 1.60 m
57. 240 Hz
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CHAPTER 16

SOUND WAVES

16.1 THE NATURE AND PROPAGATION
     OF SOUND WAVES

Sound is produced in a material medium by a
vibrating source. As the vibrating source moves
forward, it compresses the medium past it, increasing
the density locally. This part of the medium
compresses the layer next to it by collisions. The
compression travels in the medium at a speed which
depends on the elastic and inertia properties of the
medium. As the source moves back, it drags the
medium and produces a rarefaction in the layer. The
layer next to it is then dragged back and, thus, the
rarefaction pulse passes forward. In this way,
compression and rarefaction pulses are produced which
travel in the medium.

Figure (16.1) describes a typical case of propa-
gation of sound waves. A tuning fork is vibrated in air.
The prongs vibrate in simple harmonic motion. When
the fork moves towards right, the layer next to it is
compressed and consequently, the density is increased.
The increase in density and hence, in pressure, is
related to the velocity of the prong. The compression
so produced travels in air towards right at the wave
speed v. The velocity of the prong changes during the
forward motion, being maximum at the mean position
and zero at the extreme end. A compression wave pulse
of length vT/2 is thus produced during the half period
T/2 of forward motion. The prong now returns towards
left and drags the air with it. The density and the

pressure of the layer close to it go below the normal
level, a rarefaction pulse is thus produced. During this
half period of backward motion of the prong, a
rarefaction pulse of length vT/2 is produced. As the
prong continues executing its simple harmonic motion,
a series of alternate compression and rarefaction
pulses are produced which travel down the air.

As the prong vibrates in simple harmonic motion,
the pressure variations in the layer close to the prong
also change in a simple harmonic fashion. The increase
in pressure above its normal value may, therefore, be
written as

        P  P  P0  P0 sin t,

where P0 is the maximum increase in pressure above
its normal value. As this disturbance travels towards
right with the speed v (the wave speed and not the
particle speed), the equation for the excess pressure at
any point x at any time t is given by

           P  P0 sin t  x/v.
This is the equation of a wave travelling in

x-direction with velocity v. The excess pressure
oscillates between P0  and  P0 . The frequency of
this wave is   /2 and is equal to the frequency
of vibration of the source. Henceforth, we shall use the
symbol p for the excess pressure developed above the
equilibrium pressure and p0 for the maximum change
in pressure. The wave equation is then

          p  p0 sin t  x/v.   (16.1)

Sound waves constitute alternate compression and
rarefaction pulses travelling in the medium. However,
sound is audible only if the frequency of alteration of
pressure is between 20 Hz to 20,000 Hz. These limits
are subjective and may vary slightly from person to
person. An average human ear is not able to detect
disturbance in the medium if the frequency is outside
this range. Electronic detectors can detect waves of
lower and higher frequencies as well. A dog can hear
sound of frequency up to about 50 kHz and a bat up
to about 100 kHz. The waves with frequency below the
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audible range are called infrasonic   waves and the
waves with frequency above the audible range are
called ultrasonic.

Example 16.1

   A wave of wavelength 0.60 cm is produced in air and it
travels at a speed of 300 m s–1. Will it be audible ?

Solution : From the relation v = ν λ, the frequency of the
wave is 

       ν = 
v
λ

 = 
300 m s−1

0.60 × 10 − 2 m
 = 50000 Hz.

This is much above the audible range. It is an ultrasonic
wave and will not be audible.

The disturbance produced by a source of sound is
not always a sine wave. A pure sine wave has a unique
frequency but a disturbance of other waveform may
have many frequency components in it. For example,
when we clap our hands, a pulse of disturbance is
created which travels in the air. This pulse does not
have the shape of a sine wave. However, it can be
obtained by superposition of a large number of sine
waves of different frequencies and amplitudes. We
then say that the clapping sound has all these
frequency components in it.

The compression and rarefaction in a sound wave
is caused due to the back and forth motion of the
particles of the medium. This motion is along the
direction of propagation of sound and hence the sound
waves are longitudinal.

All directions, perpendicular to the direction of
propagation, are equivalent and hence, a sound wave
cannot be polarized. If we make a slit on a cardboard
and place it in the path of the sound, rotating the
cardboard in its plane will produce no effect on the
intensity of sound on the other side.

Wavefront

The sound produced at some point by a vibrating
source travels in all directions in the medium if the
medium is extended. The sound waves are, in general,
three dimensional waves. For a small source, we have
spherical layers of the medium on which the pressure
at various elements have the same phase at a given
instant. The compression, produced by the source at

say t = 0, reaches the spherical surface of radius
r = vt at time t and the pressure at all the points on
this sphere is maximum at this instant. A half
time-period later, the pressure at all the points on this
sphere is reduced to minimum. The surface through
the points, having the same phase of disturbance, is
called a wavefront. For a homogeneous and isotropic
medium, the wavefronts are normal to the direction of
propagation.

For a point source placed in a homogeneous and
isotropic medium, the wavefronts are spherical and the
wave is called a  spherical wave. If sound is produced
by vibrating a large plane sheet, the disturbance
produced in front of the sheet will have the same phase
on a plane parallel to the sheet. The wavefronts are
then planes (neglecting the end effects) and the
direction of propagation is perpendicular to these
planes. Such waves are called  plane waves. The
wavefront can have several other shapes. In this
chapter, we shall mostly consider sound waves
travelling in a fixed direction, i.e., plane waves.
However, most of the results will be applicable to other
waves also.

16.2 DISPLACEMENT WAVE AND PRESSURE WAVE

A longitudinal wave in a fluid (liquid or gas) can
be described either in terms of the longitudinal
displacement suffered by the particles of the medium
or in terms of the excess pressure generated due to
the compression or rarefaction. Let us see how the two
representations are related to each other.

Consider a wave going in the x-direction in a fluid.
Suppose that at a time t, the particle at the
undisturbed position x suffers a displacement s in the
x-direction. The wave can then be described by the
equation 
           s = s0 sin ω(t − x/v). … (i)

Consider the element of the material which is
contained within x and x + ∆x (figure 16.3) in the
undisturbed state. Considering a cross-sectional area
A, the volume of the element in the undisturbed state
is A ∆x and its mass is ρ A ∆x. As the wave passes, the
ends at x and x + ∆x are displaced by amounts s and
s + ∆s according to equation (i) above. The increase in
volume of this element at time t is

     ∆V = A ∆s
= A s0(− ω/v) cos ω(t − x/v)∆x,

Figure 16.2

A

s

x

Figure 16.3
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where Δs has been obtained by differentiating equation
(i) with respect to x. The element is, therefore, under
a volume strain.

      
ΔV
V

 = 
− A s0ω cos ω(t − x/v)Δx

vA Δx

         = 
− s0ω

v
 cos ω(t − x/v).

The corresponding stress, i.e., the excess pressure
developed in the element at x at time t is,

           p = B
⎛
⎜
⎝
− ΔV

V
⎞
⎟
⎠
 ,

where B is the bulk modulus of the material. Thus,

         p = B 
s0ω
v

 cos ω(t − x/v). … (ii)

Comparing with (i), we see that the pressure
amplitude p0 and the displacement amplitude s0 are
related as

          p0 = 
B ω
v

 s0 = Bks0 , … (16.2)

where k is the wave number. Also, we see from (i) and
(ii) that the pressure wave differs in phase by π/2 from
the displacement wave. The pressure maxima occur
where the displacement is zero and displacement
maxima occur where the pressure is at its normal
level.

The fact that, displacement is zero where the
pressure change is maximum and vice versa, puts the
two descriptions on different footings. The human ear
or an electronic detector responds to the change in
pressure and not to the displacement in a straight
forward way. Suppose two audio speakers are driven
by the same amplifier and are placed facing each other
(figure 16.4). A detector is placed midway between
them.

The displacement of the air particles near the
detector will be zero as the two sources drive these
particles in opposite directions. However, both send
compression waves and rarefaction waves together. As
a result, pressure increases at the detector
simultaneously due to both sources. Accordingly, the
pressure amplitude will be doubled, although the
displacement remains zero here. A detector detects
maximum intensity in such a condition. Thus, the
description in terms of pressure wave is more
appropriate than the description in terms of the

displacement wave as far as sound properties are
concerned.

Example 16.2

   A sound wave of wavelength 40 cm travels in air. If the
difference between the maximum and minimum pressures
at a given point is 1.0 × 10 –3 N m –2, find the amplitude
of vibration of the particles of the medium. The bulk
modulus of air is 1.4 × 10 5 N m –2.

Solution : The pressure amplitude is

     p0 = 
1.0 × 10 − 3 N m−2

2
 = 0.5 × 10 − 3 N m−2.

The displacement amplitude s0 is given by

     p0 = B k s0

or,    s0 = 
p0

B k
 = 

p0 λ
2 π B

       = 
0.5 × 10 − 3 N m−2 × (40 × 10 − 2 m)

2 × 3.14 × 1.4 × 10 5 N m−2  

       = 2.2 × 10 − 10 m.

16.3 SPEED OF A SOUND WAVE
     IN A MATERIAL MEDIUM

Consider again a sound wave going in x-direction
in a fluid whose particles are displaced according to
the equation
          s = s0 sin ω(t − x/v). … (i)

The pressure varies according to the equation

          p = 
B s0ω

v
 cos ω(t − x/v). … (ii)

Consider the element of the fluid which is
contained between the positions x and x + Δx in the
undisturbed state (figure 16.5). The excess pressure at
time t at the end x is p and at x + Δx it is p + Δp.
Taking a cross-sectional area A, the force on the
element from the left is pA and from the right it is
(p + Δp)A. The resultant force on the element at time
t is
        ΔF = Ap − A(p + Δp) = − A Δp

             = − A 
B s0 ω

v
 (ω/v) Δx sin ω(t − x/v)

             = − A 
B s0 ω 2

v 2
 sin ω(t − x/v) Δx.

Figure 16.4

 Figure 16.5
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The change in pressure ∆p between x and x + ∆x
is obtained by differentiating equation (ii) with respect
to x. If ρ is the normal density of the fluid, the mass
of the element considered is ρ A ∆x. Using Newton’s
second law of motion, the acceleration of the element
is given by

      a = 
∆F

ρ A ∆x
 = − 

B s0 ω 2

ρ v 2
 sin ω(t − x/v). … (iii)

However, the acceleration can also be obtained
from equation (i). It is

       a = 
∂ 2 s

∂ t 2
 

   or,      a = − ω 2 s0 sin ω(t − x/v). … (iv)

Comparing (iii) and (iv)

       
B s0 ω 2

ρ v 2
 = ω 2 s0 

   or,          v = √B/ρ . … (16.3)

We see that the velocity of a longitudinal wave in
a medium depends on its elastic properties and inertia
properties as was the case with the waves on a string.

Sound Waves in Solids

Sound waves can travel in solids just like they can
travel in fluids. The speed of longitudinal sound waves
in a solid rod can be shown to be
             v = √Y/ρ … (16.4)

where Y is the Young modulus of the solid and ρ its
density. For extended solids, the speed is a more
complicated function of bulk modulus and shear
modulus. Table (16.1) gives the speed of sound in some
common materials.

Table 16.1

  Medium  Speed m s–1   Medium  Speed m s–1

Air (dry 0°C)      332 Copper    3810

Hydrogen   1330 Aluminium    5000

Water   1486 Steel    5200

16.4 SPEED OF SOUND IN A GAS : NEWTON’S
    FORMULA AND LAPLACE’S CORRECTION

The speed of sound in a gas can be expressed in
terms of its pressure and density. The derivation uses
some of the properties of gases that we shall study in
another chapter. We summarise these properties
below.

(a) For a given mass of an ideal gas, the pressure,
volume and the temperature are related as
PV
T

 = constant. If the temperature remains constant

(called an isothermal process), the pressure and the
volume of a given mass of a gas satisfy PV = constant.

Here T is the absolute temperature of the gas. This
is known as Boyle’s law.

(b) If no heat is supplied to a given mass of a gas
(called an adiabatic process), its pressure and volume
satisfy

           PV γ = constant;

where γ is a constant for the given gas. It is, in fact,
the ratio Cp /CV of two specific heat capacities of the
gas.

Newton suggested a theoretical expression for the
velocity of sound wave in a gaseous medium. He
assumed that when a sound wave propagates through
a gas, the temperature variations in the layers of
compression and rarefaction are negligible. The logic
perhaps was that the layers are in contact with wider
mass of the gas so that by exchanging heat with the
surrounding the temperature of the layer will remain
equal to that of the surrounding. Hence, the conditions
are isothermal and Boyle’s law will be applicable.

Thus,        PV = constant

or,     P∆V + V∆P = 0

   or,        B = − 
∆P

∆V/V
 = P. … (i)

Using this result in equation (16.3), the speed of
sound in the gas is given by
             v = √P/ρ . … (16.5)

The density of air at temperature 0°C and pressure

76 cm of mercury column is ρ = 1.293 kg m−3. This
temperature and pressure is called standard
temperature and pressure and is written as STP.
According to equation (16.5), the speed of sound in air
at this temperature and pressure should be 280 m s–1.
This value is somewhat smaller than the measured
speed of sound which is about 332 m s−1.

Laplace suggested that the compression or
rarefaction takes place too rapidly and the gas element
being compressed or rarefied does not get enough time
to exchange heat with the surroundings. Thus, it is an
adiabatic process and one should use the equation

          PV γ = constant.
Taking logarithms,
     ln P + γ ln V = constant.
Taking differentials,

          
∆P
P

 + γ 
∆V
V

 = 0

or,        B = − 
∆P

∆V/V
 = γ P
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   Thus, the speed of sound is v = √⎯⎯γ P
ρ

 ⋅ … (16.6)

For air, γ = 1.4 and putting values of P and ρ
as before, equation (16.6) gives the speed of sound in
air at STP to be 332 m s–1 which is quite close to the
observed value.

16.5 EFFECT OF PRESSURE, TEMPERATURE AND
     HUMIDITY ON THE SPEED OF SOUND IN AIR

We have stated that for an ideal gas, the pressure,
volume and temperature of a given mass satisfy

           
PV
T

 = constant.

As the density of a given mass is inversely
proportional to its volume, the above equation may also
be written as

            
P
ρ

 = cT,

where c is a constant. The speed of sound is

          v = √⎯⎯γ P
ρ

 = √⎯⎯⎯⎯γ cT . …  (16.7)

Thus, if pressure is changed but the temperature
is kept constant, the density varies proportionally and
P/ρ remains constant. The speed of sound is not
affected by the change in pressure provided the
temperature is kept constant.

If the temperature of air is changed then the speed
of sound is also changed.

From equation (16.7),
            v ∝ √T.

At STP, the temperature is 0°C or 273 K. If the
speed of sound at 0°C is v0, its value at the room
temperature T (in kelvin) will satisfy 

       
v
v0

 = √⎯⎯T
273

 = √⎯⎯⎯273 + t
273

,

where t is the temperature in °C. This may be
approximated as

          
v
v0

 = ⎛⎜
⎝
1 + 

t
273

⎞
⎟
⎠

 
1
2

 ≅ 1 + 
t

546

or,       v = v0
⎛
⎜
⎝
1 + 

t
546

⎞
⎟
⎠
 ⋅

The density of water vapour is less than dry air
at the same pressure. Thus, the density of moist air
is less than that of dry air. As a result, the speed of
sound increases with increasing humidity.

16.6 INTENSITY OF SOUND WAVES

As a wave travels in a medium, energy is
transported from one part of the space to another part.
The intensity of a sound wave is defined as the average
energy crossing a unit cross-sectional area
perpendicular to the direction of propagation of the
wave in unit time. It may also be stated as the average
power transmitted across a unit cross-sectional area
perpendicular to the direction of propagation.

The loudness of sound that we feel is mainly
related to the intensity of sound. It also depends on
the frequency to some extent. 

Consider again a sound wave travelling along the
x-direction. Let the equations for the displacement of
the particles and the excess pressure developed by the
wave be given by

   
s = s0 sin ω(t − x/v)

and              p = p0 cos ω(t − x/v)     
⎪
⎪
⎪

… (i)

where    p0 = 
B ω s0

v
 ⋅

Consider a cross section of area A perpendicular
to the x-direction. The medium to the left to it exerts
a force pA on the medium to the right along the X-axis.
The points of application of this force move
longitudinally, that is along the force, with a speed
∂s
∂t

 ⋅ Thus, the power W, transmitted by the wave from

left to right across the cross section considered, is

          W = (pA) 
∂s
∂t

 ⋅

By (i),

     W = A p0 cos ω(t − x/v) ωs0 cos ω(t − x/v)

       = 
A ω2 s0

 2 B
v

 cos2 ω(t − x/v).

The average of cos 2 ω(t − x/v) over a complete cycle
or over a long time is 1/2. The intensity I, which is
equal to the average power transmitted across unit
cross-sectional area is thus, 

      I = 
1
2

 
ω2 s0

 2 B
v

 = 
2π2 B

v
 s0

 2 ν 2.

Using equation (16.2),

              I = 
p0

 2 v
2 B

 ⋅ … (16.8)

As B = ρv2, the intensity can also be written as

           I = 
v

2ρ v2 p0
 2 = 

p0
 2

2ρv
 ⋅ … (16.9)

We see that the intensity is proportional to the
square of the pressure amplitude p0 .
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Example 16.3

   The pressure amplitude in a sound wave from a radio
receiver is 2.0  10 –2 N m –2 and the intensity at a point
is 5.0  10 – 7 W m –2. If by turning the “volume” knob the
pressure amplitude is increased to 2.5  10 –2 N m –2,
evaluate the intensity.

Solution : The intensity is proportional to the square of
the pressure amplitude.

Thus,  
I
I

  




p0
p0





 2

or,     I  




p0
p0





 2

 I  


2.5
2.0





 2

  5.0  10  7 W m2

         7.8  10  7 W m2.

16.7 APPEARANCE OF SOUND TO HUMAN EAR

The appearance of sound to a human ear is
characterised by three parameters (a) pitch (b)
loudness and (c) quality. All the three are subjective
description of sound though they are related to
objectively defined quantities. Pitch is related to
frequency, loudness is related to intensity and quality
is related to the waveform of the sound wave.

Pitch and Frequency

Pitch of a sound is that sensation by which we
differentiate a buffallo voice, a male voice and a female
voice. We say that a buffallo voice is of low pitch, a
male voice has higher pitch and a female voice has
(generally) still higher pitch. This sensation primarily
depends on the dominant frequency present in the
sound. Higher the frequency, higher will be the pitch
and vice versa. The dominant frequency of a buffallo
voice is smaller than that of a male voice which in
turn is smaller than that of a female voice.

Loudness and Intensity   

The loudness that we sense is related to the
intensity of sound though it is not directly proportional
to it. Our perception of loudness is better correlated
with the sound level measured in decibels (abbreviated
as dB) and defined as follows.

             10 log10 




I
I0




 ,  (16.10)

where I is the intensity of the sound and I0 is a
constant reference intensity 10 – 12 W m –2. The
reference intensity represents roughly the minimum
intensity that is just audible at intermediate
frequencies. For I  I0 , the sound level   0. Table
(16.2) shows the approximate sound levels of some of
the sounds commonly encountered.

Table 16.2 : Sound Levels

Minimum audible sound        0 dB

Whispering (at 1 m)       10 dB

Normal talk (at 1 m)       60 dB

Maximum tolerable sound      120 dB

Example 16.4

   If the intensity is increased by a factor of 20, by how
many decibels is the sound level increased ?

Solution : Let the initial intensity be I and the sound level
be 1 . When the intensity is increased to 20 I, the level
increases to 2 .
Then        1  10 log I/I0
and         2  10 log 20 I/I0.

Thus,     2  1  10 log 20 I/I

               10 log 20

              13 dB.

Quality and Waveform

A sound generated by a source may contain a
number of frequency components in it. Different
frequency components have different amplitudes and
superposition of them results in the actual waveform.
The appearance of sound depends on this waveform
apart from the dominant frequency and intensity.
Figure (16.6) shows waveforms for a tuning fork, a
clarinet and a cornet playing the same note
(fundamental frequency  440 Hz) with equal loudness.

We differentiate between the sound from a tabla
and that from a mridang by saying that they have
different quality. A musical sound has certain
well-defined frequencies which have considerable
amplitude. These frequencies are generally harmonics
of a fundamental frequency. Such a sound is
particularly pleasant to the ear. On the other hand, a

t

t

t

Figure 16.6
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noise has frequencies that do not bear any well-defined
relationship among themselves.

16.8 INTERFERENCE OF SOUND WAVES  

The principle of superposition introduced in the
previous chapter is valid for sound waves as well. If
two or more waves pass through the same region of a
medium, the resultant disturbance is equal to the sum
of the disturbances produced by individual waves.
Depending on the phase difference, the waves can
interfere constructively or destructively leading to a
corresponding increase or decrease in the resultant
intensity. While discussing the interference of two
sound waves, it is advised that the waves be expressed
in terms of pressure change. The resultant change in
pressure is the algebraic sum of the changes in
pressure due to the individual waves. Thus, one should
not add the displacement vectors so as to obtain the
resultant displacement wave.

Figure (16.7) shows two tuning forks S1 and S2,
placed side by side, which vibrate with equal frequency
and equal amplitude. The point P is situated at a
distance x from S1 and x  x from S2 .

The forks may be set into vibration with a phase
difference 0. In case of tuning forks, the phase
difference 0 remains constant in time. Two sources
whose phase difference remains constant in time are
called coherent sources. If there were two drum beaters
beating the drums independently, the sources would
have been incoherent.

Suppose the two forks are vibrating in phase so
that 0  0. Also, let p01 and p02 be the amplitudes of
the waves from S1 and S2 respectively. Let us examine
the resultant change in pressure at a point P. The
pressure change at P due to the two waves are
described by
        p1  p01 sinkx  t
        p2  p02 sin[kx  x  t]
           p02 sin[kx  t  ],

where       k x  
2 x


  (16.11)

is the phase difference between the two waves reaching
P. These equations are identical to those discussed in
chapter 15, section 15.7. The resultant wave at P is
given by

         p  p0 sin[kx  t  ],

where     p0
 2  p01

 2   p02
 2   2 p01 p02 cos,

   and    tan   
p02 sin

p01  p02 cos
 

The resultant amplitude is maximum when
  2n and is minimum when   2n  1  where n
is an integer. These are correspondingly the conditions
for constructive and destructive interference

   
  2n           constructive  interference
  2n  1   destructive  interference.

 

  (16.12)

Using equation (16.11), i.e.,   2


 x, these

conditions may be written in terms of the path
difference as

   
x  n                      constructive
x  n  1/2           destructive.  





 (16.13)

At constructive interference,
       p0  p01  p02

and at destructive interference,
       p0   p01  p02 .

Suppose p01  p02  and  x  /2. The resultant
pressure amplitude of the disturbance is zero and no
sound is detected at such a point P. If x  , the
amplitude is doubled. The intensity of a wave is
proportional to the square of the amplitude and hence,
at the points of constructive interference, the resultant
intensity of sound is four times the intensity due to
an individual source. This is a characteristic property
of wave motion. Two sources can cancel the effects of
each other or they can reinforce the effect.

If the sources have an initial phase difference 0

between them, the waves reaching P at time t are
represented by

        p  p01 sin[kx  t]

and      p  p02 sin[kx  x  t  0].

The phase difference between these waves is

             0  k x  0  
2 x


 

The interference maxima and minima occur
according to equation (16.12).

For incoherent sources, 0 is not constant and
varies rapidly and randomly with time. At any point
P, sometimes constructive and sometimes destructive
interference takes place. If the intensity due to each
source is I, the resultant intensity rapidly and
randomly changes between zero and 4I so that the
average observable intensity is 2I. No interference
effect is, therefore, observed. For observable
interference, the sources must be coherent.

One way to obtain a pair of coherent sources is to
obtain two sound waves from the same source by
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dividing the original wave along two different paths
and then combining them. The two waves then differ
in phase only because of different paths travelled.

A popular demonstration of interference of sound
is given by the Quinke’s apparatus figure (16.8).

Sound produced near the end P travels down in P
and is divided in two parts, one going through the tube
A and the other through B. They recombine and the
resultant sound moves along Q to reach the listener
(which may be an electronic detector to do a
quantitative analysis). The tube B can be slid in and
out to change the path length of one of the waves. If
the sound is produced at a unique frequency (a tuning
fork may be used for it), the wavelength λ (= v/ν) has
a single value. The intensity at Q will be a maximum
or a minimum depending on whether the difference in
path lengths is an integral multiple of λ or a half
integral multiple. Thus, when the tube B is slowly
pulled out the intensity at Q oscillates.

Phase Difference and Path Difference

From equation (16.11) we see that if a wave travels
an extra distance ∆x with respect to the other wave,
a phase difference

          δ = 
ω
v

 ∆x = 
2π ∆x

λ

is introduced between them.

Note carefully that this is the phase difference
introduced due to the different path lengths covered
by the waves from their origin. Any initial difference
of phase that may exist between the sources must be
added to it so as to get the actual phase difference.

Example 16.5

   Two sound waves, originating from the same source,
travel along different paths in air and then meet at a
point. If the source vibrates at a frequency of 1.0 kHz
and one path is 83 cm longer than the other, what will
be the nature of interference ? The speed of sound in air
is 332 m s–1.

Solution : The wavelength of sound wave is λ = 
v
ν

       = 
332 m s−1

1.0 × 10 3 Hz
 = 0.332 m.

The phase difference between the waves arriving at the
point of observation is

     δ = 
2π
λ

 ∆x = 2π × 
0.83 m
0.332 m

 = 2π × 2.5 = 5π.

As this is an odd multiple of π, the waves interfere
destructively.

Reflection of Sound Waves   

When there exists a discontinuity in the medium,
the wave gets reflected. When a sound wave gets
reflected from a rigid boundary, the particles at the
boundary are unable to vibrate. Thus, a reflected wave
is generated which interferes with the oncoming wave
to produce zero displacement at the rigid boundary. At
these points (zero displacement), the pressure
variation is maximum. Thus, a reflected pressure wave
has the same phase as the incident wave. That means,
a compression pulse reflects as a compression pulse
and a rarefaction pulse reflects as a rarefaction pulse.

A sound wave is also reflected if it encounters a
low pressure region. A practical example is when a
sound wave travels in a narrow open tube. When the
wave reaches an open end, it gets reflected. The force
on the particles there due to the outside air is quite
small and hence, the particles vibrate with increased
amplitude. As a result, the pressure there remains at
the average value. Thus, the reflected pressure wave
interferes destructively with the oncoming wave. There
is a phase change of π in the pressure wave when it
is reflected by an open end. That means, a compression
pulse reflects as a rarefaction pulse and vice versa.

16.9 STANDING LONGITUDINAL WAVES
    AND VIBRATIONS OF AIR COLUMNS   

If two longitudinal waves of the same frequency
and amplitude travel through a medium in the
opposite directions, standing waves are produced. If
the equations of the two waves are written as

         p1 = p0 sin ω(t − x/v)
and       p2 = p0 sin ω(t + x/v),

the resultant wave is by the principle of superposition,
       p = p1 + p2

            = 2 p0 cos(ωx/v) sin ωt
            = 2 p0 cos kx sin ωt.

This equation is similar to the equation obtained
in chapter 15 for standing waves on a string. Hence,
all the characteristics of standing waves on a string
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are also present in longitudinal standing waves. At
different points in the medium, the pressure
amplitudes have different magnitudes. In particular,
at certain points the pressure remains permanently at
its average value, they are called the pressure nodes
and midway between the nodes, there are pressure
antinodes where the amplitude is maximum. The
separation between two consecutive nodes or between
two consecutive antinodes is λ/2. It may be noted that
a pressure node is a displacement antinode and a
pressure antinode is a displacement node.

Standing waves can be produced in air columns
trapped in tubes of cylindrical shape. Organ pipes are
such vibrating air columns.

(A) Closed Organ Pipe

A closed organ pipe is a cylindrical tube having an
air column with one end closed. Sound waves are sent
in by a source vibrating near the open end. An ingoing
pressure wave gets reflected from the fixed end. This
inverted wave is again reflected at the open end. After
two reflections, it moves towards the fixed end and
interferes with the new wave sent by the source in
that direction. The twice reflected wave has travelled
an extra distance of 2l causing a phase advance of
2π
λ

 ⋅ 2l = 
4πl
λ

 with respect to the new wave sent in by the

source. Also, the twice reflected wave suffered a phase
change of π at the open end. The phase difference

between the two waves is then δ = 4πl
λ

 + π. The waves

interfere constructively if δ = 2nπ

   or,       
4πl
λ

 + π = 2nπ

   or,         l = (2n − 1) 
λ
4

where n = 1, 2, 3, … . This may also be written as

             l = (2n + 1) 
λ
4

, … (16.14)

where n = 0, 1, 2, … .

In such a case, the amplitude goes on increasing
until the energy dissipated through various damping
effects equals the fresh input of energy from the
source. Such waves exist in both the directions and
they interfere to give standing waves of large
amplitudes in the tube. The fixed end is always a
pressure antinode (or displacement node) and the open
end is a pressure node (or displacement antinode). In
fact, the pressure node is not exactly at the open end
because the air outside does exert some force on the
air in the tube. We shall neglect this end correction
for the time being.

The condition for having standing waves in a
closed organ pipe is given by equation (16.14),

         l = (2n + 1) 
λ
4

 ⋅

   The frequency ν is thus given by

ν = 
v
λ

 = (2n + 1) v
4l

 ⋅ … (16.15)

We see that there are certain discrete frequencies
with which standing waves can be set up in a closed
organ pipe. These frequencies are called natural
frequencies, normal frequencies or resonant frequencies.

Figure (16.9) shows the variation of excess
pressure and displacement of particles in a closed
organ pipe for the first three resonant frequencies.

The minimum allowed frequency is obtained by
putting n = 0 in equation (16.15). This is called the
fundamental frequency ν0 of the tube. We have

              ν0 = 
v
4l

 ⋅ … (16.16)

By equation (16.14), l = λ/4 in this case. A pressure
antinode is formed at the closed end and a node is
formed at the open end. There are no other nodes or
antinodes in between. The air column is said to vibrate
in its fundamental mode (figure 16.9a).

Putting n = 1 in equation (16.15), we get the first
overtone frequency

            ν1 = 
3v
4l

 = 3 ν0.

By equation (16.14), the length of the tube in this
mode is
             l = 3λ/4.
   In the first overtone mode of vibration (figure
16.9b), there is an antinode and a node in the air
column apart from the ends.
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In the second overtone, there are two nodes and
two antinodes in the column apart from the ends
(figure 16.10c). In this mode, l  5 /4 and the
frequency is

          2  
5v
4l

  50 .

The higher overtones can be described in a similar
way.

Thus, an air column of length l fixed at one end
can vibrate with frequencies 2n  1 0  where  0  v

4l
and n is an integer. We see that all the overtone
frequencies are harmonics (i.e., integral multiple) of
the fundamental frequency but all the harmonics of
fundamental frequency are not the allowed
frequencies. Only the odd harmonics of the
fundamental are the allowed frequencies.

(B) Open Organ Pipe

An open organ pipe is again a cylindrical tube
containing an air column open at both ends. A source
of sound near one of the ends sends the waves in the
pipe (figure 16.10). The wave is reflected by the other
open end and travels towards the source. It suffers
second reflection at the open end near the source and
then interferes with the new wave sent by the source.
The twice reflected wave is ahead of the new wave
coming in by a path difference 2l. The phase difference

is   
2


 2l  
4l


  Constructive interference takes place if

             2n
             l  n/2   (16.17)

where n = 1, 2, 3,  .
The amplitude then keeps on growing. Waves

moving in both the directions with large amplitudes
are established and finally standing waves are set up.
As already discussed, in this case the energy lost by
various damping effects equals the energy input from
the source. The frequencies with which a standing
wave can be set up in an open organ pipe are

              
v


  
nv
2l

   (16.18)

Figure (16.10) shows the variation of excess
pressure and displacement in the open organ pipe for
the first three resonant frequencies. The minimum
frequency 0 is obtained by putting n  1 in equation
(16.18). Thus,

             0  
v
2l

   (16.19)

This corresponds to the fundamental mode of
vibration. By equation (16.18), l  /2 in the funda-
mental mode of vibration (figure 16.10a).

As the air at both ends is free to vibrate (neglecting
the effect of the pressure of the air outside the pipe),
pressure nodes are formed at these points. There is an
antinode in between these nodes.

If the source vibrates at the frequency 0  v
2l

 , it

will set up the column in the fundamental mode of
vibration.

Putting n  2 in equation (16.18), we get the
frequency of the first overtone mode as

          1  2 
v
2l

  20 .

The length of the tube is, by equation (16.17),
l  . There are two pressure antinodes and one node
apart from the nodes at the two ends. In the nth
overtone, there are n  1 pressure antinodes. The
frequency of the nth overtone is given by

          n  
nv
2l

  n0 .

The overtone frequencies are 2v
2l

 ,  3v
2l

 ,  , etc. All

the overtone frequencies are harmonics of the
fundamental and all the harmonics of the fundamental
are allowed overtone frequencies. There are no missing
harmonics in an open organ pipe. The quality of sound
from an open organ pipe is, therefore, richer than that
from a closed organ pipe in which all the even
harmonics of the fundamental are missing.

Example 16.6

   An air column is constructed by fitting a movable piston
in a long cylindrical tube. Longitudinal waves are sent
in the tube by a tuning fork of frequency 416 Hz. How

x

Figure 16.10
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far from the open end should the piston be so that the
air column in the tube may vibrate in its first overtone ?
Speed of sound in air is 333 m s–1.

Solution : The piston provides the closed end of the column
and an antinode of pressure is formed there. At the open
end, a pressure node is formed. In the first overtone
there is one more node and an antinode in the column
as shown in figure (16.11). The length of the tube should
then be 3 /4.

The wavelength is   
v


  
333 m s1

416 s1   0.800 m

Thus, the length of the tube is

         
3
4

  
3  0.800 m

4
  60.0 cm.

16.10 DETERMINATION OF SPEED
     OF SOUND IN AIR

(a) Resonance Column Method

Figure (16.12) shows schematically the diagram of
a simple apparatus used in laboratories to measure
the speed of sound in air. A long cylindrical glass tube
(say about 1 m) is fixed on a vertical wooden frame. It
is also called a resonance tube. A rubber tube connects
the lower end of this glass tube to a vessel which can
slide vertically on the same wooden frame. A meter
scale is fitted parallel to and close to the glass tube.

The vessel contains water which also goes in the
resonance tube through the rubber tube. The level of
water in the resonance tube is same as that in the
vessel. Thus, by sliding the vessel up and down, one
can change the water level in the resonance tube.

A tuning fork (frequency 256 Hz if the tube is 1 m
long) is vibrated by hitting it on a rubber pad and is
held near the open end of the tube in such a way that
the prongs vibrate parallel to the length of the tube.
Longitudinal waves are then sent in the tube.

The water level in the tube is initially kept high.
The tuning fork is vibrated and kept close to the open
end, and the loudness of sound coming from the tube
is estimated. The vessel is brought down a little to
decrease the water level in the resonance tube. The
tuning fork is again vibrated, kept close to the open
end and the loudness of the sound coming from the
tube is estimated. The process is repeated until the
water level corresponding to the maximum loudness is
located. Fine adjustments of water level are made to
locate accurately the level corresponding to the
maximum loudness. The length of the air column is
read on the scale attached. In this case, the air column
vibrates in resonance with the tuning fork. The
minimum length of the air column for which the
resonance takes place corresponds to the fundamental
mode of vibration. A pressure antinode is formed at
the water surface (which is the closed end of the air
column) and a pressure node is formed near the open
end. In fact, the node is formed slightly above the open
end (end correction) because of the air-pressure from
outside.

Thus, for the first resonance the length l1 of the
air column in the resonance tube is given by

             l1  d  

4

 ,  (i)

where d is the end correction.

The length of the air column is increased to a little
less than three times of l. The water level is adjusted
so that the loudness of the sound coming from the tube
becomes maximum again. The length of the air column
is noted on the scale. In this second resonance the air
column vibrates in the first overtone. There is one node
and one antinode in between the ends of the column.
The length l2 of the column is given by
              l2  d  3/4.  (ii)

By (i) and (ii),
     l2  l1  /2,    or,      2l2  l1.
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The frequency of the wave is same as the frequency
of the tuning fork. Thus, the speed of sound in the air
of the laboratory is

          v    2l2  l1 .  (16.20)

(b) Kundt’s Tube Method of Determining
   the Speed of Sound in a Gas  

The resonance column method described above can
be used to find the speed of sound in air only, as the
tube is open at the end to the atmosphere. In the
Kundt’s method, a gas is enclosed in a long cylindrical
tube closed at both ends, one by a disc D and the other
by a movable piston (figure 16.14). A metal rod is
welded with the disc and is clamped exactly at the
middle point. The length of the tube can be varied by
moving the movable piston. Some powder is sprinkled
inside the tube along its length.

The rod is set into longitudinal vibrations
electronically or by rubbing it with some rosined cloth
or otherwise. If the length of the gas column is such
that one of its resonant frequencies is equal to the
frequency of the longitudinal vibration of the rod,
standing waves are formed in the gas. The powder
particles at the displacement antinodes fly apart due
to the violent disturbance there, whereas the powder
at the displacement nodes remain undisturbed because
the particles here do not vibrate. Thus, the powder
which was initially dispersed along the whole length
of the tube collects in heaps at the displacement nodes.
By measuring the separation l between the successive
heaps, one can find the wavelength of sound in the
enclosed gas

            2l.

The length of the gas column is adjusted by moving
the movable piston such that the gas resonates with
the disc and the wavelength  is obtained. If the
frequency of the longitudinal vibration of the rod is ,
the speed of sound in the gas is given by

            v    2 l .  (i)

If the frequency of the longitudinal vibrations in
the rod is not known, the experiment is repeated with
air filled in the tube. The length between the heaps of
the powder, l  is measured. The speed of sound in
air is then

             v  2 l .  (ii)

By (i) and (ii),

          
v
v

  
l
l 

   or,          v  v 
l
l 

 

Knowing the speed v of sound in air, one can find
the speed in the experimental gas.

Kundt’s tube method can also be used to measure
the speed of sound in a solid. Air at normal pressure
is filled in the tube. The speed of sound in air is
supposed to be known. The rod attached to the disc is
clamped at the middle and is set into longitudinal
vibration. The rod behaves like an open organ pipe as
the two ends are free to vibrate. Assuming that it
vibrates in its fundamental mode of vibration, the
clamped point is a pressure antinode and the two ends
of the rod are pressure nodes. Thus, the wavelength
of sound in the rod is   2l. If the powder piles up at
successive distances l and the speed of sound in air
is va , then va  2 l . Also, if v be the speed of sound
in the rod, v    2 l.

Thus,     
v
va

  
l
l

    or,    v  
l
l

 va .

As the speed va of sound in air is known,
measurements of l and l give the speed of sound in
the material of the rod.

16.11 BEATS

So far we have considered superposition of two
sound waves of equal frequency. Let us now consider
two sound waves having equal amplitudes and
travelling in a medium in the same direction but
having slightly different frequencies. The equations of
the two waves are given by

       p1  p0 sin 1t  x/v
       p2  p0 sin 2t  x/v,

where we have chosen the two waves to be in phase
at x  0, t  0. The speed of sound wave does not
depend on its frequency and hence, same wave speed
v is used for both the equations. The angular
frequencies 1 and 2 only slightly differ so that the
difference |1  2| is small as compared to 1 or 2.
By the principle of superposition, the resultant change
in pressure is

p  p1  p2

  p0[sin 1t  x/v  sin 2t  x/v]

 2 p0 cos 



1  2

2
 t  x/v




  sin 




1  2

2
 t  x/v




 

   Writing  1  2   ,  and  
1  2

2
  ,  (i)

D

Figure 16.14
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   the resultant change in pressure is

   p = 2 p0 cos 
∆ω
2

 (t − x/v) sin ω(t − x/v) … (16.21)

    = A sin ω(t − x/v),

where A = 2 p0 cos 
∆ω
2

 (t − x/v). … (16.22)

As ω >> ∆ω
2

 , the term A varies slowly with time as

compared to sin ω(t − x/v). Thus, we can interpret this
equation by saying that the resultant disturbance is a
wave of angular frequency ω = (ω1 + ω2)/2 whose
amplitude varies with time and is given by equation
(16.22). As a negative value of amplitude has no
meaning, the amplitude is, in fact, | A |.

Let us concentrate our attention to a particular
position x and look for the pressure change there as a
function of time. Equations (16.21) and (16.22) tell that
the pressure oscillates back and forth with a frequency
equal to the average frequency ω of the two waves but
the amplitude of pressure variation itself changes
periodically between 2p0 and zero.

Figure (16.15) shows the plots of

      A = 2 p0 cos 
∆ω
2

 (t − x/v), B = sin ω(t − x/v)

and their product

      p = 2 p0 cos 
∆ω
2

 (t − x/v) sin ω(t − x/v)

as a function of time for a fixed x.

Variation of Intensity at a Point

The amplitude | A | oscillates between 0 to 2 p0

with a frequency which is double of the frequency of
A. This is because as A oscillates from 2 p0  to  −2 p0

(i.e., half the oscillation), the amplitude | A | covers
full oscillation from 2 p0 to zero to 2 p0 (figure 16.16).

By equation (16.22), the frequency of variation of

A is ∆ω/2
2π

 = ∆ω
4π

 ⋅ Thus, the frequency of amplitude

variation is

     ν′ = 2 × 
∆ω
4π

 = 
| ω1 − ω2 |

2π
 = | ν1 − ν2 |,

where ν1  and  ν2 are the frequencies of the original
waves. Notice that we have written this frequency as
 ν1 − ν2 . It is the difference between ν1  and  ν2 with
which the amplitude oscillates. The intensity is
proportional to the square of the pressure amplitude
and it also varies periodically with frequency
 ν1 − ν2 . This phenomenon of periodic variation of
intensity of sound when two sound waves of slightly
different frequencies interfere, is called beats.
Specifically, one cycle of maximum intensity and
minimum intensity is counted as one beat, so that the
frequency of beats is  ν1 − ν2 .

In figure (16.17), we explain the formation of beats
graphically. The plots in part (a) show the pressure
variation due to individual waves at a fixed position
x = 0 as a function of time. At t = 0, the two waves
produce pressure changes in phase. But as the
frequencies and hence the time periods are slightly
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different, the phase difference grows and at a time t1,
the two pressure changes become out of phase. The
resultant becomes zero at this time. The phase
difference increases further and at time t2, it becomes
2π . The pressure changes are again in phase. The
superposition of the two waves (figure 16.17) gives the
resultant pressure change as a function of time which
is identical in shape to the part (c) of figure (16.15).

The phenomenon of beats can be observed by
taking two tuning forks of the same frequency and
putting some wax on the prongs of one of the forks.
Loading with wax decreases the frequency of a tuning
fork a little. When these two forks are vibrated and
kept side by side, the listener can recognise the
periodic variation of loudness of the resulting sound.
The number of beats per second equals the difference
in frequency.

For beats to be audible, the frequency  ν1 − ν2 
should not be very large. An average human ear cannot
distinguish the variation of intensity if the variation
is more than 16 times per second. Thus, the difference
of the component frequencies should be less than 16
Hz for the beats to be heard.

Example 16.7

   A tuning fork A of frequency 384 Hz gives 6 beats in
2 seconds when sounded with another tuning fork B.
What could be the frequency of B ?

Solution : The frequency of beats is  ν1 − ν2 , which is
3 Hz according to the problem. The frequency of the
tuning fork B is either 3 Hz more or 3 Hz less than the
frequency of A. Thus, it could be either 381 Hz or 387 Hz.

16.12 DIFFRACTION

When waves are originated by a vibrating source,
they spread in the medium. If the medium is
homogeneous and isotropic, the waves from a point
source have spherical wavefronts, the rays going in all
directions. Far from the source, the wavefronts are
nearly planes. The shape of the wavefront is changed
when the wave meets an obstacle or an opening in its
path. This leads to bending of the wave around the
edges. For example, if a small cardboard is placed
between a source of sound and a listener, the sound
beyond the cardboard is not completely stopped, rather
the waves bend at the edges of the cardboard to reach
the listener. If a plane wave is passed through a small
hole (an opening in a large obstacle), spherical waves
are obtained on the other side as if the hole itself is a
source sending waves in all directions (it is not a real
source, no backward spherical waves are observed).
Such bending of waves from an obstacle or an opening
is called diffraction.

Diffraction is a characteristic property of wave
motion and all kinds of waves exhibit diffraction.

The diffraction effects are appreciable when the
dimensions of openings or the obstacles are comparable
or smaller than the wavelength of the wave. If the
opening or the obstacle is large compared to the
wavelength, the diffraction effects are almost
negligible.

The frequency of audible sound ranges from about
20 Hz to 20 kHz. Velocity of sound in air is around
332 m s–1. The wavelength (λ = v/ν) of audible sound
in air thus ranges from 16 m to 1.6 cm. Quite often,
the wavelength of sound is much larger than the
obstacles or openings and diffraction is prominently
displayed.

16.13 DOPPLER EFFECT

When a tuning fork is vibrated in air, sound waves
travel from the fork. An observer stationed at some
distance x from the fork receives the sound as the wave
disturbs the air near his ear and the pressure varies
between a maximum and a minimum. The pitch of the
sound heard by the observer depends on how many
times the pressure near the ear oscillates per unit
time. Each time the fork moves forward it sends a
compression pulse and each time it moves backward
it sends a rarefaction pulse. Suppose the source and
the observer are both at rest with respect to the
medium. Each compression or rarefaction pulse, sent
by the tuning fork, takes same time to reach the air
near the ear. Thus, the pressure near the ear oscillates
as many times as the fork oscillates in a given interval.
The frequency observed is then equal to the frequency
of the source.

However, if the source or the observer or both,
move with respect to the medium, the frequency
observed may be different from the frequency of the
source. This apparent change in frequency of the wave
due to motion of the source or the observer is called
the Doppler effect.

Observer Stationary and Source Moving

Now suppose the observer is at rest with respect
to the medium and the source moves towards the
observer at a speed u which is less than the wave
speed v.

 x 

S
u

t = 0

 uT  x � uT 

S

t = T
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If the frequency of vibration of the source is ν0 , it
sends compression pulses at a regular interval of
T = 1/ν0 . Suppose the separation between the source
and the observer is x (figure 16.20) when a
compression pulse is emitted at t = 0. The next
compression pulse will be emitted after a time T. The
source will travel a distance uT in this time and hence
this second compression wave is emitted from a place
which is at a distance x − uT from the observer. The
first pulse takes a time x/v to reach the observer

whereas the next one takes x − uT
v

 ⋅

Thus, the first compression wave reaches the
observer at t1 = x/v and the next compression wave

reaches at t2 = T + x − uT
v

 ⋅ The time interval between the

consecutive compression pulses detected by the
observer is, therefore,

   T ′ = t2 − t1

    = T + 
x − uT

v
 − x

v
 = 


1 − 

u
v




 T = 

v − u
v

 T.

The apparent frequency of the sound as
experienced by the observer is

           ν′ = 
1
T ′

 ,

   or,          ν′ = 
v

v − u
 ν0 . … (16.23)

Similarly, if the source recedes from the observer
at a speed u, the apparent frequency will be

            ν′ = 
v

v + u
 ν0 . … (16.24)

Source Stationary and Observer Moving

Next, consider the case when the source remains
stationary with respect to the medium and the
observer approaches the source with a speed u.

As the source remains stationary in the medium,
compression pulses are emitted at regular interval T
from the same point in the medium. These pulses
travel down the medium with a speed v and at any
instant the separation between two consecutive
compression pulses is λ = vT (figure 16.19)

When the observer receives a compression pulse,
the next compression pulse (towards the source) is a
distance vT away from it. This second compression
pulse moves towards the observer at a speed v and the
observer moves towards it at a speed u. As a result,
the observer will receive this second compression wave
a time T ′ after receiving the first one where

             T ′ = 
vT

v + u
 ⋅

The apparent frequency of sound experienced by
the observer is then ν′ = 1

T ′

   or,          ν′ = 
v + u

v
 ν0 . … (16.25)

Note that, in this case, it is not the same part of
air that gives the sensation of pressure variation to
the ear at frequency ν′. The pressure in any part of
the air still oscillates with a frequency ν0 but the
observer moves in the medium to detect the pressure
of some other part which reaches its maximum a little
earlier. Similarly, if the source is stationary in the
medium and the observer recedes from it at a speed
u, the apparent frequency will be

             ν′ = 
v − u

v
 ν. … (16.26)

The equation (16.23) through (16.26) may be
generalised as

              ν = 
v + uo

v − us
 ν0 … (16.27)

where,
    v = speed of sound in the medium.
   uo = speed of the observer with respect to the

medium, considered positive when it
moves towards the source and negative
when it moves away from the source

and us = speed of the source with respect to the
medium, considered positive when it
moves towards the observer and negative
when it moves away from the observer.

It should be carefully noted that the speeds us and
uo are to be written with respect to the medium
carrying the sound. If the medium itself is moving with
respect to the given frame of reference, appropriate
calculations must be made to obtain the speeds of the
source and the observer with respect to the medium.

Example 16.8

   A sound detector is placed on a railway platform. A train,
approaching the platform at a speed of 36 km/h, sounds
its whistle. The detector detects 12.0 kHz as the most
dominant frequency in the whistle. If the train stops at
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the platform and sounds the whistle, what would be the
most dominant frequency detected ? The speed of sound
in air is 340 m s–1.

Solution : Here the observer (detector) is at rest with
respect to the medium (air). Suppose the dominant
frequency as emitted by the train is ν0 . When the train
is at rest at the platform, the detector will detect the
dominant frequency as ν0 . When this same train was
approaching the observer, the frequency detected was,

           ν′ = 
v

v − us
 ν0

or,          ν0 = 
v − us

v
 ν′ = 




1 − 

us

v



 ν′.

The speed of the source is

       us = 36 km h−1 = 
36 × 103 m

3600 s
 = 10 m s−1.

Thus,     ν0 = 

1 − 

10
340




 × 12.0 kHz

         = 11.6 kHz.

We have derived the equations for Doppler shift in
frequency assuming that the motion of the source or
the observer is along the line joining the two. If the
motion is along some other direction, the component
of the velocity along the line joining the source and
the observer should be used for us  and  uo.

It is helpful to remember that the apparent frequency
is larger than the actual, if the separation between the
source and the observer is decreasing and is smaller if the
separation is increasing. If you are standing on a platform
and a whistling train passes by, you can easily notice the
change in the pitch of the whistle. When the train is
approaching you, the pitch is higher. As it passes through,
there is a sudden fall in the pitch.

Change in Wavelength

If the source moves with respect to the medium,
the wavelength becomes different from the wavelength
observed when there is no relative motion between the
source and the medium. The formula for apparent
wavelength may be derived immediately from the
relation λ = v/ν and equation (16.23). It is

            λ′ = 
v − u

v
 λ. … (16.28)

Figure 16.20 shows qualitatively the change in
wavelength as the source moves through the medium.
The circles represent the region of space where the
pressure is maximum. They are wavefronts separated
by a wavelength. We can say that these wavefronts
representing the pressure maxima originate from the
source and spread in all directions with a speed v.

Labels 1, 2, 3, 4 show wavefronts emitted
successively at regular interval T = 1/ν from the source.
Each wavefront will have its centre at the position
where the source was situated while emitting the
wavefront. The radius of a preceding wavefront will
exceed the next one by an amount λ = vt. 

When the source stays stationary, all the
wavefronts are originated from the same position of
the source and the separation between the successive
wavefronts is equal to the difference in their radii.
However, when the source moves, the centres of the
wavefronts differ in position, so that the spacing
between the successive wavefronts decreases along the
direction of motion and increases on the opposite side.
This separation being the new wavelength, the
wavelength changes due to the motion of the source.

16.14 SONIC BOOMS

In the discussion of the Doppler effect, we
considered only subsonic velocities for the source and
the observer, that is, us < v  and  uo < v. What happens
when the source moves through the medium at a speed
us greater than the wave speed v ? A supersonic plane
travels in air with a speed greater than the speed of
sound in air. It sends a cracking sound called sonic
boom which can break glass dishes, window panes and
even cause damage to buildings. Let us extend figure
(16.20) for the case where a tiny source moves through
air with a speed us > v. The wavefronts are drawn for
the pressure maxima. The spherical wavefronts
intersect over the surface of a cone with the apex at
the source. Because of constructive interference of a
large number of waves arriving at the same instant
on the surface of the cone, pressure waves of very large
amplitude are sent with the conical wavefront. Such
waves are one variety of shock waves.

From the triangle ABC, the semivertical angle θ
of the cone is given by

1

2

3

4

1

2

3 4

Figure 16.20
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        sinθ = 
vt
ust

 = 
v
us

 ⋅

The ratio 
us

v
 is called the “Mach Number”.

As the tiny source moves, it drags the cone with
it. When an observer on ground is intercepted by the
cone surface, the boom is heard. There is a common
misconception that the boom is produced at the instant
the speed of the plane crosses the speed of sound and
once it achieves the supersonic speed it sends no
further shock wave. The sonic boom is not a one time
affair that occurs when the speed just exceeds the
speed of sound. As long as the plane moves with a
supersonic speed, it continues to send the boom.

16.15 MUSICAL SCALE

A musical scale is a sequence of frequencies which
have a particularly pleasing effect on the human ear.
A widely used musical scale, called diatonic scale, has
eight frequencies covering an octave. Each frequency
is called a note. Table (16.3) gives these frequencies
together with their Indian and Western names with
the lowest of the octave at 256 Hz.

