
A Comprehensive
Roadmap to C++ & DSA

Mastering Problem Solving

www.gurucodes.dev

The Secret Weapon for Landing
Your Dream Tech Job

Introduction

Let's begin learning!

Additional Challenges

Coding Patterns
Resources

Table of Contents

About me

What is Programming and DSA?

Why Learn Programming and DSA?

Effective Learning Techniques

Choosing a Programming Language

Understanding Problem Solving Platforms

Complete checklist on what to prepare

Creating Realistic Goals, Timeframes and Study Schedule

Staying Motivated

Overcoming Hurdles

Finding a mentor/guide

About me

I'm Vasanta Kumar, a software developer, educator. I followed a similar path as many of you. I
cracked the GATE exam, did my (Data Analytics) in NIT Trichy, landed a high-paying job at
KLA Tencor, and have been working there for the past 2 years. But my journey started with a
desire to excel in the tech field, just like you. I too was clueless when I first got started.
There's a lot of figuring things out on your own. And that's exactly what I did. Now, with
over 100k followers on my Instagram page () appreciating my teaching, because
I've been through the entire journey myself, I understand the challenges students face while
learning to code. This experience allows me to anticipate and address every single aspect they
need to know about problem-solving, ensuring they have a comprehensive foundation. I'm
excited to giveaway this comprehensive programming and DSA roadmap to help you achieve
your coding dreams!

M.Tech

gurucodes.dev

Follow me on Instagram: https://instagram.com/gurucodes.dev

http://m.tech/
http://gurucodes.dev/
https://instagram.com/gurucodes.dev

Programming is essentially giving instructions to a computer in a way it can understand. It's like
creating a recipe for the computer to follow, but instead of ingredients and cooking steps, you use
code to tell it what data to work with and what actions to take.

Data structures are like specialized containers you use to organize data in a computer's memory.
They define how the data is arranged and accessed, which plays a crucial role in how efficiently
programs can work.

By mastering both Programming and DSA, you'll gain the ability to:

DSA (Data Structures and Algorithms) and problem-solving skills are very important for
securing a high-paying job in tech, and here's why:

High Demand & High-Paying Roles:

What is Programming and DSA?

Why Learn Programming and DSA?

Think logically and solve problems efficiently•
Write clean, maintainable, and powerful code•
Prepare for technical interviews and coding challenges•
Build a strong foundation for a career in programming or software development•

Technical Interviews: Given the vast number of applicants, companies need a
standardized method to evaluate core programming skills, rather than a resource-
intensive, individual skills assessment for each candidate. Therefore, companies often
rely on coding exams to assess a candidate's problem-solving abilities, which can
be significantly enhanced by learning Data Structures and Algorithms (DSA).

•

Technical Expertise: Strong DSA and problem-solving skills are a hallmark of skilled
developers and engineers. Companies are willing to pay a premium for these skillsets,
as they directly translate to the ability to build complex and performant systems.

•

Career Growth: Strong DSA proficiency opens doors to senior developer positions,
system design roles, and even leadership opportunities in tech.

•

How to Develop these Skills:

Practice with Coding Platforms: Platforms like , , and
offer a variety of coding problems to practice and hone your DSA skills.

• LeetCode HackerRank GeeksForG
eeks

https://leetcode.com/problemset/
https://www.hackerrank.com/
https://www.geeksforgeeks.org/
https://www.geeksforgeeks.org/

Learning programming, data structures & algorithms (DSA), and problem-solving effectively
involves a combination of understanding concepts, practicing consistently, and utilizing various
resources. Here's a breakdown:

Building a Strong Foundation:

Sharpening Your DSA Skills:

Developing Problem-Solving Skills:

Practicing for Interviews:

Effective Learning Techniques

Pick a Programming Language: Start with a language like C++, Java, Python. They have a
lot of community support.

1.

Master the Basics: Focus on core programming concepts like variables, data types,
operators, control flow statements (if/else, loops), and functions.

2.

Learn About Complexity Analysis: Understand how to analyze the time and space
complexity of algorithms. This helps you choose the most efficient approach for solving
problems.

3.

Grasp Data Structures: Start with fundamental data structures like arrays, linked lists,
stacks, queues, trees, and graphs. Understand their operations, use cases, and trade-offs.

1.

Explore Algorithms: Dive into common algorithms like searching, sorting, dynamic
programming, recursion, and backtracking. Practice implementing them in code.