Table 16.3

Symbol Indian
name

Western
name

Frequency
Hz

C Sa Do 256

D Re Re 288

E Ga Mi 320

F Ma Fa 341
1
3

G Pa Sol 384

A Dha La 426
2
3

B Ni Ti 480

C1 Sa Do 512

16.16 ACOUSTICS OF BUILDINGS

While designing an auditorium for speech or
musical concerts, one has to take proper care for the
absorption and reflection of sound. If these factors are
poorly considered, a listener in the auditorium will not

be able to clearly hear the sound. To have the intensity
of sound almost uniform in the hall, the walls and the
ceilings may be curved in proper fashion. Figure
(16.22) shows a curved ceiling used to make sound
audible uniformly at the balcony seats and the seats
on the floor. Figure (16.22b) shows the use of a
parabolic wall to make sound uniform across the width
of the hall. Reflection of sound is helpful in
maintaining a good loudness level throughout the hall.
However, it also has several unwanted effects. Sound
can reach a listener directly from the source as well
as after reflection from a wall or the ceiling. This leads
to echo which is heard after an interval of hearing the
first sound. This echo interferes with the next sound
signal affecting the clarity.

Another effect of multiple reflection is the
reverberation. A listener hears the direct sound, sound
coming after one reflection, after two reflections and
so on. The time interval between the successive arrival
of the same sound signal keeps on decreasing. Also,
the intensity of the signal gradually decreases.

Figure (16.23) shows a typical situation. After
sometime the signals coming from multiple reflections
are so close that they form an almost continuous sound
of decreasing intensity. This part of the sound is called
reverberant sound. The time for which the
reverberation persists is a major factor in the acoustics
of halls. Quantitatively, the time taken by the
reverberant sound to decrease its intensity by a factor
of 106 is called the reverberation time. If the
reverberation time is too large, it disturbs the listener.
A sound signal from the source may not be clearly
heard due to the presence of reverberation of the
previous signal. There are certain materials which
absorb sound very effectively. Reverberation may be
decreased by fixing such materials on the walls,
ceiling, floor, furnitures, etc. However, this process
decreases the overall intensity level in the hall. Also
in musical concerts, some amount of reverberation
adds to the quality of music. An auditorium with a
very small reverberation time is called acoustically
dead. Thus, one has to make a compromise. The
reverberation time should not be very large, otherwise
unpleasant echos will seriously affect the clarity. On
the other hand it should not be too small, otherwise
intensity and quality will be seriously affected.

(b)
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Figure 16.22
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Electrical amplifying systems are often used in
large auditorium. If a loudspeaker is kept near the
back or at the side walls, a listener may hear the sound
from the speaker earlier than the sound from the
stage. Loudspeakers are, therefore, placed with proper
inclinations and electronic delays are installed so that
sound from the stage and from the loudspeaker reach
a listener almost simultaneously. Another problem
with electrical amplifying systems is ringing. The

amplifying system may pick up sound from the
loudspeaker to again amplify it. This gives a very
unpleasant whistling sound.

One also has to avoid any noise coming from
outside the auditorium or from different equipment
inside the auditorium. Sound of fans, exhausts,
airconditioners, etc., often create annoyance to the
listener.

Worked Out Examples

 1. An ultrasound signal of frequency 50 kHz is sent
vertically into sea water. The signal gets reflected from
the ocean bed and returns to the surface 0.80 s after it
was emitted. The speed of sound in sea water is
1500 m s–1. (a) Find the depth of the sea. (b) What is the
wavelength of this signal in water ?

Solution : (a) Let the depth of the sea be  d. The total
distance travelled by the signal is 2d. By the question,

        2d = (1500 m s−1) (0.8 s) = 1200 m

or, d = 600 m.

(b) Using the equation v = νλ,

           λ = 
v
ν

 = 
1500 m s−1

50 × 10 3 s−1 = 3.0 cm.

 2. An aeroplane is going towards east at a speed of
510 km h–1 at a height of 2000 m. At a certain instant,
the sound of the plane heard by a ground observer
appears to come from a point vertically above him. Where
is the plane at this instant ? Speed of sound in air
= 340 m s−1.

Solution :

The sound reaching the ground observer P, was emitted
by the plane when it was at the point Q vertically above
his head. The time taken by the sound to reach the
observer is

         t = 
2000 m

340 m s−1 = 
100
17

 s.

The distance moved by the plane during this period is

           d = (510 km h−1) 


100
17

 s



= 
30 × 10 5

3600
 m = 833 m.

Thus, the plane will be 833 m ahead of the observer on
its line of motion when he hears the sound coming
vertically to him.

 3. The equation of a sound wave in air is given by

   p = (0.01 N m−2) sin[(1000 s − 1) t − (3.0 m − 1) x]
   (a) Find the frequency, wavelength and the speed of

sound wave in air. (b) If the equilibrium pressure of air
is 1.0 × 10 5 N m –2, what are the maximum and
minimum pressures at a point as the wave passes
through that point.

Solution : (a) Comparing with the standard form of a
travelling wave
          p = p0 sin[ω(t − x/v)]
we see that ω = 1000 s − 1. The frequency is

        ν = 
ω
2π

 = 
1000
2π

 Hz = 160 Hz.

Also from the same comparison, ω/v = 3.0 m − 1

or, v = 
ω

3.0 m − 1
 = 

1000 s − 1

3.0 m − 1

≈ 330 m s−1.

The wavelength is λ = 
v
ν

 = 
330 m s−1

160 Hz
 = 2.1 m.

(b) The pressure amplitude is p0 = 0.01 N m−2. Hence, the
maximum and minimum pressures at a point in the
wave motion will be (1.01 × 10 5 ± 0.01) N m–2.

 4. A sound wave of frequency 10 kHz is travelling in air
with a speed of 340 m s–1. Find the minimum separation
between two points where the phase difference is 60°.

Solution : The wavelength of the wave is 

          λ = 
v
ν

 = 
340 m s−1

10 × 10 3 s−1 = 3.4 cm.

The wave number is k = 
2 π
λ

 = 
2 π
3.4

 cm − 1.

The phase of the wave is (kx − ωt). At any given instant,
the phase difference between two points at a separation
d is kd. If this phase difference is 60°, i.e., π/3 radian;

      
π
3

 = 




2 π
3.4

 cm − 1


 d  or  d = 

3.4
6

 cm = 0.57 cm.

Q

P
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 5. On a winter day sound travels 336 meters in one second.
Find the atmospheric temperature. Speed of sound at
0C  332 m s1.

Solution : The speed of sound is proportional to the square
root of the absolute temperature.
The speed of sound at 0C  or  273 K is 332 m s–1. If the
atmospheric temperature is T,

      
336 m s1

332 m s1  T273 K
 

or,       T  


336
332





 2

  273 K  280 K

or, t  7C.

 6. The constant for oxygen as well as for hydrogen is 1.40.
If the speed of sound in oxygen is 470 m s–1, what will
be the speed in hydrogen at the same temperature and
pressure ?

Solution : The speed of sound in a gas is given by

v   P  At STP, 22.4 litres of oxygen has a mass of

32 g whereas the same volume of hydrogen has a mass
of 2 g. Thus, the density of oxygen is 16 times the density
of hydrogen at the same temperature and pressure. As
 is same for both the gases,

      
v hydrogen
v oxygen

  oxygen
 hydrogen

 

or, vhydrogen  4 v oxygen
                   4  470 m s1  1880 m s1.

 7. A microphone of cross-sectional area 0.80 cm 2 is placed
in front of a small speaker emitting 3.0 W of sound
output. If the distance between the microphone and the
speaker is 2.0 m, how much energy falls on the
microphone in 5.0 s?

Solution : The energy emitted by the speaker in one
second is 3.0 J. Let us consider a sphere of radius 2.0 m
centred at the speaker. The energy 3.0 J falls normally
on the total surface of this sphere in one second. The
energy falling on the area 0.8 cm 2 of the microphone in
one second

      
0.8 cm 2

4  2.0 m 2  3.0 J  4.8  10  6 J.

The energy falling on the microphone in 5.0 s is

        4.8  10  6 J  5  24 J.

 8. Find the amplitude of vibration of the particles of air
through which a sound wave of intensity

2.0  106 W m2 and frequency 1.0 kHz is passing.
Density of air  1.2 kg m–3 and speed of sound in air
 330 m s1.

Solution : The relation between the intensity of sound and
the displacement amplitude is

    I  2  2s0
 2  20v

or, s0
 2  

I
2  2 20v

 
2.0  10  6 W m2

2  2  1.0  10 6 s  2  1.2 kg m3  330 m s1

 2.53  10  16 m 2

or, s0  1.6  10  8 m.

 9. The sound level at a point is increased by 30 dB. By
what factor is the pressure amplitude increased ?

Solution : The sound level in dB is

           10 log10 




I
I0




 .

If 1  and  2 are the sound levels and I1  and  I2 are the
intensities in the two cases,

      2  1  10 




log10 





I2

I0




  log10 





I1

I0









or, 30  10 log10 





I2

I1





or,
I2

I1

  10 3.

As the intensity is proportional to the square of the

pressure amplitude, we have 
p2

p1

   I2

I1

  1000  32.

10. Figure (16-W2) shows a tube structure in which a sound
signal is sent from one end and is received at the other
end. The semicircular part has a radius of 20.0 cm. The
frequency of the sound source can be varied electronically
between 1000 and 4000 Hz. Find the frequencies at which
maxima of intensity are detected. The speed of sound in
air  340 m s1.

Solution : The sound wave bifurcates at the junction of
the straight and the semicircular parts. The wave
through the straight part travels a distance
l1  2  20 cm and the wave through the curved part
travels a distance l2   20 cm  62.8 cm before they
meet again and travel to the receiver. The path
difference between the two waves received is, therefore,

  l  l2  l1  62.8 cm  40 cm  22.8 cm  0.228 m.

Figure 16-W2
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The wavelength of either wave is v
ν
 = 340 m s

−1

ν
 ⋅ For

constructive interference, ∆l = n λ, where n is an integer.

or,    0.228 m = n 
340 m s−1

ν

or, ν = n 
340 m s−1

0.228 m
 = n 1491.2 Hz ≈ n 1490 Hz.

Thus, the frequencies within the specified range which
cause maxima of intensity are 1490 Hz and 2980 Hz.

11. A source emitting sound of frequency 180 Hz is placed
in front of a wall at a distance of 2 m from it. A detector
is also placed in front of the wall at the same distance
from it. Find the minimum distance between the source
and the detector for which the detector detects a
maximum of sound. Speed of sound in air = 360 m s−1.

Solution :

The situation is shown in figure (16-W3). Suppose the
detector is placed at a distance of x meter from the
source. The direct wave received from the source travels
a distance of x meter. The wave reaching the detector
after reflection from the wall has travelled a distance of
2[(2) 2 + x 2/4] 1/2 metre. The path difference between the
two waves is

       ∆ = 



2




(2) 2 + 

x 2

4





 1/2

 − x



  metre.

Constructive interference will take place when
∆ = λ, 2λ, … . The minimum distance x for a maximum
corresponds to

                 ∆ = λ. … (i)

The wavelength is λ = 
v
ν

 = 
360 m s−1

180 s − 1  = 2 m.

Thus, by (i), 2



(2) 2 + 

x 2

4




 1/2

 − x = 2

or,           



4 + 

x 2

4




 1/2

 = 1 + 
x
2

or, 4 + 
x 2

4
 = 1 + 

x 2

4
 + x

or, 3 = x.

Thus, the detector should be placed at a distance of 3 m
from the source. Note that there is no abrupt phase
change.

12. A tuning fork vibrates at 264 Hz. Find the length of the
shortest closed organ pipe that will resonate with the
tuning fork. Speed of sound in air is 350 m s–1.

Solution : The resonant frequency of a closed organ pipe

of length l is nv
4l

 , where n is a positive odd integer and

v is the speed of sound in air. To resonate with the given
tuning fork,

              
nv
4l

 = 264 s − 1 

or, l = 
n × 350 m s−1

4 × 264 s − 1  ⋅

For l to be minimum, n = 1 so that

lmin = 
350

4 × 264
 m = 33 cm.

13. The fundamental frequency of a closed organ pipe is
equal to the first overtone frequency of an open organ
pipe. If the length of the open pipe is 60 cm, what is the
length of the closed pipe ?

Solution : The fundamental frequency of a closed organ

pipe is v
4l1

 ⋅ For an open pipe, the fundamental frequency

is v
2l2

 and the first overtone is 2v
2l2

 = 
v
l2

 ⋅ Here l1 is the

length of the closed pipe and l2 = 60 cm is the length of
the open pipe. We have,

            
v

4l1

 = 
v

60 cm

l1 = 
1
4

 × 60 cm = 15 cm.

14. A tuning fork vibrating at frequency 800 Hz produces
resonance in a resonance column tube. The upper end is
open and the lower end is closed by the water surface
which can be varied. Successive resonances are observed
at lengths 9.75 cm, 31.25 cm and 52.75 cm. Calculate
the speed of sound in air from these data.

Solution : For the tube open at one end, the resonance

frequencies are nv
4l

 , where n is a positive odd integer. If

the tuning fork has a frequency ν and l1, l2, l3 are the
successive lengths of the tube in resonance with it, we
have 

               
nv
4 l1

 = ν

(n + 2) v
4 l2

 = ν

 
(n + 4) v

4 l3

 = ν

giving l3 − l2 = l2 − l1 = 
2v
4ν

 = 
v

2ν
 ⋅ 

x

S

D

Figure 16-W3
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By the question, l3 − l2 = (52.75 − 31.25) cm = 21.50 cm

and l2 − l1 = (31.25 − 9.75) cm = 21.50 cm.

Thus,         
v

2ν
 = 21.50 cm

or, v = 2ν × 21.50 cm = 2 × 800 s − 1 × 21.50 cm = 344 m s−1.

15. A certain organ pipe resonates in its fundamental mode
at a frequency of 500 Hz in air. What will be the
fundamental frequency if the air is replaced by hydrogen
at the same temperature ? The density of air is
1.20 kg m–3 and that of hydrogen is 0.089 kg m–3.

Solution : Suppose the speed of sound in hydrogen is vh

and that in air is va. The fundamental frequency of an
organ pipe is proportional to the speed of sound in the
gas contained in it. If the fundamental frequency with
hydrogen in the tube is ν, we have

     
ν

500 Hz
 = 

vh

va
 = √⎯⎯ρa

ρh
 = √⎯⎯⎯1.2

0.089
 = 3.67 

or,       ν = 3.67 × 500 Hz ≈ 1840 Hz.

16. An aluminium rod having a length of 90.0 cm is clamped
at its middle point and is set into longitudinal vibrations
by stroking it with a rosined cloth. Assume that the rod
vibrates in its fundamental mode of vibration. The
density of aluminium is 2600 kg m−3 and its Young’s
modulus is 7.80 × 10 10 N m–2.  Find (a) the speed of sound
in aluminium, (b) the wavelength of sound waves
produced in the rod, (c) the frequency of the sound
produced and (d) the wavelength of the sound produced
in air. Take the speed of sound in air to be 340 m s–1.

Solution : (a) The speed of sound in aluminium is

      v = √⎯Y
ρ

 = √⎯⎯⎯⎯⎯⎯7.80 × 10 10 N m−2

2600 kg m−3

= 5480 m s−1.

(b) Since the rod is clamped at the middle, the middle
point is a pressure antinode. The free ends of the rod
are the nodes. As the rod vibrates in its fundamental
mode, there are no other nodes or antinodes. The length
of the rod, which is also the distance between the
successive nodes, is, therefore, equal to half the
wavelength. Thus, the wavelength of sound in the
aluminium rod is
         λ = 2 l = 180 cm.

(c) The frequency of the sound produced which is also
equal to the frequency of vibration of the rod is

         ν = 
v
λ

 = 
5480 m s−1

180 cm
 = 3050 Hz.

(d) The wavelength of sound in air is

           λ = 
v
ν

 = 
340 m s−1

3050 Hz
 = 11.1 cm.

17. The string of a violin emits a note of 440 Hz at its correct
tension. The string is bit taut and produces 4 beats per
second with a tuning fork of frequency 440 Hz. Find the
frequency of the note emitted by this taut string.

Solution : The frequency of vibration of a string increases
with increase in the tension. Thus, the note emitted by
the string will be a little more than 440 Hz. As it
produces 4 beats per second with the 440 Hz tuning fork,
the frequency will be 444 Hz.

18. A siren is fitted on a car going towards a vertical wall
at a speed of 36 km/h. It produces sound of frequency
500 Hz. A person standing on the ground, behind the
car, listens to the siren sound coming directly from the
source as well as that coming after reflection from the
wall. Calculate the apparent frequency of the wave
(a) coming directly from the siren to the person and
(b) coming after reflection. Take the speed of sound to be
340 m s−1.

Solution :

The speed of the car is 36 km h−1 = 10 m s−1.

(a) Here the observer is at rest with respect to the medium
and the source is going away from the observer. The
apparent frequency heard by the observer is, therefore,

         ν′ = 
v

v + us
 ν

= 
340

340 + 10
 × 500 Hz = 486 Hz.

(b) The frequency received by the wall is

    ν′′ = 
v

v − us
 ν = 

340
340 − 10

 × 500 Hz = 515 Hz.

The wall reflects this sound without changing the
frequency. Thus, the frequency of the reflected wave as
heard by the ground observer is 515 Hz.

19. Two trains are moving towards each other at speeds of
72 km h–1 and 54 km h–1 relative to the ground. The first
train sounds a whistle of frequency 600 Hz. Find the
frequency of the whistle as heard by a passenger in the
second train (a) before the trains meet and (b) after the
trains have crossed each other. The speed of sound in air
is 340 m s–1.

Solution : The speed of the first train = 72 km h−1

= 20 m s−1 and that of the second = 54 km h−1 = 15 m s−1.

(a) Here both the source and the observer move with
respect to the medium. Before the trains meet, the
source is going towards the observer and the observer

Figure 16-W4
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is also going towards the source. The apparent frequency
heard by the observer will be

          ν′ = 
v + uo

v − us
 ν

= 
340 + 15
340 − 20

 × 600 Hz = 666 Hz.

(b) After the trains have crossed each other, the source
goes away from the observer and the observer goes away
from the source. The frequency heard by the observer
is, therefore,

ν′′ = 
v − uo

v + us
 ν

= 
340 − 15
340 + 20

 × 600 Hz = 542 Hz.

20. A person going away from a factory on his scooter at a
speed of 36 km h–1 listens to the siren of the factory. If
the main frequency of the siren is 600 Hz and a wind is
blowing along the direction of the scooter at 36 km h–1,
find the main frequency as heard by the person.

Solution : The speed of sound in still air is 340 m s–1. Let
us work from the frame of reference of the air. As both
the observer and the wind are moving at the same speed
along the same direction with respect to the ground, the
observer is at rest with respect to the medium. The
source (the siren) is moving with respect to the wind at
a speed of 36 km h–1, i.e., 10 m s–1. As the source is going
away from the observer who is at rest with respect to
the medium, the frequency heard is

      ν′ = 
v

v + us
 ν = 

340
340 + 10

 × 600 Hz = 583 Hz.

21. A source and a detector move away from each other, each
with a speed of 10 m s–1 with respect to the ground with
no wind. If the detector detects a frequency 1950 Hz of the
sound coming from the source, what is the original frequency
of the source ? Speed of sound in air = 340 m s−1.

Solution : If the original frequency of the source is ν, the
apparent frequency  heard by the observer is

              ν′ = 
v − uo

v + us
 ν,

where uo is the speed of the observer going away from
the source and us is the speed of the source going away
from the observer. By the question,

        1950 Hz = 
340 − 10
340 + 10

 ν

or, ν = 
35
33

 × 1950 Hz = 2070 Hz.

22. The driver of a car approaching a vertical wall notices
that the frequency of his car’s horn changes from 440 Hz
to 480 Hz when it gets reflected from the wall. Find the
speed of the car if that of the sound is 330 m s–1.

Solution :

Suppose the car is going towards the wall at a speed u.
The wall is stationary with respect to the air and the
horn is going towards it. If the frequency of the horn is
ν, that received by the wall is

             ν′ = 
v

v − u
 ν.

The wall reflects this sound without changing the
frequency. Thus, the wall becomes the source of
frequency ν′ and the car-driver is the listener. The wall
(which acts as the source now) is at rest with respect to
the air and the car (which is the observer now) is going
towards the wall at speed u. The frequency heard by the
car-driver for this reflected wave is, therefore,

          ν′′ = 
v + u

v
 ν′

= 
v + u

v
 ⋅ v

v − u
 ν

= 
v + u
v − u

 ν.

Putting the values, 

          480 = 
v + u
v − u

 440

or,      
v + u
v − u

 = 
48
44

or, 
u
v

 = 
4
92

 

or,         u = 
4
92

 × 330 m s−1 = 14.3 m s−1 ≈ 52 km h−1.

23. A train approaching a railway crossing at a speed of
120 km h–1 sounds a short whistle at frequency 640 Hz
when it is 300 m away from the crossing. The speed of
sound in air is 340 m s–1. What will be the frequency
heard by a person standing on a road perpendicular to
the track through the crossing at a distance of 400 m
from the crossing ?

Solution : 

Figure 16-W5

300 m C

400 m

A (person)

Figure 16-W6
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The observer A is at rest with respect to the air and the
source is travelling at a velocity of 120 km h–1 i.e.,
100

3
 m s−1. As is clear from the figure, the person receives

the sound of the whistle in a direction BA making an
angle θ with the track where cosθ = 300/500 = 3/5. The
component of the velocity of the source (i.e., of the train)

along this direction AB is 100
3

 × 3
5
 m s−1 = 20 m s−1. As the

source is approaching the person with this component,
the frequency heard by the observer is

   ν′ = 
v

v − u cos θ
 ν = 

340
340 − 20

 × 640 Hz = 680 Hz.

QUESTIONS FOR SHORT ANSWER

 1. If you are walking on the moon, can you hear the sound
of stones cracking behind you ? Can you hear the sound
of your own footsteps ?

 2. Can you hear your own words if you are standing in a
perfect vacuum ? Can you hear your friend in the same
conditions ?

 3. A vertical rod is hit at one end. What kind of wave
propagates in the rod if (a) the hit is made vertically (b)
the hit is made horizontally ?

 4. Two loudspeakers are arranged facing each other at
some distance. Will a person standing behind one of the
loudspeakers clearly hear the sound of the other
loudspeaker or the clarity will be seriously damaged
because of the ‘collision’ of the two sounds in between ?

 5. The voice of a person, who has inhaled helium, has a
remarkably high pitch. Explain on the basis of resonant
vibration of vocal cord filled with air and with helium.

 6. Draw a diagram to show the standing pressure wave
and standing displacement wave for the 3rd overtone
mode of vibration of an open organ pipe.

 7. Two tuning forks vibrate with the same amplitude but
the frequency of the first is double the frequency of the
second. Which fork produces more intense sound in air ?

 8. In discussing Doppler effect, we use the word “apparent
frequency”. Does it mean that the frequency of the sound
is still that of the source and it is some physiological
phenomenon in the listener’s ear that gives rise to
Doppler effect ? Think for the observer approaching the
source and for the source approaching the observer.

OBJECTIVE I

 1. Consider the following statements about sound passing
through a gas.
(A) The pressure of the gas at a point oscillates in time.
(B) The position of a small layer of the gas oscillates in
time.
(a) Both A and B are correct.
(b) A is correct but B is wrong.
(c) B is correct but A is wrong.
(d) Both A and B are wrong.

 2. When we clap our hands, the sound produced is best
described by
(a) p = p0 sin(kx − ωt)      (b) p = p0 sin kx cos ωt
(c) p = p0 cos kx sin ωt     (d) p = Σ p0n sin(knx − ωnt).
Here p denotes the change in pressure from the
equilibrium value.

 3. The bulk modulus and the density of water are greater
than those of air. With this much of information, we can
say that velocity of sound in air
(a) is larger than its value in water
(b) is smaller than its value in water
(c) is equal to its value in water
(d) cannot be compared with its value in water.

 4. A tuning fork sends sound waves in air. If the
temperature of the air increases, which of the following

parameters will change ?
(a) Displacement amplitude     (b) Frequency
(c) Wavelength            (d) Time period

 5. When sound wave is refracted from air to water, which
of the following will remain unchanged ?
(a) Wave number        (b) Wavelength
(c) Wave velocity        (d) Frequency

 6. The speed of sound in a medium depends on
(a) the elastic property but not on the inertia property
(b) the inertia property but not on the elastic property
(c) the elastic property as well as the inertia property
(d) neither the elastic property nor the inertia property.

 7. Two sound waves move in the same direction in the
same medium. The pressure amplitudes of the waves
are equal but the wavelength of the first wave is double
the second. Let the average power transmitted across a
cross section by the first wave be P1 and that by the
second wave be P2. Then
(a) P1 = P2              (b) P1 = 4P2

(c) P2 = 2P1              (d) P2 = 4P1 .

 8. When two waves with same frequency and constant
phase difference interfere,
(a) there is a gain of energy
(b) there is a loss of energy
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(c) the energy is redistributed and the distribution
changes with time
(d) the energy is redistributed and the distribution
remains constant in time.

 9. An open organ pipe of length L vibrates in its
fundamental mode. The pressure variation is maximum
(a) at the two ends
(b) at the middle of the pipe
(c) at distances L/4 inside the ends
(d) at distances L/8 inside the ends.

10. An organ pipe, open at both ends, contains
(a) longitudinal stationary waves
(b) longitudinal travelling waves
(c) transverse stationary waves
(d) transverse travelling waves.

11. A cylindrical tube, open at both ends, has a fundamental
frequency ν. The tube is dipped vertically in water so
that half of its length is inside the water. The new
fundamental frequency is
(a) ν/4      (b) ν/2      (c) ν      (d) 2ν.

12. The phenomenon of beats can take place
(a) for longitudinal waves only
(b) for transverse waves only
(c) for both longitudinal and transverse waves
(d) for sound waves only.

13. A tuning fork of frequency 512 Hz is vibrated with a
sonometer wire and 6 beats per second are heard. The
beat frequency reduces if the tension in the string is

slightly increased. The original frequency of vibration of
the string is
(a) 506 Hz   (b) 512 Hz   (c) 518 Hz   (d) 524 Hz.

14. The engine of a train sounds a whistle at frequency ν.
The frequency heard by a passenger is

(a) > ν      (b) < ν      (c)  = 
1
ν

      (d) = ν.

15. The change in frequency due to Doppler effect does not
depend on
(a) the speed of the source
(b) the speed of the observer
(c) the frequency of the source
(d) separation between the source and the observer.

16. A small source of sound moves on a circle as shown in
figure (16-Q1) and an observer is sitting at O. Let
ν1, ν2, ν3 be the frequencies heard when the source is at
A, B and C respectively.
(a) ν1 > ν2 > ν3            (b) ν1 = ν2 > ν3 
(c) ν2 > ν3 > ν1             (d) ν1 > ν3 > ν2

 OBJECTIVE II
 

 1. When you speak to your friend, which of the following
parameters have a unique value in the sound produced ?
(a) Frequency            (b) Wavelength
(c) Amplitude            (d) Wave velocity

 2. An electrically maintained tuning fork vibrates with
constant frequency and constant amplitude. If the
temperature of the surrounding air increases but
pressure remains constant, the sound produced will have
(a) larger wavelength       (b) larger frequency
(c) larger velocity           (d) larger time period.

 3. The fundamental frequency of a vibrating organ pipe is
200 Hz.
(a) The first overtone is 400 Hz.
(b) The first overtone may be 400 Hz.

(c) The first overtone may be 600 Hz.
(d) 600 Hz is an overtone.

 4. A source of sound moves towards an observer.
(a) The frequency of the source is increased.
(b) The velocity of sound in the medium is increased.
(c) The wavelength of sound in the medium towards the
observer is decreased.
(d) The amplitude of vibration of the  particles is
increased.

 5. A listener is at rest with respect to the source of sound.
A wind starts blowing along the line joining the source
and the observer. Which of the following quantities do
not change ?
(a) Frequency             (b) Velocity of sound
(c) Wavelength           (d) Time period

EXERCISES

 1. A steel tube of length 1.00 m is struck at one end. A
person with his ear close to the other end hears the
sound of the blow twice, one travelling through the body
of the tube and the other through the air in the tube.

Find the time gap between the two hearings. Use the
table in the text for speeds of sound in various
substances.

A

B

C
O

Figure 16-Q1
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 2. At a prayer meeting, the disciples sing JAI-RAM JAI-RAM.

The sound amplified by a loudspeaker comes back after
reflection from a building at a distance of 80 m from the
meeting. What maximum time interval can be kept
between one JAI-RAM and the next JAI-RAM so that the
echo does not disturb a listener sitting in the meeting.
Speed of sound in air is 320 m s–1.

 3. A man stands before a large wall at a distance of 50.0 m
and claps his hands at regular intervals. Initially, the
interval is large. He gradually reduces the interval and
fixes it at a value when the echo of a clap merges with
the next clap. If he has to clap 10 times during every
3 seconds, find the velocity of sound in air.

 4. A person can hear sound waves in the frequency range
20 Hz to 20 kHz. Find the minimum and the maximum
wavelengths of sound that is audible to the person. The
speed of sound is 360 m s–1.

 5. Find the minimum and maximum wavelengths of sound
in water that is in the audible range (20–20000 Hz) for
an average human ear. Speed of sound in water
= 1450 m s–1.

 6. Sound waves from a loudspeaker spread nearly
uniformly in all directions if the wavelength of the sound
is much larger than the diameter of the loudspeaker.
(a) Calculate the frequency for which the wavelength of
sound in air is ten times the diameter of the speaker if
the diameter is 20 cm. (b) Sound is essentially transmitted
in the forward direction if the wavelength is much
shorter than the diameter of the speaker. Calculate the
frequency at which the wavelength of the sound is one
tenth of the diameter of the speaker described above.
Take the speed of sound to be 340 m s–1.

 7. Ultrasonic waves of frequency 4.5 MHz are used to
detect tumour in soft tissues. The speed of sound in
tissue is 1.5 km s–1 and that in air is 340 m s–1. Find the
wavelength of this ultrasonic wave in air and in tissue.

 8. The equation of a travelling sound wave is
y = 6.0 sin (600 t – 1.8 x) where y is measured in
10 − 5 m, t in second and x in metre. (a) Find the ratio of
the displacement amplitude of the particles to the
wavelength of the wave. (b) Find the ratio of the velocity
amplitude of the particles to the wave speed.

 9. A sound wave of frequency 100 Hz is travelling in air.
The speed of sound in air is 350 m s–1. (a) By how much
is the phase changed at a given point in 2.5 ms ?
(b) What is the phase difference at a given instant
between two points separated by a distance of 10.0 cm
along the direction of propagation ?

10. Two point sources of sound are kept at a separation of
10 cm. They vibrate in phase to produce waves of
wavelength 5.0 cm. What would be the phase difference
between the two waves arriving at a point 20 cm from
one source (a) on the line joining the sources and (b) on
the perpendicular bisector of the line joining the sources ?

11. Calculate the speed of sound in oxygen from the
following data. The mass of 22.4 litre of oxygen at STP
(T = 273 K and p = 1.0 × 10 5 N m–2) is 32 g, the molar
heat capacity of oxygen at constant volume is CV = 2.5
R and that at constant pressure is Cp = 3.5 R.

12. The speed of sound as measured by a student in the
laboratory on a winter day is 340 m s–1 when the room
temperature is 17°C. What speed will be measured by
another student repeating the experiment on a day when
the room temperature is 32°C ?

13. At what temperature will the speed of sound be double
of its value at 0°C ?

14. The absolute temperature of air in a region linearly
increases from T1  to  T2 in a space of width d. Find the
time taken by a sound wave to go through the region in
terms of T1, T2, d and the speed v of sound at 273 K.
Evaluate this time for T1 = 280 K, T2 = 310 K, d = 33 m
and v = 330 m s−1.

15. Find the change in the volume of 1.0 litre kerosene when
it is subjected to an extra pressure of 2.0 × 10 5 N m–2

from the following data. Density of kerosene = 800 kg m−3

and speed of sound in kerosene = 1330 m s−1.

16. Calculate the bulk modulus of air from the following
data about a sound wave of wavelength 35 cm travelling
in air. The pressure at a point varies between
(1.0 × 10 5 ± 14) Pa and the particles of the air vibrate
in simple harmonic motion of amplitude 5.5 × 10 – 6 m.

17. A source of sound operates at 2.0 kHz, 20 W emitting
sound uniformly in all directions. The speed of sound in
air is 340 m s–1 and the density of air is 1.2 kg m–3.
(a) What is the intensity at a distance of 6.0 m from the
source ? (b) What will be the pressure amplitude at this
point ? (c) What will be the displacement amplitude at
this point ?

18. The intensity of sound from a point source is
1.0 × 10 –8 W m–2 at a distance of 5.0 m from the source.
What will be the intensity at a distance of 25 m from
the source ?

19. The sound level at a point 5.0 m away from a point
source is 40 dB. What will be the level at a point 50 m
away from the source ?

20. If the intensity of sound is doubled, by how many
decibels does the sound level increase ?

21. Sound with intensity larger than 120 dB appears painful
to a person. A small speaker delivers 2.0 W of audio
output. How close can the person get to the speaker
without hurting his ears ?

22. If the sound level in a room is increased from 50 dB to
60 dB, by what factor is the pressure amplitude
increased ?

23. The noise level in a classroom in absence of the teacher
is 50 dB when 50 students are present. Assuming that
on the average each student outputs same sound energy
per second, what will be the noise level if the number
of students is increased to 100 ?

24. In Quincke’s experiment the sound detected is changed
from a maximum to a minimum when the sliding tube
is moved through a distance of 2.50 cm. Find the
frequency of sound if the speed of sound in air is
340 m s–1.

25. In Quincke’s experiment, the sound intensity has a
minimum value I at a particular position. As the sliding
tube is pulled out by a distance of 16.5 mm, the intensity
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increases to a maximum of 9 I. Take the speed of sound
in air to be 330 m s–1. (a) Find the frequency of the sound
source. (b) Find the ratio of the amplitudes of the two
waves arriving at the detector assuming that it does not
change much between the positions of minimum
intensity and maximum intensity.

26. Two audio speakers are kept some distance apart and
are driven by the same amplifier system. A person is
sitting at a place 6.0 m from one of the speakers and
6.4 m from the other. If the sound signal is continuously
varied from 500 Hz to 5000 Hz, what are the frequencies
for which there is a destructive interference at the place
of the listener? Speed of sound in air  320 m s–1.

27. A source of sound S and a detector D are placed at some
distance from one another. A big cardboard is placed
near the detector and perpendicular to the line SD as
shown in figure (16-E1). It is gradually moved away and
it is found that the intensity changes from a maximum
to a minimum as the board is moved through a distance
of 20 cm. Find the frequency of the sound emitted.
Velocity of sound in air is 336 m s–1.

28. A source S and a detector D are placed at a distance d
apart. A big cardboard is placed at a distance 2d from
the source and the detector as shown in figure (16-E2).
The source emits a wave of wavelength  d/2 which is
received by the detector after reflection from the
cardboard. It is found to be in phase with the direct
wave received from the source. By what minimum
distance should the cardboard be shifted away so that
the reflected wave becomes out of phase with the direct
wave ?

29. Two stereo speakers are separated by a distance of
2.40 m. A  person stands at a distance of 3.20 m directly
in front of one of the speakers as shown in figure (16-E3).
Find the frequencies in the audible range (20–2000 Hz)
for which the listener will hear a minimum sound
intensity. Speed of sound in air  320 m s–1.

30. Two sources of sound, S1  and  S2 , emitting waves of
equal wavelength 20.0 cm, are placed with a separation
of 20.0 cm between them. A detector can be moved on
a line parallel to S1 S2 and at a distance of 20.0 cm from
it. Initially, the detector is equidistant from the two
sources. Assuming that the waves emitted by the sources
are in phase, find the minimum distance through which
the detector should be shifted to detect a minimum of
sound.

31. Two speakers S1  and  S2 , driven by the same amplifier,
are placed at y  1.0 m and y  –1.0 m (figure 16-E4). The
speakers vibrate in phase at 600 Hz. A man stands at
a point on the X-axis at a very large distance from the
origin and starts moving parallel to the Y-axis. The
speed of sound in air is 330 m s–1. (a) At what angle 
will the intensity of sound drop to a minimum for the
first time ? (b) At what angle will he hear a maximum
of sound intensity for the first time ? (c) If he continues
to walk along the line, how many more maxima can he
hear ?

32. Three sources of sound S1, S2  and  S3  of equal intensity
are placed in a straight line with S1S2  S2S3 (figure
16-E5). At a point P, far away from the sources, the
wave coming from S2 is 120 ahead in phase of that from
S1. Also, the wave coming from S3 is 120 ahead of that
from S2. What would be the resultant intensity of sound
at P ?

33. Two coherent narrow slits emitting sound of wavelength
 in the same phase are placed parallel to each other at
a small separation of 2. The sound is detected by
moving a detector on the screen  at a distance
D  from the slit S1 as shown in figure (16-E6). Find
the distance x such that the intensity at P is equal to
the intensity at O.

34. Figure (16-E7) shows two coherent sources S1  and  S2

which emit sound of wavelength  in phase. The
separation between the sources is 3 A circular wire of
large radius is placed in such a way that S1S2 lies in its
plane and the middle point of S1S2 is at the centre of
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the wire. Find the angular positions  on the wire for
which constructive interference takes place.

35. Two sources of sound S1  and  S2 vibrate at same
frequency and are in phase (figure 16-E8). The intensity
of sound detected at a point P as shown in the figure is
I0 . (a) If  equals 45, what will be the intensity of sound
detected at this point if one of the sources is switched
off ? (b) What will be the answer of the previous part if
  60 ?

36. Find the fundamental, first overtone and second
overtone frequencies of an open organ pipe of length
20 cm. Speed of sound in air is 340 m s–1.

37. A closed organ pipe can vibrate at a minimum frequency
of 500 Hz. Find the length of the tube. Speed of sound
in air  340 m s–1.

38. In a standing wave pattern in a vibrating air column,
nodes are formed at a distance of 40 cm. If the speed
of sound in air is 328 m s–1, what is the frequency of the
source ?

39. The separation between a node and the next antinode
in a vibrating air column is 25 cm. If the speed of sound
in air is 340 m s–1, find the frequency of vibration of the
air column.

40. A cylindrical metal tube has a length of 50 cm and is
open at both ends. Find the frequencies between
1000 Hz and 2000 Hz at which the air column in the
tube can resonate. Speed of sound in air is 340 m s–1.

41. In a resonance column experiment, a tuning fork of
frequency 400 Hz is used. The first resonance is observed
when the air column has a length of 20.0 cm and the
second resonance is observed when the air column has
a length of 62.0 cm. (a) Find the speed of sound in air.
(b) How much distance above the open end does the
pressure node form ?

42. The first overtone frequency of a closed organ pipe P1 is
equal to the fundamental frequency of an open organ
pipe P2 . If the length of the pipe P1 is 30 cm, what will
be the length of P2 ?

43. A copper rod of length 1.0 m is clamped at its middle
point. Find the frequencies between 20 Hz and 20,000 Hz
at which standing longitudinal waves can be set up in
the rod. The speed of sound in copper is 3.8 km s–1.

44. Find the greatest length of an organ pipe open at both
ends that will have its fundamental frequency in the
normal hearing range (20–20,000 Hz). Speed of sound
in air  340 m s–1.

45. An open organ pipe has a length of 5 cm. (a) Find the
fundamental frequency of vibration of this pipe. (b) What
is the highest harmonic of such a tube that is in the
audible range ? Speed of sound in air is 340 m s–1 and
the audible range is 20–20,000 Hz.

46. An electronically driven loudspeaker is placed near the
open end of a resonance column apparatus. The length
of air column in the tube is 80 cm. The frequency of the
loudspeaker can be varied between 20 Hz and 2 kHz.
Find the frequencies at which the column will resonate.
Speed of sound in air  320 m s–1.

47. Two successive resonance frequencies in an open organ
pipe are 1620 Hz and 2268 Hz. Find the length of the
tube. The speed of sound in air is 324 m s–1.

48. A piston is fitted in a cylindrical tube of small cross
section with the other end of the tube open. The tube
resonates with a tuning fork of frequency 512 Hz. The
piston is gradually pulled out of the tube and it is found
that a second resonance occurs when the piston is pulled
out through a distance of 32.0 cm. Calculate the speed
of sound in the air of the tube.

49. A U-tube having unequal arm-lengths has water in it.
A tuning fork of frequency 440 Hz can set up the air in
the shorter arm in its fundamental mode of vibration
and the same tuning fork can set up the air in the longer
arm in its first overtone vibration. Find the length of
the air columns. Neglect any end effect and assume that
the speed of sound in air  330 m s–1.

50. Consider the situation shown in figure (16-E9). The wire
which has a mass of 4.00 g oscillates in its second
harmonic and sets the air column in the tube into
vibrations in its fundamental mode. Assuming that the
speed of sound in air is 340 m s–1, find the tension in
the wire.

51. A 30.0-cm-long wire having a mass of 10.0 g is fixed at
the two ends and is vibrated in its fundamental mode.
A 50.0-cm-long closed organ pipe, placed with its open
end near the wire, is set up into resonance in its
fundamental mode by the vibrating wire. Find the
tension in the wire. Speed of sound in air  340 m s–1.

52. Show that if the room temperature changes by a small
amount from T to T  T, the fundamental frequency of
an organ pipe changes from   to    , where
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53. The fundamental frequency of a closed pipe is 293 Hz
when the air in it is at a temperature of 20°C. What
will be its fundamental frequency when the temperature
changes to 22°C ?

54. A Kundt’s tube apparatus has a copper rod of length
1.0 m clamped at 25 cm from one of the ends. The tube
contains air in which the speed of sound is 340 m/s. The
powder collects in heaps separated by a distance of
5.0 cm. Find the speed of sound waves in copper.

55. A Kundt’s tube apparatus has a steel rod of length 1.0 m
clamped at the centre. It is vibrated in its fundamental
mode at a frequency of 2600 Hz. The lycopodium powder
dispersed in the tube collects into heaps separated by
6.5 cm. Calculate the speed of sound in steel and in air.

56. A source of sound with adjustable frequency produces 2
beats per second with a tuning fork when its frequency
is either 476 Hz or 480 Hz. What is the frequency of the
tuning fork ?

57. A tuning fork produces 4 beats per second with another
tuning fork of frequency 256 Hz. The first one is now
loaded with a little wax and the beat frequency is found
to increase to 6 per second. What was the original
frequency of the tuning fork ?

58. Calculate the frequency of beats produced in air when
two sources of sound are activated, one emitting a
wavelength of 32 cm and the other of 32.2 cm. The speed
of sound in air is 350 m/s.

59. A tuning fork of unknown frequency makes 5 beats per
second with another tuning fork which can cause a
closed organ pipe of length 40 cm to vibrate in its
fundamental mode. The beat frequency decreases when
the first tuning fork is slightly loaded with wax. Find
its original frequency. The speed of sound in air is
320 m/s.

60. A piano wire A vibrates at a fundamental frequency of
600 Hz. A second identical wire B produces 6 beats per
second with it when the tension in A is slightly
increased. Find the ratio of the tension in A to the
tension in B.

61. A tuning fork of frequency 256 Hz produces 4 beats per
second with a wire of length 25 cm vibrating in its
fundamental mode. The beat frequency decreases when
the length is slightly shortened. What could be the
minimum length by which the wire be shortened so that
it produces no beats with the tuning fork ?

62. A traffic policeman standing on a road sounds a whistle
emitting the main frequency of 2.00 kHz. What could be
the appparent frequency heard by a scooter-driver
approaching the policeman at a speed of 36.0 km/h ?
Speed of sound in air = 340 m/s.

63. The horn of a car emits sound with a dominant
frequency of 2400 Hz. What will be the apparent
dominant frequency heard by a person standing on the
road in front of the car if the car is approaching at 18.0
km/h ? Speed of sound in air = 340 m/s.

64. A person riding a car moving at 72 km/h sounds a
whistle emitting a wave of frequency 1250 Hz. What
frequency will be heard by another person standing on
the road (a) in front of the car (b) behind the car ? Speed
of sound in air = 340 m/s.

65. A train approaching a platform at a speed of 54 km/h
sounds a whistle. An observer on the platform finds its
frequency to be 1620 Hz. The train passes the platform
keeping the whistle on and without slowing down. What
frequency will the observer hear after the train has
crossed the platfrom ? The speed of sound in air
= 332 m/s.

66. A bat emitting an ultrasonic wave of frequency
4.5 × 10 4 Hz flies at a speed of 6 m/s between two
parallel walls. Find the two frequencies heard by the bat
and the beat frequency between the two. The speed of
sound is 330 m/s.

67. A bullet passes past a person at a speed of 220 m/s.
Find the fractional change in the frequency of the
whistling sound heard by the person as the bullet crosses
the person. Speed of sound in air = 330 m/s.

68. Two electric trains run at the same speed of 72 km/h
along the same track and in the same direction with a
separation of 2.4 km between them. The two trains
simultaneously sound brief whistles. A person is situated
at a perpendicular distance of 500 m from the track and
is equidistant from the two trains at the instant of the
whistling. If both the whistles were at 500 Hz and the
speed of sound in air is 340 m/s, find the frequencies
heard by the person.

69. A violin player riding on a slow train plays a 440 Hz
note. Another violin player standing near the track plays
the same note. When the two are close by and the train
approaches the person on the ground, he hears 4.0 beats
per second. The speed of sound in air = 340 m/s.
(a) Calculate the speed of the train. (b) What beat
frequency is heard by the player in the train ?

70. Two identical tuning forks vibrating at the same
frequency 256 Hz are kept fixed at some distance apart.
A listener runs between the forks at a speed of 3.0 m/s
so that he approaches one tuning fork and recedes from
the other (figure 16-E10). Find the beat frequency
observed by the listener. Speed of sound in air
= 332 m/s.

71. Figure (16-E11) shows a person standing somewhere in
between two identical tuning forks, each vibrating at

Figure 16-E10

Figure 16-E11
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   512 Hz. If both the tuning forks move towards right at
a speed of 5.5 m s–1, find the number of beats heard by
the listener. Speed of sound in air  330 m s–1.

72. A small source of sound vibrating at frequency 500 Hz
is rotated in a circle of radius 100/ cm at a constant
angular speed of 5.0 revolutions per second. A listener
situates himself in the plane of the circle. Find the
minimum and the maximum frequency of the sound
observed. Speed of sound in air  332 m s–1.

73. Two trains are travelling towards each other both at a
speed of 90 km h–1. If one of the trains sounds a whistle
at 500 Hz, what will be the apparent frequency heard
in the other train ? Speed of sound in air  350 m s–1.

74. A traffic policeman sounds a whistle to stop a car-driver
approaching towards him. The car-driver does not stop
and takes the plea in court that because of the Doppler
shift, the frequency of the whistle reaching him might
have gone beyond the audible limit of 20 kHz and he
did not hear it. Experiments showed that the whistle
emits a sound with frequency close to 16 kHz. Assuming
that the claim of the driver is true, how fast was he
driving the car ? Take the speed of sound in air to be
330 m s–1. Is this speed practical with today’s
technology ?

75. A car moving at 108 km h–1 finds another car in front of
it going in the same direction at 72 km h–1. The first car
sounds a horn that has a dominant frequency of 800 Hz.
What will be the apparent frequency heard by the driver
in the front car ? Speed of sound in air  330 m s–1.

76. Two submarines are approaching each other in a calm
sea. The first submarine travels at a speed of 36 km h–1

and the other at 54 km h–1 relative to the water. The
first submarine sends a sound signal (sound waves in
water are also called sonar) at a frequency of 2000 Hz.
(a) At what frequency is this signal received by the
second submarine ? (b) The signal is reflected from the
second submarine. At what frequency is this signal
received by the first submarine. Take the speed of the
sound wave in water to be 1500 m s–1.

77. A small source of sound oscillates in simple harmonic
motion with an amplitude of 17 cm. A detector is placed
along the line of motion of the source. The source emits
a sound of frequency 800 Hz which travels at a speed
of 340 m s–1. If the width of the frequency band detected
by the detector is 8 Hz, find the time period of the
source.

78. A boy riding on his bike is going towards east at a speed
of 4 2 m s1. At a certain point he produces a sound
pulse of frequency 1650 Hz that travels in air at a speed
of 334 m s–1. A second boy stands on the ground 45
south of east from him. Find the frequency of the pulse
as received by the second boy.

79. A sound source, fixed at the origin, is continuously
emitting sound at a frequency of 660 Hz. The sound
travels in air at a speed of 330 m s–1. A listener is moving
along the line x  336 m at a constant speed of 26 m s–1.
Find the frequency of the sound as observed by the
listener when he is (a) at y   140 m, (b) at y  0 and
(c) at y  140 m.

80. A train running at 108 km h–1 towards east whistles at
a dominant frequency of 500 Hz. Speed of sound in air
is 340 m/s. (a) What frequency will a passenger sitting
near the open window hear ? (b) What frequency will a
person standing near the track hear whom the train has
just passed ? (c) A wind starts blowing towards east at
a speed of 36 km h–1. Calculate the frequencies heard by
the passenger in the train and by the person standing
near the track.

81. A boy riding on a bicycle going at 12 km h–1 towards a
vertical wall whistles at his dog on the ground. If the
frequency of the whistle is 1600 Hz and the speed of
sound in air is 330 m s–1, find (a) the frequency of the
whistle as received by the wall (b) the frequency of the
reflected whistle as received by the boy.

82. A person standing on a road sends a sound signal to the
driver of a car going away from him at a speed of
72 km h–1. The signal travelling at 330 m s–1 in air and
having a frequency of 1600 Hz gets reflected from the
body of the car and returns. Find the frequency of the
reflected signal as heard by the person.

83. A car moves with a speed of 54 km h–1 towards a cliff.
The horn of the car emits sound of frequency 400 Hz at
a speed of 335 m s–1. (a) Find the wavelength of the
sound emitted by the horn in front of the car. (b) Find
the wavelength of the wave reflected from the cliff. (c)
What frequency does a person sitting in the car hear for
the reflected sound wave ? (d) How many beats does he
hear in 10 seconds between the sound coming directly
from the horn and that coming after the reflection ?

84. An operator sitting in his base camp sends a sound
signal of frequency 400 Hz. The signal is reflected back
from a car moving towards him. The frequency of the
reflected sound is found to be 410 Hz. Find the speed
of the car. Speed of sound in air  324 m s–1.

85. Figure (16-E12) shows a source of sound moving along
the X-axis at a speed of 22 m s–1 continuously emitting
a sound of frequency 2.0 kHz which travels in air at a
speed of 330 m s–1. A listener Q stands on the Y-axis at
a distance of 330 m from the origin. At t  0, the source
crosses the origin P. (a) When does the sound emitted
from the source at P reach the listener Q ? (b) What will
be the frequency heard by the listener at this instant ?
(c) Where will the source be at this instant ?

86. A source emitting sound at frequency 4000 Hz, is moving
along the Y-axis with a speed of 22 m s–1. A listener is
situated on the ground at the position (660 m, 0). Find
the frequency of the sound received by the listener at
the instant the source crosses the origin. Speed of sound
in air  330 m s–1.

87. A source of sound emitting a 1200 Hz note travels along
a straight line at a speed of 170 m s–1. A detector is
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placed at a distance of 200 m from the line of motion of
the source. (a) Find the frequency of sound received by
the detector at the instant when the source gets closest
to it. (b) Find the distance between the source and the
detector at the instant it detects the frequency 1200 Hz.
Velocity of sound in air = 340 m s–1.

88. A small source of sound S of frequency 500 Hz is
attached to the end of a light string and is whirled in a
vertical circle of radius 1.6 m. The string just remains
tight when the source is at the highest point. (a) An
observer is located in the same vertical plane at a large
distance and at the same height as the centre of the
circle (figure 16-E13). The speed of sound in air
= 330 m s−1 and g = 10 m s−2. Find the maximum
frequency heard by the observer. (b) An observer is
situated at a large distance vertically above the centre

of the circle. Find the frequencies heard by the observer
corresponding to the sound emitted by the source when
it is at the same height as the centre.

89. A source emitting a sound of frequency ν is placed at a
large distance from an observer. The source starts
moving towards the observer with a uniform acceleration
a. Find the frequency heard by the observer
corresponding to the wave emitted just after the source
starts. The speed of sound in the medium is v.

ANSWERS

OBJECTIVE I

 1. (a)  2. (d)  3. (d)  4. (c)  5. (d)  6. (c)
 7. (a)  8. (d)  9. (b) 10. (a) 11. (c) 12. (c)
13. (a) 14. (d) 15. (d) 16. (c)

OBJECTIVE II

 1. (d)  2. (a), (c)  3. (b), (c), (d)
 4. (c)  5. (a), (d)

EXERCISES

 1. 2.75 m s
 2. 0.5 s
 3. 333 m s–1

 4. 18 mm, 18 m
 5. 7.25 cm, 72.5 m
 6. (a) 170 Hz (b) 17 kHz

 7. 7.6 × 10 − 5 m,  3.3 × 10 − 4 m

 8. (a) 1.7 × 10 − 5 (b) 1.1 × 10 − 4

 9. (a) π/2 (b) 2π/35
10. (a) zero (b) zero
11. 310 m s–1

12. 349 m s–1

13. 819°C

14. 
2d
v

 ⋅ 
√⎯⎯⎯⎯273

√⎯⎯⎯T1  + √⎯⎯⎯T2

 ,  96 m s −1

15. 0.14 cm 3

16. 1.4 × 10 5 N m−2

17. (a) 44 mW m–2    (b) 6.0 Pa   (c) 1.2 × 10 − 6 m

18. 4.0 × 10 − 10 W m−2

19. 20 dB
20. 3 dB
21. 40 cm
22. √⎯⎯⎯10

23. 53 dB
24. 3.4 kHz

25. (a) 5.0 kHz (b) 2
26. 1200 Hz, 2000 Hz, 2800 Hz, 3600 Hz and 4400 Hz
27. 420 Hz
28. 0.13 d
29. 200 (2 n + 1) Hz,  where n = 0, 1, 2, …, 49

30. 12.6 cm

31. (a) 7.9°    (b) 16° (c) two

32. zero
33. √3 D

34. 0°, 48.2°, 70.5°, 90° and similar points in other quadrants

35. (a) I0 /4     (b) I0 /4

36. 850 Hz, 1700 Hz and 2550 Hz
37. 17 cm
38. 4.1 kHz
39. 340 Hz
40. 1020 Hz, 1360 Hz and 1700 Hz
41. (a) 336 m s–1 (b) 1 cm
42. 20 cm
43. 1.9n kHz, where n = 1, 2, 3, …, 10
44. 8.5 m
45. (a) 3.4 kHz (b) 5
46. 100(2 n + 1) Hz,  where  n = 0, 1, 2, 3, …, 9

47. 25 cm

�
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48. 328 m/s
49. 18.8 cm, 56.3 cm
50. 11.6 N
51. 347 N
53. 294 Hz
54. 3400 m/s
55. 5200 m/s, 338 m/s
56. 478 Hz
57. 252 Hz
58. 7 per second
59. 205 Hz
60. 1.02
61. 0.39 cm
62. 2.06 kHz
63. 2436 Hz
64. (a) 1328 Hz (b) 1181 Hz
65. 1480 Hz

66. 4.67 × 10 4 Hz,  4.34 × 10 4 Hz,  3270 Hz
67. 0.8
68. 529 Hz, 474 Hz
69. (a) 11 km/h (b) a little less than 4 beats/s
70. 4.6 Hz
71. 17.5 Hz, may not be able to distinguish

72. 485 Hz and 515 Hz
73. 577 Hz

74. 300 km/h
75. 827 Hz
76. (a) 2034 Hz (b) 2068 Hz
77. 0.63 s
78. 1670 Hz
79. (a) 680 Hz (b) 660 Hz (c) 640 Hz
80. (a) 500 Hz     (b) 459 Hz

(c) 500 Hz by the passenger and 458 by the person near
the track

81. (a) 1616 Hz (b) 1632 Hz
82. 1417 Hz
83. (a) 80 cm (b) 80 cm (c) 437 Hz
   (d) No beat may be heard
84. 4 m/s

85. (a) t = 1 second   (b) 2.0 kHz (c) at x = 22 m

86. 4018 Hz
87. (a) 1600 Hz (b) 224 m
88. (a) 514 Hz     (b) 490 Hz and 511 Hz

89. 
2vν 2

2vν − a
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CHAPTER 17

LIGHT WAVES

17.1 WAVES OR PARTICLES

The question whether light is a wave or a particle
has a very interesting and a long history. The
investigations about the nature of light has unfolded
a huge treasure of knowledge and understanding. This
question has great contributions to the development of
the theory of quantum mechanics which presents an
altogether different picture of the world in which there
are no particles, no positions, no momenta in an
ordinary sense.

Newton, the greatest among the great, believed
that light is a collection of particles. He believed that
a light source emits tiny corpuscles of light and these
corpuscles travel in straight lines when not acted upon
by external forces. The fact that light seems to travel
in straight lines and cast shadows behind the obstacles
was perhaps the strongest evidence of the particle
nature of light. Newton could explain the laws of
reflection of light on the basis of elastic collisions of
the particles of light with the surface it is incident
upon. The laws of refraction were explained by
assuming that the particles of denser medium, such as
glass or water, strongly attract the particles of light
causing a bending at the surface. Newton had
performed a number of experiments to study the
behaviour of light. The book Optiks written by him,
gives a classic account of these experiments.

The Dutch physicist Christian Huygens
(1629–1695), who was a contemporary of Newton,
suggested that light may be a wave phenomenon. The
apparent rectilinear propagation of light may be due
to the fact that the wavelength of light may be much
smaller than the dimensions of these openings and
obstacles.

Huygens’ proposal remained in a dump for almost
about a century. The scientific community by and large
had great faith in Newton’s writings and the particle
theory remained in chair for a long time when it was
seriously challenged by the double-slit experiment of
Thomas Young (1773–1829) in 1801. This experiment

clearly established that light coming from two coherent
sources interferes and produces maxima and minima
depending on the path difference. A series of
experiments on diffraction of light conducted by the
French physicist Augustin Jean Fresnel (1788–1827),
measurement of velocity of light in water by Foucault
in 1850, development of theory of electromagnetic
waves by Maxwell in 1860 which correctly predicted
the speed of light, were parts of a long activity which
put the corpuscle theory of light to an end and
convincingly established that light is a wave
phenomenon.

But the drama was not yet over. The climax came
when the wave theory of light failed to explain
Hallwachs and Lenard’s observation in 1900 that when
light falls on a metal surface, electrons are ejected and
that the kinetic energy of the emitted electrons does
not depend on the intensity of the light used. Hertz
possibly had the first observation of this phenomenon
in early 1880’s. This observation is known as
photoelectric effect and we shall study it in detail in a
later chapter. Photoelectric effect was explained by
another giant, Albert Einstein, in 1905 on a particle
model of light only. The old question “waves or
particles” was reopened and an amicable
understanding was reached in accepting that light has
dual character. It can behave as particles as well as
waves depending on its interaction with the
surrounding. Later, it was found that even the well-
established particles such as electrons also have a dual
character and can show interference and diffraction
under suitable situations. We shall study the wave
particle duality in a later chapter. In this chapter, we
shall study the wave aspect of light.

17.2 THE NATURE OF LIGHT WAVES

In a wave motion, there is some quantity which
changes its value with time and space. In the wave on
a string, it is the transverse displacement of the
particles that changes with time and is different for
different particles at the same instant. In the case of



sound waves, it is the pressure at a point in the
medium that oscillates as time passes and has
different values at different points at the same instant.
We also know that it is the elastic properties of the
medium that is responsible for the propagation of
disturbance in a medium. The speed of a wave is
determined by the elastic as well as the inertia
properties of the medium.

The case with light waves is a bit different. The
light waves need no material medium to travel. They
can propagate in vacuum. Light is a nonmechanical
wave. It was very difficult for the earlier physicists to
conceive a wave propagating without a medium. Once
the interference and diffraction experiments
established the wave character of light, the search
began for the medium responsible for the propagation
of light waves. Light comes from the sun to the earth
crossing millions of kilometers where apparently there
is no material medium. What transmits the wave
through this region ? Physicists assumed that a very
dilute and highly elastic material medium is present
everywhere in space and they named it “ether”. Ether
was never discovered and today we understand that
light wave can propagate in vacuum.

The quantity that changes with space and time, in
terms of which the wave equation should be written,
is the electric field existing in space where light
travels. We shall define and study electric field in later
chapters, here we need only to know that (a) the
electric field is a vector quantity and (b) the electric
field is transverse to the direction of propagation of
light (there are exceptions but we shall not discuss
them).

Because light waves are transverse, they can be
polarized. If a plane wave of light is travelling along
the x-direction, the electric field may be along the
y-direction or along the z-direction or in any other
direction in the y-z plane. The equation of such a light
wave may be written as

         E = E0 sin ω(t − x/v), … (17.1)

where E0 is the magnitude of the electric field at point
x at time t. The speed of light is itself an interesting
quantity. The speed of light in vacuum with respect to
any observer is always the same and is very nearly
equal to 3 × 10 8 m s–1. This speed is a fixed universal
constant irrespective of the state of motion of the
observer. This needs a basic revision of our concepts
about space and time and is the basis of special theory
of relativity. The speed of light in vacuum is generally
denoted by the letter c. When a light wave travels in
a transparent material, the speed is decreased by a
factor µ, called the refractive index of the material.

      µ = 
speed of light in vacuum

speed of light in the material
 ⋅ … (17.2)

For a spherical wave originating from a point
source, the equation of the wave is of the form

           E = 
aE0

r
 sin ω(t − r/v),

where a is a constant.

The amplitude is proportional to the inverse of the
distance and thus the intensity is proportional to the
square of the inverse distance.

Example 17.1

   The refractive index of glass is 1.5. Find the speed of
light in glass.

Solution : We have

          µ = 
speed of light in vacuum

speed of light in the material
Thus, speed of light in glass

= 
speed of light in vacuum

µ

            = 
3.0 × 10 8 m s−1

1.5
 = 2.0 × 10 8 m s−1.

The frequency of visible light varies from about
3800 × 10 11 Hz to about 7800 × 10 11 Hz. The corres-
ponding wavelengths (obtained  from  λ = c/ν) are
380 nm to 780 nm. The colour sensation to a human
eye is related to the wavelength of the light. Light of
wavelength close to 780 nm appears red, and that close
to 380 nm appears violet. Table (17.1) shows a rough
relationship between the colour sensed and the
wavelength of light.

Table 17.1

Colour   Wavelength
  (order)

Red   620–780 nm

Orange   590–620 nm

Yellow   570–590 nm

Green   500–570 nm

Blue   450–500 nm

Violet   380–450 nm

Light of single wavelength is called monochromatic
light. Equation (17.1) represents a monochromatic
light wave. Often, the light emitted by a source is a
mixture of light corresponding to different
wavelengths. Depending on the composition of the
mixture, a human eye senses a large number of
colours. White light itself is a mixture of light of all
wavelengths from about 380 nm to about 780 nm in
appropriate proportion.
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In fact, a strictly monochromatic light is not
possible to obtain. There is always a spread in
wavelength. The best monochromatic light are LASERs
in which the spread in wavelength is very small but
not zero. We shall use the word “monochromatic light”
to mean that the light contains a dominant wavelength
with only a little spread.

We discussed in the previous chapter that if a wave
is obstructed during its propagation by an obstacle or
an opening, it gets diffracted. A plane wave going
through a small opening becomes more like a spherical
wave on the other side. Thus, the wave bends at the
edges. Also, if the dimensions of the obstacle or the
opening is much larger than the wavelength, the
diffraction is negligible and the rays go along straight
lines.

In the case of light, the wavelength is around
380–780 nm. The obstacles or openings encountered in
normal situations are generally of the order of
millimeters or even larger. Thus, the wavelength is
several thousands times smaller than the usual
obstacles or openings. The diffraction is almost
negligible and the light waves propagate in straight
lines and cast shadows of the obstacles. The light can
then be treated as light rays which are straight lines
drawn from the source and which terminate at an
opaque surface and which pass through an opening
undeflected. This is known as the Geometrical optics
approximation and majority of the phenomena in
normal life may be discussed in this approximation.
The three major rules governing geometrical optics are
the following.

1. Rectilinear propagation of light : Light travels
in straight lines unless it is reflected by a polished
surface or the medium of propagation is changed.

2. Reflection of light : The angle of incidence and
the angle of reflection (i.e., the angles made by the
incident and the reflected rays with the normal to the
surface) are equal. Also, the incident ray, the reflected
ray and the normal to the reflecting surface are
coplanar.

3. Refraction of light : When light travelling in
one medium enters another medium, the angle of
incidence i and the angle of refraction r (angle made
by the refracted ray with the normal) satisfy

           
sin i
sin r

  
v1

v2

,

where v1 and v2 are the speeds of light in the first
medium and the second medium respectively. Also, the
incident ray, the refracted ray and the normal to the
separating surface are coplanar.

The rectilinear propagation of light is explained on
the basis of wave theory by observing that the

wavelength of light is much smaller than the obstacles
or openings usually encountered. The laws of reflection
and refraction can also be explained by wave theory.
The rigorous derivation involves somewhat
complicated mathematics, but things can be fairly
well-understood by a geometrical method proposed by
Huygens. This method tells us how to construct the
shape of a wavefront of light wave from the given
shape at an earlier instant. We refer again from the
previous chapters that (a) a surface on which the wave
disturbance is in same phase at all points is called a
wavefront, (b) the direction of propagation of a wave
at a point is perpendicular to the wavefront through
that point, (c) the wavefronts of a wave originating
from a point source are spherical and (d) the
wavefronts for a wave going along a fixed direction are
planes perpendicular to that direction.

17.3 HUYGENS’ PRINCIPLE

The first proposer of the wave theory of light,
Huygens, considered light to be a mechanical wave
moving in a hypothetical medium which was named
as ether. If we consider a surface  enclosing a light
source S, the optical disturbance at any point beyond
 must reach after crossing . The particles of the
surface  vibrate as the wave from S reaches there
and these vibrations cause the layer beyond to vibrate.
We can thus assume that the particles on  act as new
sources of light waves emitting spherical waves and
the disturbance at a point A (figure 17.1) beyond , is
caused by the superposition of all these spherical
waves coming from different points of . Huygens
called the particles spreading the vibration beyond
them as secondary sources and the spherical
wavefronts emitted from these secondary sources as
the secondary wavelets.

Huygens’ principle may be stated in its most
general form as follows :

Various points of an arbitrary surface, when
reached by a wavefront, become secondary sources of
light emitting secondary wavelets. The disturbance
beyond the surface results from the superposition of
these secondary wavelets.

Consider a spherical surface  with its centre at a
point source S emitting a pulse of light (figure 17.2).

S A

Figure 17.1
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The optical disturbance reaches the particles on  at
time t  0 and lasts for a short interval in which the
positive and negative disturbances are produced. These
particles on  then send spherical wavelets which
spread beyond . At time t, each of these wavelets has
a radius vt. In figure (17.2), the solid lines represent
positive optical disturbance and the dashed lines
represent negative optical disturbance. The sphere 
is the geometrical envelope of all the secondary
wavelets which were emitted at time t  0 from the
primary wavefront .

It is clear that at the points just inside , only the
positive disturbances of various secondary wavelets
are meeting. The wavelets, therefore, interfere
constructively at these points and produce finite
disturbance. For points well inside , some of the
wavelets contribute positive disturbance and some
others, centred at a nearby point of , produce negative
disturbance. Thus, the resultant disturbance is zero at
these points. The disturbance which was situated at 
at time t  0 is, therefore, confined to a surface  at
time t. Hence, the secondary wavelets from 
superpose in such a way that they produce a new
wavefront at the geometrical envelope of the secondary
wavelets.

This allows us to state the method of Huygens
construction as follows :

Huygens Construction

Various points of an arbitrary surface, as they are
reached by a wavefront, become the sources of
secondary wavelets. The geometrical envelope of these
wavelets at any given later instant represents the new
position of the wavefront at that instant.

The method is quite general and although it was
developed on the notion of mechanical waves it is valid
for light waves. The surface used in the Huygens
construction may have any arbitrary shape, not
necessarily a wavefront itself. If the medium is
homogeneous, (i.e., the optical properties of the
medium are same everywhere) light moves forward

and does not reflect back. We assume, therefore, that
the secondary wavelets are emitted only in the forward
direction and the geometrical envelope of the wavelets
is to be taken in the direction of advancement of the
wave. If there is a change of medium, the wave may
be reflected from the discontinuity just as a wave on
a string is reflected from a fixed end or a free end. In
that case, secondary wavelets on the backward side
should also be considered.

Reflection of Light

Let us suppose that a parallel light beam is
incident upon a reflecting plane surface  such as a
plane mirror. The wavefronts of the incident wave will
be planes perpendicular to the direction of incidence.
After reflection, the light returns in the same medium.
Consider a particular wavefront AB of the incident
light wave at t  0 (figure 17.3). We shall construct the
position of this wavefront at time t.

To apply Huygens construction, we use the
reflecting surface  for the sources of secondary
wavelets. As the various points of  are reached by the
wavefront AB, they become sources of secondary
wavelets. Because of the change of medium, the
wavelets are emitted both in forward and backward
directions. To study reflection, the wavelets emitted in
the backward directions are to be considered.

Suppose, the point A of  is reached by the
wavefront AB at time t = 0. This point then emits a
secondary wavelet. At time t, this wavelet becomes a
hemispherical surface of radius vt centred at A. Here
v is the speed of light. Let C be the point which is just
reached by the wavefront at time t and hence the
wavelet is a point at C itself. Draw the tangent plane
CD from C to the hemispherical wavelet originated
from A. Consider an arbitrary point P on the surface
and let AP/AC = x. Let PQ be the perpendicular from
P to AB and let PR be the perpendicular from P to
CD. By the figure,

        
PR
AD

  
PC
AC

  
AC  AP

AC
  1  x

   or,     PR  AD 1  x  vt1  x.  (i)

   Also,    
QP
BC

  
AP
AC

  x
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or,        QP = x BC = xvt.
The time taken by the wavefront to reach the point P
is, therefore,

t1 = 
QP
v

 = xt.

The point P becomes a source of secondary wavelets
at time t1 . The radius of the wavelet at time t,
originated from P is, therefore,
       a = v(t − t1) = v(t − xt) = vt(1 − x). … (ii)

By (i) and (ii), we see that PR is the radius of the
secondary wavelet at time t coming from P. As CD is
perpendicular to PR, CD touches this wavelet. As P is
an arbitrary point on σ, all the wavelets originated
from different points of σ, touch CD at time t. Thus,
CD is the envelope of all these wavelets at time t. It
is, therefore, the new position of the wavefront AB.
The reflected rays are perpendicular to this wavefront
CD.
   In triangles ABC and ADC :
             AD = BC = vt,

AC is common,
   and ∠ADC = ∠ABC = 90°.

Thus, the triangles are congruent and
             ∠BAC = ∠DCA. … (iii)

Now, the incident ray is perpendicular to AB and the
normal is perpendicular to AC. The angle between the
incident ray and the normal is, therefore, equal to the
angle between AB and AC. Thus, ∠BAC is equal to
the angle of incidence.

Similarly, ∠DCA represents the angle of reflection
and we have proved in (iii) that the angle of incidence
equals the angle of reflection. From the geometry, it
is clear that the incident ray, the reflected ray and the
normal to the surface AC lie in the plane of drawing
and hence, are coplanar.

Refraction of Light

Suppose σ represents the surface separating two
transparent media, medium 1 and medium 2 in which
the speeds of light are v1  and  v2 respectively. A
parallel beam of light moving in medium 1 is incident

on the surface and enters medium 2. In figure (17.4),
we show the incident wavefront AB in medium 1 at
t = 0. The incident rays are perpendicular to this
wavefront. To find the position of this wavefront after
refraction, we apply the method of Huygens
construction to the surface σ. The point A of the
surface is reached by the wavefront AB at t = 0. This
point becomes the source of secondary wavelet which
expands in medium 2 at velocity v2. At time t, this
takes the shape of a hemisphere of radius v2 t centred
at A. The point C of the surface is just reached by the
wavefront at time t and hence, the wavelet is a point
at C itself. Draw the tangent plane CD from C to the
wavelet originating from A.

Consider an arbitrary point P on the surface σ and
let AP/AC = x. Let PQ and PR be the perpendiculars
from this arbitrary point P to the planes AB and CD
respectively. By the figure,

      
PR
AD

 = 
PC
AC

 = 
AC − AP

AC
 = 1 − x

   or,     PR = AD(1 − x) = v2 t(1 − x). … (i)

Also,
QP
BC

 = 
AP
AC

 = x.

Thus, QP = x BC = xv1 t.
The time, at which the wavefront arrives at P, is

          t1 = 
QP
v1

 = xt.

The radius of the wavelet originated from P and
going into the second medium is, therefore,
        a = v2(t − t1) = v2 t( 1 − x). … (ii)

By (i) and (ii), we see that PR is the radius of the
wavelet originating from P. As CD is perpendicular to
PR, CD touches this wavelet. As P is an arbitrary point
on σ, all the wavelets which originated from different
points on σ touch CD at time t. The plane CD is,
therefore, the geometrical envelope of all the secondary
wavelets at time t. It is, therefore, the position of the
wavefront AB at time t. The refracted rays are
perpendicular to CD.

The angle BAC is also equal to the angle between
the incident ray (which is perpendicular to AB) and
the normal to the surface and hence, it is equal to the
angle of incidence i. Similarly, ∠ ACD is equal to the
angle of refraction r.

We have sin i = 
BC
AC

and sin r = 
AD
AC

so that

        
sin i
sin r

 = 
BC
AD

 = 
v1 t
v2 t
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or,         
sin i
sin r

 = 
v1

v2

which is called the Snell’s law. The ratio v1 /v2  is
called the refractive index of medium 2 with respect
to medium 1 and is denoted by µ21. If the medium 1
is vacuum, µ21 is simply the refractive index of the
medium 2 and is denoted by µ.

Also,      µ21 = 
v1

v2
 = 

c/v2

c/v1
 = 

µ2

µ1
 ⋅

From the figure, it is clear that the incident ray,
the refracted ray and the normal to the surface σ are
all in the plane of the drawing, i.e., they are coplanar.

Suppose light from air is incident on water. It
bends towards the normal giving i > r. From Snell’s
law proved above, v1 > v2 . Thus, according to the wave
theory the speed of light should be greater in air than
in water. This is opposite to the prediction of Newton’s
corpuscle theory. If light bends due to the attraction
of the particles of a medium then speed of light should
be greater in the medium. Later, experiments on
measurement of speed of light confirmed wave theory.

Thus, the basic rules of geometrical optics could be
understood in terms of the wave theory of light using
Huygens’ principle. In the rest of this chapter, we shall
study the wave behaviour, such as the interference,
diffraction and polarization of light.

17.4 YOUNG’S DOUBLE HOLE EXPERIMENT

Thomas Young in 1801 reported his experiment on
the interference of light. He made a pinhole in a
cardboard and allowed sunlight to pass through. This
light was then allowed to fall upon another cardboard
having two pinholes side by side placed symmetrically.
The emergent light was received on a plane screen
placed at some distance. At a given point on the screen,
the waves from the two holes had different phases.
These waves interfered to give a pattern of bright and
dark areas. The variation of intensity on the screen
demonstrated the interference taking place between
the light waves reaching the screen from the two
pinholes.

The pattern of bright and dark areas are sharply
defined only if light of a single wavelength is used.
Young’s original experiments were performed with
white light and he deduced from the experiments that
the wavelength of extreme red light was around
1/36000 inch and that of the extreme violet was around
1/60000 inch. These results are quite close to their
accurate measurements done with modern
instruments.

17.5 YOUNG’S DOUBLE SLIT EXPERIMENT

In the double slit experiment, we use two long
parallel  slits as the sources of light in place of pin
holes. The light coming out of the two slits is
intercepted on a screen placed parallel to the plane of
the slits. The slits are illuminated by a parallel beam
of a monochromatic (of nearly a single wavelength)
light.  A series of dark and bright strips, called fringes,
are observed on the screen. The arrangement of the
experiment is schematically shown in figure (17.5a).
Figure (17.5b) shows a cross section of the
arrangement of the Young’s double slit experiment.

The two waves interfering at P have covered
different distances S1P = x and S2P = x + ∆x. The
electric fields at P due to the two waves may be written
as
          E1 = E01 sin(kx − ωt)

and     E2 = E02 sin[k(x + ∆x) − ωt]

= E02 sin[kx − ωt + δ],

   where δ = 
ω
v

 ∆x = 
2π
λ

 ∆x. … (17.3)

The situation is mathematically identical to that
discussed in chapter 15, section 15.7. The resultant
field at the point P is

E = E0 sin(kx − ωt + ε),

   where  E0
 2 = E01

 2  + E02
 2  + 2E01 E02 cosδ … (17.4)

and tanε = 
E02 sinδ

E01 + E02 cosδ
 ⋅

The conditions for constructive (bright fringe) and
destructive (dark fringe) interferences are,

   
             δ = 2nπ           for  bright  fringes
and       δ = (2n + 1)π     for  dark  fringes

 


… (17.5)

where n is an integer.
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Using, (17.3) these conditions may also be written
as

            ∆x = nλ            for bright fringes

and      ∆x = 

n + 1

2



 λ     for dark fringes. 






… (17.6)

At the point B in figure (17.5b), ∆x = 0 as S1B = S2B.
This point is the centre of the bright fringe
corresponding to n = 0.

Intensity Variation

If the two slits are identical, E01 = E02 = E0′ and
from equation (17.4),

         E0
 2 = 2E0′

 2(1 + cosδ).
As the intensity is proportional to the square of

the amplitude, we get

         I = 2I′(1 + cosδ) = 4I′cos 2 
δ
2

, … (17.7)

where I is the resultant intensity and I′ is the intensity
due to a single slit.

The equation gives intensity as a function of δ. At
the centre of a bright fringe, δ = 2nπ  and  I = 4I′. At
the centre of a dark fringe, δ = (2n + 1)π  and  I = 0. At
other points, the intensity is in between 0 and 4I′ as
given by equation (17.7).

Fringe-width and Determination of Wavelength

The separation on the screen between the centres
of two consecutive bright fringes or two consecutive
dark fringes is called the fringe-width. Suppose S1 A
is the perpendicular from S1  to  S2 P (figure 17.5b).
Suppose,

D = OB = separation between the slits and 
                the screen,
    d = separation between the slits
and D >> d.
Under the above approximation (D >> d), S1P and

S2P are nearly parallel and hence S1 A is very nearly
perpendicular to S1P, S2 P and OP. As S1S2 is
perpendicular to OB and S1 A is perpendicular (nearly)
to OP, we have

      ∠S2S1A = ∠POB = θ.

This is a small angle as D >> d.
The path difference is
       ∆x = PS2 − PS1 ≈ PS2 − PA

= S2 A = dsinθ

≈ d tanθ = d 
y
D

 ⋅

The centres of the bright fringes are obtained at
distances y from the point B, where

       ∆x = d 
y
D

 = nλ  (where n is an integer)

or,        y = 
nDλ

d
,

   i.e.,    at  y = 0, ± 
Dλ
d

  , ± 
2Dλ

d
 , ± 

3Dλ
d

 , …,  etc.

The centres of dark fringes will be obtained, where

      ∆x = d 
y
D

 = 

n + 

1
2




 λ

or,            y = 

n + 

1
2




 
Dλ
d

,

i.e.,     at  y = ± 
Dλ
2d

 , ± 
3Dλ
2d

 , ± 
5Dλ
2d

 ,  …

The fringe-width is, therefore,

             w = 
Dλ
d

 ⋅ … (17.8)

By measuring D, d and W in an experiment, one
can calculate the wavelength of the light used.  We
see from equation (17.8) that as the separation d
between the slits is increased, the fringe-width is
decreased. If d becomes much larger than λ, the
fringe-width will be very small. The maxima and
minima, in this case, will be so closely spaced that it
will look like a uniform intensity pattern. This is an
example of the general result that the wave effects are
difficult to observe, if the wavelength is small
compared to the dimensions of the obstructions or
openings to the incident wavefront.

Example 17.2

   In a Young’s double slit experiment, the separation
between the slits is 0.10 mm, the wavelength of light used
is 600 nm and the interference pattern is observed on a
screen 1.0 m away. Find the separation between the
successive bright fringes.

Solution : The separation between the successive bright
fringes is

      w = 
Dλ
d

 = 
1.0 m × 600 × 10 − 9 m

0.10 × 10 − 3 m

 = 6.0 × 10 − 3 m = 6.0 mm.

17.6 OPTICAL PATH 

Consider a light wave travelling in a medium of
refractive index µ. Its equation may be written as
      E = E0 sin ω(t − x/v) = E0 sin ω(t − µ x/c).

If the light wave travels a distance ∆x, the phase
changes by

              δ1 = µ 
ω
c

 ∆x. … (i)
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Instead, if the light wave travels in vacuum, its
equation will be
           E  E0 sin t  x/c.

If the light travels through a distance  x, the
phase changes by

            2  

c

  x   

c

 x.  (ii)

By (i) and (ii), we see that a wave travelling
through a distance x in a medium of refractive index
 suffers the same phase change as when it travels a
distance x in vacuum. In other words, a path length
of x in a medium of refractive index  is equivalent
to a path length of x in vacuum. The quantity x
is called the optical path of the light. In dealing with
interference of two waves, we need the difference
between the optical paths travelled by the waves. The
geometrical path and the optical path are equal only
when light travels in vacuum or in air where the
refractive index is close to 1.

The concept of optical path may also be introduced
in terms of the change in wavelength as the wave
changes its medium. The frequency of a wave is
determined by the frequency of the source and is not
changed when the wave enters a new medium. If the
wavelength of light in vacuum is 0 and that in the
medium is n, then

               0  
c


   and n  
v


  
c


   so that n  
0


 

At any given instant, the points differing by one
wavelength have same phase of vibration. Thus, the
points at separation n in the medium have same
phase of vibration. On the other hand, in vacuum,
points at separation 0 will have same phase of
vibration. Thus, a path n in a medium is equivalent
to a path 0  n in vacuum. In general, a path x, in
a medium of refractive index , is equivalent to a path
x in vacuum which is called the optical path.

We can also understand the idea of optical path
with the help of figure (17.6). Suppose a parallel beam

of light travelling in vacuum is incident on the surface
AC of a medium of refractive index . AB is
perpendicular to the incident rays and hence
represents a wavefront of the incident light. Similarly
CD is perpendicular to the refracted rays and
represents a wavefront of the refracted light. Now
phase of the wave has a constant value at different
points of a wavefront. Thus phase at A  phase at B
and phase at C  phase at D.

Thus, the phase difference between A and D 
Phase difference between B and C. From the figure,

          
sin i
sin r

  
BC
AC

  
AC
AD

  
BC
AD

   or, BC   AD.
The phase of light wave changes by equal amount

whether it covers a distance BC   AD in vacuum or
AD in the medium. Thus, a path AD in a medium of
refractive index  is equivalent to a path AD in
vacuum which we call optical path.

Consider the situation in figure (17.7). The
geometrical paths ABE, ACE and ADE are different,
but the optical paths are equal. This is because each
path leads to the same phase difference, phase at
E-phase at A. Note that the ray having longer
geometrical path covers less distance in the lens as
compared to the ray having shorter geometrical path.

Example 17.3

   The wavelength of light coming from a sodium source is
589 nm. What will be its wavelength in water ? Refractive
index of water  1.33.

Solution : The wavelength in water is   0 /, where 0

is the wavelength in vacuum and  is the refractive
index of water. Thus,

              
589 nm

1.33
  443 nm.

17.7 INTERFERENCE FROM THIN FILMS

When oil floating on water is viewed in sunlight,
beautiful colours appear. These colours appear because
of interference between the light waves sent by the
film as explained below.

Consider a thin film made of a transparent
material with plane parallel faces separated by a
distance d. Suppose a parallel beam of light is incident
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on the film at an angle i as shown in figure (17.8). The
wave is divided into two parts at the upper surface,
one is reflected and the other is refracted. The
refracted part, which enters into the film, again gets
divided at the lower surface into two parts; one is
transmitted out of the film and the other is reflected
back. Multiple reflections and refractions take place
and a number of reflected waves as well as transmitted
waves are sent by the film. The film may be viewed
by the reflected light (more usual case) or by the
transmitted light. We shall discuss the transmitted
light first.

In figure (17.8), we have collected the parallel rays
transmitted by the film by a converging lens at a point
P. The amplitude of the individual transmitted waves
is different for different waves; it gradually decreases
as more reflections are involved. The wave BP, DP,
FP, etc., interfere at P to produce a resultant intensity.
Let us consider the phase difference between the two
waves BP and DP. The two waves moved together and
hence, remained in phase up to B where splitting
occured and one wave followed the path BP and the
other BCDP.

Let us discuss the special case for normal incidence
when the angle of incidence i = 0. Then, the points B
and D coincide. The path BP equals DP and the only
extra distance travelled by the wave along DP is
BC + CD = 2d. As this extra path is traversed in a
medium of refractive index µ, the optical path
difference between the waves BP and DP interfering
at P is
            ∆x = 2µd.

The phase difference is

δ = 2π 
∆x
λ

 = 2π 
2µd

λ
 ⋅

This is also the phase difference between the waves
DP and FP or in fact, between any consecutively
transmitted waves. All these waves are in phase if

            δ = 2nπ

   or,         2µd = nλ, … (17.9)

where n is an integer.

If this condition is satisfied, constructive
interference takes place and the film is seen
illuminated. On the other hand, if

           2µd = 



n + 

1
2




 λ, … (17.10)

δ = (2n + 1)π and the consecutive waves are out of
phase. The waves cancel each other although complete
cancellation does not take place because the interfering
waves do not have equal amplitude. Still, the
illumination will be comparatively less.

If white light is used, the film’s thickness d will
satisfy condition (17.9) for certain wavelengths and
these colours will be strongly transmitted due to
constructive interference. The colours corresponding to
the wavelengths for which (17.10) is satisfied will be
poorly transmitted due to destructive interference.
This gives coloured appearance of the film.

Next, let us consider the case when the film is
viewed by the light reflected by it. The reflected light
consists of waves from A, C, E, ...., etc., (figure 17.8)
which may be brought to a focus at a point P′ by a
converging lens. The optical path difference between
the consecutively reflected waves reaching at P′ is
again 2µd in the limit of normal incidence i = 0.
Experimental arrangement may be a bit difficult for
an exact normal incidence and then collection of
reflected light along the same direction. However, we
can suppose that it is viewed by light falling very
nearly normal to it. We may expect that the condition
of maximum illumination and minimum illumination
will be same as equations (17.9) and (17.10). But a
simple argument conflicts the case. If for a given
thickness and wavelength, destructive interference
takes place both in reflection as well as in
transmission; where does the light go then ? What
happens to the energy incident on the film ? Similarly,
if the intensity is enhanced both in transmission and
reflection, where does this extra energy come from ? It
seems logical that if the intensity in transmission is
increased, it should be at the cost of reflection and vice
versa. So the conditions for maximum and minimum
illumination in reflection should be opposite to that in
transmission. We should have

  2µd = n λ for minimum illumination in reflection
… (17.11)
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and

2µd = 



n + 

1
2




 λ for  maximum  illumination

in  reflection.
… (17.12)

This comes out to be true experimentally. To
explain why destructive interference takes place even
when the optical path difference is an integral multiple
of wavelength, let us recall our discussion of reflection
and transmission of waves in chapter 15. If a composite
string is prepared by joining a light string to a heavier
one and if a wave pulse is sent from the lighter one
towards the heavier one, a part is reflected from the
junction and other is transmitted into the heavier
string (figure 17.9a). The reflected pulse is inverted
with respect to the incident pulse.

There is a sudden phase-change of π when a wave
is reflected from a denser string. No such sudden phase
change takes place if the wave is reflected from a rarer
string (figure 17.9b). Same is true for light waves. The
medium with higher refractive index is optically
denser. When light is incident from air to a film, the
reflected wave suffers a sudden phase change of π. The
next wave, with which it interferes, suffers no such
sudden phase change. If 2µd is equal to λ or its integral
multiple, the second wave is out of phase with the first
because the first has suffered a phase change of π. This
explains the conditions (17.11) and (17.12).

Example 17.4

   Find the minimum thickness of a film which will
strongly reflect the light of wavelength 589 nm. The
refractive index of the material of the film is 1.25.

Solution : For strong reflection, the least optical path
difference introduced by the film should be λ/2. The
optical path difference between the waves reflected from
the two surfaces of the film is 2µd. Thus, for strong
reflection,
            2µd = λ/2

or, d = 
λ

4µ
 = 

589 nm
4 × 1.25

 = 118 nm.

17.8 FRESNEL BIPRISM 

Figure (17.10) shows a schematic diagram of
Fresnel biprism and interference of light using it. Two
thin prisms A1BC and A2BC are joined at the bases to
form a biprism. The refracting angles A1 and A2

(denoted by α in the figure) are of the order of half a
degree each. In fact, it is a simple prism whose base
angles are extremely small. A narrow slit S, allowing
monochromatic light, is placed parallel to the
refracting edge C. The light going through the prism
A1BC appears in a cone S1QT and the light going
through A2BC appears in a cone S2PR. Here S1 and S2

are the virtual images of S as formed by the prisms
A1BC and A2BC. A screen Σ is placed to intercept the
transmitted light. Interference fringes are formed on
the portion QR of the screen where the two cones
overlap.

One can treat the points S1 and S2 as two coherent
sources sending light to the screen. The arrangement
is then equivalent to a Young’s double slit experiment
with S1 and S2 acting as the two slits. Suppose the
separation between S1  and  S2 is d and the separation
between the plane of S1S2 and Σ is D. The fringe-width
obtained on the screen is 

           w = 
Dλ
d

 ⋅

17.9 COHERENT AND INCOHERENT SOURCES

Two sources of light waves are said to be coherent
if the initial phase difference δ0 between the waves
emitted by the sources remains constant in time. If
δ0 changes randomly with time, the sources are called
incoherent. Two waves produce interference pattern
only if they originate from coherent sources. This
condition is same as discussed for sound waves in the
previous chapter. The process of light emission from
ordinary sources such as the sun, a candle, an electric
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bulb, is such that one has to use special techniques to
get coherent sources. In an ordinary source, light is
emitted by atoms in discrete steps. An atom after
emitting a short light pulse becomes inactive for some
time. It again gains energy by some interaction,
becomes active and emits another pulse of light. Thus,
at a particular time a particular group of atoms is
active and the rest are inactive. The active time is of
the order of 10–8 s and during this period, a wavetrain
of several meters is emitted.

We can picture the light coming from an ordinary
source as a collection of several wavetrains, each
several meters long and having no fixed phase relation
with each other. Such a source is incoherent in itself.
Different wavetrains are emitted by different groups
of atoms and these groups act independently of each
other, hence the phase varies randomly from train to
train. If two lamps are substituted in place of the slits
S1  and  S2 in a Young’s interference experiment, no
fringe will be seen. This is because each source keeps
on changing its phase randomly and hence, the phase
difference between the two sources also changes
randomly. That is why, a narrow aperture S0 is used
to select a particular wavetrain which is incident on
the two slits together. This ensures that the initial
phase difference of the wavelets originating from
S1  and  S2 does not change with time. When a new
wavetrain is emitted by the lamp, the phase is
randomly changed but that change is simultaneously
communicated to both S1  and  S2 and the phase
difference remains unchanged. In order to obtain a
fairly distinct interference pattern, the path difference
between the two waves originating from coherent
sources should be kept small. This is so because the
wavetrains are finite in length and hence with large
difference in path, the waves do not overlap at the
same instant in the same region of space. The second
wavetrain arrives well after the first train has already
passed and hence, no interference takes place. In
practice, the path difference should not exceed a few
centimeters to observe a good interference pattern.

Because of the incoherent nature of the basic
process of light emission in ordinary sources, these
sources cannot emit highly monochromatic light. A
strictly monochromatic light, having a well-defined
single frequency or wavelength, must be a sine wave
which has an infinite extension. A wavetrain of finite
length may be described by the superposition of a
number of sine waves of different wavelengths. Thus,
the light emitted by an ordinary source always has a
spread in wavelength. An ordinary sodium vapour
lamp emits light of wavelength 589.0 nm and 589.6 nm
with a spread of about  0.01 nm in each line. Shorter

the length of the wavetrain, larger is the spread in
wavelength.

It has been made possible to produce light sources
which emit very long wavetrains, of the order of
several hundred metres. The spread in wavelength is
accordingly very small. These sources are called laser
sources. The atoms behave in a cooperative manner in
such a source and hence the light is coherent. Two
independent laser sources can produce interference
fringes and the path difference may be several metres
long.

17.10 DIFFRACTION OF LIGHT

When a wave is obstructed by an obstacle, the rays
bend round the corner. This phenomenon is known as
diffraction. We can explain the effect using Huygens’
principle. When a wavefront is partially obstructed,
only the wavelets from the exposed parts superpose
and the resulting wavefront has a different shape. This
allows for the bending round the edges. In case of light
waves, beautiful fringe patterns comprising maximum
and minimum intensity are formed due to diffraction.

Figure (17.11) shows the basic arrangement for
observing diffraction effects in light waves. It consists
of a narrow source of light S0, a diffracting element G
(an obstacle or an opening) and a screen . The
wavefronts emitted by the source S0 are partially
obstructed by the element G. The secondary wavelets
originating from different points of the unobstructed
part interfere on the screen  and produce the
diffraction pattern of varying intensity. A special case
of diffraction, which is very important in practice and
which is simpler to analyse mathematically, arises
when the source S0 and the screen  are far away from
the diffracting element G. Plane waves are incident on
G and the waves interfering at a particular point come
parallel to each other. This special class of diffraction
is called  Fraunhofer diffraction after the physicist
Joseph von Fraunhofer (1787–1826) who investigated
such diffraction cases in great detail. Fraunhofer
diffraction can be observed in a laboratory by placing
converging lenses before and after G and keeping the
source S0 and the screen  in their focal planes

G

S0
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respectively (figure 17.12). The source and the screen
are effectively at infinite distance from the diffracting
element.

If the source or the screen is at a finite distance
from the diffracting element G, it is called Fresnel
diffraction after the physicist Augustin Jean Fresnel
(1788–1827).

It is a coincidence that the two great physicists,
Fraunhofer and Fresnel, investigating diffraction
phenomenon lived a short life of equal number of
years. 

We shall now discuss some of the important cases
of diffraction.

17.11 FRAUNHOFER DIFFRACTION
     BY A SINGLE SLIT 

Suppose a parallel beam of light is incident
normally on a slit of width b (figure 17.13). According
to Huygens’ principle, each and every point of the
exposed part of the plane wavefront (i.e., every point
of the slit) acts as a source of secondary wavelets
spreading in all directions. The light is received by a
screen placed at a large distance. In practice, this
condition is achieved by placing the screen at the focal
plane of a converging lens placed just after the slit. A
particular point P on the screen receives waves from
all the secondary sources. All these waves start
parallel to each other from different points of the slit
and interfere at P to give the resultant intensity.

At the point P0 which is at the bisector plane of
the slit, all the waves reach after travelling equal
optical path and hence, are in phase. The waves, thus,
interfere constructively with each other and maximum
intensity is observed. As we move away from P0, the
waves arrive with different phases and the intensity
is changed.

Let us consider a point P which collects the waves
originating from different points of the slit at an
angle θ. Figure (17.13) shows the perpendicular from
the point A to the parallel rays. This perpendicular
also represents the wavefront of the parallel beam
diffracted at an angle θ. The optical paths from any
point on this wavefront to the point P are equal. The
optical path difference between the waves sent by the
upper edge A of the slit and the wave sent by the
centre of the slit is b

2
 sinθ. This is shown in expanded

view in figure (17.13b). Consider the angle for which
b
2
 sinθ = λ/2. The above mentioned two waves will have

a phase difference

           δ = 
2π
λ

 ⋅ 
λ
2

 = π.

The two waves will cancel each other. The wave
from any point in the upper half of the slit is exactly
cancelled by the wave from the point b/2 distance
below it. The whole slit can be divided into such pairs
and hence, the intensity at P will be zero. This is the
condition of the first minimum, i.e., the first dark
fringe.

So,        
b
2

 sinθ = 
λ
2

or,       b sinθ = λ   (first minimum).

Similar arguments show that other minima (zero
intensity) are located at points corresponding to
b sinθ = 2λ, 3λ, …
   or,    b sinθ = nλ (dark fringe). … (17.13)

The points of the maximum intensity lie nearly
midway between the successive minima. A detailed
mathematical analysis shows that the amplitude E0′ of
the electric field at a general point P is,

            E0′ = E0 
sinβ

β
, … (17.14)

   where   β = 
1
2

 
ω
v

 b sinθ = 
π
λ

 b sinθ … (17.15)

and E0 is the amplitude at the point P0 which
corresponds at θ = 0.

The intensity is proportional to the square of the
amplitude. If I0 represents the intensity at P0, its value
at P is
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             I = I0 
sin 2β

β 2
 ⋅ … (17.16)

We draw, in figure (17.14), variation of the
intensity as a function of sinθ. 

Most of the diffracted light is distributed between

sinθ = − λ
b
 and + λ

b
 ⋅ The intensity at the first maximum

after the central one is only 1/22 of the intensity of
the central maximum. This divergence in θ is inversely
proportional to the width b of the slit. If the slit-width
b is decreased, the divergence is increased and the
light is diffracted in a wider cone. On the other hand,
if the slit-width is large compared to the wavelength,
λ/b ≈ 0 and the light continues undiffracted in the
direction θ = 0. This clearly indicates that diffraction
effects are observable only when the obstacle or the
opening has dimensions comparable to the wavelength
of the wave.

Example 17.5

   A parallel beam of monochromatic light of wavelength
450 nm passes through a long slit of width 0.2 mm. Find
the angular divergence in which most of the light is
diffracted.

Solution : Most of the light is diffracted between the two
first order minima. These minima occur at angles given
by b sinθ = ± λ
or,      sinθ = ± λ/b

= ± 
450 × 10 − 9 m
0.2 × 10 − 3 m

 = ± 2.25 × 10 − 3.

or, θ ≈ ± 2.25 × 10 − 3 rad.

The angular divergence = 4.5 × 10 − 3 rad.

17.12 FRAUNHOFER DIFFRACTION
     BY A CIRCULAR APERTURE

When a parallel beam of light is passed through
an opaque board with a circular hole in it, the light is
diffracted by the hole. If received on a screen at a large

distance, the pattern is a bright disc surrounded by
alternate dark and bright rings of decreasing intensity
as shown in figure (17.15). The wavefront is obstructed
by the opaque board and only the points of the
wavefront, that are exposed by the hole, send the
secondary wavelets. The bright and dark rings are
formed by the superposition of these wavelets. The
mathematical analysis shows that the first dark ring
is formed by the light diffracted from the hole at an
angle θ with the axis, where

          sinθ ≈ 1.22 
λ
b

 ⋅ … (17.17)

Here λ is the wavelength of the light used and b
is the diameter of the hole. If the screen is at a
distance D(D >> b) from the hole, the radius of the first
dark ring is

             R ≈ 1.22 
λD
b

 ⋅ … (17.18)

If the light transmitted by the hole is converged
by a converging lens at the screen placed at the focal
plane of this lens, the radius of the first dark ring is

             R = 1.22 
λf
b

 ⋅ … (17.19)

As most of the light coming from the hole is
concentrated within the first dark ring, this radius is
also called the radius of the diffraction disc.

Diffraction by a circular aperture is of great
practical importance. In many of the optical
instruments, lenses are used. When light passes
through a lens, the wavefront is limited by its rim
which is usually circular. If a parallel beam of light is
incident on a converging lens, only the part intercepted
by the lens gets transmitted into the converging beam.
Thus, the light is diffracted by the lens. This lens itself
works to converge the diffracted light in its focal plane
and hence, we observe a bright disc, surrounded by
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alternate dark and bright rings, as the image. The
radius of the diffraction disc is given by equation
(17.19) where, b now stands for the diameter of the
aperture of the lens.

The above discussion shows that a converging lens
can never form a point image of a distant point source.
In the best conditions, it produces a bright disc
surrounded by dark and bright rings. If we assume
that most of the light is concentrated within the
central bright disc, we can say that the lens produces
a disc image for a distant point source. This is not only
true for a distant point source but also for any point
source. The radius of the image disc is

             R  1.22 
b
 D,

where D is the distance from the lens at which the
light is focussed.

Example 17.6

   A beam of light of wavelength 590 nm is focussed by a
converging lens of diameter 10.0 cm at a distance of
20 cm from it. Find the diameter of the disc image
formed.

Solution : The angular radius of the central bright disc in
a diffraction pattern from circular aperture is given by

   sin  
1.22 

b

       
1.22  590  10  9 m

10.0  10  2 m
  0.7  10  5 rad.

The radius of the bright disc is

      0.7  10  5  20 cm  1.4  10  4 cm.

The diameter of the disc image  2.8  10  4 cm.

17.13 FRESNEL DIFFRACTION
     AT A STRAIGHT EDGE 

Consider the situation shown in figure (17.16). Let
S be a narrow slit sending monochromatic light. The
light is obstructed by an opaque obstacle having a
sharp edge A. The light is collected on a screen . The

portion of the screen below P0 in the figure is the
region of the geometrical shadow.

Cylindrical wavefronts emitted from the slit are
obstructed by the obstacle. The points on the exposed
portion of the wavefront emit secondary wavelets which
interfere to produce varying intensity on the screen .

The curve in the figure shows the variation of
intensity of light on the screen. We see that the
intensity gradually decreases as we go farther inside
the region of geometrical shadow, i.e., below P0. As we
go above P0, the intensity alternately increases and
decreases. The difference of the maximum intensity
and minimum intensity goes on decreasing as we go
farther away from P0 and finally we get uniform
illumination.

17.14 LIMIT OF RESOLUTION 

The fact that a lens forms a disc image of a point
source, puts a limit on resolving two neighbouring
points imaged by a lens.

Suppose S1  and  S2 are two point sources placed
before a converging lens (figure 17.17). If the
separation between the centres of the image-discs is
small in comparison to the radii of the discs, the discs
will largely overlap on one another and it will appear
like a single disc. The two points are then not resolved.
If S1  and  S2 are moved apart, the centres of their
image-discs also move apart. For a sufficient
separation, one can distinguish the presence of two
discs in the pattern. In this case, we say that the points
are just resolved.

The angular radius  of the diffraction disc is given

by sin  1
.22 
b

 , where b is the radius of the lens. Thus,

increasing the radius of the lens improves the
resolution. This is the reason why objective lenses of
powerful microscopes and telescopes are kept large
in size.
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The human eye is itself a converging lens which
forms the image of the points (we see) on the retina.
The above discussion then shows that two points very
close to each other cannot be seen as two distinct
points by the human eye.

Rayleigh Criterion

Whether two disc images of nearby points are
resolved or not may depend on the person viewing the
images. Rayleigh suggested a quantitative criterion for
resolution. Two images are called just resolved in this
criterion if the centre of one bright disc falls on the
periphery of the second. This means, the radius of each
bright disc should be equal to the separation between
them. In this case, the resultant intensity has a
minimum between the centres of the images. Figure
(17.18) shows the variation of intensity when the two
images are just resolved.

17.15 SCATTERING OF LIGHT

When a parallel beam of light passes through a
gas, a part of it appears in directions other than the
incident direction. This phenomenon is called
scattering of light. The basic process in scattering is
absorption of light by the molecules followed by its
re-radiation in different directions. The strength of
scattering can be measured by the loss of energy in
the light beam as it passes through the gas. It should
be distinguished from the absorption of light as it
passes through a medium. In absorption, the light
energy is converted into internal energy of the medium
whereas in scattering, the light energy is radiated in
other directions. The strength of scattering depends on
the wavelength of the light beside the size of the
particles which cause scattering. If these particles are
smaller than the wavelength, the scattering is
proportional to 1/λ4.  This is known as Rayleigh’s law
of scattering. Thus, red light is scattered the least and
violet is scattered the most. This is why, red signals
are used to indicate dangers. Such a signal goes to
large distances without an appreciable loss due to
scattering.

The blue appearance of sky is due to scattering of
sunlight from the atmosphere. When you look at the
sky, it is the scattered light that enters the eyes.
Among the shorter wavelengths, the colour blue is
present in larger proportion in sunlight. Light of short
wavelengths are strongly scattered by the air
molecules and reach the observer. This explains the
blue colour of sky. Another natural phenomenon
related to the scattering of light is the red appearance
of sun at the sunset and at the sunrise. At these times,
the sunlight has to travel a large distance through the
atmosphere. The blue and neighbouring colours are
scattered away in the path and the light reaching the
observer is predominantly red.

If the earth had no atmosphere, the sky would
appear black and stars could be seen during day hours.
In fact if you go about 20 km up, where the atmosphere
becomes quite thin, the sky does appear black and
stars are visible during day hours as astronauts have
found.

Besides air molecules, water particles, dust, etc.,
also scatter light. The appearance of sky is affected by
the presence of these scattering centres. On a humid
day before rains, the sky appears light blue whereas,
on a clear day it appears deep blue. The change in the
quality of colour of sky results from the fact that the
water droplets and the dust particles may have size
greater than the wavelength of light. Rayleigh’s law of
scattering does not operate in this case and colours
other than blue may be scattered in larger proportion.
The appearance of sky in large industrial cities is also
different from villages. An automobile engine typically
ejects about 10 11 particles per second, similarly for
other machines. Such particles remain suspended in
air for quite long time unless rain or wind clears them.
Often the sky looks hazy with a greyish tinge in such
areas.

17.16 POLARIZATION OF LIGHT

In writing equation (17.1) for light wave, we
assumed that the direction of electric field is fixed and
the magnitude varies sinusoidally with space and time.
The electric field in a light wave propagating in free
space is perpendicular to the direction of propagation.
However, there are infinite number of directions
perpendicular to the direction of propagation and the
electric field may be along any of these directions. For
example, if the light propagates along the X-axis, the
electric field may be along the Y-axis, or along the
Z-axis or along any direction in the Y-Z plane. If the
electric field at a point always remains parallel to a
fixed direction as the time passes, the light is called
linearly polarized along that direction. For example, if
the electric field at a point is always parallel to the
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Y-axis, we say that the light is linearly polarized along
the Y-axis. The same is also called plane polarized
light. The plane containing the electric field and the
direction of propagation is called the plane of
polarization.

As we have mentioned earlier, light is emitted by
atoms. The light pulse emitted by one atom in a single
event has a fixed direction of electric field. However,
the light pulses emitted by different atoms, in general,
have electric fields in different directions. Hence, the
resultant electric field at a point keeps on changing its
direction randomly and rapidly. Such a light is called
unpolarized. The light emitted by an ordinary source
such as an electric lamp, a mercury tube, a candle, the
sun, are unpolarized.

Suppose an unpolarized light wave travels along
the X-axis. The electric field at any instant is in the
Y-Z plane, we can break the field into its components
Ey  and  Ez along the Y-axis and the Z-axis
respectively. The fact that the resultant electric field
changes its direction randomly may be mathematically
expressed by saying that Ey  and  Ez have a phase
difference δ that changes randomly with time. Thus,

        Ey = E1 sin(ωt − kx + δ)
            Ez = E2 sin(ωt − kx).

The resultant electric field makes an angle θ with the
Y-axis, where

      tanθ = 
Ez

Ey
 = 

E2 sin(ωt − kx)
E1 sin(ωt − kx + δ)

 ⋅

Since δ changes randomly with time, so does θ and
the light is unpolarized.