2.

Practice, Practice, Practice: The key to mastering DSA is solving problems. Utilize online
platforms like HackerRank, LeetCode, or Codeforces. Start with easy problems and gradually
progress to more challenging ones.

3.

Break Down Problems: When faced with a problem, break it down into smaller, more
manageable sub-problems. This will make the solution clearer and easier to implement.

1.

Identify Patterns: Look for patterns in problem statements and existing solutions. This can
help you determine the appropriate data structure or algorithm to apply. (Two-pointer,
sliding window, prefix-sum, counting sort, greedy etc.)

2.

Test and Debug line-by-line in case of any error.3.

Find a Learning Community: Join online forums, communities, or attend coding meetups to
connect with other learners and get help when stuck.

•

Participate in Coding Challenges: Take part in online coding competitions to test your skills
and knowledge against others.

•

Be Patient and Persistent: Learning to code and master DSA takes time and effort. Don't
get discouraged by setbacks; keep practicing and learning from your mistakes.

•

Here's a comparison table of C++, Java, and Python for competitive programming and problem-
solving:

Feature C++ Java Python

Speed Fastest Medium Slowest

Memory Usage Manages memory
manually

Automatic garbage
collection

Automatic garbage
collection

Syntax More complex Medium Simplest

Readability Can be less
readable

More readable Most readable

Development
Time

Longer Medium Shorter

Libraries Extensive (STL) Large and diverse Extensive (SciPy,
NumPy)

Learning Curve Steeper Moderate Gentlest

Competitive
Programming

Best for efficiency-
critical problems

Good all-rounder Not ideal for tight
time/memory
constraints

Advantages:

Disadvantages:

Choosing your programming language

C++: Unmatched speed and memory control for complex algorithms. Large community and
resources for competitive programming.

•

Java: Platform-independent, good balance of speed and readability with extensive libraries.
Large developer community.

•

Python: Short development time, easy to learn and read. Extensive libraries for data science
and machine learning problems.

•

Choosing the right language:

C++: Complex syntax and manual memory management can lead to errors. Steeper learning
curve.

•

Java: Can be verbose compared to Python. Slower execution speed compared to C++.•
Python: Not ideal for problems with tight time or memory constraints due to slower
execution speed. While convenient, its built-in functions might hurt long-term problem-
solving skills.

•

For competitive programming with a focus on efficiency, C++ is the go-to choice.•
If you value readability, ease of development, and a good balance of speed, Java is a solid
option.

•

Python is a great choice for problems with a strong emphasis on data manipulation and
prototyping but might not be ideal for highly optimized solutions.

•

DSA problem-solving involves applying your knowledge of data structures (arrays, linked lists,
trees, etc.) and algorithms (sorting, searching, dynamic programming, etc.) to devise efficient
solutions for real-world or coding challenge scenarios. It's a crucial skill for programmers, as it
helps building:

Problem-Solving Platforms (LeetCode, HackerRank, etc.):

How to Use These Platforms:

Problem-Solving and its Platforms

Logical Thinking, Algorithm Selection, Code Implementation, Efficiency Analysis.•

LeetCode and HackerRank are popular online platforms that offer a vast collection of
coding challenges categorized by difficulty level, topic (arrays, strings, trees, graphs, etc.),
and company interview questions (for targeted preparation).

•

Features:•
Interactive Coding Environment: Code, compile, and test your solutions directly on
the platform.

•

Test Cases: Verify your code's correctness with provided test cases.•
Discussions: Learn from other users' approaches and insights.•
Contests: Participate in timed coding competitions to improve your skills under
pressure.

•

Skill Tracking: Monitor your progress and identify areas for improvement.•

Choose Your Level: Start with easier problems to build your foundation and gradually
increase the difficulty as you progress.

1.

Read the Problem Statement Carefully: Understand the input format, expected output,
and any constraints (time/memory limits).

2.

Plan Your Approach: Think about the data structures and algorithms that might be suitable
for solving the problem. Consider edge cases and potential optimizations.

3.

Code Implementation: Write your code, ensuring clarity, efficiency, and correct handling of
inputs.

4.

Test and Debug: Use the provided test cases and write your own to catch errors.5.

Additional Tips:

Analyze Time and Space Complexity: Understand how your solution performs for different
input sizes.

6.

Compare Solutions: See how other users approached the problem and learn from different
techniques. (Very very crucial)

7.