If δ is zero, tanθ = E2 /E1 = constant and the
electric field is always parallel to a fixed direction. The
light is linearly polarized.

If δ = π, tanθ = − E2 /E1 and again the electric field
is parallel to a fixed direction and the light is linearly
polarized.

If        δ = π/2  and  E1 = E2, then

tanθ = 
Ez

Ey
 = 

E2 sin(ωt − kx)
E1 sin(ωt − kx + π/2)

          = tan(ωt − kx)
or, θ = ωt − kx.
At any point x, the angle θ increases at a uniform

rate ω. The electric field, therefore, rotates at a
uniform angular speed ω. Also,

E 2 = Ey
 2 + Ez

 2 = E1
 2 cos 2(ωt − kx) + E1

 2 sin 2(ωt − kx) = E1
 2,

i.e., the magnitude of the field remains constant. The
tip of the electric field, thus, goes in a circle at a
uniform angular speed. Such a light is called a
circularly polarized light.

If δ = π/2 but E1 ≠ E2, the tip of the electric field
traces out an ellipse. Such a light wave is called an
elliptically polarized light.

Polaroids

There are several methods to produce polarized
light from the unpolarized light. An instrument used
to produce polarized light from unpolarized light is
called a polarizer. Plane sheets in the shape of circular
discs called polaroids are commercially available which
transmit light with E-vector parallel to a special
direction in the sheet. These polaroids have long chains
of hydrocarbons which become conducting at optical
frequencies. When light falls perpendicularly on the
sheet, the electric field parallel to the chains is
absorbed in setting up electric currents in the chains
but the field perpendicular to the chains gets
transmitted. The direction perpendicular to the chains
is called the transmission axis of the polaroid. When
light passes through the polaroid, the transmitted light
becomes linearly polarized with E-vector parallel to the
transmission axis.

If linearly polarized light is incident on a polaroid with
the E-vector parallel to the transmission axis, the light is
completely transmitted by the polaroid. If the E-vector is
perpendicular to the transmission axis, the light is
completely stopped by the polaroid. If the E-vector is at
an angle θ with the transmission axis, light is partially
transmitted. The intensity of the transmitted light is

           I = I0 cos2 θ, … (17.20)

where I0 is the intensity when the incident E-vector is
parallel to the transmission axis. This is known as the
law of Malus.
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Polarization by Reflection and Refraction

Consider a light beam from air incident on the
surface of a transparent medium of refractive index
. The incident ray, the reflected ray and the refracted
ray are all in one plane. The plane is called the plane
of incidence. In figure (17.21) we have shown this plane
as the X-Y plane. Consider the incident light going
along AB. The electric field E


  must be perpendicular

to AB. If the incident light is unpolarized the electric
field will randomly change its direction, remaining at
all times in a plane perpendicular to AB. We can
resolve the field in two components, one in the X-Y
plane and the other along the Z-direction. In figure
(17.21), the component in the X-Y plane is shown by
the double-arrow perpendicular to AB and the
component along the Z-direction by the solid dot.

Light with electric field along the Z-direction is
more strongly reflected as compared to that in the X-Y
plane. This is shown in the figure by reduced size of
the double arrow. Similarly, the refracted light has a
larger component of electric field in the X-Y plane
shown in the figure by the reduced size of the solid
dot.

If the light is incident on the surface with an angle
of incidence i given by
            tan i  ,  (17.21)

the reflected light is completely polarized with the
electric field along the Z-direction as suggested by

figure (17.22). The refracted ray is never completely
polarized. The angle i given by equation (17.21) is
called the Brewster angle and equation (17.21) itself is
known as the Brewster’s law.

The fact that reflected light is polarized is used in
preparing ‘polarizing sunglasses’ which reduce the
glare from roads, snow, water surfaces, etc. The
glasses are in fact polaroids with their transmission
axis perpendicular to the electric field of the polarized
reflected light. The reflected light, which is responsible
for the glare, is thus largely absorbed. The direct light
coming to the glasses is unpolarized and is less
absorbed. In this respect the polarizing sunglasses are
different from the ordinary dark-coloured sunglasses
which absorb any light passing through them reducing
the intensity to a large extent.

Polarization by Scattering

When unpolarized light is scattered by small
particles, the scattered light is partially polarized. The
blue light received from the sky is accordingly partially
polarized. Though human eye does not distinguish
between an unpolarized light and a polarized light, the
eyes of a bee can detect the difference. Austrian Nobel
Laureate Karl Von Frisch performed experiments for
several years on bees and concluded that the bees
cannot only distinguish unpolarized light from
polarized light but can also determine the direction of
polarization.

Worked Out Examples

 1. White light is a mixture of light of wavelengths between
400 nm and 700 nm. If this light goes through water
(  1.33) what are the limits of the wavelength there ?

Solution : When a light having wavelength 0 in vacuum
goes through a medium of refractive index , the
wavelength in the medium becomes   0 /.

For   0  400 nm,    
400 nm

1.33
  300 nm

and for 0  700 nm,    
700 nm

1.33
  525 nm.

Thus, the limits are 300 nm and 525 nm.

 2. The optical path of a monochromatic light is the same if
it goes through 2.00 cm of glass or 2.25 cm of water. If
the refractive index of water is 1.33, what is the refractive
index of glass ?

Solution : When light travels through a distance x in a
medium of refractive index , its optical path is x. Thus,
if  is the refractive index of glass,

        2.00 cm  1.33  2.25 cm

or,   1.33  
2.25
2.00

  1.50.

Figure 17.21
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 3. White light is passed through a double slit and
interference pattern is observed on a screen 2.5 m away.
The separation between the slits is 0.5 mm. The first
violet and red fringes are formed 2.0 mm and 3.5 mm
away from the central white fringe. Calculate the
wavelengths of the violet and the red light.

Solution : For the first bright fringe, the distance from the
centre is

             y = 
Dλ
d

 ⋅

For violet light, y = 2.0 mm. Thus,

       2.0 mm = 
(2.5 m)λ
0.5 mm

or, λ = 
(0.5 mm) (2.0 mm)

2.5 m
 = 400 nm.

Similarly, for red light, y = 3.5 mm. Thus, 

       3.5 mm = 
(2.5 m)λ
0.5 mm

or, λ = 700 nm.

 4. A double slit experiment is performed with sodium
(yellow) light of wavelength 589.3 nm and the
interference pattern is observed on a screen 100 cm away.
The tenth bright fringe has its centre at a distance of
12 mm from the central maximum. Find the separation
between the slits.

Solution : For the nth maximum fringe, the distance above
the central line is

      x = 
nλD

d
 ⋅

According to the data given,

      x = 12 mm,  n = 10,  λ = 589.3 nm,  D = 100 cm.

Thus, the separation between the slits is

  d = 
nλD

x
 = 

10 × 589.3 × 10 − 9 m × 100 × 10 − 2 m
12 × 10 − 3 m

        = 4.9 × 10  − 4 m = 0.49 mm.

 5. The intensity of the light coming from one of the slits in
a Young’s double slit experiment is double the intensity
from the other slit. Find the ratio of the maximum
intensity to the minimum intensity in the interference
fringe pattern observed.

Solution : The intensity of the light originating from the
first slit is double the intensity from the second slit. The
amplitudes of the two interfering waves are in the ratio
√2 : 1, say √2 A and A.

At the point of constructive interference, the resultant
amplitude becomes (√2 + 1) A. At the points of
destructive interference, this amplitude is (√2 − 1) A. The
ratio of the resultant intensities at the maxima to that

at the minima is

             
(√2 + 1) 2A 2

(√2 − 1) 2A 2 = 34.

 6. The width of one of the two slits in a Young’s double slit
experiment is double of the other slit. Assuming that the
amplitude of the light coming from a slit is proportional
to the slit-width, find the ratio of the maximum to the
minimum intensity in the interference pattern.

Solution : Suppose the amplitude of the light wave coming
from the narrower slit is A and that coming from the
wider slit is 2A. The maximum intensity occurs at a
place where constructive interference takes place. Then
the resultant amplitude is the sum of the individual
amplitudes. Thus,
           Amax = 2A + A = 3A.

The minimum intensity occurs at a place where
destructive interference takes place. The resultant
amplitude is then difference of the individual
amplitudes. Thus, 

Amin = 2A − A = A.

As the intensity is proportional to the square of the
amplitude,

        
Imax

Imin
 = 

(Amax) 
2

(Amin) 2  = 
(3A) 2

A 2  = 9. 

 7. Two sources S1 and S2  emitting light of wavelength
600 nm are placed a distance 1.0 × 10 – 2 cm apart.   A
detector can be moved on the line S1P which is
perpendicular to S1S2 . (a) What would be the minimum
and maximum path difference at the detector as it is
moved along the line S1P ? (b) Locate the position of the
farthest minimum detected.

Solution :

(a) The situation is shown in figure (17-W1). The path
difference is maximum when the detector is just at the
position of S1 and its value is equal to d = 1.0 × 10 – 2 cm.
The path difference is minimum when the detector is at
a large distance from S1. The path difference is then
close to zero.

(b) The farthest minimum occurs at a point P where the
path difference is λ/2.  If  S1P = D,

S2 P − S1P = 
λ
2

or, √⎯⎯⎯⎯⎯⎯⎯D 2 + d 2  − D = 
λ
2

�

�

�

�
�
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�

Figure 17-W1
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or,         D 2  d 2  



D  


2




 2

or, d 2  D  
 2

4

or, D  
d 2


  


4

      
1.0  10  4 m 2

600  10  9 m
  150  10  9 m  1.7 cm.

 8. A beam of light consisting of two wavelengths, 6500 Å
and 5200 Å is used to obtain interference fringes in a
Young’s double slit experiment 1 Å  10  10 m. The
distance between the slits is 2.0 mm and the distance
between the plane of the slits and the screen is 120 cm.
(a) Find the distance of the third bright fringe on the
screen from the central maximum for the wavelength
6500 Å. (b) What is the least distance from the central
maximum where the bright fringes due to both the
wavelengths coincide ?

Solution : (a) The centre of the nth bright fringe is at a

distance y  
nD

d
 from the central maximum. For the 3rd

bright fringe of 6500 Å,

      y  
3  6500  10  10 m  1.2 m

2  10  3 m

 0.117 cm  0.12 cm.
(b) Suppose the mth bright fringe of 6500 Å coincides
with the nth bright fringe of 5200 Å.

Then,    
m  6500 Å  D

d
  

n  5200 Å  D
d

or, 
m
n

  
5200
6500

  
4
5

 

The minimum values of m and n that satisfy this
equation are 4 and 5 respectively. The distance of the
4th bright fringe of 6500 Å or the 5th bright fringe of
5200 Å from the central maximum is

       y  
4  6500  10  10 m  1.2 m

2  10  3 m

 0.156 cm  0.16 cm.

 9. Monochromatic light of wavelength 600 nm is used in a
Young’s double slit experiment. One of the slits is covered
by a transparent sheet of thickness 1.8  10 – 5 m made
of a material of refractive index 1.6. How many fringes
will shift due to the introduction of the sheet ?

Solution : When the light travels through a sheet of
thickness t, the optical path travelled is  t, where  is
the refractive index. When one of the slits is covered by
the sheet, air is replaced by the sheet and hence, the
optical path changes by   1t. One fringe shifts when
the optical path changes by one wavelength. Thus, the

number of fringes shifted due to the introduction of the
sheet is

     
  1t


  

1.6  1  1.8  10  5 m
600  10  9 m

  18.

10. White light is incident normally on a glass plate of
thickness 0.50  10 – 6 and index of refraction 1.50. Which
wavelengths in the visible region (400 nm–700 nm) are
strongly reflected by the plate 

Solution : The light of wavelength  is strongly reflected if

             2d  

n  

1
2



  ,  (i)

   where n is a nonnegative integer.

   Here, 2d  2  1.50  0.5  10  6 m

  1.5  10  6 m.  (ii)

Putting   400 nm in (i) and using (ii),

     1.5  10  6 m  

n  

1
2



 400  10  9 m

or, n  3.25.
Putting   700 nm in (i) and using (ii),

      1.5  10  6 m  

n  

1
2



 700  10  9 m

or,               n  1.66.
Thus, between 400 nm and 700 nm the integer n can
take the values 2 and 3. Putting these values of n in (i),
the wavelength become

         
4 d

2n  1
  600 nm  and  429 nm.

Thus, light of wavelengths 429 nm and 600 nm are
strongly reflected.

11. A parallel beam of green light of wavelength 546 nm
passes through a slit of width 0.40 mm. The transmitted
light is collected on a screen 40 cm away. Find the
distance between the two first order minima.

Solution : The minima occur at an angular deviation 
given by b sin  n, where n is an integer. For the first

order minima, n   1 so that sin   

b
  As the fringes

are observed at a distance much larger than the width
of the slit, the linear distances from the central
maximum are given by
           x  Dtan

 Dsin   
D
b

 

Thus, the minima are formed at a distance 
D
b

 from the

central maximum on its two sides. The separation
between the minima is

   
2D

b
  

2  546  10  9 m  40  10  2 m
0.40  10  3 m

  1.1 mm.
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QUESTIONS FOR SHORT ANSWER

 1. Is the colour of 620 nm light and 780 nm light same ?
Is the colour of 620 nm light and 621 nm light same ?
How many colours are there in white light ?

 2. The wavelength of light in a medium is λ = λ0 /μ, where
λ is the wavelength in vacuum. A beam of red light
(λ0 = 720 nm) enters into water. The wavelength in water
is λ = λ0 /μ = 540 nm. To a person under water does this
light appear green ?

 3. Whether the diffraction effects from a slit will be more
clearly visible or less clearly, if the slit-width is
increased ?

 4. If we put a cardboard (say  20 cm × 20 cm) between a
light source and our eyes, we can’t see the light. But
when we put the same cardboard between a sound
source and our ear, we hear the sound almost clearly.
Explain.

 5. TV signals broadcast by Delhi studio cannot be directly
received at Patna which is about 1000 km away. But
the same signal goes some 36000 km away to a satellite,
gets reflected and is then received at Patna. Explain.

 6. Can we perform Young’s double slit experiment with
sound waves ? To get a reasonable “fringe pattern”, what
should be the order of separation between the slits ? How
can the bright fringes and the dark fringes be detected
in this case ?

 7. Is it necessary to have two waves of equal intensity to
study interference pattern ? Will there be an effect on
clarity if the waves have unequal intenstity ?

 8. Can we conclude from the interference phenomenon
whether light is a transverse wave or a longitudinal
wave ?

 9. Why don’t we have interference when two candles are
placed close to each other and the intensity is seen at a
distant screen ? What happens if the candles are
replaced by laser sources ?

10. If the separation between the slits in a Young’s double
slit experiment is increased, what happens to the
fringe-width ? If the separation is increased too much,
will the fringe pattern remain detectable ?

11. Suppose white light falls on a double slit but one slit is
covered by a violet filter (allowing  λ = 400 nm). Describe
the nature of the fringe pattern observed.

OBJECTIVE I

 1. Light is
(a) wave phenomenon      (b) particle phenomenon
(c) both particle and wave phenomenon.

 2. The speed of light depends
(a) on elasticity of the medium only
(b) on inertia of the medium only
(c) on elasticity as well as inertia 
(d) neither on elasticity nor on inertia.

 3. The equation of a light wave is written as
y = A sin(kx − ωt). Here, y represents
(a) displacement of ether particles
(b) pressure in the medium
(c) density of the medium
(d) electric field.

 4. Which of the following properties show that light is a
transverse wave ?
(a) Reflection             (b) Interference
(c) Diffraction              (d) Polarization

 5. When light is refracted into a medium,
(a) its wavelength and frequency both increase
(b) its wavelength increases but frequency remains
unchanged
(c) its wavelength decreases but frequency remains
unchanged
(d) its wavelength and frequency both decrease.

 6. When light is refracted, which of the following does not
change ?
(a) Wavelength            (b) Frequency
(c) Velocity              (d) Amplitude

 7. The amplitude modulated (AM) radio wave bends
appreciably round the corners of a 1 m × 1 m board but
the frequency modulated (FM) wave only negligibly
bends. If the average wavelengths of AM and FM waves
are λa  and  λf ,
(a) λa > λf       (b) λa = λf       (c) λa < λf

(d) we don’t have sufficient information to decide about
the  relation of λa  and  λf.

 8. Which of the following sources gives best monochromatic
light ?
(a) A candle (b) A bulb (c) A mercury tube (d) A laser

 9. The wavefronts of a light wave travelling in vacuum are
given by x + y + z = c. The angle made by the direction
of propagation of light with the X-axis is 
(a) 0°     (b) 45°     (c) 90°     (d) cos − 1(1/√3).

10. The wavefronts of light coming from a distant source of
unknown shape are nearly
(a) plane  (b) elliptical  (c) cylindrical  (d) spherical.

11. The inverse square law of intensity (i.e., the intensity

∝ 1
r 2 ) is valid for a

(a) point source          (b) line source
(c) plane source          (d) cylindrical source.

12. Two sources are called coherent if they produce waves
(a) of equal wavelength     (b) of equal velocity
(c) having same shape of wavefront
(d) having a constant phase difference.

13. When a drop of oil is spread on a water surface, it
displays beautiful colours in daylight because of
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(a) disperson of light        (b) reflection of light
(c) polarization of light      (d) interference of light.

14. Two coherent sources of different intensities send waves
which interfere. The ratio of maximum intensity to the
minimum intensity is 25. The intensities of the sources
are in the ratio
(a) 25 : 1    (b) 5 : 1    (c) 9 : 4    (d) 625 : 1.

15. The slits in a Young’s double slit experiment have equal
width and the source is placed symmetrically with
respect to the slits. The intensity at the central fringe
is I0 . If one of the slits is closed, the intensity at this

point will be
(a) I0      (b) I0 /4      (c) I0 /2      (d) 4I0.

16. A thin transparent sheet is placed in front of a Young’s
double slit. The fringe-width will
(a) increase            (b) decrease
(c) remain same          (d) become nonuniform.

17. If Young’s double slit experiment is performed in water,
(a) the fringe width will decrease
(b) the fringe width will increase
(c) the fringe width will remain unchanged
(d) there will be no fringe.

OBJECTIVE II

 1. A light wave can travel
(a) in vacuum         (b) in vacuum only
(c) in a material medium  (d) in a material medium only.

 2. Which of the following properties of light conclusively
support wave theory of light ?
(a) Light obeys laws of reflection.
(b) Speed of light in water is smaller than the speed in
vacuum.
(c) Light shows interference.
(d) Light shows photoelectric effect.

 3. When light propagates in vacuum there is an electric
field and a magnetic field. These fields
(a) are constant in time
(b) have zero average value
(c) are perpendicular to the direction of  propagation of
light.
(d) are mutually perpendicular.

 4. Huygens’ principle of secondary wavelets may be used
to
(a) find the velocity of light in vacuum
(b) explain the particle behaviour of light
(c) find the new position of a wavefront
(d) explain Snell’s law.

 5. Three observers A, B and C measure the speed of light
coming from a source to be vA,  vB  and  vC. The observer
A moves towards the source and C moves away from the
source at the same speed. The observer B stays
stationary. The surrounding space is vacuum
everywhere.

(a) vA > vB > vC           (b) vA < vB < vC

(c) vA = vB = vC           (d) vB = 1
2
 (vA + vC).

 6. Suppose the medium in the previous question is water.
Select the correct option(s) from the list given in that
question.

 7. Light waves travel in vacuum along the X-axis. Which
of the following may represent the wavefronts ?
(a) x = c   (b) y = c   (c) z = c   (d) x + y + z = c.

 8. If the source of light used in a Young’s double slit
experiment is changed from red to violet,
(a) the fringes will become brighter
(b) consecutive fringes will come closer
(c) the intensity of minima will increase
(d) the central bright fringe will become a dark fringe.

 9. A Young’s double slit experiment is performed with
white light.
(a) The central fringe will be white.
(b) There will not be a completely dark fringe.
(c) The fringe next to the central will be red.
(d) The fringe next to the central will be violet.

10. Four light waves are represented by
  (i) y = a1sin ωt          (ii) y = a2sin(ωt + ε)
(iii) y = a1sin 2ωt          (iv) y = a2sin 2(ωt + ε).
Interference fringes may be observed due to
superposition of
(a) (i) and (ii)            (b) (i) and (iii)
(c) (ii) and (iv)            (d) (iii) and (iv).

EXERCISES

 1. Find the range of frequency of light that is visible to an
average human being (400 nm < λ < 700 nm).

 2. The wavelength of sodium light in air is 589 nm. (a)
Find its frequency in air. (b) Find its wavelength in
water (refractive index = 1.33). (c) Find its frequency in
water. (d) Find its speed in water.

 3. The index of refraction of fused quartz is 1.472 for light
of wavelength 400 nm and is 1.452 for light of

wavelength 760 nm. Find the speeds of light of these
wavelengths in fused quartz.

 4. The speed of the yellow light in a certain liquid is
2.4 × 10 8 m s–1. Find the refractive index of the liquid.

 5. Two narrow slits emitting light in phase are separated
by a distance of 1.0 cm. The wavelength of the light is
5.0 × 10 – 7 m.  The interference pattern is observed on
a screen placed at a distance of 1.0 m. (a) Find the
separation between the consecutive maxima. Can you

380 Concepts of Physics



expect to distinguish between these maxima ? (b) Find
the separation between the sources which will give a
separation of 1.0 mm between the consecutive maxima.

 6. The separation between the consecutive dark fringes in
a Young’s double slit experiment is 1.0 mm. The screen
is placed at a distance of 2.5 m from the slits and the
separation between the slits is 1.0 mm. Calculate the
wavelength of light used for the experiment.

 7. In a double slit interference experiment, the separation
between the slits is 1.0 mm, the wavelength of light used
is 5.0 × 10 – 7 m and the distance of the screen from the
slits is 1.0 m. (a) Find the distance of the centre of the
first minimum from the centre of the central maximum.
(b) How many bright fringes are formed in one
centimeter width on the screen ?

 8. In a Young’s double slit experiment, two narrow vertical
slits placed 0.800 mm apart are illuminated by the same
source of yellow light of wavelength 589 nm. How far
are the adjacent bright bands in the interference pattern
observed on a screen 2.00 m away ?

 9. Find the angular separation between the consecutive
bright fringes in a Young’s double slit experiment with
blue-green light of wavelength 500 nm. The separation
between the slits is 2.0 × 10 – 3 m.

10. A source emitting light of wavelengths 480 nm and
600 nm is used in a double slit interference experiment.
The separation between the slits is 0.25 mm and the
interference is observed on a screen placed at 150 cm
from the slits. Find the linear separation between the
first maximum (next to the central maximum)
corresponding to the two wavelengths.

11. White light is used in a Young’s double slit experiment.
Find the minimum order of the violet fringe
(λ = 400 nm) which overlaps with a red fringe
(λ = 700 nm).

12. Find the thickness of a plate which will produce a
change in optical path equal to half the wavelength λ of
the light passing through it normally. The refractive
index of the plate is μ.

13. A plate of thickness t made of a material of refractive
index μ is placed in front of one of the slits in a double
slit experiment. (a) Find the change in the optical path
due to introduction of the plate. (b) What should be the
minimum thickness t which will make the intensity at
the centre of the fringe pattern zero ? Wavelength of the
light used is λ. Neglect any absorption of light in the
plate.

14. A transparent paper (refractive index = 1.45) of
thickness 0.02 mm is pasted on one of the slits of a
Young’s double slit experiment which uses
monochromatic light of wavelength 620 nm. How many
fringes will cross through the centre if the paper is
removed ?

15. In a Young’s double slit experiment using mono-
chromatic light, the fringe pattern shifts by a certain
distance on the screen when a mica sheet of refractive
index 1.6 and thickness 1.964 micron (1 micron
= 10 − 6 m) is introduced in the path of one of the
interfering waves. The mica sheet is then removed and

the distance between the screen and the slits is doubled.
It is found that the distance between the successive
maxima now is the same as the observed fringe-shift
upon the introduction of the mica sheet. Calculate the
wavelength of the monochromatic light used in the
experiment.

16. A mica strip and a polysterene strip are fitted on the
two slits of a double slit apparatus. The thickness of the
strips is 0.50 mm and the separation between the slits
is 0.12 cm. The refractive index of mica and polysterene
are 1.58 and 1.55 respectively for the light of wavelength
590 nm which is used in the experiment. The
interference is observed on a screen a distance one meter
away. (a) What would be the fringe-width ? (b) At what
distance from the centre will the first maximum be
located ?

17. Two transparent slabs having equal thickness but
different refractive indices μ1  and  μ2 are pasted side by
side to form a composite slab. This slab is placed just
after the double slit in a Young’s experiment so that the
light from one slit goes through one material and the
light from the other slit goes through the other material.
What should be the minimum thickness of the slab so
that there is a minimum at the point P0 which is
equidistant from the slits ?

18. A thin paper of thickness 0.02 mm having a refractive
index 1.45 is pasted across one of the slits in a Young’s
double slit experiment. The paper transmits 4/9 of the
light energy falling on it. (a) Find the ratio of the
maximum intensity to the minimum intensity in the
fringe pattern. (b) How many fringes will cross through
the centre if an identical paper piece is pasted on the
other slit also ? The wavelength of the light used is
600 nm.

19. A Young’s double slit apparatus has slits separated by
0.28 mm and a screen 48 cm away from the slits. The
whole apparatus is immersed in water and the slits are
illuminated by the red light (λ = 700 nm in vacuum).
Find the fringe-width of the pattern formed on the
screen.

20. A parallel beam of monochromatic light is used in a
Young’s double slit experiment. The slits are separated
by a distance d and the screen is placed parallel to the
plane of the slits. Show that if the incident beam makes

an angle θ = sin − 1 
⎛
⎜
⎝

λ
2d

⎞
⎟
⎠
 with the normal to the plane of

the slits, there will be a dark fringe at the centre P0 of
the pattern.

21. A narrow slit S transmitting light of wavelength λ is
placed a distance d above a large plane mirror as shown
in figure (17-E1). The light coming directly from the slit

�

���

	

�

Figure 17-E1
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and that coming after the reflection interfere at a screen
 placed at a distance D from the slit. (a) What will be
the intensity at a point just above the mirror, i.e., just
above O ? (b) At what distance from O does the first
maximum occur ?

22. A long narrow horizontal slit is placed 1 mm above a
horizontal plane mirror. The interference between the
light coming directly from the slit and that after
reflection is seen on a screen 1.0 m away from the slit.
Find the fringe-width if the light used has a wavelength
of 700 nm.

23. Consider the situation of the previous problem. If the
mirror reflects only 64% of the light energy falling on
it, what will be the ratio of the maximum to the
minimum intensity in the interference pattern observed
on the screen ?

24. A double slit S1  S2 is illuminated by a coherent light
of wavelength  The slits are separated by a distance
d. A plane mirror is placed in front of the double slit at
a distance D1 from it and a screen  is placed behind
the double slit at a distance D2 from it (figure 17-E2).
The screen  receives only the light reflected by the
mirror. Find the fringe-width of the interference pattern
on the screen.

25. White coherent light (400 nm–700 nm) is sent through
the slits of a Young’s double slit experiment (figure
17-E3). The separation between the slits is 0.5 mm and
the screen is 50 cm away from the slits. There is a hole
in the screen at a point 1.0 mm away (along the width
of the fringes) from the central line. (a) Which
wavelength(s) will be absent in the light coming from
the hole ? (b) which wavelength(s) will have a strong
intensity ?

26. Consider the arrangement shown in figure (17-E4). The
distance D is large compared to the separation d
between the slits. (a) Find the minimum value of d so
that there is a dark fringe at O. (b) Suppose d has this
value. Find the distance x at which the next bright fringe
is formed. (c) Find the fringe-width.

27. Two coherent point sources S1  and  S2 vibrating in phase
emit light of wavelength . The separation between the
sources is 2. Consider a line passing through S2 and
perpendicular to the line S1 S2. What is the smallest
distance from S2 where a minimum of intensity occurs ?

28. Figure  (17-E5)  shows  three  equidistant  slits  being
   illuminated by a monochromatic parallel beam of light.  Let

BP0  AP0  /3 and D >> . (a) Show that in this case
d  2D/3. (b) Show that the intensity at P0 is three times
the intensity due to any of the three slits individually.

29. In a Young’s double slit experiment, the separation
between the slits  2.0 mm, the wavelength of the light
 600 nm and the distance of the screen from the slits
 2.0 m. If the intensity at the centre of the central
maximum is 0.20 W m–2, what will be the intensity at a
point 0.5 cm away from this centre along the width of
the fringes ?

30. In a Young’s double slit interference experiment the
fringe pattern is observed on a screen placed at a
distance D from the slits. The slits are separated by a
distance d and are illuminated by monochromatic light
of wavelength  Find the distance from the central point
where the intensity falls to (a) half the maximum, (b)
one fourth of the maximum. 

31. In a Young’s double slit experiment   500 nm,
d  1.0 mm and D  1.0 m.  Find the minimum distance
from the central maximum for which the intensity is
half of the maximum intensity.

32. The line-width of a bright fringe is sometimes defined
as the separation between the points on the two sides
of the central line where the intensity falls to half the
maximum. Find the line-width of a bright fringe in a
Young’s double slit experiment in terms of  d and D
where the symbols have their usual meanings.
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33. Consider the situation shown in figure (17-E6). The two
slits S1  and  S2 placed symmetrically around the central
line are illuminated by a monochromatic light of
wavelength  The separation between the slits is d. The
light transmitted by the slits falls on a screen 1 placed
at a distance D from the slits. The slit S3 is at the central
line and the slit S4 is at a distance z from S3. Another
screen 2 is placed a further distance D away from 1.
Find the ratio of the maximum to minimum intensity
observed on 2 if z is equal to

   (a) z  
D
2d

 ,       (b) 
D
d

 ,        (c) 
D
4d

 

34. Consider the arrangement shown in figure (17-E7). By
some mechanism, the separation between the slits S3

and S4 can be changed. The intensity is measured at the

   

point P which is at the common perpendicular bisector

of S1S2 and S3S4. When z  
D
2d

 , the intensity measured

at P is I. Find this intensity when z is equal to

(a) 
D
d

 ,       (b) 
3D
2d

      and      (c) 
2D

d
 

35. A soap film of thickness 0.0011 mm appears dark when
seen by the reflected light of wavelength 580 nm. What
is the index of refraction of the soap solution, if it is
known to be between 1.2 and 1.5 ?

36. A parallel beam of light of wavelength 560 nm falls on
a thin film of oil (refractive index  1.4). What should be
the minimum thickness of the film so that it strongly
reflects the light ?

37. A parallel beam of white light is incident normally on
a water film 1.0  10 – 4 cm thick. Find the wavelength
in the visible range (400 nm–700 nm) which are strongly
transmitted by the film. Refractive index of water  1.33.

38. A glass surface is coated by an oil film of uniform
thickness 1.00  10 – 4 cm. The index of refraction of the
oil is 1.25 and that of the glass is 1.50. Find the
wavelengths of light in the visible region
(400 nm–750 nm) which are completely transmitted by
the oil film under normal incidence.

39. Plane microwaves are incident on a long slit having a
width of 5.0 cm. Calculate the wavelength of the
microwaves if the first diffraction minimum is formed
at   30.

40. Light of wavelength 560 nm goes through a pinhole of
diameter 0.20 mm and falls on a wall at a distance of
2.00 m. What will be the diameter of the central bright
spot formed on the wall ?

41. A convex lens of diameter 8.0 cm is used to focus a
parallel beam of light of wavelength 620 nm. If the light
be focused at a distance of 20 cm from the lens, what would
be the diameter of the central bright spot formed ?

ANSWERS

OBJECTIVE I

 1. (c)  2. (d)  3. (d)  4. (d)  5. (c)  6. (b)
 7. (a)  8. (d)  9. (d) 10. (a) 11. (a) 12. (d)
13. (d) 14. (c) 15. (b) 16. (c) 17. (a)

OBJECTIVE II

 1. (a), (c)  2. (b), (c)  3. (b), (c), (d)
 4. (c), (d)  5. (c), (d)  6. (a), (d)
 7. (a)  8. (b)  9. (a), (b), (d)
10. (a), (d)

EXERCISES

 1. 4.3  10 14 Hz-7.5  10 14 Hz

 2. (a) 5.09  10 14 Hz (b) 443 nm

   (c) 5.09  10 14 Hz (d) 2.25  10 8 m s1

 3. 2.04  10 8 m s1,    2.07  10 8 m s1

 4. 1.25
 5. (a) 0.05 mm (b) 0.50 mm
 6. 400 nm
 7. (a) 0.25 mm (b) 20
 8. 1.47 mm
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D
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 9. 0.014 degree
10. 0.72 mm
11. 7

12. 
λ

2(µ − 1)

13. (a) (µ − 1)t (b) 
λ

2(µ − 1)
14. 14.5
15. 590 nm

16. (a) 4.9 × 10 − 4 m
   (b) 0.021 cm on one side and 0.028 cm on the other 
       side

17. 
λ

2 µ1 − µ2 
18. (a) 25 (b) 15
19. 0.90 mm

21. (a) zero (b) 
Dλ
4d

22. 0.35 mm
23. 81 : 1
24. λ(2D1 + D2)/d

25. (a) 400 nm, 667 nm (b) 500 nm

26. (a) √λD
2

    (b) d     (c) 2d

27. 7λ/12

29. 0.05 W m−2

30. (a) 
Dλ
4d

 (b) 
Dλ
3d

31. 1.25 × 10 − 4 m

32. 
Dλ
2d

33. (a) 1 (b) ∞ (c) 34

34. (a) zero (b) I (c) 2I

35. 1.32
36. 100 nm
37. 443 nm, 532 nm and 666 nm
38. 455 nm, 556 nm, 714 nm
39. 2.5 cm 
40. 6.85 mm

41. 1.9 × 10 − 6 m
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CHAPTER 18

GEOMETRICAL OPTICS

We have learnt that light in many cases behaves
as a wave of short wavelength. A ray of light gives the
direction of propagation of light. In absence of an
obstacle, the rays advance in straight lines without
changing directions. When light meets a surface
separating two transparent media, reflection and
refraction occur and the light rays bend. Light rays
also bend round the edge of an obstacle limiting the
wave front. But as the wavelength of light is usually
much smaller than the size of the obstacles, this
diffraction effect can usually be neglected. We then
deal with geometrical optics.

18.1 REFLECTION AT SMOOTH SURFACES

A light ray is reflected by a smooth surface in
accordance with the two laws of reflection :

(a) the angle of incidence is equal to the angle of
reflection

(b) the incident ray, the reflected ray and the
normal to the reflecting surface are coplanar.

Figure (18.1) shows a point source S placed before
a plane mirror. Consider a ray SA that falls normally
on the mirror. This ray is reflected back along AS.
Consider any other ray SB making an angle i with the
normal. It is reflected along BC. Suppose AS and BC
meet at a point I when produced behind the mirror. It
is simple to show that the triangles SAB and ABI are
congruent and SA = AI. Thus, all the reflected rays
meet at I when produced behind the mirror. An eye
receiving the reflected rays feels that the rays are

diverging from the point I. The point I is called the
image of the object S.

The basic laws of reflection are same for plane and
curved surfaces. A normal can be drawn from any
point of the curved surface by first drawing the tangent
plane from that point and then drawing the line
perpendicular to that plane. Angles of incidence and
reflection are defined from this normal (figure 18.2).
The angle of incidence is equal to the angle of
reflection. The incident ray, the normal and the
reflected ray are in the same plane.

18.2 SPHERICAL MIRRORS

A spherical mirror is a part cut from a hollow
sphere. Spherical mirrors are generally constructed
from glass. One surface of the glass is silvered. The
reflection takes place at the other surface. If reflection
takes place at the convex surface, it is called a convex
mirror and if reflection takes place at the concave
surface, it is called a concave mirror.

Generally, a spherical mirror is constructed with
a circular boundary. The centre of the sphere, of which
the mirror is a part, is called the centre of curvature
of the mirror. The radius of this sphere is called the
radius of curvature of the mirror. The point on the
mirror at the middle of the surface is called its pole.
The line joining the pole and the centre of curvature
is called the principal axis.

Focus

Suppose a light beam travelling in a direction
parallel to the principal axis is incident on a concave

r

i

S A I

B

C

Figure 18.1
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r
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mirror. If the aperture of the beam is small so that
the light falls “near” the pole only, all the reflected
rays cross the principal axis at nearly the same point
(figure 18.3a). This point where the reflected rays
converge is called the focus of the mirror.

In case of a convex mirror, the reflected rays diverge
after the reflection. Again, if the incident parallel beam
has small aperture, the reflected rays appear to diverge
from a point on the principal axis (figure 18.3b). This
point is the focus of the convex mirror.

The plane through the focus and perpendicular to the
principal axis is called the focal plane. The distance of the
focus from the pole is called the focal length of the mirror.

Paraxial Rays

A ray close to the principal axis is called a paraxial
ray. In this chapter, we shall consider only paraxial
rays in image formation.

Image Tracing

When a point object is placed before a spherical
mirror of small aperture, a point image is formed. To
locate the position of the image, we draw two rays from
the point object, make them incident on the mirror and
trace the reflected rays. The line joining the point of
incidence and the centre of curvature is the normal. A
reflected ray is traced by applying the laws of
reflection. If the reflected rays intersect, the point of
intersection is the real image. If the rays diverge after
reflection, a virtual image is formed at the point from
where the rays seem to diverge. Figure (18.4) shows
some examples.

If the incident rays diverge from a point object, the
object is called a real object. Sometimes the rays
incident on the mirror do not diverge from a point,
rather they converge towards the mirror (figure 18.4c).
In this case, the point where these rays would meet if
there were no mirror, is treated as the object. Such a
point is called a virtual object.

Thus, the point of intersection of the incident rays
is called the object and the point of intersection of the
corresponding reflected rays is called its image.

Sign Convention

In image tracing, we come across the object
distance, the image distance, the focal length and the
radius of curvature. A system of signs for these
quantities is necessary to derive relations connecting
them which are consistent in all types of physical
situations. We shall describe coordinate sign
convention which is now widely used.

In this method, the pole is taken to be the origin
and the principal axis as the X-axis. Usually, the
positive of the axis is taken along the incident rays.
The quantities u, v, R and f denote the x-coordinates
of the object, the image, the centre of curvature and
the focus respectively. Any of these quantities is
positive if the corresponding point lies on the positive
side of the origin and is negative if it is on the negative
side. Figure (18.5) shows some typical situations. The
signs of various quantities are tabulated below

Figure u v R f

18.5a – – – –

18.5b – + – –

18.5c – + + +

18.5d + – + +

�� �

��� ���

� ��

Figure 18.3

Figure 18.4

Figure 18.5
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If the lengths perpendicular to the principal axis are
needed, we should fix the positive direction of the
Y-axis. Generally the upward is taken as positive of
the Y-axis and downward as the negative of the Y-axis.
Heights along the positive Y-axis are positive and
heights along the negative Y-axis are negative. Quite
often, we shall use the words “object-distance” and
“image-distance” for u and v.

18.3 RELATION BETWEEN u, v AND R
     FOR SPHERICAL MIRRORS

Consider the situation shown in figure (18.6). A
point object is placed at the point O of the principal
axis of a concave mirror. A ray OA is incident on the
mirror at A. It is reflected in the direction AI. Another
ray OP travels along the principal axis. As PO is
normal to the mirror at P, the ray is reflected back
along PO. The reflected rays PO and AI intersect at I
where the image is formed.

Let C be the centre of curvature. The line CA is
the normal at A. Thus, by the laws of reflection,
∠OAC = ∠CAI. Let α,  β,  γ  and  θ denote the angles
AOP, ACP, AIP and OAC respectively. As the exterior
angle in a triangle equals the sum of the two opposite
interior angles, we have,
      from triangle OAC       β = α + θ … (i)
   and  from triangle OAI         γ = α + 2θ. … (ii)

Eliminating θ from (i) and (ii),
             2 β = α + γ. … (iii)

If the point A is close to P, the angles α, β and γ are
small and we can write

        α ≈ 
AP
PO

 ,   β = 
AP
PC

   and   γ ≈ 
AP
PI

 ⋅

As C is the centre of curvature, the equation for β
is exact whereas the remaining two are approximate.
Putting in (iii),

             2 
AP
PC

 = 
AP
PO

 + 
AP
PI

   or,       
1

PO
 + 

1
PI

 = 
2

PC
 ⋅ …  (iv)

The pole P is taken as the origin and the principal
axis as the X-axis. The rays are incident from left to
right. We take the direction from left to right as the
positive X-direction. The point O, I and C are situated

to the left of the origin P in the figure. The quantities
u, v and R are, therefore, negative. As the distances
PO, PI and PC are positive, PO = – u, PI = – v and
PC = − R. Putting in (iv),

         
1

− u
 + 

1
− v

 = 
2

− R

   or,          
1
u

 + 
1
v

 = 
2
R

 ⋅ … (18.1)

Although equation (18.1) is derived for a special
situation shown in figure (18.6), it is also valid in all
other situations with a spherical mirror. This is
because we have taken proper care of the signs of u,
v and R appearing in figure (18.6).

Example 18.1

   A convex mirror has its radius of curvature 20 cm. Find
the position of the image of an object placed at a distance
of 12 cm from the mirror.

Solution : The situation is shown in figure (18.7). Here
u = − 12 cm and R = + 20 cm. We have,

       
1
u

 + 
1
v

 = 
2
R

or,         
1
v

 = 
2
R

 − 
1
u

           = 
2

20 cm
 − 

1
− 12 cm

 = 
11

60 cm

or,         v = 
60
11

 cm.

The positive sign of v shows that the image is formed
on the right side of the mirror. It is a virtual image.

Relation between the Focal Length
and the Radius of Curvature

If the object O in figure (18.6) is taken at a large
distance, the rays coming from O and incident on the
mirror become almost parallel. The image is then
formed close to the focus. Thus, if u = ∞ ,  v = f. Putting
in (18.1),

           
1
∞

 + 
1
f
 = 

2
R

   or,             f = R/2. … (18.2)

O C I

A

P

Figure 18.6

O I C

Figure 18.7
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   Equation (18.1) may also be written as

              
1
u

 + 
1
v

 = 
1
f
 ⋅ … (18.3)

The focus is midway between the pole and the
centre of curvature.

18.4 EXTENDED OBJECTS AND MAGNIFICATION

 Suppose an object AB is placed on the principal
axis of a spherical mirror with the length AB
perpendicular to the principal axis (figure 18.8).
Consider two rays BD and BE, the first parallel to the
principal axis and the other directed towards the
centre of curvature. The ray BD will go through the
focus F after reflection. The ray BE will return along
EB as it hits the mirror normally. The image of B is
formed at the intersection of these two reflected rays.
Thus, the image B′ of the point B is traced. If we drop
a perpendicular B′A′ on the principal axis, it can be
shown that A′ is the image of A and A′B′ is the image
of AB. Figures (18.8a) and (18.8b) show the
construction in two different situations.

Lateral Magnification

The ratio 
height  of  the  image

height  of  the objective
 is called lateral

or transverse magnification. The height of the object
(placed perpendicular to the principal axis) is taken to
be positive. If the image is also on the same side of
the principal axis, its height is also positive. The image
is then erect. Figure (18.8b) shows an example. If the
image is inverted, its height is taken as negative.

Consider the ray BP in figure (18.8) hitting the
mirror at the pole P. The reflected ray passes through
B′ as B′ is the image of B. The principal axis is the
normal at P to the mirror. By the laws of reflection,

         ∠BPA = ∠APB′.
Thus, the right-angled triangles ABP and A′B′P are
similar. Thus,

             
A′B′
AB

 = 
PA′
PA

 ⋅ … (i)

In figure (18.8a); A′B′ = − h2 ,  AB = h1 ,  PA′ = − v
and PA = − u. Equation (i) gives 

          
− h2

h1
 = 

− v
− u

   or,           m = 
h2

h1
 = − 

v
u

 ⋅ … (18.4)

Since proper signs are used, this same relation is also
valid in all other situations. For example, in figure
18.8(b), A′B′ = + h2 , AB = + h1 , PA′ = + v and PA = – u.
Equation (i) gives

         
h2

h1
 = 

v
− u

   or,   m = − 
v
u

 ⋅

Example 18.2

   An object of length 2.5 cm is placed at a distance of 1.5 f
from a concave mirror where f is the magnitude of the
focal length of the mirror. The length of the object is
perpendicular to the principal axis. Find the length of
the image. Is the image erect or inverted ?

Solution : The given situation is shown in figure (18.9).
The focal length F = – f, and u = – 1.5 f. We have,

       
1
u

 + 
1
v

 = 
1
F

     or,    
1

− 1.5 f
 + 

1
v

 = 
1

− f

or,         
1
v

 = 
1

1.5 f
 − 

1
f
 = 

− 1
3 f

or,        v = − 3 f.

Now       m = − 
v
u

 = 
3 f

− 1.5 f
 = − 2

or,        
h2

h1

 = − 2   or,  h2 = − 2 h1 = − 5.0 cm.

The image is 5.0 cm long. The minus sign shows that it
is inverted.

18.5 REFRACTION AT PLANE SURFACES

When a light ray is incident on a surface
separating two transparent media, the ray bends at
the time of changing the medium. The angle of
incidence i and the angle of refraction r follow Snell’s
law

          
sin i
sin r

 = 
v1

v2
 = 

µ2

µ1
 ,

where v1 and v2 are the speeds of light in media 1 and
2 respectively and µ1 and µ2 are the refractive indices
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of media 1 and 2 respectively. For vacuum the
refractive index µ equals 1. For air also, it is very close
to 1.

Image due to Refraction at a Plane Surface

Consider the situation shown in figure (18.10). A
point object O is placed in a medium of refractive index
µ1. Another medium of refractive index µ2 has its
boundary at PA. Consider two rays OP and OA
originating from O. Let OP fall perpendicularly on PA
and OA fall at PA at a small angle i with the normal.
OP enters the second medium undeviated and OA
enters making an angle r with the normal. When
produced backward, these rays meet at I which is the
virtual image of O. If i and r are small,

         sin i ≈ tan i = 
PA
PO

   and       sin r ≈ tan r = 
PA
PI

 ⋅

   Thus,       
µ2

µ1
 = 

sin i
sin r

                = 


PA
PO




 ⋅ 



PI
PA




 = 

PI
PO

 ⋅ … (i)

Suppose medium 2 is air and an observer looks at the
image from this medium (figure 18.10a). The real
depth of the object inside medium 1 is PO whereas the
depth as it appears to the observer is PI. Writing
µ2 = 1 and µ1 = µ, equation (i) gives

      
1
µ

 = 
apparent  depth

real  depth

   or,       µ = 
real  depth

apparent  depth
 ⋅ … (18.5)

The image shifts closer to eye by an amount
OI = PO – PI

     = 




PO − PI
PO




 PO = 


1 − 

PI
PO




 PO

   or,   ∆t = 

1 − 

1
µ




 t, … (18.6)

where t is the thickness of the medium over the object
and ∆t is the apparent shift in its position towards the
observer. Note that ∆t is positive in figure (18.10a) and
negative in figure (18.10b).

Example 18.3

   A printed page is kept pressed by a glass cube (µ = 1.5)
of edge 6.0 cm. By what amount will the printed letters
appear to be shifted when viewed from the top ?

Solution : The thickness of the cube = t = 6.0 cm. The shift
in the position of the printed letters is

       ∆t = 

1 − 

1
µ




 t

         = 

1 − 

1
1.5




 × 6.0 cm = 2.0 cm.

18.6 CRITICAL ANGLE

When a ray passes from an optically denser
medium (larger µ) to an optically rarer medium
(smaller µ), the angle of refraction r is greater than
the corresponding angle of incidence i. We have,

              
sin i
sin r

 = 
µ2

µ1
 < 1.

If we gradually increase i, the corresponding r will also
increase and at a certain stage r will become 90°. Let
the angle of incidence for this case be θc. If i is
increased further, there is no r which can satisfy
Snell’s law. Thus, the ray will not be refracted. Entire
light is then reflected back into the first medium. This
is called total internal reflection. The angle θc is called
the critical angle for the given pair of media.
Generally, critical angle of a medium is quoted for light
going from the medium to the air. In this case,
µ2 = 1. Writing µ1 = µ, Snell’s law gives

            
sinθc

sin 90°
 = 

1
µ

   or,          sinθc = (1/µ)

   or,            θc = sin − 1 (1/µ). … (18.7)

Example 18.4

   The critical angle for water is 48.2°. Find its refractive
index.

Solution : µ = 
1

sinθc
 = 

1
sin 48.2°

 = 1.34.

18.7 OPTICAL FIBRE

Total internal reflection is the basic principle of a
very useful branch of physics known as fibre optics.
An optical fibre is a very thin fibre made of glass or
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plastic having a radius of the order of a micrometer
(10 − 6 m). A bundle of such thin fibres forms a light
pipe.

Figure (18.11a) shows the principle of light
transmission by an optical fibre. Figure (18.11b)
sketches a light pipe. Because of the small radius of
the fibre, light going into it makes a nearly glancing
incidence on the wall. The angle of incidence is greater
than the critical angle and hence total internal
reflection takes place. The light is thus transmitted
along the fibre. Even if a light pipe is put in a
complicated shape (figure 18.11c), the light is
transmitted without any appreciable loss.

Light pipes using optical fibres may be used to see
places which are difficult to reach such as inside of a
human body. For example, a patient’s stomach can be
viewed by inserting one end of a light pipe into the
stomach through the mouth. Light is sent down
through one set of fibres in the pipe. This illuminates
the inside of the stomach. The light from the inside
travels back through another set of fibres in the pipe
and the viewer gets the image at the outer end.

The other important application of fibre optics is
to transmit communication signals through light pipes.
For example, about 2000 telephone signals, appro-
priately mixed with light waves, may be simul-
taneously transmitted through a typical optical fibre.
The clarity of the signals transmitted in this way is
much better than other conventional methods.

The fibres in a light pipe must be optically
insulated from each other. This is usually done by
coating each fibre with a material having refractive
index less than that of the fibre.

18.8 PRISM

Figure (18.12) shows the cross section of a prism.
AB and AC represent the refracting surfaces. The
angle BAC is the angle of the prism. Consider the
prism to be placed in air. A ray PQ, incident on a

refracting surface AB, gets refracted along QR. The
angle of incidence and the angle of refraction are i and
r respectively. The ray QR is incident on the surface
AC. Here the light goes from an optically denser
medium to an optically rarer medium. If the angle of
incidence r′ is not greater than the critical angle, the
ray is refracted in air along RS. The angle of refraction
is i′. The angle i′ is also called the angle of emergence.
If the prism were not present, the incident ray would
have passed undeviated along PQTU. Because of the
prism, the final ray goes along RS. The angle
UTS = δ is called the angle of deviation. From triangle
TQR,

   ∠UTS = ∠TQR + ∠TRQ

or,      δ = (∠TQV − ∠RQV) + (∠TRV − ∠QRV)

        = (i − r) + (i′ − r′)
          = (i + i′) − (r + r′). … (i)

Now, the four angles of the quadrangle AQVR add
to 360°. The angles AQV and ARV are 90° each. Thus,

           A + ∠QVR = 180°.
   Also, from the triangle QRV,
         r + r′ + ∠QVR = 180°.
   So,          r + r′ = A. … (18.8)

   Substituting in (i),
              δ = i + i′ − A. … (18.9)

Angle of Minimum Deviation

The angle i′ is determined by the angle of incidence
i. Thus, the angle of deviation δ is also determined by
i. For a particular value of angle of incidence, the angle
of deviation is minimum. In this situation, the ray
passes symmetrically through the prism, so that i = i′.

The above statement can be justified by assuming
that there is a unique angle of minimum deviation.
Suppose, when deviation is minimum, the angle of
incidence is greater than the angle of emergence.
Suppose, figure (18.13) shows the situation for
minimum deviation. According to our assumption,

             i > i′.

(a)

(b)

(c)

Figure 18.11
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Now, if we send a ray along SR, it will retrace the
path and will emerge along QP. Thus, the angle of
deviation is same as before and hence, is minimum.
According to our assumption, the angle of incidence is
greater than the angle of emergence. Hence,

             i′ > i.

Thus, we get a contradiction. Similarly, if we assume
that the angle of incidence is smaller than the angle
of emergence for minimum deviation, we again get a
contradiction. Hence, for minimum deviation, i = i′.

Relation between Refractive Index and
the Angle of Minimum Deviation

Let the angle of minimum deviation be δm. For
minimum deviation, i = i′ and r = r′. We have,

          δm = i + i′ − A

            = 2 i − A

    or,          i = 
A + δm

2
 ⋅ … (i)

Also,      r + r′ = A

    or,         r = A/2. … (ii)

The refractive index is

           µ = 
sin i
sin r

 ⋅

Using (i) and (ii),

              µ = 
sin 

A + δm

2

sin 
A
2

 ⋅ … (18.10)

If the angle of prism A is small, δm is also small.
Equation (18.10) then becomes 

           µ ≈ 

A + δm

2
A
2

   or,         δm = (µ − 1) A. … (18.11)

Example 18.5

   The angle of minimum deviation from a prism is 37°. If
the angle of prism is 53°, find the refractive index of the
material of the prism.

Solution : µ = 
sin 

A + δm

2

sin 
A
2

 = 
sin 

53° + 37°
2

sin 
53°
2

 = 
sin 45°

sin 26.5°

        = 1.58.

18.9 REFRACTION AT SPHERICAL SURFACES

When two transparent media are separated by a
spherical surface, light incident on the surface gets
refracted into the medium on other side. Suppose two
transparent media having refractive indices µ1

and µ2 are separated by a spherical surface AB
(figure 18.14). Let C be the centre of curvature of AB.
Consider a point object O in the medium 1. Suppose
the line OC cuts the spherical surface at P.