Focus on Understanding, Not Just Getting the Answer.•
Practice Regularly.•
Don't Be Afraid to Ask for Help: Utilize the platform's discussion forums or online
communities to seek guidance if you're stuck.

•

Start Here⬇

Module 1: Command Prompt Module 2: VS Code

Module 3: Introduction to Programming Module 4: Data Types and Variables

Let's begin learning!

History

Types of OS

Why Servers prefer CLI over GUI?

Why should you learn Command
Prompt?

How CMD is same as using a full OS?

Absolute and Relative Paths

A Command: Command + Arguments

Getting started with basic commands

Working with Folders: Creating,
moving, deleting etc.

Moving around folders

Listing files from folders

Working with files: Creating, updating,
deleting files

Revision

What are code editors/text editors?

Visual Studio Code

Installing Visual Studio Code

Opening VS Code from
explorer/command prompt

Opening Files & Folders

Creating Files & Folders

Adding Plugins

Opening Command Prompt from Code
Editor

Revision

Programming and Benefits

CPP Introduction and Benefits

Compilers and Lifecycle of a Program

Install GCC Compilers

Compiler and run your first program

Data Types

Variables

Variables of Different Data Types

Problems on Variables

ASCII Table

Module 5: Input_Output

Module 6: Maths required for Problem
Solving

Module 7: Operators:

Module 8: Problem Solving Module 9: Conditional Statements

First Program

Comments

Revision & basic problem solving

Type Conversions

Macros & Type Range Macros

Revision & basic problem solving

Input

Output

Number Systems

Binary Number System

Converting one number system to
another

Division, Modulus

Factors, multiples of a number

LCM, HCF

Prime Number, Prime Factorization

AP Series, Factorial

Matrices (Basics)

Graph Theory (Can also be learnt later)

Revision

Introduction to Operators

Arithmetic Operators

Relational Operators

Bitwise Operators

Logical Operators

Assignment Operators

Increment Operators

Miscellaneous

Operator Precedence

Basic problems on all the above topics

Bit Manipulation(Should have been a
whole new module)

Bit Manipulation Concepts

Revision

Problem Solving Introduction

Problem Format

Understanding Constraints

Reading an integer variable and
printing the same in console.

If else conditions

Ternary Operator

Nested If else

Determine if a person is eligible for
voting

https://leetcode.com/problems/sum-of-two-integers/solutions/84278/A-summary:-how-to-use-bit-manipulation-to-solve-problems-easily-and-efficiently/

Module 10: Loops Module 11: Variables & Scope

Module 12: Functions

Reading different data type variables
and printing the same in console.

Sum of 2 numbers

Swap 2 numbers

Swap 2 numbers without using third
variable

Write a function that converts a
temperature from Fahrenheit to
Celsius.

Write a program that calculates the
simple interest.

Cube of a number

Inbuilt functions: abs, power, sqrt

Debugging

Watch variables

Revision of above problems

If a number is even or odd?

Check if a number is divisible by 6?

Minimum of 2 numbers

Maximum of 2 Numbers

Minimum of 3 numbers

Maximum of 3 numbers

Whether a number is positive, negative
or zero?

Leap year or not?

Switch-Case

Revision of above problems

For Loop

Tricky question - what is for(::) {}

Tricky question - dummy loops
for();

While Loop

Converting for loop to while loop

Converting while loop to for loop

Different ways of solving the same
problem with minor tweaks in the for
loop

Read input elements till EOL (when no
size is given) .

Default/garbage values of Variables

Local Variables

Global Variables

Functions Introduction

return

Passing Parameters

Call by value

Call by reference

Module 13: Strings

Problems on Loops(solve with both
while loops and for loops)

Print 1-100 numbers

Print numbers from 100-1

Print only the odd numbers

Sum of 1-100 numbers

Sum of first N numbers

Revision of above problems

Print digits of a number

Sum of digits of a number

Reverse a number

Finding 2 power x

Finding x power y

Multiplication table

Palindrome

Check Prime Number

Generate the Fibonacci series

Find maximum element among
the given inputs

Find the minimum element
among the given inputs

Revision of above problems

Sum of numbers in a given range

Prime number within a given
range

Armstrong number

Determine if a number is perfect
square

Adding factorials (For Example:
1!+ 2!+ 3!+ 4!+ 5!)