Several cases may arise. The surface may be
concave towards the higher µ side or it may be convex.
The object may be on the convex side or on the concave
side. In figure (18.14), it is assumed that µ2 > µ1 and
the object O is on the convex side of the surface.

Image Tracing

Consider two rays OD and OP originating from O.
The ray OP falls normally on AB. It goes into the
medium 2 undeviated. Suppose the ray OD makes a
small angle α with the line OPC and falls on the
surface AB at a point D. The normal to AB at the point
D is DC. The angle ODE = i is the angle of incidence.
The ray is refracted along DI. The two refracted rays
meet at the point I where the image is formed. The
angle CDI = r is the angle of refraction. If the refracted
rays actually meet, a real image is formed. If the
refracted rays diverge after refraction, a virtual image
is formed at the point from where these rays seem
to diverge.
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Sign Convention

The sign convention for refraction at spherical
surface is quite similar to that used for spherical
mirrors.

The line joining the object and the centre is taken
as the X-axis. The positive direction of the axis is
generally chosen along the direction of the incident
rays. The point of intersection of the spherical surface
with the axis is taken as the origin. The quantities u,
v and R denote the x-coordinates of the object, the
image and the centre of curvature respectively. Any of
these quantities is positive if the corresponding point
lies on the positive side of the origin and is negative
if it is on the negative side. Similarly for the lengths
perpendicular to the X-axis.

Relation between u, v and R

Refer to figure (18.14). Let ∠DOP = α, ∠DCP = β
and ∠DIC = γ. For paraxial rays, D is close to P and
α, i, r, β and γ are all small. From the triangle ODC,
              α + β = i … (i)
and from DCI,
              r + γ = β. … (ii)
Also, from Snell’s law,

           
sin i
sin r

 = 
µ2

µ1
 ⋅

We can write sin i ≈ i and sin r ≈ r so that the above
equation becomes
             µ1 i = µ2 r. … (iii)

Putting i and r from (i) and (ii) into (iii),
       µ1(α + β) = µ2(β − γ)
   or,      µ1α + µ2γ = (µ2 − µ1)β. … (iv)

As α, β and γ are small, from figure (18.14),

       α ≈ 
DP
PO

 ,  β = 
DP
PC

   and  γ ≈ 
DP
PI

 ⋅

The expression for β is exact as C is the centre of
curvature. Putting in (iv),

     µ1




DP
PO




 + µ2





DP
PI




 = (µ2 − µ1) 

DP
PC

   or,         
µ1

PO
 + 

µ2

PI
 = 

µ2 − µ1

PC
 ⋅ … (v)

At this stage, proper sign convention must be used so
that the formula derived is also valid for situations
other than that shown in the figure.

In figure (18.14), the point P is the origin and OPC
is the axis. As the incident ray comes from left to right,
we choose this direction as the positive direction of the
axis. We see that u is negative whereas v and R are
positive. As the distances PO, PI and PC are positive,
PO = – u, PI = + v and PC = + R. From (v),

         
µ1

− u
 + 

µ2

v
 = 

µ2 − µ1

R

   or,         
µ2

v
 − 

µ1

u
 = 

µ2 − µ1

R
 ⋅ … (18.12)

Although the formula (18.12) is derived for a particular
situation of figure (18.14), it is valid for all other
situations of refraction at a single spherical surface.
This is because we have used the proper sign
convention.

Example 18.6

   Locate the image of the point object O in the situation
shown in figure (18.15). The point C denotes the centre
of curvature of the separating surface.

Solution : Here u = –15 cm, R = 30 cm, µ1 = 1 and

µ2 = 1.5. We have,

          
µ2

v
 − 

µ1

u
 = 

µ2 − µ1

R

or,       
1.5
v

 − 
1.0

− 15 cm
 = 

1.5 − 1
30 cm

or,             
1.5
v

 = 
0.5

30 cm
 − 

1
15 cm

or,             v = −30 cm.

The image is formed 30 cm left to the spherical surface
and is virtual.

18.10 EXTENDED OBJECTS :
     LATERAL MAGNIFICATION

Consider the situation shown in figure (18.16). Let
OQ be an extended object placed perpendicular to the
line OPC. Consider the ray originating from Q and
going towards QC. This ray is incident normally on
the spherical surface AB. Thus, it goes undeviated in
medium 2. The image of Q must be on the line QC.

 15 cm  30 cm 

= 1.0 = 1.5

CO

Figure 18.15
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The image of O will be formed on the line OPC. Let
it be formed at O′. The position of O′ may be located
by using equation (18.12). If we drop a perpendicular
from O′ on OPC, the intersection Q′ of this
perpendicular with QC will be the image of Q. Thus,
O′Q′ will be the image of OQ.

Lateral Magnification

The lateral or transverse magnification is defined
as

            m = 
h2

h1
 ,

where h2 = height of the image and h1 = height of the
object. In figure (18.16), OQ = + h1 and O′Q′ = − h2 .

         m = 
h2

h1
 = − 

O′Q′
OQ

 ⋅

The triangle OCQ and O′CQ′ are similar. So,

         m = − 
O′Q′
OQ

 = − 
O′C
OC

                    = − 
PO′ − PC
PO + PC

 ⋅ … (i)

In figure (18.16), PO = – u, PC = +R and PO′= +v.
Equation (i) gives

         m = − 
v − R

− u + R

             = 
R − v
R − u

 ⋅ … (ii)

Also,

             
µ2

v
 − 

µ1

u
 = 

µ2 − µ1

R

or,        
µ2u − µ1v

uv
 = 

µ2 − µ1

R

or,           R = 
(µ2 − µ1)uv
µ2u − µ1v

 ⋅

This gives

            R − v = 
µ1v(v − u)
µ2u − µ1v

and            R − u = 
µ2u(v − u)
µ2u − µ1v

Thus, by (ii),

               m = 
µ1v
µ2u

 ⋅ … (18.13)

Example 18.7

   Find the size of the image formed in the situation shown
in figure (18.17).

Solution : Here u = −40 cm, R = −20 cm, µ1 = 1, µ2 = 1.33. We
have,

         
µ2

v
 − 

µ1

u
 = 

µ2 − µ1

R

or,   
1.33

v
 − 

1
−40 cm

 = 
1.33 − 1
−20 cm

or,           
1.33

v
 = − 

1
40 cm

 − 
0.33

20 cm

or,            v = −32 cm.

The magnification is

          m = 
h2

h1

 = 
µ1v
µ2u

or,         
h2

1.0 cm
 = 

−32 cm
1.33 × (−40 cm)

or,            h2 = +0.6 cm.

The image is erect.

18.11 REFRACTION THROUGH THIN LENSES

A lens is one of the most familiar optical devices
for a human being. We have lenses in our eyes and a
good number of us supplement them with another set
of lenses in our spectacles. A lens is made of a
transparent material bounded by two spherical
surfaces. The surfaces may be both convex, both
concave or one convex and one concave. When the
thickness of the lens is small compared to the other
dimensions like object distance, we call it a thin lens.
Figure (18.18) shows several lenses and paths of a
number of rays going through them.

As there are two spherical surfaces, there are two
centres of curvature C1 and C2 and correspondingly two
radii of curvature R1 and  R2 . The line joining  C1 and

O

C

 20 cm 

1.0 cm

 40 cm 

= 1  = 1.33

Figure 18.17
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(b) (c)
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C2 is called the principal axis of the lens. The centre
P of the thin lens which lies on the principal axis, is
called the optical centre.

Focus

Suppose, a narrow beam of light travelling parallel
to the principal axis is incident on the lens near the
optical centre (figure 18.19a).

The rays are refracted twice and then come out of
the lens. The emergent rays may converge at a point
F2 on the principal axis or they may seem to diverge
from a point F2 on the principal axis. In the first case,
the lens is called a convergent lens, converging lens or
convex lens. In the second case, it is called a divergent
lens, diverging lens or concave lens. The point F2 is
called the second focus of the lens. The distance PF2

from the optical centre is called the second focal length.
The first focus F1 is defined as a point where an

object should be placed to give emergent rays parallel
to the principal axis (figure 18.19b). For a convergent
lens, such an object is a real object and for a divergent
lens, it is a virtual object. The distance PF1 is the first
focal length.

If the media on the two sides of a thin lens have
same refractive index, the two focal lengths are equal.
We shall be largely using the second focus F2 in our
discussions. Thus, when we write just focus, we shall
mean the second focus and when we write just focal
length, we shall mean second focal length.

Sign Conventions

The coordinate sign conventions for a lens are
similar to those for mirrors or refraction at spherical
surfaces. The optical centre is taken as the origin and
the principal axis as the X-axis. The positive direction
of the axis is generally taken along the incident rays.
The quantities u, v, f, R1 and R2 represent the
x-coordinates of the object, the image, the focus, first

centre of curvature and second centre of curvature
respectively. The table below shows the signs of u, v,
f, R1 and R2 in certain cases shown in figure (18.20).

Figure u v f R1 R2

18.20a – + + + –

18.20b – – – – +

18.20c + + + + –

18.20d – – – + +

Generally, the incident rays and hence the positive
direction of the axis is taken from left to right. Heights
measured upwards are taken to be positive and the
heights measured downward are taken to be negative.

With the usual choice of axes, f of a lens is positive
for a converging lens and is negative for a diverging
lens.

18.12 LENS MAKER’S FORMULA
     AND LENS FORMULA

Consider the situation shown in figure (18.21).
ADBE is a thin lens. An object O is placed on its
principal axis. The two spherical surfaces of the lens
have their centres at C1 and C2 . The optical centre is
at P and the principal axis cuts the two spherical
surfaces at D and E.
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Let the refractive index of the material of the lens
be 2 and suppose it is placed in a medium of refractive
index 1 . To trace the image of O, consider two rays
OP and OG originating from O. The ray OP falls on
the spherical surfaces perpendicularly and hence, it
goes undeviated through the lens. The ray OG is
refracted from a medium of refractive index 1 to
another medium of refractive index 2 . The centre of
curvature of the surface ADB is at C1. The ray is
refracted along GH which meets the principal axis at
O1 (when produced backward in figure 18.21). Thus,
due to this single refraction, the image of O is formed
at O1 . The ray GH is incident on the spherical surface
AEB. It is refracted from medium 2 to medium 1 .
The emergent ray HI intersects the principal axis at
I where the final image is formed.

The general equation for refraction at a spherical
surface is

           
2

v
  

1

u
  

2  1

R
   (i)

To use this equation for the first refraction at ADB,
we should take the origin at D, whereas, for the second
refraction at AEB, we should take the origin at E. As
the lens is thin, the points D, P and E are all close to
each other and we may take the origin at P for both
these refractions.

For the first refraction, the object is at O, the
image is at O1 and the centre of curvature is at C1. If
u, v1, and R1, denote their x-coordinates,

           
2

v1
  

1

u
  

2  1

R1
   (ii)

For the second refraction at AEB, the incident rays
GH and DE diverge from O1. Thus, O1 is the object for
this refraction and its x-coordinate is v1. The image is
formed at I and the centre of curvature is at C2 . Their
x-coordinates are v and R2 respectively. The light goes
from the medium 2 to medium 1. Applying
equation (i),

           
1

v
  

2

v1
  

1  2

R2
   (iii)

Adding (ii) and (iii),

      1




1
v

  
1
u



  

2  1

 


1
R1

  
1
R2





   or,     
1
v

  
1
u

  




2

1
  1




 


1
R1

  
1
R2




   (18.14)

If the object O is taken far away from the lens, the
image is formed close to the focus. Thus, for u  ,
v  f. Putting in (18.14), we get,

         
1
f
  




2

1
  1




 


1
R1

  
1
R2




   (18.15)

If the refractive index of the material of the lens
is  and it is placed in air, 2   and 1  1 so that
(18.15) becomes

         
1
f
    1 



1
R1

  
1
R2




   (18.16)

This is called lens maker’s formula because it tells
what curvatures will be needed to make a lens of
desired focal length. Combining (18.14) and (18.15),

            
1
v

  
1
u

  
1
f

 (18.17)

which is known as the lens formula.

Example 18.8

   A biconvex lens has radii of curvature 20 cm each. If the
refractive index of the material of the lens is 1.5, what
is its focal length ?

Solution : In a biconvex lens, centre of curvature of the
first surface is on the positive side of the lens and that
of the second surface is on the negative side. Thus,
R1  20 cm and R2  20 cm.

We have,

         
1
f
    1 



1
R1

  
1
R2





or,       
1
f
  1.5  1 



1
20 cm

  
1

20 cm




or,        f  20 cm.

18.13 EXTENDED OBJECTS :
     LATERAL MAGNIFICATION

Consider the situation shown in figure (18.22). OQ
is an extended object placed on the principal axis with
its height perpendicular to the principal axis. To locate
the image of Q, consider two rays QP and QA, the first
one through the optical centre and the other parallel
to the principal axis. The parts of the two surfaces at
which the ray QP is refracted, are nearly parallel to
each other. The lens near the optical centre, therefore,
behaves like a rectangular slab. Thus, the ray passing
through this region does not bend. Also, the lateral
displacement produced is negligible as the thickness
of the lens is small. Thus, a ray passing through the
optical centre goes undeviated. The ray QP emerges in
the same direction PQ. The ray QA parallel to the

Q

O P

A

B

F O�2

Q�

Figure 18.22
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principal axis must pass through the focus F2. Thus,
the emergent ray is along AF2Q′. The image is formed
where QPQ′ and AF2Q′ intersect. Drop a perpendicular
from Q′ on the principal axis. This perpendicular
O′Q′ is the image of OQ. Figure (18.23) shows image
formation in some other cases.

The lateral or transverse magnification is defined as

               m = 
h2

h1
 ,

where h2 = height of the image and h1 = height of the
object.
Referring to figure (18.22), the magnification is

         m = 
h2

h1
 = 

− O′Q′
OQ

 ⋅

From the similar triangles OQP and O′Q′P,

          
O′Q′
OQ

 = 
PO′
PO

so that          m = − 
PO′
PO

 ⋅ … (i)

But PO = – u and PO′ = + v

so that by (i),      m = 
v
u

 ⋅ … (18.18)

As usual, negative m indicates inverted image and
positive m indicates erect image.

Since proper sign conventions are used, equation
(18.18) is valid in all situations with a single thin lens,
although it is derived for the particular situation of
figure (18.22).

Example 18.9

   An object of length 2.0 cm is placed perpendicular to the
principal axis of a convex lens of focal length 12 cm. Find
the size of the image if the object is at a distance of 8.0 cm
from the lens.

Solution : We have u = − 8.0 cm, and f = + 12 cm

Using         
1
v

 − 
1
u

 = 
1
f
 ,

         
1
v

 = 
1

12 cm
 + 

1
− 8.0 cm

or,        v = − 24 cm.

Thus,      m = 
v
u

 = 
− 24 cm
− 8.0 cm

 = 3.

Thus, h2 = 3 h1 = 3 × 2.0 cm = 6.0 cm. The positive sign
shows that the image is erect.

18.14 POWER OF A LENS

The power P of a lens is defined as P = 1/f, where
f is the focal length. The SI unit of power of a lens is
obviously m– 1. This is also known as dioptre. The focal
length of a converging lens is positive and that of a
diverging lens is negative. Thus, the power of a
converging lens is positive and that of a diverging lens
is negative.

18.15 THIN LENSES IN CONTACT

Figure (18.24) shows two lenses L1 and L2 placed
in contact. The focal lengths of the lenses are f1 and
f2 respectively.

Suppose, a point object is placed at a point O on
the common principal axis. The first lens would form
its image at O1 . This point O1 works as the object for
the second lens and the final image is formed at I.

Let u = object-distance for the first lens,

v = final image-distance for the second lens,

v1 = image-distance of the first image O1 for the
first lens.  As the lenses are assumed to be thin, v1 is
also the object-distance for the second lens.

Then,

           
1
v1

 − 
1
u

 = 
1
f1

and         
1
v

 − 
1
v1

 = 
1
f2

 ⋅

Adding these equations, we get 

             
1
v

 − 
1
u

 = 
1
f1

 + 
1
f2

 ⋅ … (i)

If the combination is replaced by a single lens of focal
length F such that it forms the image of O at the same
position I,

(a) (b)

Q

O P FO

Q

2

Q

O P

Q

O

Figure 18.23

L

O O P I1 2P1

L1 2

Figure 18.24

396 Concepts of Physics



              
1
v

  
1
u

  
1
F

   (ii)

Such a lens is called the equivalent lens for the
combination.
Comparing (i) and (ii),

             
1
F

  
1
f1

  
1
f2

   (18.19)

This F is the focal length of the equivalent lens for
the combination. As the power of a lens is P  1/F,
equation (18.19) immediately gives
             P  P1  P2.  (18.20)

Though equation (18.19) is derived for the situation
shown in figure (18.24), it is true for any situation
involving two thin lenses in contact.

18.16 TWO THIN LENSES SEPARATED
     BY A DISTANCE

When two thin lenses are separated by a distance,
it is not equivalent to a single thin lens. In fact, such
a combination can only be equivalent to a thick lens
which has a more complicated theory.

In a special case when the object is placed at
infinity, the combination may be replaced by a single
thin lens. We shall now derive the position and focal
length of the equivalent lens in this special case. To
start with, let us derive an expression for the angle of
deviation of a ray when it passes through a lens.

Let O be a point object on the principal axis of a
lens (figure 18.25). Let OA be a ray incident on the
lens at a point A, a height h above the optical centre.
It is deviated through an angle  and comes out along
AI. It strikes the principal axis at I where the image
is formed.

Let AOP   and AIP  . By triangle OAI,

            .

If the height h is small as compared to PO and PI, the
angles ,  are also small. Then,

     tan  h/OP and   tan  h/PI.

Thus,          
h

PO
  

h
PI

 (i)

Now,       PO   u  and  PI   v

so that by (i),   h



1
v

  
1
u




   or,            
h
f
   (18.21)

Now, consider the situation shown in figure
(18.26). Two thin lenses are placed coaxially at a
separation d. The incident ray AB and the emergent
ray CD intersect at E. The perpendicular from E to
the principal axis falls at P. The equivalent lens
should be placed at this position P. A ray ABE going
parallel to the principal axis will go through the
equivalent lens and emerge along ECD. The angle of
deviation is   1  2 from triangle BEC. The focal
length of the equivalent lens is F  PD.

Using equation (18.21),

     1  
h1

f1
 ,  2  

h2

f2
  and    

h1

F
 

As            1  2,

              
h1

F
  

h1

f1
  

h2

f2
   (ii)

Now,
       h1  h2  P2G  P2C  CG

             BG tan1  BG 1

   or,      h1  h2  d 
h1

f1
 (iii)

   or,         h2  h1  d 
h1

f1
   (iv)

Thus, by (ii),

          
h1

F
  

h1

f1
  

h1

f2
  

d h1/f1
f2

 

   or,         
1
F

  
1
f1

  
1
f2

  d
f1 f2

   (18.22)

Position of the Equivalent Lens

We have,   PP2  EG
             GC cot

         
h1  h2

tan
  

h1  h2



�

�

� �

�

Figure 18.25
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By (iii), h1 − h2 = 
d h1

f1
 ⋅ Also, δ = 

h1

F
 so that

         PP2 = 




d h1

f1




 


F
h1




 = 

d F
f1

 ⋅ … (18.23)

Thus, the equivalent lens is to be placed at a distance
d F/f1 behind the second lens.

Equation (18.22) and (18.23) are true only for the
special case of parallel incident beam. If the object is
at a finite distance, one should not use the above
equations. The image position should be worked out
using the lens equations for the two lenses separately.

18.17 DEFECTS OF IMAGES

The simple theory of image formation developed
for mirrors and lenses suffers from various
approximations. As a result, the actual images formed
contain several defects. These defects can be broadly
divided in two categories, (a) chromatic aberration and
(b) monochromatic aberration. The index of refraction
of a transparent medium differs for different
wavelengths of the light used. The defects arising from
such a variation of the refractive index are termed as
chromatic aberrations. The other defects, which arise
even if light of a single colour is used, are called
monochromatic aberrations. We shall first discuss this
type of defects.

A. Monochromatic Aberrations

(a) Spherical Aberration

All through the discussion of lenses and mirrors
with spherical surfaces, it has been assumed that the
aperture of the lens or the mirror is small and the
light rays of interest make small angles with the
principal axis. It is then possible to have a point image
of a point object. However, this is only an
approximation even if we neglect diffraction.

The rays reflect or refract from points at different
distances from the principal axis. In general, they meet
each other at different points. Thus, the image of a
point object is a blurred surface. Such a defect is called
spherical aberration. Figure (18.27) shows spherical
aberration for a concave mirror for an object at infinity.
The rays parallel to the principal axis are incident on
the spherical surface of the concave mirror. The rays
close to the principal axis (paraxial rays) are focused
at the geometrical focus F of the mirror as given by
the mirror formula. The rays farthest from the
principal axis are called the marginal rays and are
focused at a point F′ somewhat closer to the mirror.
The intermediate rays focus at different points
between F and F′. Also, the rays reflected from a small
portion away from the pole meet at a point off the axis.
Thus, a three-dimensional blurred image is formed.
The intersection of this image with the plane of figure
is shown blackened in figure (18.27) and is called the
caustic curve. If a screen is placed perpendicular to the
principal axis, a disc image is formed on the screen.
As the screen is moved parallel to itself, the disc
becomes smallest at one position. This disc is closest
to the ideal image and its periphery is called the circle
of least confusion. The magnitude of spherical
aberration may be measured from the distance FF′
between the point where the paraxial rays converge
and the point where the marginal rays converge.

The parallel rays may be brought to focus at one
point if a parabolic mirror is used. Also, if a point
source is placed at the focus of a parabolic mirror, the
reflected rays will be very nearly parallel. The
reflectors in automobile headlights are made parabolic
and the bulb is placed at the focus. The light beam is
then nearly parallel and goes up to large distances.

Because of the finite aperture, a lens too produces
a blurred disc type image of a point object. Figure
(18.29) shows the situation for a convex and a concave

Figure 18.27
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lens for the rays coming parallel to the principal axis.
We see from the figure that the marginal rays are
deviated a bit too strongly and hence, they meet at a
point different from that given by geometrical optics
formulae. Also, in the situation shown, the spherical
aberration is opposite for convex and concave lens. The
point F′, where the marginal rays meet, is to the left
of the focus for convex lens and is to the right of the
focus for the concave lens.

The magnitude of spherical aberration for a lens
depends on the radii of curvature and the object
distance. The spherical aberration for a particular
object distance can be reduced by properly choosing
the radii of curvature. However, it cannot be reduced
to zero for a single lens which forms a real image of
a real object. A simple method to reduce spherical
aberration is to use a stop before and in front of the
lens. A stop is an opaque sheet with a small circular
opening in it. It only allows a narrow pencil of rays to
go through the lens hence reducing the aberration.
However, this method reduces the intensity of the
image as most of the light is cut off.

The spherical aberration is less if the total
deviation of the rays is distributed over the two
surfaces of the lens. A striking example is a
planoconvex lens forming the image of a distant object.
If the plane surface faces the incident rays, the
spherical aberration is much larger than that in the
case when the curved surface faces the incident rays
(figure 18.30). In the former case, the total deviation
occurs at a single surface whereas it is distributed at
both the surfaces in the latter case.

The spherical aberration can also be reduced by
using a combination of convex and concave lenses. A
suitable combination can reduce the spherical
aberration by compensation of positive and negative
aberrations.

(b) Coma

We have seen that if a point object is placed on
the principal axis of a lens and the image is received
on a screen perpendicular to the principal axis, the
image has a shape of a disc because of spherical
aberration. The basic reason of this aberration is that
the rays passing through different regions of the lens
meet the principal axis at different points. If the point

object is placed away from the principal axis and the
image is received on a screen perpendicular to the axis,
the shape of the image is like a comet. This defect is
called coma. The basic reason is again the same. The
lens fails to converge all the rays passing at different
distances from the axis at a single point. Figure (18.31)
explains the formation of coma. The paraxial rays form
an image of P at P′. The rays passing through the
shaded zone forms a circular image on the screen. The
rays through outer zones of the lens form bigger circles
with centres shifted. The image seen on the screen
thus have a comet-like appearance.

Coma can also be reduced by properly designing
radii of curvature of the lens surfaces. It can also be
reduced by appropriate stops placed at appropriate
distances from the lens.

(c) Astigmatism

Spherical aberration and coma refer to the
spreading of the image of a point object in a plane
perpendicular to the principal axis. The image is also
spread along the principal axis. Suppose, a point object
is placed at a point off the axis of a converging lens.
A screen is placed perpendicular to the axis and is
moved along the axis. At a certain distance, an
approximate line image is focussed. If the screen is
moved further away, the shape of the image changes
but it remains on the screen for quite a distance moved
by the screen. The spreading of image along the
principal axis is known as astigmatism (not to be
confused with a defect of vision having the same
name).

(d) Curvature

We have so far considered the image formed by a
lens on a plane. However, it is not always true that
the best image is formed along a plane. For a point
object placed off the axis, the image is spread both
along and perpendicular to the principal axis. The best
image is, in general, obtained not on a plane but on a
curved surface. This defect is known as curvature. It
is intrinsically related to astigmatism. The astigmation
or the curvature may be reduced by using proper stops
placed at proper locations along the axis.

Figure 18.30
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(e) Distortion

Distortion is the defect arising when extended
objects are imaged. Different portions of the object are,
in general, at different distances from the axis. The
relation between the object distance and the image
distance is not linear and hence, the magnification is
not the same for all portions of the extended object.
As a result, a line object is not imaged into a line but
into a curve. Figure (18.32) shows some distorted
images.

B. Chromatic Aberrations

The refractive index of the material of a lens varies
slightly with the wavelength and hence, the focal
length is also different for different wavelengths. In
the visible region, the focal length is maximum for red
and minimum for violet. Thus, if white light is used,
each colour forms a separate image of the object.

The violet rays are deviated more and hence, they
form an image closer to the lens as compared to the
image formed by the red rays. If light is incident on
the lens from left to right, the violet image is to the
left of the red image for convex lens and it is to the
right of the red image for the concave lens. In the first
case, the chromatic aberration is called positive and in
the second case, it is negative. Thus, a proper
combination of a convex and a concave lens may result
in no chromatic aberration. Such a combination is
called an achromatic combination for the pair of
wavelengths. Also, the magnification v/u depends on
the focal length and hence, on the wavelength. For an
extended object, the images formed by light of different
colours are of different sizes. A typical situation is
shown in figure (18.33). Monochromatic aberration are
assumed to be absent.

The separation between the images formed by
extreme wavelengths of the visible range is called the
axial chromatic aberration or longitudinal chromatic
aberration. The difference in the size of the images
(perpendicular to the principal axis) formed by the
extreme wavelengths of the range is called the lateral
chromatic aberration (figure 18.34).

Worked Out Examples

 1. An object is placed on the principal axis of a concave
mirror of focal length 10 cm at a distance of 8.0 cm from
the pole. Find the position and the nature of the image.

Solution : Here u = −8.0 cm and f = −10 cm.

We have,       
1
f
 = 

1
u

 + 
1
v

or, 
1
v

 = 
1
f
 − 

1
u

= 
1

− 10 cm
 − 

1
− 8.0 cm

= 
1

40 cm
or, v = 40 cm.
The positive sign shows that the image is formed at 40 cm
from the pole on the other side of the mirror (figure
18-W1). As the image is formed beyond the mirror, the
reflected rays do not intersect, the image is thus virtual.

Object Distorted images

Figure 18.32
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 2. A rod of length 10 cm lies along the principal axis of a
concave mirror of focal length 10 cm in such a way that
the end closer to the pole is 20 cm away from it. Find
the length of the image.

Solution :

The situation is shown in figure (18-W2). The radius of
curvature of the mirror is r = 2 f = 20 cm. Thus, the
nearer end B of the rod AB is at the centre of the
curvature and hence, its image will be formed at B itself.
We shall now locate the image of A.

Here  u = − 30 cm  and  f = − 10 cm. We have

           
1
u

 + 
1
v

 = 
1
f

or,         
1
v

 = 
1
f
 − 

1
u

= 
1

− 10 cm
 − 

1
− 30 cm

or, v = − 15 cm.

Thus, the image of A is formed at 15 cm from the pole.
The length of the image is, therefore, 5.0 cm.

 3. At what distance from a convex mirror of focal length
2.5 m should a boy stand so that his image has a height
equal to half the original height ? The principal axis is
perpendicular to the height.

Solution : We have,

            m = − 
v
u

 = 
1
2

or,           v = − 
u
2

 ⋅

Also, 
1
u

 + 
1
v

 = 
1
f

or, 
1
u

 + 
1

− u/2
 = 

1
2.5 m

or, − 
1
u

 = 
1

2.5 m

or, u = − 2.5 m.

Thus, he should stand at a distance of 2.5 m from the
mirror.

 4. A 2.0 cm high object is placed on the principal axis of a
concave mirror at a distance of 12 cm from the pole. If
the image is inverted, real and 5.0 cm high, find the
location of the image and the focal length of the mirror.

Solution : The magnification is m = − 
v
u

or,    
− 5.0 cm
2.0 cm

 = 
− v

− 12 cm

or, v = − 30 cm.

The image is formed at 30 cm from the pole on the side
of the object. We have,

       
1
f
 = 

1
v

 + 
1
u

        = 
1

− 30 cm
 + 

1
− 12 cm

 = − 
7

60 cm
  

or, f = − 
60 cm

7
 = − 8.6 cm.

The focal length of the mirror is 8.6 cm.

 5. Consider the situation shown in figure (18-W4). Find the
maximum angle θ for which the light suffers total
internal reflection at the vertical surface.

Solution :

The critical angle for this case is

    θ′′ = sin – 1 
1

1.25
 = sin – 1 

4
5

or,  sinθ′′ = 
4
5

 ⋅

Since θ′′ = 
π
2

 − θ′, we have sinθ′ = cosθ′′ = 3/5. From

Snell’s law,

          
sinθ
sinθ′

 = 1.25

or, sinθ = 1.25 × sinθ′

= 1.25 × 
3
5

 = 
3
4
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or,            θ = sin− 1 
3
4

 ⋅

If θ′′ is greater than the critical angle, θ will be smaller
than this value. Thus, the maximum value of θ, for
which total reflection takes place at the vertical surface,
is sin − 1 (3/4).

 6. A right prism is to be made by selecting a proper material
and the angles A and B (B ≤ A), as shown in figure
(18-W5a). It is desired that a ray of light incident
normally on AB emerges parallel to the incident direction
after two total internal reflections. (a) What should be
the minimum refractive index μ for this to be possible ?
(b) For μ = 5/3, is it possible to achieve this with the
angle A equal to 60 degrees ?

Solution : 

(a) Consider the ray incident normally on AB (figure
18-W5b). The angle of reflection at the surface AC is θ.
It is clear from the figure that the angle of incidence at
the second surface CB is 90° − θ. The emergent ray will
be parallel to the incident ray after two total internal
reflections. The critical angle θc should be less than θ as
well as 90° − θ. Thus, θc should be smaller than or equal
to the smaller of θ and 90° − θ, i.e.,

            θc ≤ min(θ, 90° − θ).

As min (θ, 90° − θ) ≤ 45°, θc ≤ 45°

or,   sinθc ≤ 
1

√2
    or, 

1
μ

 ≤ 
1

√2

or, μ ≥ √2.

Thus, the refractive index of the material of the prism
should be greater than or equal to √2. In this case the
given ray can undergo two internal reflections  for a
suitable θ.

(b) For μ = 5/3, the critical angle θc is

            sin − 1 (3/5) = 37°.

As the figure suggests, we consider the light incident
normally on the face AB. The angle of incidence θ on
the surface AC is equal to θ = 60°. As this is larger than
the critical angle 37°, total internal reflection takes place
here. The angle of incidence at the surface CB is
90° − θ = 30°. As this is less than the critical angle, total
internal reflection does not take place at this surface.

 7. A point object O is placed in front of a transparent slab
at a distance x from its closer surface. It is seen from the
other side of the slab by light incident nearly normally
to the slab. The thickness of the slab is t and its refractive
index is μ. Show that the apparent shift in the position
of the object is independent of x and find its value.

Solution :

        
The situation is shown in figure (18-W6). Because of the
refraction at the first surface, the image of O is formed
at O1. For this refraction, the real depth is AO = x and
the apparent depth is AO1. Also the first medium is air
and the second is the slab. Thus,

         
x

AO1

 = 
1
μ

  or,  AO1 = μx.

The point O1 acts as the object for the refraction at the
second surface. Due to this refraction the image of O1 is
formed at I. Thus,

           
BO1

BI
 = μ

or, 
AB + AO1

BI
 = μ   or,  

t + μx
BI

 = μ

or, BI = x + 
t
μ

 ⋅

The net shift in OI = OB − BI = (x + t) − ⎛⎜
⎝
x + 

t
μ

⎞
⎟
⎠

                = t 

⎛
⎜
⎝
1 − 

1
μ

⎞
⎟
⎠
 ,

which is independent of x.

 8. Consider the situation shown in figure (18-W7). A plane
mirror is fixed at a height h above the bottom of a beaker
containing water (refractive index μ) up to a height d.
Find the position of the image of the bottom formed by
the mirror.

Solution : The bottom of the beaker appears to be shifted
up by a distance
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            Δt = ⎛⎜
⎝
1 − 

1
μ

⎞
⎟
⎠
 d.

Thus, the apparent distance of the bottom from the

mirror is h − Δt = h − ⎛⎜
⎝
1 − 1

μ
⎞
⎟
⎠
 d = h − d + d

μ
 ⋅ The image is

formed behind the mirror at a distance h − d + d
μ

 ⋅

 9. A beaker contains water up to a height h1 and K.oil above
water up to another height h2. Find the apparent shift
in the position of the bottom of the beaker when viewed
from above. Refractive index of water is μ1 and that of
K.oil is μ2 .

Solution : The apparent shift of the bottom due to the
water is

           Δt1 = ⎛⎜
⎝
1 − 

1
μ1

⎞
⎟
⎠
 h1

and due to the K.oil is

        Δt2 = ⎛⎜
⎝
1 − 

1
μ2

⎞
⎟
⎠
 h2.

The total shift = Δt1 + Δt2 = ⎛⎜
⎝
1 − 

1
μ1

⎞
⎟
⎠
 h1 + ⎛⎜

⎝
1 − 

1
μ2

⎞
⎟
⎠
 h2.

10. Monochromatic light is incident on the plane interface
AB between two media of refractive indices μ1 and
μ2 (μ2 > μ1) at an angle of incidence θ as shown in figure
(18-W8). The angle θ is infinitesimally greater than the
critical angle for the two media so that total internal
reflection takes place. Now, if a transparent slab DEFG
of uniform thickness and of refractive index μ3 is
introduced on the interface (as shown in the figure), show
that for any value of μ3 all light will ultimately be
reflected back into medium II.

Solution : We shall use the symbol −> to mean
“infinitesimally greater than”.

When the slab is not inserted, θ −> θc = sin – 1 (μ1 /μ2)

or, sinθ −> μ1 /μ2.

When the slab is inserted, we have two cases
μ3 ≤ μ1 and μ3 > μ1.

Case I : μ3 ≤ μ1

We have sinθ −> μ1 /μ2 ≥ μ3 /μ2. 

Thus, the light is incident on AB at an angle greater
than the critical angle sin – 1(μ3 /μ2). It suffers total
internal reflection and goes back to medium II.

Case II : μ3 > μ1

sinθ −>  μ 1/μ2 < μ3 /μ2

Thus, the angle of incidence θ may be smaller than the

critical angle sin – 1 (μ3 /μ2) and hence it may enter
medium III. The angle of refraction θ′ is given by (figure
18-W9)

             
sinθ
sinθ′

 = 
μ3

μ2

 … (i)

or, sinθ′ = 
μ2

μ3

 sinθ

−>  
μ2

μ3

 ⋅ 
μ1

μ2

   ⋅

Thus,         sinθ′ −>  
μ1

μ3

 

   or,               θ′ −>  sin – 1 
⎛
⎜
⎝

μ1

μ3

⎞
⎟
⎠
 . … (ii)

As the slab has parallel faces, the angle of refraction at
the face FG is equal to the angle of incidence at the face
DE. Equation (ii) shows that this angle is infinitesimally
greater than the critical angle here. Hence, the light
suffers total internal reflection and falls at the surface
FG at an angle of incidence  θ′. At this face, it will
refract into medium II and the angle of refraction will
be θ as shown by equation (i). Thus, the total light
energy is ultimately reflected back into medium II.

11. A concave mirror of radius 40 cm lies on a horizontal
table and water is filled in it up to a height of 5.00 cm
(figure 18-W10). A small dust particle floats on the water
surface at a point P vertically above the point of contact
of the mirror with the table. Locate the image of the dust
particle as seen from a point directly above it. The
refractive index of water is 1.33.
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Solution :

The ray diagram is shown in figure (18-W11). Let us
first locate the image formed by the concave mirror. Let
us take vertically upward as the negative axis. Then
R   40 cm. The object distance is u   5 cm. Using the
mirror equation,

         
1
u

  
1
v

  
2
R

 

or, 
1
v

  
2
R

  
1
u

  
2

 40 cm
  

1
 5 cm

  
6

40 cm

or, v  6.67 cm.

The positive sign shows that the image P1 is formed
below the mirror and hence, it is virtual. These reflected
rays are refracted at the water surface and go to the
observer. The depth of the point P1 from the surface is
6.67 cm  5.00 cm  11.67 cm.  Due to refraction at the
water surface, the image P1 will be shifted above by a
distance

        11.67 cm 

1  

1
1.33




  2.92 cm.   

Thus, the final image is formed at a point

11.67  2.92 cm  8.75 cm below the water surface.

12. An object is placed 21 cm in front of a concave mirror
of radius of curvature 20 cm. A glass slab of thickness
3 cm and refractive index 1.5 is placed close to the mirror
in the space between the object and the mirror. Find the
position of the final image formed. The distance of the
nearer surface of the slab from the mirror is 10 cm.

Solution :
The situation is shown in figure (18-W12). Because of

the refraction at the two surfaces of the slab, the image
of the object P is formed at P1, shifted towards the mirror
by a distance

      t 

1  

1




  3 cm 


1  

1
1.5




  1 cm.

Thus, the rays falling on the concave mirror are
diverging from P1 which is at 21 cm  1 cm  20 cm from
the mirror. But the radius of curvature is also 20 cm,
hence P1 is at the centre. The rays, therefore, fall
normally on the mirror and hence, retrace their path.
The final image is formed at P itself.

13. The refractive indices of silicate flint glass for
wavelengths 400 nm and 700 nm are 1.66 and 1.61
respectively. Find the minimum angles of deviation of an
equilateral prism made of this glass for light of
wavelength 400 nm and 700 nm.

Solution : The minimum angle of deviation m is given by

        
sin 

A  m

2

sin 
A
2

  

sin 



30  

m

2





sin 30

 2 sin 



30  

m

2



 .

For 400 nm light,

1.66  2 sin 30  m /2

or,     sin30  m /2  0.83  

or, 30  m /2  56

or, m  52.

For 700 nm light,

       1.61  2 sin30  m /2.

This gives m  48.

14. Consider the situation shown in figure (18-W13). Light
from a point source S is made parallel by a convex lens
L. The beam travels horizontally and falls on an
88-88-4 prism (refractive index 1.5) as shown in the
figure. It passes through the prism symmetrically. The
transmitted light falls on a vertical mirror. Through
what angle should the mirror be rotated so that an image
of S is formed on S itself ?

P

1

2
P

P

Figure 18-W11
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Solution : The parallel beam after going through the prism
will be deviated by an angle . If the mirror is also
rotated by this angle , the rays will fall normally on it.
The rays will be reflected back along the same path and
form the image of S on itself.
As the prism is thin, the angle  is given by

              1 A

 1.5  1  4  2.

Thus, the mirror should be rotated by 2.

15. Locate the image formed by refraction in the situation
shown in figure (18-W14). The point C is the centre of
curvature.

Solution : We have,

           
2

v
  

1

u
  

2  1

R
   (i)

Here u   25 cm, R  20 cm, 1  1.0 and 2  1.5.

Putting the values in (i),

      
1.5
v

  
1.0

25 cm
  

1.5  1.0
20 cm

or, 
1.5
v

  
1

40 cm
  

1
25 cm

or, v   100 cm.

As v is negative, the image is formed to the left of the
separating surface at a distance of 100 cm from it.

16. One end of a horizontal cylindrical glass rod   1.5 of
radius 5.0 cm is rounded in the shape of a hemisphere.
An object 0.5 mm high is placed perpendicular to the
axis of the rod at a distance of 20.0 cm from the rounded
edge. Locate the image of the object and find its height.

Solution : Taking the origin at the vertex, u   20.0 cm and

R  5.0 cm.

We have,

        
2

v
  

1

u
  

2  1

R

or, 
1.5
v

  
1

 20.0 cm
  

0.5
5.0 cm

  
1

20 cm

or,    v  30 cm.

The image is formed inside the rod at a distance of 30 cm
from the vertex.

The magnification is m  
1 v
2 u

             
30 cm

 1.5  20 cm
   1.

Thus, the image will be of same height (0.5 mm) as the
object but it will be inverted.

17. There is a small air bubble inside a glass sphere (  1.5)
of radius 10 cm. The bubble is 4.0 cm below the surface
and is viewed normally from the outside (figure 18-W16).
Find the apparent depth of the bubble.

Solution :

The observer sees the image formed due to refraction at
the spherical surface when the light from the bubble
goes from the glass to the air.

Here u   4.0 cm, R   10 cm, 1  1.5  and  2  1.

We have,

      
2

v
  

1

u
  

2  1

R

or,    
1
v

  
1.5

 4.0 cm
  

1  1.5
 10 cm

or,        
1
v

  
0.5

10 cm
  

1.5
4.0 cm

 

or, v   3.0 cm.

Thus, the bubble will apear 3.0 cm below the surface.

18. A parallel beam of light travelling in water (refractive
index  4/3) is refracted by a spherical air bubble of
radius 2 mm situated in water. Assuming the light rays
to be paraxial, (i) find the position of the image due to

25 cm 20 cm

C

= 1.0
= 1.5
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refraction at the first surface and the position of the final
image, and (ii) draw a ray diagram showing the positions
of both the images.

Solution :

The ray diagram is shown in figure 18-W17. The
equation for refraction at a spherical surface is

             
μ2

v
 − 

μ1

u
 = 

μ2 − μ1

R
 ⋅ … (i)

For the first refraction (water to air); μ1 = 1.33, μ2 = 1,
u = ∞, R = + 2 mm.

Thus, 
1
v

 = 
1 − 1.33
2 mm

or, v = − 6 mm.

The negative sign shows that the image I1 is virtual and
forms at 6 mm from the surface of the bubble on the
water side. The refracted rays (which seem to come from
I1) are incident on the farther surface of the bubble. For
this refraction,

         μ1 = 1, μ2 = 1.33, R = − 2 mm.

The object distance is u = − (6 mm + 4 mm) = − 10 mm.
Using equation (i),

       
1.33

v
 + 

1
10 mm

 = 
1.33 − 1
− 2 mm

or, 
1.33

v
 = − 

0.33
2 mm

 − 
1

10 mm

or, v = − 5 mm.

The minus sign shows that the image is formed on
the air side at 5 mm from the refracting surface.

Measuring from the centre of the bubble, the first
image is formed at 8⋅0 mm from the centre and
the second image is formed at 3⋅0 mm from the centre.
Both images are formed on the side from which the
incident rays are coming.

19. Calculate the focal length of the thin lens shown in figure
(18-W18). The points C1 and C2 denote the centres of
curvature and the refractive index is 1.5.

Solution : As is clear from the figure, both the radii of
curvature are positive. Thus, R1 = + 10 cm and
R2 = + 20 cm. The focal length is given by

      
1
f
 = (μ − 1) ⎛⎜

⎝

1
R1

 − 
1
R2

⎞
⎟
⎠
 

 = (1.5 − 1) ⎛⎜
⎝

1
10 cm

 − 
1

20 cm
⎞
⎟
⎠

= 0.5 × 
1

20 cm
  = 

1
40 cm

or, f = 40 cm.

20. A point source S is placed at a distance of 15 cm from
a converging lens of focal length 10 cm on its principal
axis. Where should a diverging mirror of focal length
12 cm be placed so that a real image is formed on the
source itself?

Solution :

The equation for the lens is

             
1
v

 − 
1
u

 = 
1
f
 ⋅ … (i)

Here u = − 15 cm  and  f = + 10 cm.

Using equation (i),

             
1
v

 + 
1

15 cm
 = 

1
10 cm

  
1
v

 = 
1

10 cm
 − 

1
15 cm

 = 
1

30 cm
 

or,  v = 30 cm. 

The positive sign of v shows that the image I1 is formed
to the right of the lens in the figure. The diverging
mirror is to be placed to the right in such a way that
the light rays fall on the mirror perpendicularly. Then
only the rays will retrace their path and form the final
image on the object. Thus, the image I1 formed by the
lens should be at the centre of curvature of the mirror.

� �� �
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We have, LI1  30 cm,

MI1  R  2f  24 cm,

Hence, LM  LI1  MI1  6 cm.

Thus, the mirror should be placed 6 cm to the right of
the  lens.

21. A converging lens of focal length 15 cm and a converging
mirror of focal length 20 cm are placed with their
principal axes coinciding. A point source S is placed on
the principal axis at a distance of 12 cm from the lens
as shown in figure (18-W20). It is found that the final
beam comes out parallel to the principal axis. Find the
separation between the mirror and the lens.

Solution : Let us first locate the image of S formed by the
lens. Here u   12 cm  and  f  15 cm. We have,

            
1
v

  
1
u

  
1
f

or, 
1
v

  
1
f
  

1
u

 

 
1

15 cm
  

1
12 cm

or, v   60 cm.

The negative sign shows that the image is formed to the
left of the lens as suggested in the figure. The image
I1 acts as the source for the mirror. The mirror forms
an image I2 of the source I1. This image I2 then acts as
the source for the lens and the final beam comes out
parallel to the principal axis. Clearly I2 must be at the
focus of the lens. We have,
      I1I2  I1P  PI2  60 cm  15 cm  75 cm. 

Suppose the distance of the mirror from I2 is x cm. For
the reflection from the mirror,
  u  MI1   75  x cm,  v   x cm and f = 20 cm. 

Using           
1
v

  
1
u

  
1
f
 , 

1
x

  
1

75  x
  

1
20

or,            
75  2x
75  x x

  
1
20

or, x 2  35x  1500  0

or,       x  
 35  35  35  4  1500

2
 

This gives x  25 or  60.

As the negative sign has no physical meaning, only
positive sign should be taken. Taking x  25, the
separation between the lens and the mirror is
15  25 cm  40 cm.

22. A biconvex thin lens is prepared from glass   1.5, the
two bounding surfaces having equal radii of 25 cm each.
One of the surfaces is silvered from outside to make it
reflecting. Where should an object be placed before this
lens so that the image is formed on the object itself ?

Solution :

Refer to figure (18-W21). The object is placed at O. A
ray OA starting from O gets refracted into the glass at
the first surface and hits the silvered surface along AB.
To get the image at the object, the rays should retrace
their path after reflection from the silvered surface. This
will happen only if AB falls normally on the silvered
surface. Thus, AB should appear to come from the centre
C2 of the second surface. Thus, due to the refraction at
the first surface, a virtual image of O is formed at C2.
For this case,

 v  PC2   25 cm,  R  PC1   25 cm, 1  1,  2  1.5.

We have,

        
2

v
  

1

u
  

2  1

R

or, 
1.5

 25 cm
  

1
u

  
1.5  1
25 cm

or, 
1
u

   
1.5

25 cm
  

0.5
25 cm

or, u   12.5 cm.

Thus, the object should be placed at a distance of 12.5 cm
from the lens.

23. A concavo-convex (figure 18-W22) lens made of glass
(  1.5) has surfaces of radii 20 cm and 60 cm.
(a) Locate the image of an object placed 80 cm to the left
of the lens along the principal axis. (b) A similar lens is
placed coaxially at a distance of 160 cm right to it. Locate
the position of the image.

� �� ��

�
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Solution : The focal length of the lens is given by

      
1
f
    1 



1
R1

  
1
R2




 

        1.5  1 


1
20 cm

  
1

60 cm



  

1
60 cm

 

or, f  60 cm.

(a) For the image formed by the first lens, u   80 cm
so that

            
1
v

  
1
u

  
1
f

  
1

 80 cm
  

1
60 cm

  
1

240 cm
 

or, v  240 cm.

The first image I1 would form 240 cm to the right of the
first lens. 

(b) The second lens intercepts the converging beam as
suggested by the figure. The image I1 acts as a virtual
source for the second lens. For the image formed by this
lens, u  240 cm  160 cm   80 cm so that

      
1
v

  
1
u

  
1
f

       
1

80 cm
  

1
60 cm

  
7

240 cm

or, v  34.3 cm.

The final image is formed 34.3 cm to the right of the
second lens.

24. A thin lens   1.5 of focal length  12 cm is immersed
in water (  1.33). What is its new focal length ?

Solution : We have, 
1
f
  




2

1

  1



 


1
R1

  
1
R2




 .

When the lens is placed in air, f  12 cm. Thus,

1
12 cm

  1.5  1 


1
R1

  
1
R2





 

or,    
1
R1

  
1
R2

  
1

6 cm
 

If the focal length becomes f  when placed in water,

1
f 

  


1.5
1.33

  1

 


1
R1

  
1
R2





 

      
1
8

  
1

6 cm
  

1
48 cm

       or,  f   48 cm.

25. A long cylindrical tube containing water is closed by an
equiconvex lens of focal length 10 cm in air. A point
source is placed along the axis of the tube outside it at
a distance of 21 cm from the lens. Locate the final image
of the source. Refractive index of the material of the lens
 1.5 and that of water  1.33.

Solution :

The light from the source S gets refracted at the
air–glass interface and then at the glass–water interface.
Referring to the figure (18-W23), let us take vertically
downward as the positive direction of the axis.

If the image due to the refraction at the first surface is
formed at a distance v1 from the surface, we have,

             
1.5
v1

  
1
u

  
1.5  1

R
 ,  (i)

where R is the radius of curvature of the surface. As the
lens is equiconvex, the radius of curvature of the second
surface is R. Also, the image formed by the first surface
acts as the object for the second surface. Thus,

1.33
v

  
1.5
v1

  
1.33  1.5

R
   (ii)

Adding (i) and (ii),

1.33
v

  
1
u

  
1
R

 0.5  0.17  
0.67

R

or, 
1.33

v
  

1
 21 cm

  
0.67

R
 

or,          
4
3v

  
1

21 cm
  

2
3R

   or,          
1
v

  
1

2 R
  

1
28 cm

 (iii)

The focal length of the lens in air is 10 cm. Using 

         
1
f
    1 



1
R1

  
1
R2




 , 

1
10 cm

  1.5  1 


1
R

  
1
R




Figure 18-W22
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or,         R  10 cm.
Thus, by (iii),

           
1
v

  
1

20 cm
  

1
28 cm

 

or, v  70 cm.

The image is formed 70 cm inside the tube.

26. A slide projector produces 500 times enlarged image of
a slide on a screen 10 m away. Assume that the projector
consists of a single convex lens used for magnification.
If the screen is moved 2.0 m closer, by what distance
should the slide be moved towards or away from the lens
so that the image remains focussed on the screen ?

Solution : In the first case, v  10 m  and  
v
u

   500.

Thus, u   
v

500
   

1
50

 m   2.0 cm. The focal length f is

given by

        
1
f
  

1
v

  
1
u

  
1

10 m
  

1
2.0 cm

 

If the screen is moved 2.0 m closer, v  8.0 m. The object
distance u is given by

      
1
v

  
1
u

  
1
f

or,    
1
u

  
1
v

  
1
f
  

1
8.0 m

  
1

10 m
  

1
2.0 cm

 
1

40 m
  

1
2.0 cm

      
1

2.0 cm
 

1  

1
2000





or, u   2.0 cm 

1  

1
2000





 1

  2.0 cm 

1  

1
2000




   2.0 cm  

1
1000

 cm.

Thus, the slide should be taken 1
1000

 cm away from the lens.

27. A convex lens focusses an object 10 cm from it on a screen
placed 10 cm away from it. A glass plate (  1.5) of
thickness 1.5 cm is inserted between the lens and the
screen. Where should the object be placed so that its
image is again focussed on the screen ?

Solution :

     
1
f
  

1
v

  
1
u

  
1

10 cm
  


1
10 cm




  

1
5 cm

 

So, the focal length of the lens is 5 cm. The situation
with the glass plate inserted is shown in figure (18-W24).
The object is placed at O. The lens would form the image
at I1 but the glass plate intercepts the rays and forms
the image I on the screen.

The shift I1I  t 

1  

1





 1.5 cm 

1  

1
1.5




  0.5 cm.

Thus, the lens forms the image at a distance 9.5 cm
from itself. Using 

         
1
v

  
1
u

  
1
f
 ,

1
u

  
1
v

  
1
f
  

1
9.5 cm

  
1

5 cm

 or,             u  10.6 cm.

Thus, the object should be placed at a distance of 10.6 cm
from the lens.

28. Two convex lenses of focal length 20 cm each are placed
coaxially with a separation of 60 cm between them. Find
the image of a distant object formed by the combination
by (a) using thin lens formula separately for the two
lenses and (b) using the equivalent lens. Note that
although the combination forms a real image of a distant
object on the other side, it is equivalent to a diverging
lens as far as the location of the final image is concerned.

Solution :

(a) The first image is formed at the focus of the first
lens. This is at 20 cm from the first lens and hence at
u   40 cm from the second. Using the lens formula for
the second lens,

        
1
v

  
1
u

  
1
f
   

1
40 cm

  
1

20 cm

or,        v  40 cm. 

The final image is formed 40 cm to the right of the
second lens.