Function Scope

Practice functions by solving the
previous questions(Very important to
understand the working of functions)

Revision

String Fundamentals

String Input and Output

String Manipulation

Substrings

Finding substrings to locate a
substring's starting position

String conversion(uppercase to
lowercase and lowercase to uppercase)

String Comparison

String Tokenization

Practice

Linear Search

Write a function that reverses a given
string

Write a function that checks if a given
string is a palindrome (reads the same
backward as forward) regardless of case

Write a function that counts the number
of vowels (a, e, i, o, u) in a given string,
handling both uppercase and lowercase
vowels

Write a function that removes all
punctuation characters from a given
string

Module 14: Data Structures & Algorithms Module 15: Searching

Module 16: Arrays Module 17: Sorting Algorithms

Maximum number consecutive
same numbers among the given
input

Factorial of a number

Factors of a number

LCM, HCF

Do-While loop

Nested Loops

Different Pattern related
questions(Google and have a look at
them)(Very very important)

Revision of above problems

Write a function that counts the number
of words in a given string

Write a function that replaces all
occurrences of a specific character or
substring with another character or
substring in a string

Write a function that checks if two
strings are anagrams of each other
(contain the same letters with the same
frequency)

Write a function that rotates a string by
a given number of characters (e.g.,
rotate "Hello, world!" by 2 becomes "!lo,
worldHel")

Revision

Introduction to Data Structures

Why Data Structures

Time & Space Complexity

Understand Logarithm, Power, and
Root Functions

Try answering time and space
complexities of previously solved
questions.

Algorithms

Revision

Linear Search vs Binary Search

Binary Search : Understanding
time/space complexity

Modify the binary search function to
find the first or last occurrence of a
target element in a sorted array that
may contain duplicates.

Overflow case = (low+high) /2 �
alternative low + (high-low)/2

Revision

Array Fundamentals

Array Operations

Write a function to find the largest or
smallest element in an array

Bubble Sort

Selection Sort

Insertion Sort

Merge Sort

Module 18: Stacks

Module 19: Queues

Write a function to calculate the sum
of all elements in an array

Implement linear search to find a
specific element in an array

Implement binary search to find a
specific element in an array

Write a function to reverse the order
of elements in an array

Given an array containing consecutive
numbers with one missing number,
find the missing number (assuming no
duplicates)

Write a function to check if an array
contains duplicate elements. Start with
simpler cases like sorted arrays or
arrays with a limited range of values

Rearrange array alternatively

Sort an array of 0s, 1s and 2s

Write a function to move all zeroes in
an array to the end while maintaining
the relative order of other elements

Given an array of numbers and a
target sum, find two numbers that add
up to the target sum (assuming there's
one unique pair)

Merge 2 sorted arrays.

Trapping Rain Water

Chocolate Distribution Problem

Stock buy and sell

Spirally traversing a matrix

Revision

Quick Sort

Need for different Sorting Algorithms

Revision

Stack Fundamentals

Stack Operations Practice

Write a function that uses a stack to
check if parentheses (round, square,
curly) in a string are balanced (e.g.,
((({}))) is balanced)

Write code to implement a stack using
arrays

Write a function that uses a stack to
convert an infix expression (e.g., a + b
* c) to a postfix expression (e.g., a b
c * +)

Write a function that uses a stack to
evaluate a postfix expression (see above
question) and return the result.

Revision

Queue Fundamentals

Queue Operations Practice

Write code to implement a queue using
either arrays

Given a queue containing characters,
write a function to check if the queue is
a palindrome

Explore how you can implement queue-
like behaviour using two stacks

https://www.geeksforgeeks.org/problems/-rearrange-array-alternately/0/
https://www.geeksforgeeks.org/problems/sort-an-array-of-0s-1s-and-2s/0
https://www.geeksforgeeks.org/problems/trapping-rain-water/0
https://www.geeksforgeeks.org/problems/chocolate-distribution-problem/0
https://www.geeksforgeeks.org/problems/stock-buy-and-sell/0
https://www.geeksforgeeks.org/problems/spirally-traversing-a-matrix/0

Module 20: Linked Lists Module 21: Trees

Revision

Linked Lists Fundamentals

Linked Lists Practice

Singly Linked List

Doubly Linked List

Circular Linked List

Write code to create a basic singly
linked list with functionalities like
adding nodes, printing the list, and
finding the length

Write a function to reverse the order
of nodes in a linked list (e.g., 1 -> 2 -> 3
becomes 3 -> 2 -> 1)