(b) The equivalent focal length is

           
1
F

  
1
f1

  
1
f2

  
d

f1 f2
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       = 
1

20 cm
 + 

1
20 cm

 − 
60 cm

(20 cm) 2 

or,        F = − 20 cm.

It is a divergent lens. It should be kept at a distance 

D = 
dF
f1

 behind  the  second  lens.

Here,    D = 
(60 cm) (− 20 cm)

20 cm
 = − 60 cm.

Thus, the equivalent divergent lens should be placed at
a distance of 60 cm to the right of the second lens. The
final image is formed at the focus of this divergent lens
i.e., 20 cm to the left of it. It is, therefore, 40 cm to the
right of the second lens.

QUESTIONS FOR SHORT ANSWER

 1. Is the formula “Real depth/Apparent depth = μ’’ valid if
viewed from a position quite away from the normal ?

 2. Can you ever have a situation in which a light ray goes
undeviated through a prism ?

 3. Why does a diamond shine more than a glass piece cut
to the same shape ?

 4. A narrow beam of light passes through a slab obliquely
and is then received by an eye (figure 18-Q1). The index
of refraction of the material in the slab fluctuates slowly
with time. How will it appear to the eye? The twinkling
of stars has a similar explanation.

 5. Can a plane mirror ever form a real image ?
 6. If a piece of paper is placed at the position of a virtual

image of a strong light source, will the paper burn after
sufficient time ? What happens if the image is real?
What happens if the image is real but the source is
virtual ?

 7. Can a virtual image be photographed by a camera ?
 8. In motor vehicles, a convex mirror is attached near the

driver’s seat to give him the view of the traffic behind.
What is the special function of this convex mirror which
a plane mirror can not do ?

 9. If an object far away from a convex mirror moves
towards the mirror, the image also moves. Does it move
faster, slower or at the same speed as compared to the
object ?

10. Suppose you are inside the water in a swimming pool
near an edge. A friend is standing on the edge. Do you
find your friend taller or shorter than his usual height ?

11. The equation of refraction at a spherical surface is

            
μ2

v
 − 

μ1

u
 = 

μ2 − μ1

R
 ⋅

Taking R = ∞, show that this equation leads to the
equation

          
Real  depth

Apparent  depth
 = 

μ2

μ1

for refraction at a plane surface.

12. A thin converging lens is formed with one surface convex
and the other plane. Does the position of image depend
on whether the convex surface or the plane surface faces
the object ?

13. A single lens is mounted in a tube. A parallel beam
enters the tube and emerges out of the tube as a
divergent beam. Can you say with certainty that there
is a diverging lens in the tube ?

14. An air bubble is formed inside water. Does it act as a
converging lens or a diverging lens ?

15. Two converging lenses of unequal focal lengths can be
used to reduce the aperture of a parallel beam of light
without loosing the energy of the light. This increases
the intensity. Describe how the converging lenses should
be placed to do this.

16. If a spherical mirror is dipped in water, does its focal
length change ?

17. If a thin lens is dipped in water, does its focal length
change ?

18. Can mirrors give rise to chromatic aberration ?

19. A laser light is focussed by a converging lens. Will there
be a significant chromatic aberration ?

OBJECTIVE I

 1. A point source of light is placed in front of a plane
mirror.
(a) All the reflected rays meet at a point when produced
backward.

(b) Only the reflected rays close to the normal meet at
a point when produced backward.
(c) Only the reflected rays making a small angle with

Figure 18-Q1
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the mirror meet at a point when produced backward.
(d) Light of different colours make different images.

 2. Total internal reflection can take place only if
(a) light goes from optically rarer medium (smaller
refractive index) to optically denser medium
(b) light goes from optically denser medium to rarer
medium
(c) the refractive indices of the two media are close to
each other
(d) the refractive indices of the two media are widely
different.

 3. In image formation from spherical mirrors, only paraxial
rays are considered because they
(a) are easy to handle geometrically
(b) contain most of the intensity of the incident light
(c) form nearly a point image of a point source
(d) show minimum dispersion effect.

 4. A point object is placed at a distance of 30 cm from a
convex mirror of focal length 30 cm. The image will form
at 
(a) infinity           (b) pole
(c) focus             (d) 15 cm behind the mirror.

 5. Figure (18-Q2) shows two rays A and B being reflected
by a mirror and going as A′  and  B′. The mirror
(a) is plane        (b) is convex
(c) is concave      (d) may be any spherical mirror.

 6. The image formed by a concave mirror
(a) is always real    (b) is always virtual
(c) is certainly real if the object is virtual
(d) is certainly virtual if the object is real.

 7. Figure (18-Q3) shows three transparent media of
refractive indices μ1,  μ2  and  μ3. A point object O is
placed in the medium μ2. If the entire medium on the
right of the spherical surface has refractive index μ1, the
image forms at O′. If this entire medium has refractive
index μ3, the image forms at O′′. In the situation shown,
(a) the image forms between O′  and  O′′
(b) the image forms to the left of O′
(c) the image forms to the right of O′′ 
(d) two images form, one at O′ and the other at O′′.

 8. Four modifications are suggested in the lens formula to
include the effect of the thickness t of the lens. Which
one is likely to be correct ?

(a) 
1
v

 − 
1
u

 = 
t

uf
            (b) 

t
v 2 − 

1
u

 = 
1
f
 

(c) 
1

v − t
 − 

1
u + t

 = 
1
f
       (d) 

1
v

 − 
1
u

 + 
t

uv
 = 

t
f
 ⋅

 9. A double convex lens has two surfaces of equal radii R
and refractive index m = 1.5. We have,
(a) f = R/2   (b) f = R   (c) f = − R   (d) f = 2R.

10. A point source of light is placed at a distance of 2 f from
a converging lens of focal length f. The intensity on the
other side of the lens is maximum at a distance
(a) f  (b) between f and 2 f  (c) 2 f  (d) more than 2 f.

11. A parallel beam of light is incident on a converging lens
parallel to its principal axis. As one moves away from
the lens on the other side on its principal axis, the
intensity of light
(a) remains constant     (b) continuously increases
(c) continuously decreases
(d) first increases then decreases.

12. A symmetric double convex lens is cut in two equal parts
by a plane perpendicular to the principal axis. If the
power of the original lens was 4 D, the power of a cut-
lens will be
(a) 2 D      (b) 3 D      (c) 4 D      (d) 5 D.

13. A symmetric double convex lens is cut in two equal parts
by a plane containing the principal axis. If the power of
the original lens was 4 D, the power of a divided lens
will be
(a) 2 D      (b) 3 D      (c) 4 D      (d) 5 D.

14. Two concave lenses L1  and L2 are kept in contact with
each other. If the space between the two lenses is filled
with a material of smaller refractive index, the
magnitude of the focal length of the combination
(a) becomes undefined      (b) remains unchanged 
(c) increases            (d) decreases.

15. A thin lens is made with a material having refractive
index μ = 1.5. Both the sides are convex. It is dipped in
water (μ = 1.33). It will behave like
(a) a convergent lens       (b) a divergent lens
(c) a rectangular slab       (d) a prism.

16. A convex lens is made of a material having refractive
index 1.2. Both the surfaces of the lens are convex. If it
is dipped into water (μ = 1.33), it will behave like
(a) a convergent lens        (b) a divergent lens
(c) a rectangular slab        (d) a prism.

17. A point object O is placed on the principal axis of a
convex lens of focal length f = 20 cm at a distance of
40 cm to the left of it. The diameter of the lens is 10
cm. An eye is placed 60 cm to right of the lens and a
distance h below the principal axis. The maximum value
of h to see the image is 
(a) 0      (b) 2.5 cm     (c) 5 cm     (d) 10 cm.

18. The rays of different colours fail to converge at a point
after going through a converging lens. This defect is
called
(a) spherical aberration   (b) distortion
(c) coma             (d) chromatic aberration.

�

�

�

�
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OBJECTIVE II

 1. If the light moving in a straight line bends by a small
but fixed angle, it may be a case of
(a) reflection            (b) refraction
(c) diffraction             (d) dispersion.

 2. Mark the correct options.
(a) If the incident rays are converging, we have a real
object.
(b) If the final rays  are converging, we have a real
image.
(c) The image of a virtual object is called a virtual
image.
(d) If the image is virtual, the corresponding object is
called a virtual object.

 3. Which of the following (referred to a spherical mirror)
do (does) not depend on whether the rays are paraxial
or not ?
(a) Pole              (b) Focus 
(c) Radius of curvature    (d) Principal axis

 4. The image of an extended object, placed perpendicular
to the principal axis of a mirror, will be erect if
(a) the object and the image are both real
(b) the object and the image are both virtual
(c) the object is real but the image is virtual
(d) the object is virtual but the image is real.

 5. A convex lens forms a real image of a point object placed
on its principal axis. If the upper half of the lens is
painted black,
(a) the image will be shifted downward
(b) the image will be shifted upward
(c) the image will not be shifted
(d) the intensity of the image will decrease.

 6. Consider three converging lenses L1, L2  and  L3 having
identical geometrical construction. The index of
refraction of L1  and  L2 are μ1  and  μ2 respectively. The
upper half of the lens L3 has a refractive index μ1 and
the lower half has μ2 (figure 18-Q3). A point object O is
imaged at O1 by the lens L1 and at O2 by the lens L2

placed in same position. If L3 is placed at the same place,
(a) there will be an image at O1

(b) there will be an image at O2.
(c) the only image will form somewhere between
O1 and O2

(d) the only image will form away from O2.

 7. A screen is placed at a distance 40 cm away from an
illuminated object. A converging lens is placed between
the source and the screen and it is attempted to form
the image of the source on the screen. If no position
could be found, the focal length of the lens
(a) must be less than 10 cm
(b) must be greater than 10 cm
(c) must not be greater than 20 cm
(d) must not be less than 10 cm.

EXERCISES

 1. A concave mirror having a radius of curvature 40 cm is
placed in front of an illuminated point source at a
distance of 30 cm from it. Find the location of the image.

 2. A concave mirror forms an image of 20 cm high object
on a screen placed 5.0 m away from the mirror. The
height of the image is 50 cm. Find the focal length of
the mirror and the distance between the mirror and the
object.

 3. A concave mirror has a focal length of 20 cm. Find the
position or positions of an object for which the image-
size is double of the object-size.

 4. A 1 cm object is placed perpendicular to the principal
axis of a convex mirror of focal length 7.5 cm. Find its
distance from the mirror if the image formed is 0.6 cm
in size.

 5. A candle flame 1.6 cm high is imaged in a ball bearing
of diameter 0.4 cm. If the ball bearing is 20 cm away
from the flame, find the location and the height of the
image.

 6. A 3 cm tall object is placed at a distance of 7.5 cm from
a convex mirror of focal length 6 cm. Find the location,
size and nature of the image.

 7. A U-shaped wire is placed before a concave mirror
having radius of curvature 20 cm as shown in figure
(18-E1). Find the total length of the image.

 8. A man uses a concave mirror for shaving. He keeps his
face at a distance of 25 cm from the mirror and gets an
image which is 1.4 times enlarged. Find the focal length
of the mirror.
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 9. Find the diameter of the image of the moon formed by
a spherical concave mirror of focal length 7.6 m. The
diameter of the moon is 3450 km and the distance
between the earth and the moon is 3.8 × 10 5 km.

10. A particle goes in a circle of radius 2.0 cm.  A concave
mirror of focal length 20 cm is placed with its principal
axis passing through the centre of the circle and
perpendicular to its plane. The distance between the pole
of the mirror and the centre of the circle is 30 cm.
Calculate the radius of the circle formed by the image.

11. A concave mirror of radius R is kept on a horizontal
table (figure 18-E2). Water (refractive index = μ) is
poured into it up to a height h. Where should an object
be placed so that its image is formed on itself ?

12. A point source S is placed midway between two
converging mirrors having equal focal length f as shown
in figure (18-E3). Find the values of d for which only
one image is formed.

13. A converging mirror M1, a point source S and a diverging
mirror M2 are arranged as shown in figure (18-E4). The
source is placed at a distance of 30 cm from M1. The
focal length of each of the mirrors is 20 cm. Consider
only the images formed by a maximum of two reflections.
It is found that one image is formed on the source itself.
(a) Find the distance between the two mirrors. (b) Find
the location of the image formed by the single reflection
from M2 .

14. A light ray falling at an angle of 45° with the surface
of a clean slab of ice of thickness 1.00 m is refracted
into it at an angle of 30°. Calculate the time taken by
the light rays to cross the slab. Speed of light in vacuum
= 3 × 10 8 m s−1.

15. A pole of length 1.00 m stands half dipped in a
swimming pool with water level 50.0 cm higher than the
bed. The refractive index of water is 1.33 and sunlight
is coming at an angle of 45° with the vertical. Find the
length of the shadow of the pole on the bed.

16. A small piece of wood is floating on the surface of a
2.5 m deep lake. Where does the shadow form on the
bottom when the sun is just setting? Refractive index of
water = 4/3.

17. An object P is focussed by a microscope M. A glass slab
of thickness 2.1 cm is introduced between P and M. If
the refractive index of the slab is 1.5, by what distance
should the microscope be shifted to focus the object
again ?

18. A vessel contains water up to a height of 20 cm and
above it an oil up to another 20 cm. The refractive
indices of the water and the oil are 1.33 and 1.30
respectively. Find the apparent depth of the vessel when
viewed from above.

19. Locate the image of the point P as seen by the eye in
the figure (18-E5).

20. k transparent slabs are arranged one over another. The
refractive indices of the slabs are μ1, μ2, μ3, … μk and the
thicknesses are t1, t2, t3, … tk . An object is seen through
this combination with nearly perpendicular light. Find
the equivalent refractive index of the system which will
allow the image to be formed at the same place.

21. A cylindrical vessel of diameter 12 cm contains 800π cm 3

of water. A cylindrical glass piece of diameter 8.0 cm
and height 8.0 cm is placed in the vessel. If the bottom
of the vessel under the glass piece is seen by the paraxial
rays (see figure 18-E6), locate its image. The index of
refraction of glass is 1.50 and that of water is 1.33.

�

	




Figure 18-E2

�

� � �

Figure 18-E3

�

�
 �


Figure 18-E4

���������	

������
��	

���������	

�����

����


�����




�����	

�����	

�����	

Figure 18-E5

� � � � �

� � 	 


� � � � 	 
 �

� � � 	 
 �

Figure 18-E6

Geometrical Optics 413



22. Consider the situation in figure (18-E7). The bottom of
the pot is a reflecting plane mirror, S is a small fish
and T is a human eye. Refractive index of water is μ.
(a) At what distance(s) from itself will the fish see the
image(s) of the eye ? (b) At what distance(s) from itself
will the eye see the image(s) of the fish.

23. A small object is placed at the centre of the bottom of
a cylindrical vessel of radius 3 cm and height 4 cm filled
completely with water. Consider the ray leaving the
vessel through a corner. Suppose this ray and the ray
along the axis of the vessel are used to trace the image.
Find the apparent depth of the image and the ratio of
real depth to the apparent depth under the assumptions
taken. Refractive index of water = 1.33.

24. A cylindrical vessel, whose diameter and height both are
equal to 30 cm, is placed on a horizontal surface and a
small particle P is placed in it at a distance of 5.0 cm
from the centre. An eye is placed at a position such that
the edge of the bottom is just visible (see figure 18-E8).
The particle P is in the plane of drawing. Up to what
minimum height should water be poured in the vessel
to make the particle P visible ?

25. A light ray is incident at an angle of 45° with the normal
to a √2 cm thick plate (μ = 2.0). Find the shift in the
path of the light as it emerges out from the plate.

26. An optical fibre (μ = 1.72) is surrounded by a glass
coating (μ = 1.50). Find the critical angle for total
internal reflection at the fibre-glass interface.

27. A light ray is incident normally on the face AB of a
right-angled prism ABC (μ = 1.50) as shown in figure
(18-E9). What is the largest angle φ for which the light
ray is totally reflected at the surface AC ?

28. Find the maximum angle of refraction when a light ray
is refracted from glass (μ = 1.50)  to air.

29. Light is incident from glass (μ = 1.5) to air. Sketch the
variation of the angle of deviation δ with the angle of
incident i for 0 < i < 90°.

30. Light is incident from glass (μ = 1.50) to water (μ = 1.33).
Find the range of the angle of deviation for which there
are two angles of incidence.

31. Light falls from glass (μ = 1.5) to air. Find the angle of
incidence for which the angle of deviation is 90°.

32. A point source is placed at a depth h below the surface
of water (refractive index = μ). (a) Show that light
escapes through a circular area on the water surface
with its centre directly above the point source. (b) Find
the angle subtended by a radius of the area on the
source.

33. A container contains water up to a height of 20 cm and
there is a point source at the centre of the bottom of the
container. A  rubber ring of radius r floats centrally on
the water. The ceiling of the room is 2.0 m above the
water surface. (a) Find the radius of the shadow of the
ring formed on the ceiling if r = 15 cm. (b) Find the
maximum value of r for which the shadow of the ring
is formed on the ceiling. Refractive index of water
= 4/3.

34. Find the angle of minimum deviation for an equilateral
prism made of a material of refractive index 1.732. What
is the angle of incidence for this deviation ?

35. Find the angle of deviation suffered by the light ray
shown in figure (18-E10). The refractive index μ = 1.5
for the prism material.

36. A light ray, going through a prism with the angle of
prism 60°, is found to deviate by 30°. What limit on the
refractive index can be put from these data ?

37. Locate the image formed by refraction in the situation
shown in figure (18-E11).

38. A spherical surface of radius 30 cm separates two
transparent media A and B with refractive indices 1.33
and 1.48 respectively. The medium A is on the convex
side of the surface. Where should a point object be placed
in medium A so that the paraxial rays become parallel
after refraction at the surface ?
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39. Figure (18-E12) shows a transparent hemisphere of
radius 3.0 cm made of a material of refractive index 2.0.
(a) A narrow beam of parallel rays is incident on the
hemisphere as shown in the figure. Are the rays totally
reflected at the plane surface ? (b) Find the image
formed by the refraction at the first surface. (c) Find the
image formed by the reflection or by the refraction at
the plane surface. (d) Trace qualitatively the final rays
as they come out of the hemisphere.

40. A small object is embedded in a glass sphere   1.5 of
radius 5.0 cm at a distance 1.5 cm left to the centre.
Locate the image of the object as seen by an observer
standing (a) to the left of the sphere and (b) to the right
of the sphere.

41. A biconvex thick lens is constructed with glass  = 1.50).
Each of the surfaces has a radius of 10 cm and the
thickness at the middle is 5 cm. Locate the image of an
object placed far away from the lens.

42. A narrow pencil of parallel light is incident normally on
a solid transparent sphere of radius r. What should be
the refractive index if the pencil is to be focussed (a) at
the surface of the sphere, (b) at the centre of the sphere.

43. One end of a cylindrical glass rod   1.5 of radius
1.0 cm is rounded in the shape of a hemisphere. The rod
is immersed in water   4/3 and an object is placed
in the water along the axis of the rod at a distance of
8.0 cm from the rounded edge. Locate the image of the
object.

44. A paperweight   1.5 in the form of a hemisphere of
radius 3.0 cm is used to hold down a printed page. An
observer looks at the page vertically through the
paperweight. At what height above the page will the
printed letters near the centre appear to the observer ?

45. Solve the previous problem if the paperweight is
inverted at its place so that the spherical surface touches
the paper.

46. A hemispherical portion of the surface of a solid glass
sphere (  1.5) of radius r is silvered to make the inner
side reflecting. An object is placed on the axis of the
hemisphere at a distance 3r from the centre of the
sphere. The light from the object is refracted at the
unsilvered part, then reflected from the silvered part
and again refracted at the unsilvered part. Locate the
final image formed.

47. The convex surface of a thin concavo-convex lens of glass
of refractive index 1.5 has a radius of curvature 20 cm.

The concave surface has a radius of curvature 60 cm.
The convex side is silvered and placed on a horizontal
surface as shown in figure (18-E13). (a) Where should a
pin be placed on the axis so that its image is formed at
the same place ? (b) If the concave part is filled with
water (  4/3), find the distance through which the pin
should be moved so that the image of the pin again
coincides with the pin.

48. A double convex lens has focal length 25 cm. The radius
of curvature of one of the surfaces is double of the other.
Find the radii, if the refractive index of the material of
the lens is 1.5.

49. The radii of curvature of a lens are + 20 cm and + 30 cm.
The material of the lens has a refracting index 1.6. Find
the focal length of the lens (a) if it is placed in air, and
(b) if it is placed in water (  1.33).

50. Lenses are constructed by a material of refractive index
1.50. The magnitude of the radii of curvature are 20 cm
and 30 cm. Find the focal lengths of the possible lenses
with the above specifications.

51. A thin lens made of a material of refractive index 2 has
a medium of refractive index 1 on one side and a
medium of refractive index 3 on the other side. The lens
is biconvex and the two radii of curvature have equal
magnitude  R. A beam of light travelling parallel to the
principal axis is incident on the lens. Where will the
image be formed if the beam is incident from (a) the
medium  and (b) from the medium 3 ?

52. A convex lens has a focal length of 10 cm. Find the
location and nature of the image if a point object is
placed on the principal axis at a distance of (a) 9.8 cm,
(b) 10.2 cm from the lens.

53. A slide projector has to project a 35 mm slide
35 mm  23 mm on a 2 m  2 m screen at a distance of
10 m from the lens. What should be the focal length of
the lens in the projector ?

54. A particle executes a simple harmonic motion of
amplitude 1.0 cm along the principal axis of a convex
lens of focal length 12 cm. The mean position of
oscillation is at 20 cm from the lens. Find the amplitude
of oscillation of the image of the particle.

55. An extended object is placed at a distance of 5.0 cm from
a convex lens of focal length 8.0 cm. (a) Draw the ray
diagram (to the scale) to locate the image and from this,
measure the distance of the image from the lens.
(b) Find the position of the image from the lens formula
and see how close the drawing is to the correct result.

56. A pin of length 2.00 cm is placed perpendicular to the
principal axis of a converging lens. An inverted image
of size 1.00 cm is formed at a distance of 40.0 cm from
the pin. Find the focal length of the lens and its distance
from the pin.

45°
air

= 2.0

3.0 cm
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57. A convex lens produces a double size real image when
an object is placed at a distance of 18 cm from it. Where
should the object be placed to produce a triple size real
image ?

58. A pin of length 2.0 cm lies along the principal axis of a
converging lens, the centre being at a distance of 11 cm
from the lens. The focal length of the lens is 6 cm. Find
the size of the image.

59. The diameter of the sun is 1.4 × 10 9 m and its distance
from the earth is 1.5 × 10 11 m. Find the radius of the
image of the sun formed by a lens of focal length 20 cm.

60. A 5.0 diopter lens forms a virtual image which is 4 times
the object placed perpendicularly on the principal axis
of the lens. Find the distance of the object from the lens.

61. A diverging lens of focal length 20 cm and a converging
mirror of focal length 10 cm are placed coaxially at a
separation of 5 cm. Where should an object be placed so
that a real image is formed at the object itself ?

62. A converging lens of focal length 12 cm and a diverging
mirror of focal length 7.5 cm are placed 5.0 cm apart
with their principal axes coinciding. Where should an
object be placed so that its image falls on itself ?

63. A converging lens and a diverging mirror are placed at
a separation of 15 cm. The focal length of the lens is
25 cm and that of the mirror is 40 cm. Where should a
point source be placed between the lens and the mirror
so that the light, after getting reflected by the mirror
and then getting transmitted by the lens, comes out
parallel to the principal axis ?

64. A converging lens of focal length 15 cm and a converging
mirror of focal length 10 cm are placed 50 cm apart with
common principal axis. A point source is placed in
between the lens and the mirror at a distance of 40 cm
from the lens. Find the locations of the two images
formed.

65. Consider the situation described in the previous
problem. Where should a point source be placed on the
principal axis so that the two images form at the same
place ?

66. A converging lens of focal length 15 cm and a converging
mirror of focal length 10 cm are placed 50 cm apart. If
a pin of length 2.0 cm is placed 30 cm from the lens
farther away from the mirror, where will the final image
form and what will be the size of the final image ?

67. A point object is placed on the principal axis of a convex
lens (f = 15 cm) at a distance of 30 cm from it. A glass
plate (μ = 1.50) of thickness 1 cm is placed on the other
side of the lens perpendicular to the axis. Locate the
image of the point object.

68. A convex lens of focal length 20 cm and a concave lens
of focal length 10 cm are placed 10 cm apart with their
principal axes coinciding. A beam of light travelling
parallel to the principal axis and having a beam
diameter 5.0 mm, is incident on the combination. Show
that the emergent beam is parallel to the incident one.
Find the beam diameter of the emergent beam.

69. A diverging lens of focal length 20 cm and a converging
lens of focal length 30 cm are placed 15 cm apart with
their principal axes coinciding. Where should an object

be placed on the principal axis so that its image is
formed at infinity ?

70. A 5 mm high pin is placed at a distance of 15 cm from
a convex lens of focal length 10 cm. A second lens of
focal length 5 cm is placed 40 cm from the first lens and
55 cm from the pin. Find (a) the position of the final
image, (b) its nature and (c) its size.

71. A point object is placed at a distance of 15 cm from a
convex lens. The image is formed on the other side at a
distance of 30 cm from the lens. When a concave lens is
placed in contact with the convex lens, the image shifts
away further by 30 cm. Calculate the focal lengths of
the two lenses.

72. Two convex lenses, each of focal length 10 cm, are placed
at a separation of 15 cm with their principal axes
coinciding. (a) Show that a light beam coming parallel
to the principal axis diverges as it comes out of the lens
system. (b) Find the location of the virtual image formed
by the lens system of an object placed far away. (c) Find
the focal length of the equivalent lens. (Note that the
sign of the focal length is positive although the lens
system actually diverges a parallel beam incident on it.)

73. A ball is kept at a height h above the surface of a heavy
transparent sphere made of a material of refractive
index μ. The radius of the sphere is R. At t = 0, the ball
is dropped to fall normally on the sphere. Find the speed
of the image formed as a function of time for

t < √⎯⎯2h
g

⋅ Consider only the image by a single refraction.

74. A particle is moving at a constant speed V from a large
distance towards a concave mirror of radius R along its
principal axis. Find the speed of the image formed by
the mirror as a function of the distance x of the particle
from the mirror.

75. A small block of mass m and a  concave mirror of radius
R fitted with a stand lie on a smooth horizontal table
with a separation d between them. The mirror together
with its stand has a mass m. The block is pushed at
t = 0 towards the mirror so that it starts moving towards
the mirror at a constant speed V and collides with it.
The collision is perfectly elastic. Find the velocity of the
image (a) at a time t < d/V, (b) at a time t > d/V.

76. A gun of mass M fires a bullet of mass m with a
horizontal speed V. The gun is fitted with a concave
mirror of focal length f facing towards the receding
bullet. Find the speed of separation of the bullet and the
image just after the gun was fired.

77. A mass m = 50 g is dropped on a vertical spring of spring
constant 500 N m–1 from a height h = 10 cm as shown in
figure (18-E14). The mass sticks to the spring and
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executes simple harmonic oscillations after that. A
concave mirror of focal length 12 cm facing the mass is
fixed with its principal axis coinciding with the line of
motion of the mass, its pole being at a distance of 30 cm
from the free end of the spring. Find the length in which
the image of the mass oscillates.

78. Two concave mirrors of equal radii of curvature R are
fixed on a stand facing opposite directions. The whole
system has a mass m and is kept on a frictionless
horizontal table (figure 18-E15).

    Two blocks A and B, each of mass m, are placed on the
two sides of the stand. At t = 0, the separation between
A and the mirrors is 2 R and also the separation between
B and the mirrors is 2 R. The block B moves towards
the mirror at a speed v. All collisions which take place

are elastic. Taking the original position of the
mirrors–stand system to be x = 0 and X-axis along AB,
find the position of the images of A and B at t =

(a) 
R
v

      (b) 
3 R
v

      (c) 
5 R
v

 ⋅

79. Consider the situation shown in figure (18-E16). The
elevator is going up with an acceleration of 2.00 m s–2

and the focal length of the mirror is 12.0 cm. All the
surfaces are smooth and the pulley is light. The
mass–pulley system is released from rest (with respect
to the elevator) at t = 0 when the distance of B from the
mirror is 42.0 cm. Find the distance between the image
of the block B and the mirror at t = 0.200 s. Take
g = 10 m s–2.

ANSWERS

OBJECTIVE I

 1. (a)  2. (b)  3. (c)  4. (d)  5. (a)  6. (c)
 7. (d)  8. (c)  9. (b) 10. (c) 11. (d) 12. (a)
13. (c) 14. (c) 15. (a) 16. (b) 17. (b) 18. (d)

OBJECTIVE II

 1. (a), (b)  2. (b)  3. (a), (c), (d)
 4. (c), (d)  5. (c), (d)  6. (a), (b)
 7. (b)

EXERCISES

 1. 60 cm from the mirror on the side of the object
 2. 1.43 m, 2.0 m
 3. 10 cm or 30 cm from the mirror
 4. 5 cm
 5. 1.0 mm inside the ball bearing, 0.08 mm

 6. 
10
3

 cm from the mirror on the side opposite to the object,

   1.33 cm, virtual and erect
 7. 10 cm
 8. 87.5 cm
 9. 6.9 cm
10. 4.0 cm

11. 
(R − h)

μ
 above the water surface

12. 2 f, 4 f

13. (a) 50 cm (b) 10 cm from the diverging mirror farther
from the converging mirror
14. 5.44 ns
15. 81.5 cm

16. 2.83 m shifted from the position directly below the piece
of the wood.
17. 0.70 cm
18. 30.4 cm
19. 0.2 cm above P

20. 

∑ 
i = 1

k

ti

∑ 
i = 1

k

(ti /μi)

21. 7.1 cm above the bottom

22. (a) H 
⎛
⎜
⎝
μ + 

1
2

⎞
⎟
⎠
 above itself,  H 

⎛
⎜
⎝
μ + 

3
2

⎞
⎟
⎠
 below itself

   (b) H⎛
⎜
⎝
1 + 

1
2μ

⎞
⎟
⎠
 below itself and H⎛

⎜
⎝
1 + 

3
2μ

⎞
⎟
⎠
 below itself

23. 2.25 cm, 1.78
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24. 26.7 cm
25. 0.62 cm

26. sin – 1 
75
86

27. cos – 1 2/3
28. 90
30. 0 to cos – 1 8/9
31. 45
32. (b) sin – 1 1/
33. (a) 2.8 m (b) 22.6 cm
34. 60, 60
35. 2
36.   2
37. 100 cm from the surface on the side of S
38. 266.0 cm away from the separating surface
39. (a) They are reflected

   (b) If the sphere is completed, the image forms at the
      point diametrically opposite to A
   (c) At the mirror image of A in BC
40. (a) 2 cm left to the centre
   (b) 2.65 cm left to the centre

41. 9.1 cm from the farther surface on the other side of the lens
42. (a) 2,

   (b) not possible, it will focus close to the centre if the
      refractive index is large.
43. At infinity
44. No shift is observed
45. 1 cm
46. At the reflecting surface of the sphere
47. (a) 15 cm from the lens on the axis
   (b) 1.14 cm towards the lens
48. 18.75 cm, 37.5 cm
49. (a) 100 cm (b) 300 cm
50.  24 cm,   120 cm

51. (a) 
3R

22  1  3

 (b) 
1R

22  1  3

52. (a) 490 cm on the side of the object, virtual
   (b) 510 cm on the other side, real 
53. 17.2 cm

54. 2.3 cm
56. 8.89 cm, 26.7 cm
57. 16 cm
58. 3 cm
59. 0.93 mm
60. 15 cm
61. 60 cm from the lens further away from the mirror
62. 30 cm from the lens further away from the mirror
63. 1.67 cm from the lens
64. One at 15 cm and the other at 24 cm from the lens away

from the mirror
65. 30 cm from the lens towards the mirror
66. At the object itself, of the same size
67. 30.33 cm from the lens
68. 1.0 cm if the light is incident from the side of concave

lens and 2.5 mm if it is incident from the side of the
convex lens

69. 60 cm from the diverging lens or 210 cm from the
converging lens

70. (a) 10 cm from the second lens further away,
   (b) erect and real, (c) 10 mm
71. 10 cm for convex lens and 60 cm for concave lens
72. (b) 5 cm from the first lens towards the second lens
   (c) 20 cm

73. 
R 2gt




  1 


h  1

2
 gt 2



  R



 2

74. 
R 2V

2 x  R 2

75. (a)  
R 2V

[2d  Vt  R] 2

   (b) V 



1  

R 2

[2Vt  d  R] 2





76. 21  m/MV
77. 1.2 cm

78. (a) x   
2 R
3

 , R (b) x   2 R, 0 (c) x   3 R,  
4 R
3

79. 8.57 cm
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CHAPTER 19

OPTICAL INSTRUMENTS

19.1 THE EYE

Optical instruments are used primarily to assist
the eye in viewing an object. Let us first discuss in
brief the construction of a human eye and the
mechanism by which we see, the most common but
most important experiment we do from the day we
open our eyes.

Figure (19.1) shows schematically the basic
components of an eye. The eye has a nearly spherical
shape of diameter about an inch. The front portion is
more sharply curved and is covered by a transparent
protective membrane called the cornea. It is this
portion which is visible from outside. Behind the
cornea, we have a space filled with a liquid called the
aqueous humor and behind that a crystalline lens.

Between the aqueous humor and the lens, we have
a muscular diaphragm called iris, which has a small
hole in it called pupil. Iris is the coloured part that
we see in an eye. The pupil appears black because any
light falling on it goes into the eye and there is almost
no chance of light coming back to the outside. The
amount of light entering the eye, may be controlled by
varying the aperture of the pupil with the help of the
iris. In low-light condition, the iris expands the pupil
to allow more light to go in. In good light conditions,
it contracts the pupil.

The lens is hard in the middle and gradually
becomes soft towards the outer edge. The curvature of
the lens may be altered by the ciliary muscles to which

it is attached. The light entering the eye forms an
image on the retina which covers the inside of the rear
part of the eyeball. The retina contains about 125
million receptors called rods and cones which receive
the light signal and about one million optic-nerve
fibres which transmit the information to the brain. The
space between the lens and the retina is filled with
another liquid called the vitreous humor.

The aqueous humor and the vitreous humor have
almost same refractive index 1.336. The refractive
index of the material of the lens is different in different
portions but on the average it is about 1.396. When
light enters the eye from air, most of the bending
occurs at the cornea itself because there is a sharp
change in the refractive index. Some additional
bending is done by the lens which is surrounded by a
fluid of somewhat lower refractive index. In normal
conditions, the light should be focussed on the retina.

The cornea–lens–fluid system is equivalent to a
single converging lens whose focal length may be
adjusted by the ciliary muscles. Now onwards, we
shall use the word eye-lens to mean this equivalent
lens.

When the eye is focussed on a distant object, the
ciliary muscles are relaxed so that the focal length of
the eye-lens has its maximum value which is equal to
its distance from the retina. The parallel rays coming
into the eye are then focussed on the retina and we
see the object clearly.

When the eye is focussed on a closer object, the
ciliary muscles are strained and the focal length of the
eye-lens decreases. The ciliary muscles adjust the focal
length in such a way that the image is again formed
on the retina and we see the object clearly. This
process of adjusting focal length is called
accommodation. However, the muscles cannot be
strained beyond a limit and hence, if the object is
brought too close to the eye, the focal length cannot
be adjusted to form the image on the retina. Thus,
there is a minimum distance for the clear vision of an
object.

S u s p e n s o r y  l i g a m e n t

I r i s

A q u e o u s
h u m o u r

P u p i l

C o r n e a

R e t i n a

L e n s

C i l i a r y  m u s c l e

V i t r e o u s  h u m o r
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The nearest point for which the image can be
focussed on the retina, is called the near point of the
eye. The distance of the near point from the eye is
called the least distance for clear vision. This varies
from person to person and with age. At a young age
(say below 10 years), the muscles are strong and
flexible and can bear more strain. The near point may
be as close as 7–8 cm at this age. In old age, the
muscles cannot sustain a large strain and the near
point shifts to large values, say, 1 to 2 m or even more.
We shall discuss about these defects of vision and use
of glasses in a later section. The average value of the
least distance for clear vision for a normal eye is
generally taken to be 25 cm.

19.2 APPARENT SIZE

The size of an object as sensed by us is related to
the size of the image formed on the retina. A larger
image on the retina activates larger number of rods
and cones attached to it and the object looks larger.
As is clear from figure (19.2), if an object is taken away
from the eye, the size of the image on the retina
decreases and hence, the same object looks smaller. It
is also clear from figure (19.2) that the size of the
image on the retina is roughly proportional to the
angle subtended by the object on the eye. This angle
is known as the visual angle and optical instruments
are used to increase this angle artificially in order to
improve the clarity.

Example 19.1

   Two boys, one 52 inches tall and the other 55 inches tall,
are standing at distances 4.0 m and 5.0 m respectively
from an eye. Which boy will appear taller?

Solution : The angle subtended by the first boy on the eye
is

          1  
52 inch
4.0 m

  13 inch/m 

and the angle subtended by the second boy is

            2  
55 inch
5.0 m

  11 inch/m.

As 1 > 2, the first boy will look taller to the eye.

19.3 SIMPLE MICROSCOPE

When we view an object with naked eyes, the
object must be placed somewhere between infinity and
the near point. The maximum angle is subtended on
the eye when the object is placed at the near point.
This angle is (figure 19.3a)

              o  h
D

 ,  (i)

where h is the size of the object and D is the least
distance for clear vision.

This angle can be further increased if a converging
lens of short focal length is placed just in front of the
eye. When a converging lens is used for this purpose,
it is called a simple microscope or a magnifier.

Suppose, the lens has a focal length f which is less
than D and let us move the object to the first focal
point F. The eye receives rays which seem to come
from infinity (figure 19.3b). The actual size of the
image is infinite but the angle subtended on the lens
(and hence on the eye) is

                 h
f
   (ii)

As f < D, equations (i) and (ii) show that  > o.
Hence, the eye perceives a larger image than it could
have had without the microscope. As the image is
situated at infinity, the ciliary muscles are least
strained to focus the final image on the retina. This
situation is known as normal adjustment. We define
magnifying power of a microscope as /o where  is
the angle subtended by the image on the eye when the
microscope is used and o is the angle subtended on
the naked eye when the object is placed at the near
point. This is also known as the angular magnification.
Thus, the magnifying power is the factor by which the
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image on the retina can be enlarged by using the
microscope.

In normal adjustment, the magnifying power of a
simple microscope is, by (i) and (ii),

         m = 
θ
θo

 = 
h/f
h/D

   or,         m = 
D
f

 ⋅ … (19.1)

If f < D, the magnifying power is greater than 1.
The magnifying power can be further increased by

moving the object still closer to the lens. Suppose, we
move the object to a distance uo from the lens such
that the virtual erect image is formed at the near point
(figure 19.3c). Though the eye is strained, it can still
see the image clearly. The distance uo can be calculated
using the lens formula,

               
1
u

 = 
1
v

 − 
1
f
 ⋅

Here v = − D and u = − uo, so that

 
1

− uo
 = − 

1
D

 − 
1
f

   or, 
D
uo

 = 1 + 
D
f

 ⋅ … (iii)

The angle subtended by the image on the lens (and
hence on the eye) is

           θ′ = 
h
uo

 ⋅

The angular magnification or magnifying power in
this case is

            m = 
θ′
θo

 = 
h/uo

h/D
 

           = 
D
uo

 = 1 + D
f

 ⋅ … (19.2)

Equations (19.1) and (19.2) show that the
magnification can be made large by choosing the focal
length f small. However, due to several other
aberrations the image becomes too defective at large
magnification with a simple microscope. Roughly
speaking, a magnification up to 4 is trouble-free.

The magnifying power is written with a unit X.
Thus, if a magnifier produces an angular magnification
of 10, it is called a 10 X magnifier.

19.4 COMPOUND MICROSCOPE

Figure (19.4) shows a simplified version of a
compound microscope and the ray diagram for image
formation. It consists of two converging lenses
arranged coaxially. The one facing the object is called

the objective and the one close to the eye is called the
eyepiece or ocular. The objective has a smaller aperture
and smaller focal length than those of the eyepiece.
The separation between the objective and the eyepiece
can be varied by appropriate screws fixed on the panel
of the microscope.

The object is placed at a distance uo from the
objective which is slightly greater than its focal length
fo. A real and inverted image is formed at a distance
vo on the other side of the objective. This image works
as the object for the eyepiece. For normal adjustment,
the position of the eyepiece is so adjusted that the
image formed by the objective falls in the focal plane
of the eyepiece. The final image is then formed at
infinity. It is erect with respect to the first image and
hence, inverted with respect to the object. The eye is
least strained in this adjustment as it has to focus the
parallel rays coming to it. The position of the eyepiece
can also be adjusted in such a way that the final
virtual image is formed at the near point. The angular
magnification is increased in this case. The ray
diagram in figure (19.4) refers to this case.

In effect, the eyepiece acts as a simple microscope
used to view the first image. Thus, the magnification
by a compound microscope is a two-step process. In
the first step, the objective produces a magnified image
of the given object. In the second step, the eyepiece
produces an angular magnification. The overall
angular magnification is the product of the two.

Magnifying power

Refer to figure (19.4). If an object of height h is
seen by the naked eye, the largest image on the retina
is formed when it is placed at the near point. The angle
formed by the object on the eye in this situation is

             θo = 
h
D

 ⋅ … (i)

h

 u    o

E y e p i e c e

I m a g e

F

O b j e c t i v e

h

 f    o

 v   o  u    e

Figure 19.4
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When a compound microscope is used, the final image
subtends an angle θ′ on the eyepiece (and hence on the
eye) given by

             θ′ = 
h′
ue

 , … (ii)

where h′ is the height of the first image and ue is its
distance from the eyepiece.

The magnifying power of the compound microscope
is, therefore,

        m = 
θ′
θo

 = 
h′
ue

 × 
D
h

 = 




h′
h




 


D
ue




 . … (iii)

Also from figure (19.4),

             
h′
h

 = − 
vo

uo
 = 

v
u

 ⋅ … (iv)

Now, D/ue is the magnifying power of the eyepiece
treated as a simple microscope. Using (19.1) and (19.2),
this is equal to D/fe in normal adjustment (image at
infinity) and 1 + D/fe for the adjustment when the
image is formed at the least distance for clear vision,
i.e., at D. Thus, the magnifying power of the compound
microscope is, by (iii),

            m = 
v
u

 


D
fe





… (19.3)

for normal adjustment and

 m = 
v
u

 

1 + 

D
fe





… (19.4)

for the adjustment when the final image is formed at
the least distance for clear vision.

Using lens equation for the objective,

             
1
v

 − 
1
u

 = 
1
f

   or, 1 − 
v
u

 = 
v
fo

   or, 
v
u

 = 1 − 
v
fo

 ⋅

In general, the focal length of the objective is very
small so that v

fo
 >> 1. Also, the first image is close to

the eyepiece so that v ≈ l, where l is the tube-length
(separation between the objective and the eyepiece).

Thus,     
v
u

 = 1 − 
v
fo

 ≈ − 
v
fo

 ≈ − 
l
fo

 ⋅

If these conditions are satisfied, the magnifying
power of the compound microscope is, by (19.3) and
(19.4),

              m = − 
l
fo

 
D
fe

for normal adjustment and

             m = − 
l
fo

 

1 + 

D
fe





for adjustment for the final image at the least distance
for clear vision.

In an actual compound microscope each of the
objective and the eyepiece consists of combination of
several lenses instead of a single lens as assumed in
the simplified version.

Example 19.2

   A compound microscope has an objective of focal length
1 cm and an eyepiece of focal length 2.5 cm. An object
has to be placed at a distance of 1.2 cm away from the
objective for normal adjustment. (a) Find the angular
magnification. (b) Find the length of the microscope tube.

Solution :
(a) If the first image is formed at a distance v from the
objective, we have

         
1
v

 − 
1

(− 1.2 cm)
 = 

1
1 cm

or,        v = 6 cm.
The angular magnification in normal adjustment is

      m = 
v
u

 
D
fe

 = − 
6 cm

1.2 cm
 ⋅ 25 cm

2.5 cm
 = − 50.

(b) For normal adjustment, the first image must be in
the focal plane of the eyepiece.
The length of the tube is, therefore,

      L = v + fe = 6 cm + 2.5 cm = 8.5 cm.

19.5 TELESCOPES

A microscope is used to view the objects placed
close to it, say, within few centimeters. To look at
distant objects such as a star, a planet or a distant
tree, etc., we use another instrument called a telescope.
We shall describe three types of telescopes which are
in use.

(A) Astronomical Telescope

Figure (19.5) shows the construction and working
of a simplified version of an astronomical telescope.

Q

P O

E

Q

P

Q

P

Figure 19.5
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It consists of two converging lenses placed
coaxially. The one facing the distant object is called
the objective and has a large aperture and a large focal
length. The other is called the eyepiece, as the eye is
placed close to it. It has a smaller aperture and a
smaller focal length. The lenses are fixed in tubes. The
eyepiece tube can slide within the objective tube so
that the separation between the objective and the
eyepiece may be changed.

When the telescope is directed towards a distant
object PQ, the objective forms a real image of the object
in its focal plane. If the point P is on the principal
axis, the image point P′ is at the second focus of the
objective. The rays coming from Q are focussed at
Q′. The eyepiece forms a magnified virtual image
P′′Q′′ of P′Q′. This image is finally seen by the eye. In
normal adjustment, the position is so adjusted that the
final image is formed at infinity. In such a case, the
first image P′Q′ is formed in the first focal plane of
the eyepiece. The eye is least strained to focus this
final image. The image can be brought closer by
pushing the eyepiece closer to the first image.
Maximum angular magnification is produced when the
final image is formed at the near point.

Magnifying Power

Suppose, the objective and the eyepiece have focal
lengths fo  and  fe respectively and the object is situated
at a large distance uo from the objective. The object
PQ in figure (19.5) subtends an angle α on the
objective. Since the object is far away, the angle it
would subtend on the eye, if there were no telescope,
is also essentially α.

As uo is very large, the first image P′Q′ is formed
in the focal plane of the objective.
From the figure,

    | α | = | α′ | ≈ | tanα′ | = 
P′Q′
OP′

 = 
P′Q′

fo
 ⋅ … (i)

The final image P′′Q′′ subtends an angle β on the
eyepiece (and hence on the eye). We have from the
triangle P′Q′E,

          | β | ≈ | tan β | = 
P′Q′
EP′

   or,



 
β
α

 



 = 

fo

EP′
 ⋅ … (ii)

If the telescope is set for normal adjustment so
that the final image is formed at infinity, the first
image P′Q′ must be in the focal plane of the eyepiece.
Then EP′ = fe. Thus, equation (ii) becomes

               



 
β
α

 



 = 

fo

fe
 ⋅ … (iii)

The angular magnification or the magnifying
power of the telescope is defined as

 m = 
angle subtended by the final image on the eye

angle subtended by the object on the unaided eye
 ⋅

The angles β and α are formed on the opposite
sides of the axis. Hence, their signs are opposite and
β/α is negative. Thus,

       m = 
β
α

 = − 



 
β
α

 



 .

Using equation (iii),

m = − 
fo

fe
 ⋅ … (19.5)

If the telescope is adjusted so that the final image
is formed at the near point of the eye, the angular
magnification is further increased. Let us apply the
lens equation to the eyepiece in this case.

Here u = − EP′
and v = − EP′′ = − D.
The lens equation is 

            
1
v

 − 
1
u

 = 
1
f

or,       
1

− D
 − 

1
− EP′

 = 
1
fe

   or,      
1

EP′
 = 

1
fe

 + 
1
D

 = 
fe + D
fe D

 ⋅ … (iv)

By (ii),

        



 
β
α

 



 = 

fo(fe + D)
fe D

 ⋅

The magnification is

     m = 
β
α

 = − 



 
β
α

 




 = − 
fo(fe + D)

fe D
 

    = − 
fo

fe
 



1 + 

fe

D



 . … (19.6)

Length of the Telescope

From figure (19.5), we see that the length of the
telescope is

        L = OP′ + P′E = fo + P′E.

For normal adjustment, P′E = fe so that L = fo + fe.
For adjustment for near point vision, we have, by (iv)
above,

           P′E = 
fe D

fe + D

so that the length is L = fo + 
fe D

fe + D
 ⋅
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(B) Terrestrial Telescope

In an astronomical telescope, the final image is
inverted with respect to the object. This creates some
practical difficulty if the telescope is used to see
earthly objects.

Imagine, how would you feel if you are viewing a
cricket match from the spectator’s gallery using an
astronomical telescope. You would clearly see the turns
and breaks of the ball, but the players would look like
hanging from the field and not standing on the field.

To remove this difficulty, a convex lens of focal
length f is included between the objective and the
eyepiece in such a way that the focal plane of the
objective is a distance 2f away from this lens (figure
19.6). The objective forms the image PQ of a distant
object in its focal plane. The lens L forms an image
PQ which is inverted with respect to PQ. The
eyepiece is adjusted in appropriate position to give the
magnified view of PQ.

The role of the intermediate lens L is only to invert
the image. The magnification produced by it is,
therefore,  1. The magnifying power of a terrestrial
telescope is, therefore, obtained from (19.5) for normal
adjustment and from (19.6) for near point vision by
multiplying by  1 on the right-hand side. Thus, for
normal adjustment,

              m  
fo

fe
   (19.7)

and for final image at near point,

          m  
fo

fe
 



1  

fe

D



 .  (19.8)

To have an inverted image of same size, the object
should be placed at a distance of 2f from a convex lens
of focal length f. Thus, PP  4f in figure (19.6) so that
the length of a terrestrial telescope is fo  4f  ue. For
normal adjustment, ue equals fe so that the length is

          L  fo  4f  fe.

If the final image is formed at the near point,

          ue  
fe D

fe  D

as derived for astronomical telescope. Thus,

        L  fo  4f  
fe D

fe  D
 

(C) Galilean Telescope

Figure (19.7) shows a simple model of Galilean
telescope. A convergent lens is used as the objective
and a divergent lens as the eyepiece. The objective L
would form a real inverted image PQ of a distant
object in its focal plane. The eyepiece intercepts the
converging rays in between. PQ then acts as a virtual
object for the eyepiece. The position of the eyepiece is
so adjusted that the final image is formed at the
desired position. For normal adjustment, the final
image is formed at infinity producing least strain on
the eyes. If the final image is formed at the least
distance of clear vision, the angular magnification is
maximum.

Magnifying Power

Suppose the objective and the eyepiece have focal
lengths fo  and  fe respectively and the object is situated
at a large distance uo from the objective. The object
PQ subtends an angle  on the objective. Since the
object is far away, the angle it would subtend on an
unaided eye is also essentially .

As uo is very large, the first image PQ is formed
in the focal plane of the objective. Thus, from figure
(19.7),

  |  |  |  |  | tan  |  
PQ
OP

  
PQ

fo
   (i)

The final image PQ subtends an angle  on the
eyepiece. If the eye is placed close to the eyepiece, this
is also the angle formed by the final image on the eye.
From the figure,

      |  |  |  |  | tan  |  
PQ
EP
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   or,        



 
β
α

 



 = 

fo

EP′
 ⋅ … (ii)

As β and α are formed on the same side of the
axis, β and α have same sign. Thus,

 
β
α

 = 



 
β
α

 



 .

The angular magnification is, therefore,

          m = 
β
α

 = 



 
β
α

 



 = 

fo

P′E
 ⋅         … (iii)

If the telescope is set for normal adjustment, the
final image P′′Q′′ is formed at infinity. Then
P′E = − fe and the angular magnification is

             m = − 
fo

fe
 ⋅ … (19.9)

Note that the focal length fe is negative because
the eyepiece is a diverging lens. Thus, m is positive as
expected for an erect image. If the final image is
formed at the near point, the magnification is
increased.
    The lens formula is

            
1
v

 − 
1
u

 = 
1
f
 ⋅

For the eyepiece,
          v = − P′′E = − D,  u = P′E

and     f = fe (fe is itself negative).

Thus,

         
1

− D
 − 

1
P′E

 = 
1
fe

   or,
1

P′E
 = − 

1
fe

 − 
1
D

= − 
1
fe

 



1 + 

fe

D



 ⋅ … (iv)

By (iii), the angular magnification is

         m = − 
fo

fe
 



1 + 

fe

D



 ⋅

Length of the Telescope

The length of a Galilean telescope is
        L = OE = OP′ − P′E

= fo − P′E.

For normal adjustment, P′E = − fe and hence the
length of the tube is
            L = fo + fe = fo −  fe .

For the adjustment for near point vision, by (iv),

        P′E = 
− fe D
D + fe

  and  L = fo + 
fe D

D + fe

           = fo − 
 fe D

D −  fe 
 ⋅

19.6 RESOLVING POWER OF A MICROSCOPE
    AND A TELESCOPE

The resolving power of a microscope is defined as
the reciprocal of the distance between two objects
which can be just resolved when seen through the
microscope. It depends on the wavelength λ of the
light, the refractive index µ of the medium between
the object and the objective of the microscope, and the
angle θ subtended by a radius of the objective on one
of the object. It is given by

           R = 
1

∆d
 = 

2µ sinθ
λ

 ⋅

To increase the resolving power, the objective and
the object are kept immersed in oil. This increases µ
and hence R.

The resolving power of a telescope is defined as
the reciprocal of the angular separation between two
distant objects which are just resolved when viewed
through a telescope. It is given by

R = 
1

∆θ
 = 

a
1.22 λ

 ,

where a is the diameter of the objective of the
telescope. That is why, the telescopes with larger
objective aperture (1 m or more) are used in
astronomical studies.

19.7 DEFECTS OF VISION

As described earlier, the ciliary muscles control the
curvature of the lens in the eye and hence can alter
the effective focal length of the system. When the
muscles are fully relaxed, the focal length is maximum.
When the muscles are strained, the curvature of the
lens increases and the focal length decreases. For a
clear vision, the image must be formed on the retina.
The image-distance is, therefore, fixed for clear vision
and it equals the distance of the retina from the eye-
lens. It is about 2.5 cm for a grown-up person. If we
apply the lens formula to eye, the magnitudes of the
object-distance, the image-distance and the effective
focal length satisfy

             
1
vo

 + 
1
uo

 = 
1
f

   or, 
1
uo

 = 
1
f
 − 

1
vo

 ⋅ … (i)

Here vo is fixed, hence by changing f, the eye can
be focussed on objects placed at different values of uo.

We see from (i) that as f increases, uo increases
and as f decreases, uo decreases. The maximum
distance one can see is given by

           
1

umax
 = 

1
fmax

 − 
1
vo

 , … (ii)
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where fmax is the maximum focal length possible for
the eye-lens.

The focal length is maximum when the ciliary
muscles are fully relaxed. In a normal eye, this focal
length equals the distance vo from the lens to the
retina. Thus,

vo = fmax  by (ii), umax = ∞.

A person can theoretically have clear vision of
objects situated at any large distance from the eye. For
the closer objects, u is smaller and hence f should be
smaller. The smallest distance at which a person can
clearly see, is related to the minimum possible focal
length f. The ciliary muscles are most strained in this
position. By (ii), the closest distance for clear vision is
given by

           
1

umin
 = 

1
fmin

 − 
1
vo

 ⋅ … (iii)

For an average grown-up person, umin should be
around 25 cm or less. This is a convenient distance at
which one can hold an object in his/her hand and see.
Thus, a normal eye can clearly see objects placed in
the range starting from about 25 cm from the eye to
a large distance, say, of the order of several kilometers.
The nearest point where an eye can clearly see is called
the near point and the farthest point up to which an
eye can clearly see is called the far point. For a normal
eye, the distance of the near point should be around
25 cm or less and the far point should be at infinity.
We now describe some common defects of vision.

(A) Nearsightedness

A person suffering from this defect cannot see
distant objects clearly. This is because fmax is less than
the distance from the lens to the retina and the
parallel rays coming from the distant object focus short
of the retina. The ciliary muscles are fully relaxed in
this case and any strain in it can only further decrease
the focal length which is of no help to see distant
objects.

Nearsightedness is also called myopia. This may
result because the lens is too thick or the diameter of
the eyeball is larger than usual. The remedy of myopia
is quite simple. The rays should be made a bit
divergent before entering the eye so that they may
focus a little later. Thus, a divergent lens should be
given to a myopic person to enable him/her to see
distant objects clearly.

Power of the Lens Needed

Suppose, a person can see an object at a maximum
distance x. Thus, with fully relaxed muscles, rays
coming from the distance x converge on the retina.
Figure (19.8) shows the situation. As is clear from the
figure, if the eye is to see a distant object clearly, the
diverging lens should form the virtual image of this
distant object at a distance x. Thus, the required focal
length of the diverging lens is f = − x and the power is

           P = 
1
f
 = 

1
− x

 ⋅

Example 19.3

   A nearsighted man can clearly see objects up to a
distance of 1.5 m. Calculate the power of the lens of the
spectacles necessary for the remedy of this defect.

Solution : The lens should form a virtual image of a
distant object at 1.5 m from the lens. Thus, it should be
a divergent lens and its focal length should be – 1.5 m.
Hence,

              f = − 1.5 m

or, P = 
1
f
 = − 

1
1.5

 m − 1 = − 0.67 D.

(B) Farsightedness

A person suffering from farsightedness cannot
clearly see objects close to the eye. The least distance
for clear vision is appreciably larger than 25 cm and
the person has to keep the object inconveniently away
from the eye. Thus, reading a newspaper or viewing a
small thing held in the hands is difficult for such a
person.

Farsightedness is also known as hyperopia.
Generally, it occurs when the eye-lens is too thin at
the centre and/or the eyeball is shorter than normal.
The ciliary muscles even in their most strained
position are not able to reduce the focal length to
appropriate value. The defect can also arise if the
ciliary muscles become weak and are not able to strain
enough to reduce the focal length to appropriate value.
When farsightedness develops due to this reason, it is
known as presbyopia.

( a ) ( b )

 x  

R e t i n aR e t i n a

 x  

R e t i n a

( c )

Figure 19.8
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Figure (19.9) shows the situation and the remedy
for farsightedness. The rays starting from the normal
near point 25 cm would focus behind the retina. They
should be made a bit less divergent before sending
them to the eye so that they may focus on the retina.
This can be achieved by putting a converging lens in
front of the eye.

Suppose, the eye can clearly see an object at a
minimum distance y. If the eye is to see clearly an
object at 25 cm, the converging lens should form an
image of this object at a distance y (figure 19.9c).

Here u = − 25 cm  and  v = − y.
Using the lens formula

            
1
v

 − 
1
u

 = 
1
f
 ,

we get

          
1

− y
 − 

1
− 25 cm

 = 
1
f

or,      P = 
1
f
 = 

1
25 cm

 − 
1
y

 ⋅

(C) Astigmatism

Another kind of defect arises in the eye when the
eye-lens develops different curvatures along different

planes. Such a person cannot see all the directions
equally well. A particular direction in the plane
perpendicular to the line of sight is most visible. The
direction perpendicular to this is least visible. Here is
a ‘do it yourself ’ test for astigmatism. Figure (19.10)
shows four lines passing through a point. The lines are
assumed to be drawn with equal intensity (you can
draw such lines on a paper with equal intensity and
do the test). If you can see all the lines equally distinct
and intense, you are not astigmatic. If a particular line
say (2)-(2) appears to be most intense and the
perpendicular line (4)-(4) appears least intense, you are
most likely astigmatic. If it is so, rotate the book
through a right angle so that (2)-(2) takes the place of
(4)-(4) and vice versa. If you are really astigmatic, you
will find that now (4)-(4) appears most intense and
(2)-(2) appears least intense.

The remedy to astigmatism is also painless.
Glasses with different curvatures in different planes
are used to compensate for the deshaping of the eye-
lens. Opticians call them cylindrical glasses.

A person may develop any of the above defects or
a combination of more than one. Quite common in old
age is the combination of nearsightedness and
farsightedness. Such a person may need a converging
glass for reading purpose and a diverging glass for
seeing at a distance. Such persons either keep two sets
of spectacles or a spectacle with upper portion
divergent and lower portion convergent (bifocal).

Worked Out Examples

 1. An object is seen through a simple microscope of focal
length 12 cm. Find the angular magnification produced
if the image is formed at the near point of the eye which
is 25 cm away from it.

Solution : The angular magnification produced by a simple
microscope when the image is formed at the near point
of the eye is given by

          m = 1 + 
D
f

 ⋅

Here f = 12 cm, D = 25 cm. Hence,

   m = 1 + 
25
12

 = 3.08.

 2. A 10 D lens is used as a magnifier. Where should the
object be placed to obtain maximum angular
magnification for a normal eye (near point = 25 cm)?

Solution : Maximum angular magnification is achieved
when the final image is formed at the near point. Thus,

v = − 25 cm. The focal length is f = 1
10

 m = 10 cm.

(a) (b)

(c)

 25 cm 

 25 cm 

 y 

 y 

Figure 19.9

4

4

31

2

13

2

Figure 19.10
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We have,

            
1
v

 − 
1
u

 = 
1
f

or, − 
1

25 cm
 − 

1
u

 = 
1

10 cm

or,       
1
u

 = − 
1

25 cm
 − 

1
10 cm

or,       u = − 
50
7

 cm = − 7.1 cm.

 3. A small object is placed at a distance of 3.6 cm from a
magnifier of focal length 4.0 cm. (a) Find the position of
the image. (b) Find the linear magnification. (c) Find the
angular magnification.

Solution :

(a) Using 
1
v

 − 
1
u

 = 
1
f
 ,

 
1
v

 = 
1
u

 + 
1
f
 = 

1
− 3.6 cm

 + 
1

4.0 cm
 ⋅

or,   v = − 36 cm.

(b) Linear magnification = 
v
u

      = 
− 36 cm
− 3.6 cm

 = 10.

(c) If the object is placed at a distance uo from the lens,

the angle subtended by the object on the lens is β = h
uo

where h is the height of the object. The maximum angle

subtended on the unaided eye is α = h
D

 ⋅

Thus, the angular magnification is

        m = 
β
α

 = 
D
uo

 = 
25 cm
3.6 cm

 = 7.0.

 4. A compound microscope consists of an objective of focal
length 1.0 cm and an eyepiece of focal length 5.0 cm
separated by 12.2 cm. (a) At what distance from the
objective should an object be placed to focus it properly
so that the final image is formed at the least distance of
clear vision (25 cm)? (b) Calculate the angular
magnification in this case.

Solution :

(a) For the eyepiece, ve = − 25 cm  and  fe = + 5 cm.

Using      
1
ve

 − 
1
ue

 = 
1
fe

 ,

1
ue

 = 
1
ve

 − 
1
fe

= − 
1

25 cm
 − 

1
5 cm

or, ue = − 
25
6

 cm = − 4.17 cm ≈ − 4.2 cm.

As the objective is 12.2 cm away from the eyepiece, the

image formed by the objective is 12.2 cm − 4.2 cm

= 8.0 cm away from it. For the objective,

        v = + 8.0 cm,   fo = + 1.0 cm.

Using
1
v

 − 
1
u

 = 
1
fo

 ,

1
u

 = 
1
v

 − 
1
fo

 

= 
1

8.0 cm
 − 

1
1.0 cm

or, u = − 
8.0
7.0

 cm = − 1.1 cm.

(b) The angular magnification is

m = 
v
u

 

1 + 

D
fe





= 
+ 8.0 cm
− 1.1 cm

 

1 + 

25 cm
5 cm




 ≈ − 44.

 5. The separation L between the objective (f = 0.5 cm) and
the eyepiece (f = 5 cm) of a compound microscope is 7 cm.
Where should a small object be placed so that the eye is
least strained to see the image? Find the angular
magnification produced by the microscope.

Solution : The eye is least strained if the final image is
formed at infinity. In such a case, the image formed by
the objective should fall at the focus of the eyepiece. As
fe = 5 cm  and  L = 7 cm, this first image should be

formed at 7 cm − 5 cm = 2 cm from the objective. Thus,
v = + 2 cm. Also, fo = 0.5 cm. For the objective, using

        
1
v

 − 
1
u

 = 
1
fo

 ,

 
1
u

 = 
1
v

 − 
1
fo

 

= 
1

2 cm
 − 

1
0.5 cm

 12.2 cm 

E

O

 4.2 cm 

Figure 19-W1

428 Concepts of Physics



or,          u   2
3

 cm.

The angular magnification in this case is

         m  
v
u

 
D
fo

            
2 cm

 2/3 cm
 
25 cm
5 cm

   15.

 6. An astronomical telescope has an objective of focal length
200 cm and an eyepiece of focal length 4.0 cm. The
telescope is focussed to see an object 10 km from the
objective. The final image is formed at infinity. Find the
length of the tube and the angular magnification
produced by the telescope.

Solution : As the object distance 10 km is much larger
than the focal length 200 cm, the first image is formed
almost at the focus of the objective. It is thus 200 cm
from the objective. This image acts as the object for the
eyepiece. To get the final image at infinity, this first
image should be at the first focus of the eyepiece. The
length of the tube is, therefore, 200 cm  4 cm  204 cm.
The angular magnification in this case

          m   
fo

fe
   200

4
   50.

 7. A Galilean telescope is constructed by an objective of focal
length 50 cm and an eyepiece of focal length 5.0 cm. (a)
Find the tube length and magnifying power when it is
used to see an object at a large distance in normal
adjustment. (b) If the telescope is to focus an object 2.0 m
away from the objective, what should be the tube length
and angular magnification, the image again forming at
infinity?

Solution :

           fo  50 cm,   fe   5 cm.

(a)   L  fo   fe   50  5 cm  45 cm

and         m   
fo

fe
  

50
5

  10.

(b) Using the equation 
1
v

  1
u

  
1
f
 for the objective, 

            
1
v

  
1
fo

  
1
u

            
1

50 cm
  

1
 200 cm

or,        v  66.67 cm.

The tube length L  v   fe |  66.67  5 cm

or, L  61.67 cm.

To calculate the angular magnification, we assume that
the object remains at large distance from the eye. In
this case, the angular magnification

m  v
fe

  
66.67

5
  13.33.

v is the distance of the first image from the objective
which is substituted for fo.

 8. The image of the moon is focussed by a converging lens
of focal length 50 cm on a plane screen. The image is
seen by an unaided eye from a distance of 25 cm. Find
the angular magnification achieved due to the converging
lens.

Solution :

Suppose the moon subtends an angle  on the lens. This
will also be the angle subtended by the moon on the eye
if the moon is directly viewed. The image is formed in
the focal plane. The linear size of the image
 f   50 cm.

If this image is seen from a distance of 25 cm, the angle
formed by the image on the eye

           
50 cm  

25 cm
  2  .

The angular magnification is




   



 



 



   2.

 9. The near and far points of a person are at 40 cm and
250 cm respectively. Find the power of the lens he/she
should use while reading at 25 cm. With this lens on the
eye, what maximum distance is clearly visible?

������

������

Figure 19-W2

f

D

Figure 19-W3

Optical Instruments 429



Solution : If an object is placed at 25 cm from the
correcting lens, it should produce the virtual image at
40 cm. Thus, u = − 25 cm, v = − 40 cm.

           
1
f
 = 

1
v

 − 
1
u

 = − 
1

40 cm
 + 

1
25 cm

or, f = 
200
3

 cm = + 
2
3

 m

or, P = 
1
f
 = + 1.5 D.

The unaided eye can see a maximum distance of 250 cm.
Suppose the maximum distance for clear vision is d
when the lens is used. Then the object at a distance d
is imaged by the lens at 250 cm. We have,

             
1
v

 − 
1
u

 = 
1
f
 ,

or, − 
1

250 cm
 − 

1
d

 = 
3

200 cm

or, d = − 53 cm.

Thus, the person will be able to see up to a maximum
distance of 53 cm.

10. A young boy can adjust the power of his eye-lens between
50 D and 60 D. His far point is infinity. (a) What is the
distance of his retina from the eye-lens? (b) What is his
near point?

Solution :

(a) When the eye is fully relaxed, its focal length is
largest and the power of the eye-lens is minimum. This
power is 50 D according to the given data. The focal

length is 1
50

 m = 2 cm. As the far point is at infinity, the

parallel rays coming from infinity are focussed on the
retina in the fully relaxed condition. Hence, the distance
of the retina from the lens equals the focal length which
is 2 cm.

(b) When the eye is focussed at the near point, the power
is maximum which is 60 D. The focal length in this case

is f = 1
60

 m = 5
3
 cm. The image is formed on the retina

and thus v = 2 cm. We have,

         
1
v

 − 
1
u

 = 
1
f

or,          
1
u

 = 
1
v

 − 
1
f
 = 

1
2 cm

 − 
3

5 cm

or,          u = − 10 cm.

The near point is at 10 cm.

QUESTIONS FOR SHORT ANSWER

 1. Can virtual image be formed on the retina in a seeing
process?

 2. Can the image formed by a simple microscope be
projected on a screen without using any additional lens
or mirror?

 3. The angular magnification of a system is less than one.
Does it mean that the image formed is inverted?

 4. A simple microscope using a single lens often shows
coloured image of a white source. Why?

 5. A magnifying glass is a converging lens placed close to
the eye. A farsighted person uses spectacles having
converging lenses. Compare the functions of a
converging lens used as a magnifying glass and as
spectacles.

 6. A person is viewing an extended object. If a converging
lens is placed in front of his eyes, will he feel that the
size has increased?

 7. The magnifying power of a converging lens used as a

simple microscope is 



1 + 

D
f




 . A compound microscope is

a combination of two such converging lenses. Why don’t

we  have  magnifying  power  



1 + 

D
fo




 



1 + 

D
fe




?   In  other

   words, why can the objective not be treated as a simple
microscope but the eyepiece can?

 8. By mistake, an eye surgeon puts a concave lens in place
of the lens in the eye after a cataract operation. Will the
patient be able to see clearly any object placed at any
distance?

 9. The magnifying power of a simple microscope is given

by 1 + D
f
 , where D is the least distance for clear vision.

For farsighted persons, D is greater than the usual. Does
it mean that the magnifying power of a simple
microscope is greater for a farsighted person as
compared to a normal person? Does it mean that a
farsighted person can see an insect more clearly under
a microscope than a normal person?

10. Why are the magnification properties of microscopes and
telescopes defined in terms of the ratio of angles and
not in terms of the ratio of sizes of objects and images?

11. An object is placed at a distance of 30 cm from a
converging lens of focal length 15 cm. A normal eye (near
point 25 cm, far point infinity) is placed close to the lens
on the other side. (a) Can the eye see the object clearly?
(b) What should be the minimum separation between
the lens and the eye so that the eye can clearly see the
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object? (c) Can a diverging lens, placed in contact with
the converging lens, help in seeing the object clearly
when the eye is close to the lens?

12. A compound microscope forms an inverted image of an
object. In which of the following cases it is likely to

create difficulties? (a) Looking at small germs.
(b) Looking at circular spots. (c) Looking at a vertical
tube containing some water.

OBJECTIVE I

 1. The size of an object as perceived by an eye depends
primarily on
(a) actual size of the object
(b) distance of the object from the eye
(c) aperture of the pupil
(d) size of the image formed on the retina.

 2. The muscles of a normal eye are least strained when
the eye is focussed on an object
(a) far away from the eye
(b) very close to the eye
(c) at about 25 cm from the eye
(d) at about 1 m from the eye.

 3. A normal eye is not able to see objects closer than 25
cm because
(a) the focal length of the eye is 25 cm
(b) the distance of the retina from the eye-lens is 25 cm
(c) the eye is not able to decrease the distance between
the eye-lens and the retina beyond a limit
(d) the eye is not able to decrease the focal length
beyond a limit.

 4. When objects at different distances are seen by the eye,
which of the following remain constant?
(a) The focal length of the eye-lens.
(b) The object-distance from the eye-lens.
(c) The radii of curvature of the eye-lens.
(d) The image-distance from the eye-lens.

 5. A person A can clearly see objects between 25 cm and
200 cm. Which of the following may represent the range
of clear vision for a person B having muscles stronger

than A, but all other parameters of eye identical to that
of A?

   (a) 25 cm to 200 cm (b) 18 cm to 200 cm
   (c) 25 cm to 300 cm (d) 18 cm to 300 cm
 6. The focal length of a normal eye-lens is about

(a) 1 mm     (b) 2 cm     (c) 25 cm     (d) 1 m.
 7. The distance of the eye-lens from the retina is x. For a

normal eye, the maximum focal length of the eye-lens
(a) = x      (b) < x      (c) > x      (d) = 2 x.

 8. A man wearing glasses of focal length +1 m cannot
clearly see beyond 1 m
(a) if he is farsighted      (b) if he is nearsighted
(c) if his vision is normal   (d) in each of these cases

 9. An object is placed at a distance u from a simple
microscope of focal length f. The angular magnification
obtained depends
(a) on f but not on u      (b) on u but not on f
(c) on f as well as u       (d) neither on f nor on u.

10. To increase the angular magnification of a simple
microscope, one should increase
(a) the focal length of the lens
(b) the power of the lens
(c) the aperture of the lens
(d) the object size.

11. A man is looking at a small object placed at his near
point. Without altering the position of his eye or the
object, he puts a simple microscope of magnifying power
5 X before his eyes. The angular magnification
achieved is
(a) 5     (b) 2.5     (c) 1     (d) 0.2.

OBJECTIVE II

 1. When we see an object, the image formed on the retina
is
(a) real     (b) virtual     (c) erect    (d) inverted.

 2. In which of the following the final image is erect?
(a) Simple microscope     (b) Compound microscope
(c) Astronomical telescope   (d) Galilean telescope

 3. The maximum focal length of the eye-lens of a person
is greater than its distance from the retina. The eye is
(a) always strained in looking at an object
(b) strained for objects at large distances only
(c) strained for objects at short distances only
(d) unstrained for all distances.

 4. Mark the correct options.
(a) If the far point goes ahead, the power of the

divergent lens should be reduced.
(b) If the near point goes ahead, the power of the
convergent lens should be reduced.
(c) If the far point is 1 m away from the eye, divergent
lens should be used.
(d) If the near point is 1 m away from the eye, divergent
lens should be used.

 5. The focal length of the objective of a compound
microscope is fo and its distance from the eyepiece is L.
The object is placed at a distance u from the objective.
For proper working of the instrument,
(a) L < u    (b) L > u    (c) fo < L < 2fo    (d) L > 2fo.
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EXERCISES

 1. A person looks at different trees in an open space with
the following details. Arrange the trees in decreasing
order of their apparent sizes.

Tree Height(m) Distance from the eye(m)

 A    2.0         50

 B    2.5         80

 C    1.8         70

 D    2.8        100

 2. An object is to be seen through a simple microscope of
focal length 12 cm. Where should the object be placed
so as to produce maximum angular magnification? The
least distance for clear vision is 25 cm.

 3. A simple microscope has a magnifying power of 3.0 when
the image is formed at the near point (25 cm) of a normal
eye. (a) What is its focal length? (b) What will be its
magnifying power if the image is formed at infinity?

 4. A child has near point at 10 cm. What is the maximum
angular magnification the child can have with a convex
lens of focal length 10 cm?

 5. A simple microscope is rated 5 X for a normal relaxed
eye. What will be its magnifying power for a relaxed
farsighted eye whose near point is 40 cm?

 6. Find the maximum magnifying power of a compound
microscope having a 25 diopter lens as the objective, a
5 diopter lens as the eyepiece and the separation 30 cm
between the two lenses. The least distance for clear
vision is 25 cm.

 7. The separation between the objective and the eyepiece
of a compound microscope can be adjusted between
9.8 cm to 11.8 cm. If the focal lengths of the objective
and the eyepiece are 1.0 cm and 6 cm respectively, find
the range of the magnifying power if the image is always
needed at 24 cm from the eye.

 8. An eye can distinguish between two points of an object
if they are separated by more than 0.22 mm when the
object is placed at 25 cm from the eye. The object is now
seen by a compound microscope having a 20 D objective
and 10 D eyepiece separated by a distance of 20 cm. The
final image is formed at 25 cm from the eye. What is
the minimum separation between two points of the
object which can now be distinguished?

 9. A compound microscope has a magnifying power of 100
when the image is formed at infinity. The objective has
a focal length of 0.5 cm and the tube length is 6.5 cm.
Find the focal length of the eyepiece.

10. A compound microscope consists of an objective of focal
length 1 cm and an eyepiece of focal length 5 cm. An
object is placed at a distance of 0.5 cm from the objective.
What should be the separation between the lenses so
that the microscope projects an inverted real image of
the object on a screen 30 cm behind the eyepiece?

11. An optical instrument used for angular magnification
has a 25 D objective and a 20 D eyepiece. The tube
length is 25 cm when the eye is least strained.

(a) Whether it is a microscope or a telescope? (b) What
is the angular magnification produced?

12. An astronomical telescope is to be designed to have a
magnifying power of 50 in normal adjustment. If the
length of the tube is 102 cm, find the powers of the
objective and the eyepiece. 

13. The eyepiece of an astronomical telescope has a focal
length of 10 cm. The telescope is focussed for normal
vision of distant objects when the tube length is 1.0 m.
Find the focal length of the objective and the magnifying
power of the telescope.

14. A Galilean telescope is 27 cm long when focussed to form
an image at infinity. If the objective has a focal length
of 30 cm, what is the focal length of the eyepiece?

15. A farsighted person cannot see objects placed closer to
50 cm. Find the power of the lens needed to see the
objects at 20 cm.

16. A nearsighted person cannot clearly see beyond 200 cm.
Find the power of the lens needed to see objects at large
distances.

17. A person wears glasses of power – 2.5 D. Is the person
farsighted or nearsighted? What is the far point of the
person without the glasses?

18. A professor reads a greeting card received on his 50th
birthday with + 2.5 D glasses keeping the card 25 cm
away. Ten years later, he reads his farewell letter with
the same glasses but he has to keep the letter 50 cm
away. What power of lens should he now use?

19. A normal eye has retina 2 cm behind the eye-lens. What
is the power of the eye-lens when the eye is (a) fully
relaxed, (b) most strained?

20. The near point and the far point of a child are at 10 cm
and 100 cm. If the retina is 2.0 cm behind the eye-lens,
what is the range of the power of the eye-lens?

21. A nearsighted person cannot see beyond 25 cm.
Assuming that the separation of the glass from the eye
is 1 cm, find the power of lens needed to see distant
objects.

22. A person has near point at 100 cm. What power of lens
is needed to read at 20 cm if he/she uses (a) contact
lens, (b) spectacles having glasses 2.0 cm separated from
the eyes?

23. A lady uses + 1.5 D glasses to have normal vision from
25 cm onwards. She uses a 20 D lens as a simple
microscope to see an object. Find the maximum
magnifying power if she uses the microscope (a) together
with her glass (b) without the glass. Do the answers
suggest that an object can be more clearly seen through
a microscope without using the correcting glasses?

24. A lady cannot see objects closer than 40 cm from the
left eye and closer than 100 cm from the right eye. While
on a mountaineering trip, she is lost from her team. She
tries to make an astronomical telescope from her reading
glasses to look for her teammates. (a) Which glass should
she use as the eyepiece? (b) What magnification can she
get with relaxed eye?
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ANSWERS

OBJECTIVE I

 1. (d)  2. (a)  3. (d)  4. (d)  5. (b) 6. (b)
 7. (a)  8. (d)  9. (c) 10. (b) 11. (c)

OBJECTIVE II

 1. (a), (d)  2. (a), (d)  3. (a)
 4. (a), (c)  5. (b), (d)

EXERCISES

 1. A, B, D, C
 2. 8.1 cm from the lens
 3. (a) 12.5 cm (b) 2.0
 4. 2
 5. 8 X
 6. 8.4

 7. 20 to 30
 8. 0.04 mm
 9. 2 cm
10. 5 cm
11. (a) microscope (b) 20
12. 1 D, 50 D
13. 90 cm, 9
14. 3 cm
15. 3 D
16. – 0.5 D
17. nearsighted, 40 cm
18. + 4.5 D
19. (a) 50 D (b) 54 D
20. +60 D to +51 D
21. – 4.2 D
22. (a) +4 D (b) +4.53 D
23. (a) 6 (b) 9
24. (a) right lens (b) 2
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CHAPTER 20

DISPERSION AND SPECTRA

20.1 DISPERSION

As mentioned earlier, the refractive index of a
material depends slightly on the wavelength of light.
The relation between the two may be approximately
described by the equation

            µ = µ0 + 
A
λ 2

 ,

where A is a small positive constant known as
Cauchy’s constant. The refractive index decreases as
the wavelength increases. For visible light, it is
maximum for the violet end and minimum for the red
end. Figure (20.1) shows the variation of refractive
index with wavelength for some transparent materials.

Because of the difference in refractive indices, light
of different colours bend through different angles on
refraction. If white light passes through a glass prism
(figure 20.2), the violet rays deviate the most and the

     

red rays deviate the least. Thus, white light is
separated into its various component colours. This
phenomenon of separation of different constituent
colours of light while passing through a transparent
medium is known as dispersion of light.

20.2 DISPERSIVE POWER

Consider a prism of a transparent material. When
a beam of white light is passed through the prism,
light of different wavelengths are deviated by different
amounts. The overall deviation of the light beam is
conventionally measured by the deviation of yellow
light, as the wavelength of yellow light is roughly the
average wavelength of the visible region. In figure
(20.3), this deviation is shown by the symbol δy. It is
clear that if δr and δv are the deviations for red and
violet components, the angular divergence of the
transmitted beam is δv – δr. This divergence is called
angular dispersion.

The mean deviation depends on the average
refractive index µ and the angular dispersion depends
on the difference µv − µr. It may be seen from figure
(20.1) that if the average value of µ is small (fluorite),
µv − µr is also small and if the average value of µ is
large (silicate flint glass), µv − µr is also large. Thus,
larger the mean deviation, larger will be the angular
dispersion.

The dispersive power of a material is defined as
the ratio of angular dispersion to the average deviation
when a light beam is transmitted through a thin prism
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placed in a position so that the mean ray (ray having
the mean wavelength) passes symmetrically through it.

When a light ray passes symmetrically through a
prism of refracting angle A, it suffers minimum
deviation  given by

              
sin 

A  
2

sin 
A
2

 

If the refracting angle A is small, the deviation  is
also small. Then,

              

A  
2
A
2

  1  

A

   or,            1 A .
This equation is also valid if the light ray does not

pass symmetrically through the prism, but the angle
A and the angle of incidence i are small.

Suppose, a beam of white light goes through such
a prism. The deviation of violet, yellow and the red
light are

           v  v  1 A
           y  y  1 A
and         r  r  1 A.

The angular dispersion is v  r  v  r A. The
average deviation is y  y  1A . Thus, the dispersive
power of the medium is

              
v  r

y  1
   (20.1)

This equation itself may be taken as the definition
of dispersive power.

Refractive index is a continuous function of
wavelength. Usually three wavelengths are selected,
one from violet, one from yellow and one from red
region and dispersive power is defined as (20.1) for
these wavelengths.

Example 20.1

   Find the dispersive power of flint glass. The refractive
indices of flint glass for red, yellow and violet light are
1.613, 1.620 and 1.632 respectively.

Solution : The dispersive power is   
v  r

y  1

          
1.632  1.613

1.620  1
  0.0306.

Example 20.2

   The focal lengths of a thin lens for red and violet light
are 90.0 cm and 86.4 cm respectively. Find the dispersive

power of the material of the lens. Make appropriate
assumptions.

Solution : We have

            
1
f
    1 



1
R1

  
1
R2





or,           1  
1
f
  1

1
R1

  
1
R2

  
K
f

 

Thus,    v  1  
K
fv

and,        r  1  
K
fr

so that   v  r  K 


1
fv

  
1
fr




          K 


1
86.4 cm

  
1

90 cm



  K  4.6  10 – 4 cm – 1.

Also, we can assume that

        y  1  
v  r

2
  1  

v  1
2

  
r  1

2

             
K
2

 


1
fv

  
1
fr




         
K
2

 


1
86.4 cm

  
1

90 cm



  K  1.1  10 – 2 cm – 1.

Thus, the dispersive power of the material of the lens
is

            
v  r

y  1
  

4.6  10 – 4

1.1  10 – 2  0.042.

20.3 DISPERSION WITHOUT AVERAGE
     DEVIATION AND AVERAGE DEVIATION
    WITHOUT DISPERSION

Figure (20.4) shows two thin prisms placed in
contact in such a way that the two refracting angles
are reversed with respect to each other. Suppose, the
refracting angles of the two prisms are A and A and
their dispersive powers are  and  respectively.

Consider a ray of light for which the refractive
indices of the materials of the two  prisms  are   and
. Assuming that the ray passes through the prisms
in symmetrical situation, the deviations produced by
the two prisms are

A

1

2
A�

Figure 20.4
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         δ1 = (µ − 1) A
and         δ2 = (µ′ − 1) A′.

As the two deviations are opposite to each other, the
net deviation is
          δ = δ1 − δ2

           = (µ − 1)A − (µ′ − 1)A′. … (i)

If white light passes through the combination, the net
deviation of the violet ray is

       δv = (µv − 1)A − (µ′v − 1)A′
and that of the red ray is

       δr = (µr − 1)A − (µ′r − 1)A′.
The angular dispersion produced by the combination is
       δv − δr = (µv − µr)A − (µ′v − µ′r)A′. … (ii)

The dispersive powers are given by

         ω = 
µv − µr

µy − 1

   and         ω′ = 
µ′v − µ′r
µ′y − 1

 ⋅

Thus, by (ii), the net angular dispersion is
       δv − δr = (µy − 1)ωA − (µ′y − 1)ω′A′. … (iii)

The net deviation of the yellow ray, i.e., the average
deviation, is, by (i),
         δy = (µy − 1)A − (µ′y − 1)A′. … (iv)

Dispersion without Average Deviation

If the combination is not to produce a net average
deviation in the beam, δy should be 0. By (iv), the
required condition is
          (µy − 1)A = (µ′y − 1)A′. … (20.2)

Using this in (iii), the net angular dispersion produced
is
        δv − δr = (µy − 1)A (ω − ω′). … (20.3)

By choosing ω and ω′ different and the refracting
angles to satisfy (20.2), one can get dispersion without
average deviation.

Average Deviation without Dispersion

If the combination is not to produce a net
dispersion, δv − δr = 0. By (iii),

         (µy − 1)ω A = (µ′y − 1)ω′A′. … (20.4)

By (ii), this condition may also be written as
          (µv − µr)A = (µ′v − µ′r)A′. … (20.5)

The net average deviation produced is, by (i),
           δ = (µy − 1)A − (µ′y − 1)A′

          = (µy − 1)A 



1 − 

µ′y − 1
µy − 1

 
A′
A




 ⋅

By (20.4),

          
(µ′y − 1)A′
(µy − 1)A

 = 
ω
ω′

so that the net average deviation produced by the
combination is

          δ = (µy − 1) A 



1 − 

ω
ω′




 ⋅ … (20.6)

20.4 SPECTRUM

When light coming from a source is dispersed by
a prism or by any other dispersing element, light of
different wavelengths are deviated through different
angles and get separated. Such a dispersed light may
be received on a screen, on a photographic plate or it
may be viewed directly by the eye. A collection of
dispersed light giving its wavelength composition is
called a spectrum. As a very simple demonstration, let
white light fall on a prism and collect the transmitted
light on a white wall or a white paper. A spectrum
consisting of different colours from red to violet is
obtained.

Pure and Impure Spectrum

The spectrum of visible light shows different
colours. In an ideal situation, light of one wavelength
should occupy one particular spatial position in the
spectrum. In such a case, no two wavelengths overlap
in the dispersed beam. Each colour then gives its sharp
impression. Such a spectrum is called a pure spectrum.
To get a pure spectrum,

(a) the light beam incident on the dispersing
element (prism, grating, etc.) should be parallel, and

(b) the dispersed light should be focussed in such
a way that all the rays of a particular wavelength are
collected at one place.

These conditions may be achieved to a good
approximation using the arrangement shown in figure
(20.5). A narrow slit S allows a thin pencil of light to
be analyzed. The slit is placed in the focal plane of an
achromatic lens combination L1. The light is dispersed
by the dispersing element such as a prism or a grating.
The emergent rays for a particular wavelength are all
parallel. Another achromatic lens combination L2 is
used to focus the emergent rays in its focal plane. Rays

S

L

Red
Violet

1

2L
Dispersing

element

Figure 20.5
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of one wavelength being parallel to each other are
finally focussed at one place.

If the slit is wide, different points of the slit
produce separate spectra which overlap each other.
The colour impression gets diffused due to the overlap.
Such a spectrum is called an impure spectrum.

20.5 KINDS OF SPECTRA

A. Emission Spectra

Light is emitted by an object when it is suitably
excited by heating or by passing an electric discharge.
When a light beam emitted by such a source is
dispersed to get the spectrum, it is called an emission
spectrum. An emission spectrum carries information
about the source material. An emission spectrum can
be of three types :

(a) Continuous Spectrum

Quite often, a source emits light which has
continuously varying wavelengths in it. An electric
bulb, a candle or a red hot iron piece emits light of
this type. When such a light is dispersed, a bright
spectrum continuously distributed on a dark
background is obtained. The colours gradually change
and there are no sharp boundaries in between. Such
a spectrum is known as a continuous emission
spectrum.

(b) Line Spectrum

All objects are made of atoms and molecules. The
atoms and molecules can have certain fixed energies.
An atom or a molecule having the lowest possible
energy is said to be in its ground state, otherwise, in
an excited state. An atom or molecule, in an excited
state, can emit light to lower its energy. Light emitted
in such a process has certain fixed wavelengths. The
light emitted by one kind of atoms generally have
widely separated wavelength components (figure
20.6a). When such a light is dispersed, we get certain
sharp bright lines on a dark background. Such a
spectrum is called line emission spectrum. It carries
information about the atoms of the source. For
example, when electric discharge is passed through
sodium vapour, the vapour emits light of the
wavelengths 589.0 nm and 589.6 nm. When dispersed
by a high resolution grating, one obtains two bright
yellow lines on a dark background.

(c) Band Spectrum

The molecular energy levels are generally grouped
into several bunches, each bunch widely separated
from the other, and the levels in a bunch being close
to each other. Thus, the wavelengths emitted by such
molecules are also grouped, each group being well-

separated from the other. The wavelengths in a group
are close to one another and appear as continuous. The
spectrum looks like separate bands of varying colours.
Such a spectrum is called a band emission spectrum.
Figure (20.6b) shows schematically the production and
appearance of band spectra.

B. Absorption Spectrum

When white light having all wavelengths is passed
through an absorbing material, the material may
absorb certain wavelengths selectively. When the
transmitted light is dispersed, we get dark lines or
bands at the positions of the missing wavelengths
superposed on an otherwise bright continuous coloured
background (figure 20.7).

The missing wavelengths provide information
about the absorbing material. Such a spectrum is
called an absorption spectrum.

Absorption spectrum may be of two types
depending on the absorbing material and the
conditions, such as temperature, of the experiment.
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(a) Line Absorption Spectrum

Light may be absorbed by atoms to take them from
lower energy states to higher energy states. In this
case, the missing wavelengths are widely separated
and we get sharp dark lines on a continuous bright
background. Such a spectrum is called a line
absorption spectrum. When light coming from the sun
is dispersed, it shows certain sharply defined dark
lines. This shows that certain wavelengths are absent.
These missing lines are called Fraunhofer lines.

(b) Band Absorption Spectrum

If light is absorbed by molecules of the absorbing
material, exciting them from lower energy to higher
energy states, the missing wavelengths are grouped
into bunches. Thus, when the transmitted light is
dispersed, we get separate dark bands on a continuous
bright background. Such a spectrum is called a band
absorption spectrum. Light passing through hydrogen
gas at moderate temperature or through certain
solutions of organic and inorganic compounds shows
such a spectrum.

20.6 ULTRAVIOLET AND INFRARED SPECTRUM

When an object is suitably excited by heating or
in some other way, it emits light. The light, that causes
visual sensation to the eye, has a wavelength range
from about 380 nm (violet) to about 780 nm (red). The
light emitted by an excited object may have
wavelengths beyond this visible region. We generally
use the word light to mean visible light. That beyond
the visible region is called by the general name
radiation. The radiation with wavelength less than the
lower end of the visible region (that is less than about
380 nm) is called ultraviolet radiation and the
radiation with wavelength greater than the upper end
of the visible region is called the infrared radiation.
The range of ultraviolet radiation is roughly from
15 nm to 380 nm and that of infrared radiation is
roughly 780 nm to 40000 nm. Beyond ultraviolet, we
have X-rays and gamma-rays and above infrared, we
have radiowaves.

Ordinary glass highly absorbs infrared and
ultraviolet radiation. A prism made of quartz may be
used for studying the spectrum in ultraviolet region.
The dispersed radiation may be collected on a
photographic plate. To study infrared spectrum, one
can use a prism made of rocksalt. Infrared radiation
considerably heats the object on which it falls. One
way of detecting infrared radiation is from its heating
effect. An instrument known as thermopile, which is
sensitive to heat, is used to measure the dispersed
infrared spectrum.

20.7 SPECTROMETER

Spectrometer is an instrument which is used to
produce and study pure spectrum in visible region. It
consists of basically three parts.

(a) Collimator

It consists of a long cylindrical tube fitted with an
achromatic converging lens at one end. Another tube
of slightly smaller diameter can slide into the first tube
by a rack-and-pinion arrangement and has a linear slit
at the outer end. The width of the slit may be adjusted
by a screw. The distance between the slit and the lens
may be changed by sliding the second tube into the
first. The incident light is passed through the
collimator to make it parallel before falling on the
dispersing element.

(b) Prism Table

This is a horizontal platform which can be rotated
about its axis and whose height may be adjusted. The
dispersing element (prism,  grating, etc.) is placed on
the prism table. When the prism table rotates, a
horizontal circular scale (graduated in degrees) rotates
with it.

(c) Telescope

This is an astronomical telescope. The objective
lens is fitted at one end of a long cylindrical tube.
Another cylindrical tube can slide into it and contains
the eyepiece. The dispersed light is passed through the
telescope before falling to the eye which is placed just
behind the eyepiece. A vernier scale is attached to the
telescope which rotates on the horizontal circular scale
when the telescope is rotated.

Levelling screws are provided under the main
base, the collimator tube, the telescope tube and the
prism table.

Adjustment and Working

The collimator, the prism table and the telescope
are fitted in one compact unit (figure 20.8). The prism
table and the telescope can be independently rotated
about the vertical axis of the prism table. The angle

Collimator

Telescope

Red

Violet

S

Prism table

Figure 20.8
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of rotation can be accurately measured by the vernier
scale and the horizontal circular scale.

The axis of the collimator tube, of the telescope
tube and the surface of the prism table are made
horizontal with the help of levelling screws. The light
source to be examined is placed behind the slit of the
collimator. The distance between the slit and the
collimating lens is so adjusted that the slit lies in the
first focal plane of the lens and the rays coming from
the collimator become parallel. This parallel beam is
incident upon the dispersing element (prism, grating,
etc.) placed on the prism table. The dispersed beam is
received by the telescope which is focussed for parallel
rays, that is, for normal adjustment. The telescope
tube is rotated and light rays of different wavelengths
are received at different angular positions of the
telescope.

Application of Spectrometer

The spectrometer can be used in a wide variety of
applications. We mention here a few simple ones. In
all these applications, the spectrometer is adjusted as
described above.

(a) Measuring the angle of a Prism

The spectrometer is levelled and adjusted for
parallel rays. The prism is placed on the prism table
with its refracting edge facing the collimator. The slit
is illuminated by a sodium vapour lamp. The parallel
beam coming from the collimator is divided into two
parts falling on the two surfaces of the prism
(figure 20.9).

The telescope is rotated to a position T1 where it
receives the beam reflected by one surface. The image

of the slit should coincide with the vertical crosswire
of the telescope. The angular position is read on the
base with the help of the vernier scale and the scale
fixed in the base. The telescope is now rotated to the
position T2 where it receives the beam reflected by the
other surface. The image of the slit should again
coincide with the vertical crosswire. The angular
position is again read on the base. The difference of
these two readings gives the angle rotated by the
telescope. This angle is equal to 2 A where A is the
angle of prism. Sodium vapour lamp gives a nearly
monochromatic light which makes the image
identification easier.

(b) Measuring the Angle of Minimum Deviation
   for a Prism for a Given Wavelength

The spectrometer is adjusted as described before.
The source emitting the light of the given wavelength
is placed behind the slit.

The telescope is rotated and placed at a position
where the angle between the telescope axis and the
collimator axis is large. The prism is placed on the
prism table and the table is rotated to such a position
that the refracted beam is received by the telescope
(figure 20.10). The image of the slit is made to coincide
with the crosswire. The angle between the axes of the
collimator and the telescope is the angle of deviation
. Now, the telescope is rotated slightly towards the
collimator axis to decrease . The prism table is rotated
to bring the image of the slit back at the crosswire.
The process is repeated till a position comes where if
the telescope is further rotated towards the collimator
axis, it is not possible to bring the image at the
crosswire for any position of the prism table. This
position where the image can be last brought to the
crosswire is the position of minimum deviation. The
angle between the axes of the collimator and the
telescope in this position is the angle of minimum
deviation.

To measure this angle, the reading of vernier scale
attached with the telescope is noted down. The prism
is removed and the telescope is brought in line with
the collimator so that the image of the slit forms at
the crosswire. The reading of the vernier scale is again
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noted. The difference between the two readings gives
the angle of minimum deviation.

(c) Variation of Refractive Index with Wavelength

To study the variation of refractive index µ with
the wavelength λ, a source is chosen which emits light
of sharply defined discrete wavelengths. Neon
discharge tube is one such source.

The spectrometer is adjusted as before and a prism
is placed on the prism table. A particular colour is
chosen and the angle of minimum deviation for that
colour is obtained by the method described above. This
is done by always focusing the image of the slit formed
by that colour. The refractive index of the material of
the prism is calculated by the formula

          µ = 
sin 

A + δm

2

sin 
A
2

 ⋅

The experiment is repeated for each colour and
corresponding values of µ are obtained. Knowing the
values of wavelengths, µ − λ variation is studied.

20.8 RAINBOW

When sunlight falls on small water droplets
suspended in air during or after a rain, it suffers
refraction, internal reflection and dispersion. If an
observer has the sun at the back and the water
droplets in front, he or she may see two rainbows, one
inside the other. The inner one is called the primary
rainbow and the outer one is called the secondary
rainbow. Figure (20.11) shows the path of a typical ray
forming the primary bow. It suffers a refraction
followed by a internal reflection and then again a
refraction. Dispersion takes place at both the
refractions. It turns out that rays of a given colour are
strongly returned by the droplet in a direction that
corresponds to maximum deviation in its path. For
light of red colour this maximum deviation is 137.8°
so that the angle θ in figure (20.11a) is 180° – 137.8°

= 42.2°. For violet this angle is 40.6° and for other
colours it is in between 40.6° and 42.2°. Now consider
an observer at P (figure 20.11b). Suppose sunrays are
incident in a direction parallel to PX. Consider a cone
with PX as its axis and semivertical angle 42.2°. All
the droplets on the surface of this cone will return the
light to P at an angle of 42.2°. This light will be
predominantly red. Thus, the red rays coming to the
observer will appear to come from a circle which
subtends an angle of 42.2° on the eye. Similarly, the
violet rays coming to the observer will appear to come
from a circle which subtends an angle of 40.6° on the
eye. The other colours form their respective circles of
intermediate radii. From the ground level, only an arc
of the rainbow is usually visible. A complete circular
rainbow may be seen from an elevated position such
as from an aeroplane.

The secondary rainbow is formed by rays which
suffer two internal reflections before coming out of the
water drop (figure 20.11c). In this, the order of colours
is reverse. Red appears on the inner circle in the
rainbow and violet on the outer. The angle θ is 50.5°
for red and 54° for violet.

Worked Out Examples

 1. The refractive indices of flint glass for red and violet light
are 1.613 and 1.632 respectively. Find the angular
dispersion produced by a thin prism of flint glass having
refracting angle 5°.

Solution : Deviation of the red light is δr = (µr − 1)A and
deviation of the violet light is δv = (µv − 1)A.
The dispersion = δv − δr = (µv − µr)A

              = (1.632 − 1.613) × 5°

              = 0.095°.

 2. A crown glass prism of angle 5° is to be combined with
a flint glass prism in such a way that the mean ray
passes undeviated. Find (a) the angle of the flint glass
prism needed and (b) the angular dispersion produced
by the combination when white light goes through it.

(a)

(c)

(b)

Sunrays

Sunray

P
40.6° 42.2°
Red

Violet

VioletRed

X

Figure 20.11
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Refractive indices for red, yellow and violet light are
1.514, 1.517 and 1.523 respectively for crown glass and
1.613, 1.620 and 1.632 for flint glass.

Solution : The deviation produced by the crown prism is
            δ = (µ − 1)A
and by the flint prism is
            δ′ = (µ′ − 1)A′.
The prisms are placed with their angles inverted with
respect to each other. The deviations are also in opposite
directions. Thus, the net deviation is

         D = δ − δ′ = (µ − 1)A − (µ′ − 1)A′. … (i)

(a) If the net deviation for the mean ray is zero,

        (µ − 1)A = (µ′ − 1)A′.

or,           A′ = 
(µ − 1)
(µ′ − 1)

 A = 
1.517 − 1
1.620 − 1

 × 5°

             = 4.2°.

(b) The angular dispersion produced by the crown prism
is

           δv − δr = (µv − µr)A

and that by the flint prism is
           δ′v − δ′r = (µ′v − µ′r)A′.

The net angular dispersion is,

      δ = (µv − µr)A − (µ′v − µ′r)A′

       = (1.523 − 1.514) × 5° − (1.632 − 1.613) × 4.2°

       = − 0.0348°.

The angular dispersion has magnitude 0.0348°.

 3. The dispersive powers of crown and flint glasses are 0.03
and 0.05 respectively. The refractive indices for yellow

light for these glasses are 1.517 and 1.621 respectively.
It is desired to form an achromatic combination of prisms
of crown and flint glasses which can produce a deviation
of 1° in the yellow ray. Find the refracting angles of the
two prisms needed.

Solution :  Suppose, the angle of the crown prism needed
is A and that of the flint prism is A′. We have

             ω = 
µv − µr

µ − 1

or,         µv − µr = (µ − 1)ω.

The angular dispersion produced by the crown prism is

        (µv − µr)A = (µ − 1)ωA.

Similarly, the angular dispersion produced by the flint
prism is

           (µ′ − 1)ω′A′.

For achromatic combination, the net dispersion should
be zero. Thus,

        (µ − 1)ωA = (µ′ − 1)ω′A′

   or,    
A′
A

 = 
(µ − 1)ω
(µ′ − 1)ω′

 = 
0.517 × 0.03
0.621 × 0.05

 = 0.50. … (i)

The deviation in the yellow ray produced by the crown
prism is δ = (µ − 1)A and by the flint prism is
δ′ = (µ′ − 1)A′. The net deviation produced by the
combination is

          δ − δ′ = (µ − 1)A − (µ′ − 1)A′

   or,           1° = 0.517 A − 0.621 A′. … (ii)

Solving (i) and (ii), A = 4.8° and A′ = 2.4°. Thus, the

crown prism should have its refracting angle 4.8° and

that of the flint prism should be 2.4°.

QUESTIONS FOR SHORT ANSWER

 1. The equation ω = 
µv − µr

µ − 1
 was derived for a prism having

small refracting angle. Is it also valid for a prism of
large refracting angle ? Is it also valid for a glass slab
or a glass sphere ?

 2. Can the dispersive power ω = 
µv − µr

µ − 1
 be negative ? What

is the sign of ω if a hollow prism is immersed into
water ?

 3. If three identical prisms are combined, is it possible to
pass a beam that emerges undeviated ? Undispersed ? 

 4. “Monochromatic light should be used to produce pure
spectrum”. Comment on this statement.

 5. Does focal length of a lens depend on the colour of the
light used ? Does focal length of a mirror depend on the
colour ?

 6. Suggest a method to produce a rainbow in your house.

OBJECTIVE I

 1. The angular dispersion produced by a prism
(a) increases if the average refractive index increases
(b) increases if the average refractive index decreases

(c) remains constant whether the average refractive
index increases or decreases
(d) has no relation with average refractive index.
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 2. If a glass prism is dipped in water, its dispersive power
(a) increases   (b) decreases   (c) does not change
(d) may increase or decrease depending on whether the
angle  of the prism is less than or greater than 60°.

 3. A prism can produce a minimum deviation δ in a light
beam. If three such prisms are combined, the minimum
deviation that can be produced in this beam is
(a) 0      (b) δ      (c) 2δ      (d) 3δ.

 4. Consider the following two statements :
(A) Line spectra contain information about atoms.

(B) Band spectra contain information about molecules.
(a) Both A and B are wrong.
(b) A is correct but B is wrong.
(c) B is correct but A is wrong.
(d) Both A and B are correct.

 5. The focal length of a converging lens are fv and fr for
violet and red light respectively.
(a) fv > fr.    (b) fv = fr.    (c) fv < fr.
(d) Any of the three is possible depending on the value
of the average refractive index µ.

OBJECTIVE II

 1. A narrow beam of white light goes through a slab having
parallel faces.
(a) The light never splits in different colours.
(b) The emergent beam is white.
(c) The light inside the slab is split into different
colours.
(d) The light inside the slab is white.

 2. By properly combining two prisms made of different
materials, it is possible to
(a) have dispersion without average deviation
(b) have deviation without dispersion
(c) have both dispersion and average deviation
(d) have neither dispersion nor average deviation.

 3. In producing a pure spectrum, the incident light is
passed through a narrow slit placed in the focal plane
of an achromatic lens because a narrow slit

(a) produces less diffraction
(b) increases intensity
(c) allows only one colour at a time
(d) allows a more parallel beam when it passes through
the  lens.

 4. Which of the following quantities related to a lens
depend on the wavelength or wavelengths of the incident
light ?
(a) Power             (b) Focal length
(c) Chromatic aberration    (d) Radii of curvature

 5. Which of the following quantities increase when
wavelength is increased ? Consider only the magnitudes.
(a) The power of a converging lens.
(b) The focal length of a converging lens.
(c) The power of a diverging lens.
(d) The focal length of a diverging lens.

EXERCISES

 1. A flint glass prism and a crown glass prism are to be
combined in such a way that the deviation of the mean
ray is zero. The refractive index of flint and crown
glasses for the mean ray are 1.620 and 1.518
respectively. If the refracting angle of the flint prism is
6.0°, what would be the refracting angle of the crown
prism ?

 2. A certain material has refractive indices 1.56, 1.60 and
1.68 for red, yellow and violet light respectively.
(a) Calculate the dispersive power. (b) Find the angular
dispersion produced by a thin prism of angle 6° made
of this material.

 3. The focal lengths of a convex lens for red, yellow and
violet rays are 100 cm, 98 cm and 96 cm respectively.
Find the dispersive power of the material of the lens.

 4. The refractive index of a material changes by 0.014 as
the colour of the light changes from red to violet. A
rectangular slab of height 2.00 cm made of this material
is placed on a newspaper. When viewed normally in
yellow light, the letters appear 1.32 cm below the top
surface of the slab. Calculate the dispersive power of the
material.

 5. A thin prism is made of a material having refractive
indices 1.61 and 1.65 for red and violet light. The

dispersive power of the material is 0.07. It is found that
a beam of yellow light passing through the prism suffers
a minimum deviation of 4.0° in favourable conditions.
Calculate the angle of the prism.

 6. The minimum deviations suffered by red, yellow and
violet beams passing through an equilateral transparent
prism are 38.4°, 38.7° and 39.2° respectively. Calculate
the dispersive power of the medium.

 7. Two prisms of identical geometrical shape are combined
with their refracting angles oppositely directed. The
materials of the prisms have refractive indices 1.52 and
1.62 for violet light. A violet ray is deviated by 1.0° when
passes symmetrically through this combination. What is
the angle of the prisms ?

 8. Three thin prisms are combined as shown in figure
(20-E1). The refractive indices of the crown glass for red,
yellow and violet rays are µr , µy  and  µv respectively and

A

A

A

Flint

CrownCrown

Figure 20-E1
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    those for the flint glass are r , y  and  v respectively.
Find the ratio A/A for which (a) there is no net angular
dispersion, and (b) there is no net deviation in the yellow
ray.

 9. A thin prism of crown glass r  1.515, v  1.525 and
a thin prism of flint glass r  1.612, v  1.632) are
placed in contact with each other. Their refracting angles
are 5.0 each and are similarly directed. Calculate the
angular dispersion produced by the combination.

10. A thin prism of angle 6.0,   0.07 and y  1.50 is
combined with another thin prism having   0.08 and
y  1.60. The combination produces no deviation in the
mean ray. (a) Find the angle of the second prism.
(b) Find the net angular dispersion produced by the

combination when a beam of white light passes through
it. (c) If the prisms are similarly directed, what will be
the deviation in the mean ray ? (d) Find the angular
dispersion in the situation described in (c).

11. The refractive index of a material M1 changes by 0.014
and that of another material M2 changes by 0.024 as
the colour of the light is changed from red to violet. Two
thin prisms, one made of M1(A  5.3) and the other
made of M2(A  3.7) are combined with their refracting
angles oppositely directed. (a) Find the angular
dispersion produced by the combination. (b) The prisms
are now combined with their refracting angles similarly
directed. Find the angular dispersion produced by the
combination.

ANSWERS

OBJECTIVE I

 1. (a)  2. (b)  3. (b)  4. (d)  5. (c)

OBJECTIVE II

 1. (b), (c) 2. (a), (b), (c)  3. (d)  4. (a), (b), (c)
 5. (b), (d)

EXERCISES

 1. 7.2

 2. (a) 0.2 (b) 0.72

 3. 0.041

 4. 0.026
 5. 7

 6. 0.0206
 7. 10

 8. (a) 
2v  r
v  r

(b) 
2y  1
y  1

 9. 0.15

10. (a) 5    (b) 0.03    (c) 6    (d) 0.45

11. (a) 0.0146 (b) 0.163
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CHAPTER 21

SPEED OF LIGHT

21.1 HISTORICAL INTRODUCTION

The speed of light in vacuum is a fundamental
constant in physics. The most interesting fact about
this speed is that if an object moves with this speed
in one frame, it has the same speed in any other frame.
This led to a major revision of our concept of space
and time and is the key fact on which the special
theory of relativity is based.

In 1983, the speed of light was defined to be exactly
299, 792, 458 m s–1. In fact, the length of an object is
now defined to be 299, 792, 458 m s–1 multiplied by
the time taken by the light to cross it. Thus, when one
sends light from one place to another place and
measures the time taken by the light to do so, one is
not measuring the speed of light, rather one is
measuring the distance between the two places.

Prior to 1983, the length was defined
independently and one had a separate metre. The
speed of light could then be measured as the length
divided by the time taken by the light to cross it.

Perhaps, the great Indian talents in the Vedic age
had the knowledge of the speed of light.
G. V. Raghavrao in his book quotes a verse from
Rigveda (I, 50-4) Yojananam Sahastra Dwe Dwe Shate
Dwe Cha Yojane Aken Nimishardhena Krammana
Namostute. In this verse, the author pays respects to
the one (the reference is to the sun light) who moves
2202 yojans in half nimish. Yojan is a quite common
unit in India, it means 4 kose, each kose measuring
8000 British yards and each yard measuring 0.9144 m.
The definition of the time unit nimish can be found in
Shrimadbhagwat (III, 11-3 to 10) where it is mentioned
that 15 nimishas make 1 kashta, 15 kashtas make one
laghu, 30 laghus make 1 muhurta and 30 muhurtas
make 1 diva–ratri. A diva–ratri is, of course, a
day–night which is 24 hours in modern language.
When you convert 2202 yojans per half nimish into SI
units, it turns out to be 3.0 × 10 8 m s–1 up to two
significant digits, a value quite accurate as we know
it today.

In the modern era, perhaps the first attempt to
measure the speed of light was made by Galileo. The
design of the experiment was as follows. Two
experimenters A and B, each having a lantern and a
shutter, stand on two small hills. The shutter can cover
or uncover the lantern. Initially, both the lanterns are
covered. One of the persons A uncovers the lantern.
The second person B uncovers his lantern when he
sees the light from the lantern of A. The first person
A covers his lantern when he sees the light from the
lantern of B. The time elapsed between the uncovering
and covering of the first lantern is measured. During
this time, the light travels from the first person to the
second person and then back. Knowing the distance
and time, the speed of light may be calculated.

The proposed method failed because the speed of
light is so large that a human being cannot respond
with the required accuracy of timing. If the distance
between the hills is as large as 15 km, the time taken
by light in going back and forth is only one ten
thousandth part of a second. The first recorded speed
of light in modern era came through the astronomical
observations by the Danish astronomer Olaf Roemer
in 1676. The value obtained was about 2.1 × 10 8 m s–1,
somewhat smaller than the actual. In 1728, English
astronomer Bradley measured the speed of light from
his observations. The value was quite close to the
correct one.

The first measurement of the speed of light from
purely terrestrial experiments was reported by the
French physicist Fizeau in 1849. The method was
improved by another French physicist Foucault. Yet
another method was proposed by American physicist
Michelson. We now describe these three methods.

21.2 FIZEAU METHOD

Figure (21.1a) shows a schematic diagram of the
arrangement used in this method. Light from a source
S passes through a convex lens L1. The transmitted
beam is intercepted by a semi-transparent inclined



glass plate G. A part of the light is reflected and is
converged near the rim of a toothed wheel W which
can be set into rapid rotation. The light passing
through the space between two consecutive teeth is
made parallel by a convex lens L2. This parallel beam
travels for several kilometers (in the original Fizeau
experiment it was 8.6 km) and is then converged by a
convex lens L3. A plane mirror M is placed in the focal
plane of the lens L3. The reflected light is again made
parallel by the lens L3 and it converges at the rim of
the wheel. If it finds a gap, it falls on the glass plate
G. The beam is partially transmitted and an observer
receives these rays to see the image of S through a
telescope.

When the wheel is rotated, it allows light to pass
through in separate bursts. Light is passed when a
gap comes at F and is stopped when a tooth comes
there. The speed of rotation of the wheel is gradually
increased while the observer keeps looking for the
image. Initially, the image flickers but at a particular
angular speed the image cannot be seen at all. This
happens when the angular speed is such that by the
time light passes through a gap, goes to the mirror M
and comes back, the next tooth comes at F. Any light
passing through the wheel does not return to the
observer and the image cannot be seen. The angular
speed of the wheel is carefully measured in this state.

Suppose, D  distance from the wheel W to the
mirror M,

  angular speed of rotation of the wheel when
the image is completely unseen for the first time,

n  number of teeth in the wheel.

The angle rotated by the wheel when a tooth comes

in the place of its adjacent gap is   2
2n

 (figure 21.1b).

The time taken by the wheel in doing so is

/  
n

  In this time interval, the light travels a

distance 2D. The speed of light is, therefore,

       c  
2D

/n
  

2Dn


 

If the number of revolutions of the wheel per unit
time is , we have   2 and the speed of light is

              c  4Dn.  (21.1)

One can use a concave mirror in place of the plane
mirror. If the radius of curvature of this mirror be
equal to its distance from the convex lens L3 (i.e., equal
to the focal length of L3, a slight error in orientation
of lens L3 does not seriously affect the accuracy of the
experiment.

There are two serious difficulties in this method.
Since the light has to travel a large distance, the
intensity decreases considerably and the final image
becomes very dim. Secondly, the experiment cannot be
done inside a laboratory. It needs an open space of
several kilometers. These difficulties are removed in
Foucault method.

21.3 FOUCAULT METHOD

The basic principle of Foucault’s method can be
understood with the help of figure (21.2). Light from
a source S is partly transmitted by a glass plate G and
is incident on a convex lens L. The distance of the lens
from S is so adjusted that the beam transmitted
through the lens is convergent. This beam is
intercepted by a plane mirror M1 which can be rotated
about an axis perpendicular to the plane of the figure.
The plane mirror reflects the light which converges on
a concave mirror M2. The distance between the two
mirrors is equal to the radius of curvature of the
concave mirror. The concave mirror reflects the light
beam back to the plane mirror. The central ray is
always incident on the concave mirror perpendicularly
so that it retraces the path. If the plane mirror does
not rotate, the rays retrace the path up to the glass
plate G. A part of the beam is reflected by the glass
plate and forms an image I of the source. Now, suppose
the plane mirror M1 rotates by an angle  by the time
light goes from M1  to  M2 and comes back to it. The
light reflected by M1 then makes an angle 2 with
the direction of the rays reflected earlier. Because of
this deviation, the returning rays (shown dotted in
figure 21.2) form an image I of the source which is
slightly shifted from the position I.

(b)

T
G

L

S

W

1

2 3L L

F

(a)

M

2n

Figure 21.1
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   Suppose,
     R  radius of the concave mirror,
        the angular speed of the plane mirror,
     s   the shift II,
     b   the distance from M1 to L,
     a   the distance from L to S.

When the mirror is in position M1, the rays
reflected by it to the lens seem to come from a point
O which is the image of the point C in M1. When it
has rotated by an angle , the rays reflected by it to
the lens seem to come from a point O which is the
image of C in the new position M1 of the mirror. The
distance BO  BC  R. It is clear from the figure that

           OO  R.2.               (i)
Now, the rays reflected by the position M1 of the

mirror retrace the path and would converge at the
source S itself. The glass plate partly reflects the beam
to converge it at I. Thus, I is the image of S in the
plate G acting as a plane mirror. Similarly, the rays
reflected by the position M1 of the mirror are
converged by the lens at a point S. The glass plate G
partly reflects the beam to converge it at I which is
the image of S in G. It is clear that

            SS  II  s.              (ii)
Thus, the lens L forms an image of O at S and of

O at S. If we place an object of size OO at O, its
image will have the size SS at S. Thus,

     
SS
OO

  magnification  produced  by  L

           
image–distance
object–distance

 

           
a

R  b
 

Putting from (i) and (ii),

             
s

2R
  a

R  b
   (iii)

If the speed of light is c, it takes time t  2R/c
to go from M1  to  M2 and to come back. As the angular
speed of M1  is  , the angle rotated by it in time t is

              t  
2R

c
 

Putting in (iii),

s
2R2R/c

  a
R  b

   or, c  
4R 2 a
sR  b

   (21.2)

All the quantities on the right side may be
measured in the experiment and hence, the speed of
light may be calculated. Foucault obtained a value
2.98  10 8 m s–1 from his measurement.

The space required in this experiment is quite
small and hence, it may be performed inside a
laboratory. Another advantage with this method is
that one can put a tube of a transparent material
between the two mirrors. The speed calculated by
equation (21.2) then gives the speed of light in that
material. It could be experimentally verified that light
travels at a slower speed in a medium as compared to
its speed in vacuum. This finding was contrary to the
predictions of Newton’s corpuscular theory.
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21.4 MICHELSON METHOD

The scheme of Michelson method to measure the
speed of light is shown in figure (21.3). Light from an
intense source S is incident upon one face of a polygon-
shaped mirror M. The light reflected from this surface
is sent to the lower portion of a concave mirror M3

after reflections from two plane mirrors M1 and M2.
The geometry is set so that the light reflected from
the concave mirror becomes parallel. This parallel
beam of light is allowed to travel through a long
distance (several kilometers) and falls on the lower
portion of another concave mirror M4. The parallel
beam is converged at the focus of M4 where a plane
mirror M5 is placed. M5 reflects the beam back to the
concave mirror M4, this time at the upper portion. As
M5 is at the focus, the beam reflected by M4 becomes
parallel and travels back to the concave mirror M3.
After proper reflections from M3 and the plane mirrors,
it is sent to the polygonal mirror. A telescope is
adjusted to receive the rays reflected by the polygonal
mirror and hence, to form an image of the source.

Suppose the polygonal mirror M is stationary.
Light from the source falls on the face ab of the mirror
M and after reflections from all the mirrors, finally

falls on the face ef of the mirror M. The image of S is
seen in the telescope. If the polygonal mirror rotates,
the face ef also turns a little while light travels
between the two reflections from the polygonal mirror.
The light thus fails to enter into the telescope and the
image is not seen. If the rotational speed of the mirror
is gradually increased, a stage comes when the
adjacent face fg takes the place of ef by the time light
comes there. Then, the light is again sent into the
telescope.

In the experiment, one looks through the telescope
and gradually increases the angular speed of the
polygonal mirror. The image flickers initially and
becomes steady at a particular angular speed of the
mirror. This angular speed is measured.

Suppose,
N  the number of faces in the polygonal mirror,

  the angular speed of rotation of the mirror
when the image becomes steady,

D  the distance travelled by the light between the
reflections from the polygonal mirror.

If the speed of light is c, the time taken by the
light to travel the distance D is t  D/c. The angle
rotated by the mirror during this time is   2/N.

The angular speed of the mirror is

          

t

  
2/N
D/c

  
2c
DN

or,         c  
DN

2
 

If  be the frequency of rotation, /2   and 

             c  DN.  (21.3)

Michelson and his co-workers made a series of
similar experiments. The first determination was made
in 1879 with an octagonal rotating mirror. The latest
in the series was underway at the time of the death
of Michelson and was completed in 1935 by Pease and
Pearson. This experiment used a rotating mirror with
32 faces.

QUESTIONS FOR SHORT ANSWER

 1. The speed of sound in air is 332 m s–1. Is it advisable to
define the length 1 m as the distance travelled by sound
in 1/332 s ?

 2. Consider Galileo’s method of measuring the speed of
light using two lanterns. To get an accuracy of about
10%, the time taken by the experimenter in closing or
opening the shutter should be about one tenth of the

time taken by the light in going from one experimenter
to the other. Assume that it takes 1/100 second for an
experimenter to close or open the shutter. How far
should the two experimenters be to get a 10% accuracy ?
What are the difficulties in having this separation ?

 3. In Fizeau method of measuring the speed of light, the
toothed wheel is placed in the focal plane of a converging
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lens. How would the experiment be affected if the wheel
is slightly away from the focal plane ? 

 4. In the original Fizeau method, the light travelled 8.6
km and then returned. What could be the difficulty if
this distance is taken as 8.6 m ?

 5. What is the advantage of using a polygonal mirror with
larger number of faces in Michelson method of
measuring the speed of light ?

OBJECTIVE I

 1. Light passes through a closed cylindrical tube containing
a gas. If the gas is gradually pumped out, the speed of
light inside the tube will
(a) increase    (b) decrease    (c) remain constant
(d) first increase and then decrease.

 2. The speeds of red light and yellow light are exactly same
(a) in vacuum but not in air
(b) in air but not in vacuum
(c) in vacuum as well as in air
(d) neither in vacuum nor in air.

 3. An illuminated object is placed on the principal axis of
a converging lens so that a real image is formed on the
other side of the lens. If the object is shifted a little,
(a) the image will be shifted simultaneously with the
object
(b) the image will be shifted a little later than the object
(c) the image will be shifted a little earlier than the
object
(d) the image will not shift.

OBJECTIVE II

 1. The speed of light is 299,792,458 m s–1

(a) with respect to the earth
(b) with respect to the sun
(c) with respect to a train moving on the earth
(d) with respect to a spaceship going in outer space.

 2. Which of the following methods can be used to measure
the speed of light in laboratory ?

(a) Roemer method        (b) Fizeau method
(c) Foucault method        (d) Michelson method

 3. Which of the following methods can be used to measure
the speed of light in water ?
(a) Roemer method         (b) Fizeau method
(c) Foucault method        (d) Michelson method

EXERCISES

 1. In an experiment to measure the speed of light by
Fizeau’s apparatus, following data are used :
  Distance between the mirrors = 12.0 km,
  Number of teeth in the wheel = 180.
Find the minimum angular speed of the wheel for which
the image is not seen.

 2. In an experiment with Foucault’s apparatus, the various
distances used are as follows :
Distance between the rotating and the fixed mirror
= 16 m
Distance between the lens and the rotating mirror
= 6 m,

Distance between the source and the lens = 2 m.
When the mirror is rotated at a speed of 356 revolutions
per second, the image shifts by 0.7 mm. Calculate the
speed of light from these data.

 3. In a Michelson experiment for measuring speed of light,
the distance travelled by light between two reflections
from the rotating mirror is 4.8 km. The rotating mirror
has a shape of a regular octagon. At what minimum
angular speed of the mirror (other than zero) the image
is formed at the position where a nonrotating mirror
forms it ?

ANSWERS
OBJECTIVE I

 1. (a)  2. (a)  3. (b)

OBJECTIVE II

 1. (a), (b), (c), (d)  2. (c)  3. (c)

EXERCISES

 1. 1.25 × 10 4 deg s−1

 2. 2.984 × 10 8 m s−1

 3. 7.8 × 10 3 rev s−1
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CHAPTER 22

PHOTOMETRY

We see an object when light coming from the object
enters our eyes and excites the sensation of vision. The
brightness sensed by the eye depends on the amount
of light energy entering into it and the wavelength
distribution of this energy. In this chapter, we shall
study the factors responsible for the sensation of
brightness.

22.1 TOTAL RADIANT FLUX

The total energy of radiation emitted by a source
per unit time is called its total radiant flux. This
radiation contains components of various wavelengths
extending even beyond the visible range. However, not
all wavelengths have equal contribution in making up
the total radiation. In calculating total radiant flux of
a source, the total energy emitted per unit time in the
whole range of wavelengths must be calculated.

The SI unit of total radiant flux of a source is watt.

22.2 LUMINOSITY OF RADIANT FLUX

The brightness produced by radiation depends on
the wavelength of the radiation besides depending on
the total radiant flux. For example, consider two 10 W
sources of light, one emitting yellow light and the other
red light. Though both emit equal energy per unit time,
yellow will look brighter than the red. The luminosity
of radiant flux measures the capacity to produce
brightness sensation in eye. A relative comparison of
luminosity of radiant flux of different wavelengths can
be made by the curve in figure (22.1). The figure
represents relative luminosity under normal light
conditions for an average person. The scale on the
vertical axis is chosen arbitrarily. We see that for
normal light conditions, the luminosity is maximum
for wavelength around 555 nm and falls off on both
sides. Radiation is “visible” if its luminosity is not zero.
As the luminosity falls off gradually, there are no
sharp cut-offs of visible region.

 

22.3 LUMINOUS FLUX : RELATIVE LUMINOSITY

In general, the radiation emitted by a source has
components corresponding to a wide range of
wavelengths. Different component wavelengths have
different energies (in a given time) and different
brightness producing capacities. The radiant flux is a
quantity directly representing the total energy emitted
per unit time. The luminous flux is a quantity directly
representing the total brightness producing capacity of
the source. Its unit is called lumen. The luminous flux
of a source of 1/685 W emitting monochromatic light
of wavelength 555 nm is called one lumen. In other
words, a 1 W source emitting monochromatic light of
wavelength 555 nm emits 685 lumen.

Relative luminosity of a wavelength refers to the
fraction

luminous flux of a source of given wavelength
luminous flux of a 555 nm source of same power

 ⋅

It is often represented as a percentage. Thus,
figure (22.1) represents the relative luminosity as a
function of wavelength.

It should be clear that the luminous flux depends
on the radiant flux as well as on the wavelength
distribution.
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Example 22.1

   Find the luminous flux of a 10 W source of 600 nm. The
relative luminosity at 600 nm is 0.6.

Solution : The luminous flux of a 1 W source of
555 nm  685 lumen. Thus, the luminous flux of a 10
W source of 555 nm  6850 lumen. The luminous flux of
a 10 W source of 600 nm is, therefore, 0.6  6850 lumen
 4110 lumen.

For radiation having a range of wavelengths, the
luminous flux gets contribution from each wavelength.

22.4 LUMINOUS EFFICIENCY

Total luminous flux per unit radiant flux is called
luminous efficiency. Thus,

 Luminous efficiency  
Total luminous flux
Total radiant flux

   (22.1)

The luminous efficiency of a monochromatic source
of 555 nm is 685 lumen watt–1 by definition. The
luminous efficiency of a monochromatic source of any
other wavelength is the relative luminosity of that
wavelength multiplied by 685 lumen watt–1.

An electric lamp glows when electric energy is
given to it. However, not all the electric power given
to it is converted into radiant flux. The term luminous
efficiency is used in a slightly wider sense for such a
light source. It is defined as the luminous flux divided
by the power input to the source. Thus, it is the
efficiency with which the power input to the source is
used to produce brightness. We may call it overall
luminous efficiency. Overall luminous efficiency

        
Luminous flux emitted

Power input to the source
   (22.2)

A good fraction of power given to a filament lamp
is used to heat the filament to a certain temperature
at which it glows. Also, a good fraction of the emitted
radiation has a wavelength where the relative
luminosity is small or zero. The overall luminous
efficiency of a filament lamp is rarely more than
50 lumen watt–1.

22.5 LUMINOUS INTENSITY OR
     ILLUMINATING POWER

In the chapter on Gauss’s law, we shall describe
in detail what is a solid angle. In brief, the solid angle
measures the angular divergence of a cone and is
defined as

             
A

R 2
 ,

where A is the area intercepted by the cone on a sphere
of radius R centred at the apex of the cone (figure 22.2).

It is clear that the solid angle does not depend on
the radius of the sphere. The SI unit of solid angle is
called a steradian written in short as sr.

The luminous intensity of a source in a given
direction is defined as

             I  
dF
d

 ,  (22.3)

where dF is the luminous flux of the radiation emitted
by the source in a small cone of solid angle d
constructed around the given direction. The luminous
intensity is also called just intensity in short. An ideal
point source emits radiation uniformly in all directions.
If the total luminous flux of the source is F, its
intensity in any direction is

              I  
F

4 sr
as the total solid angle at a point is 4 sr. For an
extended source, the intensity is different in different
directions.

The SI unit of luminous intensity is
lumen/steradian. This is called a candela written in
short as “cd”. Luminous intensity is also called
illuminating power.

Candela is one of the seven base units of SI. It is
defined precisely as the luminous intensity of a
blackbody of surface area 1

60
 cm 2 placed at the freezing

temperature of platinum at a pressure of 101,
325 N m2 in the direction perpendicular to the surface.

22.6 ILLUMINANCE

When radiation strikes a surface, the surface gets
illuminated. We define the illuminance of a small area
as follows. If dF be the luminous flux of the radiation

A

R

Figure 22.2

S

Figure 22.3
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striking a surface area dA, the illuminance of the area
is defined as

              E  
dF
dA

   (22.4)

The illuminance is, therefore, the luminous flux
incident per unit area.

It is the illuminance which is directly related to
the brightness of an illuminated area. The SI unit of
illuminance is lumen m–2 and is called lux.

22.7 INVERSE SQUARE LAW

Consider a point source S and a small area A
around the point P at a distance r from the source
(figure 22.4). Suppose, the angle between SP and the
normal PN to the area is . Also suppose, the luminous
intensity of the source in the direction SP is I.

The solid angle subtended by the area A at the
source is

              
A cos

r 2
 

The luminous flux going through this solid angle is
           F  I

              I 
A cos

r 2
 

   The illuminance at A is

   E  
F
A

  (22.5)

   or, E  
I cos

r 2
 

We note that
(a) the illuminance of a small area is inversely

proportional to the square of the distance of the area
from the source and

(b) the illuminance of a small area is proportional
to cos where  is the angle made by the normal to
the area with the direction of incident radiation.

The first observation is known as the inverse
square law.

22.8 LAMBERT’S COSINE LAW

An ideal point source emits radiation uniformly in
all directions. In general, sources are extended and
such a source has different luminous intensity in

different directions. If the source is in the form of a
small plane surface, the radiation is emitted only in
the forward half that is in a solid angle 2 around the
forward normal. Even in this half, the intensity is
different in different directions. The intensity is
maximum along the normal to the surface and
decreases as we consider directions away from this
normal. For many surfaces, if the luminous intensity
along the normal is I0, it is

            I  I0 cos  (22.6)

in a direction making an angle  with the normal.
Equation (22.6) is called Lambert’s cosine law. The
surfaces which radiate according to the Lambert’s
cosine law are called perfectly diffused.

22.9 PHOTOMETERS

A photometer is used to compare the intensities of
two point sources. The basic principle is as follows.
Two screens are placed side by side. One screen is
illuminated by the source S1 only and the other screen
by the source S2 only. Light falls on the two screens
at equal angles. The distances d1 and d2 of the sources
from the screens are so adjusted that the two screens
look equally bright. If I1 and I2 be the intensities of
the sources, we must have for equal illuminance

               
I1

d1
 2
  

I2

d2
 2

   or,           
I1

I2
  

d1
 2

d2
 2   (22.7)

A simple design proposed by Bunsen is now
described (figure 22.6). It consists of an optical bench
fitted with three vertical stands. The stands can slide
along a straight rail on the bench.
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The distance between any two points on the rail
may be read from a meter scale attached to the bench.
The central stand contains a white paper with a grease
spot. The other two stands carry the sources
S1  and  S2 to be compared. Two plane mirrors M1 and
M2 are placed behind the central stand at proper
inclination so that one side of the spot is imaged in
one mirror and the other side of the spot is imaged in
the other mirror. The two images can be seen
simultaneously.

One of the sources is kept fixed at a distance from
the spot and the position of the other is adjusted till
the two spots seen in the mirrors appear equally
bright. The distances d1 and d2 of the sources from the
spot are measured in this condition. In this condition,
the light falling on the spot from the two sources has
equal intensity. If I1 and I2 be the intensity of the two
sources, we have for equal illuminance,

           
I1

d1
 2
 = 

I2

d2
 2
      or,      

I1

I2

 = 
d1

 2

d2
 2
 ⋅

Worked Out Examples

 1. A source emits 12.0 J of light of wavelength 620 nm and
8.0 J of light of wavelength 580 nm per second. The
relative luminosity at 620 nm is 35% and that at 580 nm
is 80%. Find (a) the total radiant flux, (b) the total
luminous flux and (c) the luminous efficiency.

Solution :

(a) The total radiant flux = Total energy radiated per
unit time = 12 J/s + 8 J/s = 20 J/s = 20 W.

(b) The luminous flux corresponding to the 12 W of
620 nm radiation is

    0.35 × (12 W) × 685 lumen W −1 = 2877 lumen.

Similarly, the luminous flux corresponding to the 8 W of
580 nm radiation is

    0.80 × (8 W) × 685 lumen W −1 = 4384 lumen.

The luminous flux of the source is 2877 lumen + 4384
lumen
        = 7261 lumen ≈ 7260 lumen.

(c) The luminous efficiency = 
Total luminous flux
Total radiant flux

        = 
7260 lumen

20 W
 = 363 lumen W −1. 

 2. A circular area of radius 1.0 cm is placed at a distance
of 2.0 m from a point source. The source emits light
uniformly in all directions. The line joining the source
to the centre of the area is normal to the area. It is found
that 2.0 × 10 – 3 lumen of luminous flux is incident on the
area. Calculate the total luminous flux emitted by the
source and the luminous intensity of the source along the
axis of the area.

Solution : The solid angle subtended by the area on the
point source is 

       ∆ω = 
π(1.0 cm) 2

(2.0 m) 2  = 
π
4

 × 10 − 4 sr.

Thus, 2.0 × 10 − 3 lumen of flux is emitted in 
π
4

 × 10 − 4 sr.

The total solid angle at the source is 4π. As the source

radiates uniformly in all directions, the total luminous
flux is

       F = 
4π

π
4

 × 10 − 4

 × 2.0 × 10 − 3 lumen

= 320 lumen.

The luminous intensity = ∆F/∆ω

= 
2.0 × 10 − 3 lumen

π
4

 × 10 − 4 sr
 = 25 cd.

 3. The overall luminous efficiency of a 100 W electric lamp
is 25 lumen W –1. Assume that light is emitted by the
lamp only in the forward half, and is uniformly
distributed in all directions in this half. Calculate the
luminous flux falling on a plane object of area 1 cm 2

placed at a distance of 50 cm from the lamp and
perpendicular to the line joining the lamp and the object.

Solution : The power input to the bulb = 100 W.

The luminous flux emitted by the bulb
          = (25 lumen W −1) × 100 W

= 2500 lumen.

Since light is emitted only in the forward half and is
distributed uniformly in this half, the luminous intensity
is
            I = ∆F/∆ω

         = 
2500 lumen

2π sr
 ⋅

The solid angle subtended by the object on the lamp is

        ∆ω = 
1 cm 2

(50 cm) 2 = 
1

2500
 sr.

The luminous flux emitted in this solid angle is

∆F = I ∆ω

= 


2500
2π

 
lumen

sr



 


1
2500

 sr



= 
1
2π

 lumen = 0.16 lumen.
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 4. A point source emitting uniformly in all directions is
placed above a table-top at a distance of 0.50 m from it.
The luminous flux of the source is 1570 lumen. Find the
illuminance at a small surface area of the table-top
(a) directly below the source and (b) at a distance of
0.80 m from the source.

Solution : Consider the situation shown in figure (22-W1).
Let A be the point directly below the source S and B be
the point at 0.80 m from the source.

The luminous flux of 1570 lumen is emitted uniformly
in the solid angle 4 The luminous intensity of the
source in any direction is

          I  
1570 lumen

4 sr

 125 cd.

The illuminance is

          E  
I cos

r 2
 

At the point A, r  0.50 m  and     0. Thus,

        EA  
125 cd

0.25 m 2
  500 lux.

At the point B, r  0.80 m and cos  
SA
SB

  
0.50
0.80

  5
8

  

Thus,       EB  
125 cd  

5
8

0.64 m 2

 122 lux.

 5. The luminous intensity of a small plane source of light
along the forward normal is 160 candela. Assuming the
source to be perfectly diffused, find the luminous flux
emitted into a cone of solid angle 0.02 sr around a line
making an angle of 60 with the forward normal.

Solution : The situation is shown in figure (22-W2). By
Lambert’s cosine law, the intensity in the direction SB
is
              I  I0 cos60,
where I0  160 candela is the intensity along the forward
normal.

Thus,      I  160 candela 


1
2




       80 candela.

The luminous flux emitted in the cone shown in the
figure is
            F  I 

  80 candela 0.02 sr

  1.6 lumen.

QUESTIONS FOR SHORT ANSWER

 1. What is the luminous flux of a source emitting radio
waves ?

 2. The luminous flux of a 1 W sodium vapour lamp is more
than that of a 10 kW source of ultraviolet radiation.
Comment.

 3. Light is incident normally on a small plane surface. If
the surface is rotated by an angle of 30 about the
incident light, does the illuminance of the surface
increase, decrease or remain same ? Does your answer
change if the light did not fall normally on the surface ?

 4. A bulb is hanging over a table. At which portion of the
table is the illuminance maximum ? If a plane mirror is

placed above the bulb facing the table, will the
illuminance on the table increase ?

 5. The sun is less bright at morning and evening as
compared to at noon although its distance from the
observer is almost the same. Why ?

 6. Why is the luminous efficiency small for a filament bulb
as compared to a mercury vapour lamp ?

 7. The yellow colour has a greater luminous efficiency as
compared to the other colours. Can we increase the
illuminating power of a white light source by putting a
yellow plastic paper around this source ?
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OBJECTIVE I

 1. The one parameter that determines the brightness of a
light source sensed by an eye is
(a) energy of light entering the eye per second
(b) wavelength of the light
(c) total radiant flux entering the eye
(d) total luminous flux entering the eye.

 2. Three light sources A, B and C emit equal amount of
radiant energy per unit time. The wavelengths emitted
by the three sources are 450 nm, 555 nm and 700 nm
respectively. The brightness sensed by an eye for the
sources are XA, XB and XC respectively. Then, 
(a) XA > XB,  XC > XB           (b) XA > XB,  XB > XC

(c) XB > XA,  XB > XC           (d) XB > XA,  XC > XB.

 3. As the wavelength is increased from violet to red, the
luminosity
(a) continuously increases
(b) continuously decreases
(c) increases then decreases
(d) decreases then increases.

 4. An electric bulb is hanging over a table at a height of
1 m above it. The illuminance on the table directly below
the bulb is 40 lux. The illuminance at a point on the
table 1 m away from the first point will be about
(a) 10 lux   (b) 14 lux   (c) 20 lux   (d) 28 lux.

 5. Light from a point source falls on a screen. If the
separation between the source and the screen is
increased by 1%, the illuminance will decrease (nearly)
by
(a) 0.5%     (b) 1%     (c) 2%     (d) 4%.

 6. A battery-operated torch is adjusted to send an almost
parallel beam of light. It produces an illuminance of 40
lux when the light falls on a wall 2 m away. The
illuminance produced when it falls on a wall 4 m away
is close to
(a) 40 lux    (b) 20 lux    (c) 10 lux    (d) 5 lux.

 7. The intensity produced by a long cylindrical light source
at a small distance r from the source is proportional to

(a) 
1

r 2
     (b) 

1

r 3
     (c) 

1
r

     (d) none of these.

 8. A photographic plate placed at a distance of 5 cm from
a weak point source is exposed for 3 s. If the plate is
kept at a distance of 10 cm from the source, the time
needed for the same exposure is
(a) 3 s     (b) 12 s     (c) 24 s     (d) 48 s.

 9. A photographic plate is placed directly in front of a small
diffused source in the shape of a circular disc. It takes
12 s to get a good exposure. If the source is rotated by
60° about one of its diameters, the time needed to get
the same exposure will be
(a) 6 s     (b) 12 s     (c) 24 s     (d) 48 s.

10. A point source of light moves in a straight line parallel
to a plane table. Consider a small portion of the table
directly below the line of movement of the source. The
illuminance at this portion varies with its distance r
from the source as

(a) I ∝ 
1
r

    (b) I ∝ 
1
r 2    (c) I ∝ 

1
r 3    (d) I ∝ 

1
r 4 ⋅

11. Figure (22-Q1) shows a glowing mercury tube. The
intensities at point A, B and C are related as
(a) B > C > A            (b) A > C > B
(c) B = C > A            (d) B = C < A.

OBJECTIVE II

 1. The brightness-producing capacity of a source
(a) does not depend on its power
(b) does not depend on the wavelength emitted
(c) depends on its power
(d) depends on the wavelength emitted.

 2. A room is illuminated by an extended source. The
illuminance at a particular portion of a wall can be
increased by
(a) moving the source       (b) rotating the source
(c) bringing some mirrors in proper positions
(d) changing the colour of the source.

 3. Mark the correct options.
(a) The luminous efficiency of a monochromatic source
is always greater than that of a white light source of
same  power.
(b) The luminous efficiency of a monochromatic source

of wavelength 555 nm is always greater than that of a
white light source of same power.
(c) The illuminating power of a monochromatic source
of wavelength 555 nm is always greater than that of a
white light source of same power.
(d) The illuminating power of a monochromatic source
is always greater than that of a white light source of
same power.

 4. Mark out the correct options.
(a) Luminous flux and radiant flux have same
dimensions.
(b) Luminous flux and luminous intensity have same
dimensions.
(c) Radiant flux and power have same dimensions.
(d) Relative luminosity is a dimensionless quantity.

C A B

Figure 22-Q1
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EXERCISES

 1. A source emits 45 joules of energy in 15 s. What is the
radiant flux of the source ?

 2. A photographic plate records sufficiently intense lines
when it is exposed for 12 s to a source of 10 W. How
long should it be exposed to a 12 W source radiating the
light of same colour to get equally intense lines ?

 3. Using figure (22.1), find the relative luminosity of
wavelength (a) 480 nm, (b) 520 nm (c) 580 nm and
(d) 600 nm.

 4. The relative luminosity of wavelength 600 nm is 0.6.
Find the radiant flux of 600 nm needed to produce the
same brightness sensation as produced by 120 W of
radiant flux at 555 nm.

 5. The luminous flux of a monochromatic source of 1 W is
450 lumen. Find the relative luminosity at the wavelength
emitted.

 6. A source emits light of wavelengths 555 nm and 600
nm. The radiant flux of the 555 nm part is 40 W and
of the 600 nm part is 30 W. The relative luminosity at
600 nm is 0.6. Find (a) the total radiant flux, (b) the
total luminous flux, (c) the luminous efficiency. 

 7. A light source emits monochromatic light of wavelength
555 nm. The source consumes 100 W of electric power
and emits 35 W of radiant flux. Calculate the overall
luminous efficiency.

 8. A source emits 31.4 W of radiant flux distributed
uniformly in all directions. The luminous efficiency is
60 lumen watt–1. What is the luminous intensity of the
source ? 

 9. A point source emitting 628 lumen of luminous flux
uniformly in all directions is placed at the origin.
Calculate the illuminance on a small area placed at
(1.0 m, 0, 0) in such a way that the normal to the area
makes an angle of 37° with the X-axis.

10. The illuminance of a small area changes from
900 lumen m–2 to 400 lumen m–2 when it is shifted along
its normal by 10 cm. Assuming that it is illuminated by
a point source placed on the normal, find the distance
between the source and the area in the original position.

11. A point source emitting light uniformly in all directions
is placed 60 cm above a table-top. The illuminance at a

point on the table-top, directly below the source, is
15 lux. Find the illuminance at a point on the table-top
80 cm away from the first point.

12. Light from a point source falls on a small area placed
perpendicular to the incident light. If the area is rotated
about the incident light by an angle of 60°, by what
fraction will the illuminance change ?

13. A student is studying a book placed near the edge of a
circular table of radius R. A point source of light is
suspended directly above the centre of the table. What
should be the height of the source above the table so as
to produce maximum illuminance at the position of the
book ?

14. Figure (22-E1) shows a small diffused plane source S
placed over a horizontal table-top at a distance of 2.4 m
with its plane parallel to the table-top. The illuminance
at the point A directly below the source is 25 lux. Find
the illuminance at a point B of the table at a distance
of 1.8 m from A.

15. An electric lamp and a candle produce equal illuminance
at a photometer screen when they are placed at 80 cm
and 20 cm from the screen respectively. The lamp is now
covered with a thin paper which transmits 49% of the
luminous flux. By what distance should the lamp be
moved to balance the intensities at the screen again ?

16. Two light sources of intensities 8 cd and 12 cd are placed
on the same side of a photometer screen at a distance
of 40 cm from it. Where should a 80 cd source be placed
to balance the illuminance ?

ANSWERS

OBJECTIVE I

 1. (d)  2. (c)  3. (c)  4. (b)  5. (c) 6. (a)
 7. (c)  8. (b)  9. (c) 10. (c) 11. (d)

OBJECTIVE II

 1. (c), (d)  2. (a), (b), (c), (d)  3. (b), (c)
 4. (b), (c), (d)

EXERCISES

 1. 3 W

 2. 10 s

 3. (a) 0.14    (b) 0.68    (c) 0.92    (d) 0.66

 4. 200 W

 5. 66%

 6. (a) 70 W  (b) 39730 lumen  (c) 568 lumen W –1
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 7. 240 lumen W –1

 8. 150 cd

 9. 40 lux

10. 20 cm

11. 3.24 lux

12. it will not change

13. R/2

14. 10.2 lux
15. 24 cm
16. 80 cm
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APPENDIX A

Units and Dimensions of Physical Quantities

Quantity Common Symbol SI Unit Dimension
Displacement s METRE (m) L
Mass m, M KILOGRAM (kg) M
Time t SECOND (s) T
Area A m 2 L2

Volume V m 3 L3

Density  kg m3 M L3

Velocity v, u m s1 L T 1

Acceleration a m s2 L T 2

Force F newton (N) ML T2

Work W joule (J)(= N–m) ML2 T2

Energy E, U, K joule (J) ML2 T2

Power P watt W J s1 ML2 T3

Momentum p kgm s1 ML T 1

Gravitational constant G Nm 2 kg 2 L3 M1T 2

Angle ,   radian
Angular velocity  rad s1 T  1

Angular acceleration  rad s2 T  2

Angular momentum L kgm 2 s1 ML2 T 1

Moment of inertia I kgm 2 ML2

Torque  Nm ML2 T 2

Angular frequency  rad s1 T  1

Frequency  hertz (Hz) T  1

Period T s T
Young’s modulus Y N m2 M L1T 2

Bulk modulus B N m2 M L1T 2

Shear modulus  N m2 M LT 2

Surface tension S N m1 M T 2

Coefficient of viscosity  Ns m 2 M L1T 1

Pressure P, p N m 2, Pa M L1T 2

Wavelength  m L
Intensity of wave I W m 2 M T 3

Temperature T KELVIN (K) 
Specific heat capacity c J kg1K 1 L2 T 2 K 1

Stefan’s constant  W m 2K 4 M T 3K 4

Heat Q J ML2 T 2

Thermal conductivity K W m1K 1 ML T 3K 1

Current I AMPERE(A) I
Charge q, Q coulomb (C) IT
Current density j A m 2 IL2

Electrical conductivity  1/m (= mho/m) I 2T 3 M1L3

Dielectric constant k
Electric dipole moment p Cm LIT
Electric field E V m1 N C1 ML I1T 3

Potential (voltage) V volt (V) J C1 ML2 I1T 3

Electric flux  Vm ML3 I1T 3

Capacitance C farad (F) I 2T 4 M1L2

Electromotive force E volt (V) ML2 I1T 3

Resistance R ohm () ML2 I 2T 3

Permittivity of space 0 C 2 N1m 2  F m1 I 2T 4 M1L3

Permeability of space 0 N A2 ML I 2T 2

Magnetic field B tesla (T) Wb m2 M I1T2

Magnetic flux B weber (Wb) ML2 I1T 2

Magnetic dipole moment  Nm T1 IL2

Inductance L henry (H) ML2 I 2T 2



APPENDIX B

Universal Constants (as revised in 1986)

Quantity Symbol Value Unit Uncertainty in the
last two digits

Constant of gravitation G 6⋅67259 × 10 − 11 N−m 2 kg−2 85

Speed of light in vacuum c 2⋅99792458 × 10 8 m s−1 exact

Avogadro constant NA 6⋅0221367 × 10 23 mol − 1 36

Gas constant R 8⋅314510 J K−1−mol−1 70

Boltzmann constant k 1⋅380658 × 10 − 23

8⋅617385 × 10 − 5

J K−1

eV K−1
12
73

Stefan–Boltzmann constant σ 5⋅67051 × 10 − 8 W m −2−K −4 19

Wien’s displacement law constant b 2⋅897756 × 10 − 3 m−K 24

Charge of proton e 1⋅60217733 × 10 − 19 C 49

Mass of electron me 9⋅1093897 × 10 − 31

5⋅48579903 × 10 − 4

kg
u

54
13

Mass of proton mp 1⋅6726231 × 10 − 27

1⋅007276470

kg
u

10
12

Mass of neutron mn 1⋅6749286 × 10 − 27

1⋅008664904

kg
u

10
14

Permeability of vacuum µ0   4π × 10 − 7

= 12⋅566370614… × 10 − 7 N A−2 exact

Permittivity of vacuum ∈0   
1

µ0 c 2
 

= 8⋅854187817… × 10 − 12 C 2 N−1−m−2 = F m−1

exact

Faraday constant F 96485⋅3029 C mol−1 29

Planck constant h 6⋅6260755 × 10 − 34

4⋅1356692 × 10 − 15

J−s
eV−s

40
12

Rydberg constant R 1⋅0973731534 × 10 7 m − 1 13

Ground state energy of hydrogen
atom

13⋅605698 eV 40

Bohr radius a0 5⋅29177249 × 10 − 11 m 24

Astronomical Constant

Quantity Value Unit

Mass of the sun 1.99 × 10 30 kg

Radius of the sun 6.95 × 10 8 m

Mass of the earth 5.98 × 10 24 kg

Mean radius of the earth 6.37 × 10 6 m

Mass of the moon 7.36 × 10 22 kg

Radius of the moon 1.74 × 10 6 m

Mean earth–sun distance 1.50 × 10 11 m

Mean earth–moon distance 3.84 × 10 8 m

Escape speed from the earth 11.2 km s−1

Escape speed from the moon 2.38 km s−1



INDEX

A
Aberration

chromatic 400
monochromatic 398
spherical 398

Acceleration 34
angular 101, 167
average 34
centripetal 102
in circular motion 102
instantaneous 34
radial 103
tangential 101

Acceleration due to gravity 36, 210
variation in 214

Accommodation 419, 425
Amplitude 230
Angular acceleration 101, 167

relation with torque 171
Angular impulse 174
Angular momentum 173
Angular speed 167
Angular velocity

of a rigid body 167
Antinode 312, 337

in pressure wave 337
Antinodes 311
Apparent weight 106
Archimedes’principle 261
Aspirator pump 267
Astigmatism 427

in images 399

B
Barometer 260
Beats 340
Bernoulli

equation of fluid flow 265
Brewster’s law 376
Bulk modulus 281
Buoyancy 261

C
Capillary

rise due to surface tension 289
Centre of mass 139

definition 139
motion of 142

Centrifugal force 105
Centripetal

acceleration 102
Centripetal force 103
Circular motion 101, 172

nonuniform 103
Coefficient of

kinetic friction 86
restitution 148
static friction 87
viscosity 290, 292

Coherent sources 335, 369
Collision 145

elastic 146–147
inelastic 146, 148

Colour 361
Coma 399
Compressibility 281
Contact angle 288
Critical angle, in refraction 389
Critical velocity 293
Curvature

in images 399

D
Decibel 334
Diffraction

by circular aperture 372
by single slit 371
by straight edge 373
of light 370
of sound waves 342

Dimension
coefficient of viscosity 291

Dimensions 4
Dispersion 434

angular 434
without deviation 435

Dispersive power 434
Displacement 31
Distortion

in images 400
Doppler effect 343

E
Efflux 266
Elastic

body 279
potential energy 282

Elastic constants
table of 281

Elasticity 279
Energy

conservation principle 122
elastic 125
kinetic 118
mechanical 122
potential 121, 122
surface 286

Equation of continuity 264
Equilibrium

neutral 172
rotational 172
stable 172
unstable 172

Escape velocity 217
Ether 361
Eye 419

F
Fizeau method 444

measuring speed of light 445
Floatation 261

Flow
critical velocity 293
equation of continuities 264
irrotational 264
lines of 263
of a fluid 263
Reynolds number 293
steady 263
streamline 263
tube of 263

Flux
luminosity 449
radiant 449

Focal length
of a spherical mirror 386

Focus
first 394
of a lens 394
of a spherical mirror 385
second 394

Force 56
centrifugal 105
centripetal 103
conservative 121
constant 229
due to contact 58
due to spring 58
electromagnatic 57
frictional 85
gravitational 56
inertial 70
nonconservative 121
normal 58, 85
nuclear 59
pseudo 69
spring 58
weak 59

Forced Oscillation 242
Foucault

measuring speed of light 445
Frame of reference 31

inertial 65
noninertial 65

Fraunhofer diffraction 370
Free-body diagram 67
Frequency 232

angular 232
audible 329
fundamental 313, 337
harmonic 314
natural 313
normal 313
overtone 314, 337
pitch of sound 334
resonant 313

Fresnel
biprism 369
diffraction 371

Friction 58, 85
laws of 85, 88
kinetic 86
static 87

Fringes 365



G
Gamma ray 438
Geometrical optics 362
Gravitation

law of 204
Gravitational 124

 constant G 204
 field 210
 potential energy 124, 206

H
Hooke’s law 280
Horse power 119
Huygens 360

construction of wavefront 363
principle 362

Hyperopia 426

I
Illuminance 450
Illuminating power 450
Image

defects of 398
virtual 386

Impulse 149
of a torque 174

Impulsive force 149
Inelastic

body 279
Inertia 71
Inertial

frame 65
mass 70

Intensity
loudness of sound 334

Interference 309
coherent sources 335
constructive 310
destructive 310
from thin film 367
of sound 335

Interference of light
double-slit experiment 365

Inverse square law
in photometry 451

K
Kepler’s laws 203, 217
Kinematics 31, 167
Kinetic energy 118

of a rotating body 174, 182

L
Lambert cosine law 451
Lens 393

concave 394
convergent 394
convex 394
divergent 394
lens maker’s formula 394
power of 396
in contact 396

Light
corpuscle theory 360
diffraction 370

polarization 374
speed of 361, 444
visible range 361
wave theory 360

Linear momentum 144
Luminosity 449
Luminous intensity 450

M
Magnification

angular 420
by a spherical mirror 388
lateral 388
transverse 388

Magnifier 420
Magnifying power

of a compound microscope 421
of a Galilean telescope 424
of a simple microscope 420
of a terrestrial telescope 424
of an astronomical telescope 423

Michelson
measuring speed of light 447

Microscope
compound 421
simple 420

Mirror
concave 385
convex 385
spherical 385

Moment of inertia 171
of a disc 180
of a hollow cylinder 177
of a rectangular plate 176
of a ring 176, 179
of a rod 176
of a solid 180

Momentum
conservation of 144

Motion 31
Musical scale 345
Myopia 426

N
Near point 420
Newton

corpuscle theory of light 360
law of gravitation 203, 204

Newton’s law of motion 64
first law 64
second law 65
third law 56, 68

Nodes 311
in pressure wave 337

O
Object 386

virtual 386
Optical fibre 389

instrument 419
path 366

Optics
geometrical 385

Organ pipes 337
Oscillation 229

forced 242

P
Parallel axes theorem 178
Paraxial rays 386
Pascal

law of pressure 259
unit of pressure 258

Pendulam 235
physical 237
time period 235–236
torsional 237

Phase 232
sudden change on reflection 369

Photoelectric effect 360
Photometer 451
Photometry 449
Pitch 334
Poiseuille equation 291
Poisson’s ratio 281
Polaroids 375
Potential

change in rigid body motion 123
elastic 282
of a spring 124

Presbyopia 426
Pressure 258

atmospheric 260
excess, inside a drop 286
excess, in a soap bubble 288
unit of 258
variation with height 258

Prism 390
angle of minimum deviation 390

Projectile 38
Pseudo force 69

Q
Quinke’s apparatus 336

R
Radiant flux 449
Radius of gyration 180
Rainbow 440
Rayleigh criterion 374
Reflection

of light, laws 262, 385
phase change at 336, 369

Refraction
at plane surface 389
at spherical surface 391

Refractive index 361
Resolution

limit of 373
Resolving power

of a microscope 425
of a telesceope 425

Resonance 242, 316
Restoring force 229
Reynolds number 293
Rigidity modulus 281
Roemer

measuring speed of light 444
Rolling 181

friction 90
Rotation

angular acceleration 167
angular velocity 167
axis of 166
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kinematics of 167
of a rigid body 166
torque 169

S
Satellites 216

 geostationary 217
Scalar 12
Shear modulus 281
SHM 229

amplitude 230–231
and circular motion 233
angular 234
angular frequency 232
characteristics 231
composition of two 238
damped 242
energy consideration 233
equation of 230
frequency 232
phase 232
time period 231

Sign convention
in image tracing 386
for refraction at
  a spherical surface 392

Significant digits 21
Snell’s law 388
Sonic boom 344
Sonometer 316
Sound 329

displacement wave 330
infrasonic 330
loudness 334
newton’s formula for speed 332
pitch 334
quality 334
speed 331
speed determination 339
ultrasonic 330

Spectrometer 438
Spectrum 436

absorption 437
band 437–438
continuous 437
emission 437
infrared 438
line 437–438
pure and impure 436
ultraviolet 438

Speed 32
average 32
instantaneous 32

Speed of light 60
Standing wave 336
Stationary wave 336

on a string 314
Stoke’s law 291

Strain 280
longitudinal 280
relation with stress 281
shearing 280
volume 280

Streamline 263
Stress 279

longitudinal 279
relation with strain 281
shearing 279
volume 280

Surface tension 284
excess pressure 286
surface energy 286
units 284, 286

T
Telescope 422

astronomical 422
galilean 424
terrestrial 424

Tension 58, 68
Terminal velocity 292
Time period 229

SHM 231
simple pendulum 235–236

Toricelli 260
Torque 169

of several forces 170
Torsional modulus 281
Total internal reflection 389
Turbulent flow 263
Tycho Brahe 203

U
Units 2

CGS 5
SI 2

V
Vector 12

addition of 13
scalar product 15
vector product 16

Velocity 33
angular 101
average 33
instantaneous 33

Ventury tube 266
Vibration

of air columns 336
Vibration of string 314–315

laws of 315
normal mode 314

Viscosity 290
terminal velocity 292

Vision
defects of 425, 426

W
Wave

difference between travelling
and standing 312
displacement 330
equation 304, 306
mechanical 303
motion 303
nonlinear 309
nonmechanical 303, 308
plane 330
polarization 317
power transmitted in 308
pressure 330
progressive 304
pulse on a string 303
reflection of 310
reflection of sound waves 336
sinusoidal 305
spherical 330
standing 311
stationary 311
transmission of 310
travelling 304
velocity on a string 307

Wavefront 330, 362
Wavelength 306
Waves

diffraction of 342
interference of 309
polarization 317
superposition of 308
transverse and longitudinal 317

Weightlessness 217
Work 118

by constant force 119
by internal forces 121
by gravitational force 119
by spring force 119

Work-energy theorem 118

X
X-ray 438

Y
Young 360

double-hole experiment 365
double-slit experiment 365

Young’s modulus
determination in laboratory 283

Young’s modulus 280

Index 461
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