Write a function to determine if a
linked list contains a cycle (a loop
where a node points back to an earlier
node)

Write a function to merge two sorted
linked lists into a new sorted linked list

Write a function to remove duplicate
nodes from a sorted linked list. Start
with a simpler case where duplicates
are consecutive

Write a function to find the middle
node in a linked list (efficiently handle
even and odd lengths)

Write a function to find the Nth node
from the end of the linked list
(consider cases where N is greater
than the list length)

Write a function to calculate the sum
of all elements in a linked list

Trees Fundamentals

Trees Operations & Practice

Trees Traversal

Trees Searching

Trees Insertion

Trees Deletion

Binary Search Tree

Write code to create a basic binary tree
with functionalities like adding nodes,
printing the tree (pre-order, in-order,
post-order), and finding the height

Write a function to verify if a given
binary tree is a binary search tree (BST)

Search for a specific value in a BST

Find the minimum or maximum
element from BST efficiently

Write a function to find the depth of a
specific node in a tree (the number of
edges from the root node to that node)

Write a function to calculate the sum of
all node values in a tree using a chosen
traversal method.

Implement a function to check if a
binary tree is balanced (all leaves have
roughly the same depth)

Write a function to create a mirror
image of a binary tree (left subtree
becomes right subtree and vice versa)

Revision

Module 22: Heaps Module 23: Graphs

Write a function to create a deep copy
of a linked list, ensuring a new list with
independent nodes

Revision

Heaps Introduction

Min-Heap

Max-Heap

Remove and return the root node
(min/max element) while maintaining
the heap property

Add a new element to the heap and re-
arrange nodes to maintain the heap
property

Change the value of an existing node
in the heap

Write code to create a min-heap using
an array, with functionalities like
insert, extract minimum, and printing
the heap in level order

Similar to above question, but
implement a max-heap

Given an array, write a function to
determine if it represents a valid min-
heap or max-heap based on the heap
property.

Find the kth largest element in an
array efficiently using a min-heap. Add
elements to the heap, ensuring it only
contains the k largest elements, and
then return the root (minimum) which
will be the kth largest element.

Graphs Introduction

Nodes, Vertices

Directed Graphs vs Undirected Graphs

Weighted vs Unweighted Graphs

Adjacency List

BFS, DFS

Implement BFS to traverse a graph and
print the nodes visited in the order they
are explored.

Implement DFS to traverse a graph

Write a function using DFS to determine
if an undirected graph contains a cycle
(a loop where a node connects back to
itself or an ancestor).

Check for Connected Components: In
an undirected graph, connected
components are groups of nodes
reachable from each other

Given a weighted undirected graph, find
a subset of edges that connects all
nodes with the minimum total weight,
forming a tree structure. Start with
simpler cases like Kruskal's algorithm
for dense graphs.

Find the number of islands

Find whether path exist

https://www.geeksforgeeks.org/problems/find-the-number-of-islands/1
https://www.geeksforgeeks.org/problems/find-whether-path-exist/0

Module 24: Hashing Module 25: Recursion

Given an array of k sorted linked lists,
write a function using a min-heap to
merge them into a single sorted linked
list.

Understand the basic concept of
Huffman coding for data compression,
which uses a min-heap to assign codes
based on symbol frequencies.

Revision

Minimum Cost Path

Dijkstra's algorithm

Bellman-Ford algorithm

Prim's algorithm

Kruskal's algorithm

Revision

Hash Table

Collision Resolution Techniques

STL: Set, Map

Time & Space Complexity of Set & Map

Use a hash table to count the
occurrences of each word in a given
text string.

Given two strings, write a function
using a hash table to check if they are
anagrams (have the same letters but
possibly in a different order).

Relative Sorting

Sorting Elements of an Array by Frequ
ency

Largest subarray with 0 sum

Common elements

Count distinct elements in every windo
w

Array Subset of another array

First element to occur k times

Revision

Recursion Introduction

Benefits and Drawbacks

Write a function that calculates the
factorial of a non-negative number (n!)
using recursion

Implement a function that generates
the Fibonacci sequence using recursion

Write a recursive function to find the
greatest common divisor (GCD) of two
positive integers using the Euclidean
algorithm

Implement a function that reverses a
string using recursion

Write a recursive function to perform
binary search on a sorted array

Implement a function to calculate the
sum of all elements in an array using
recursion

Write a function to check if a string is a
palindrome using recursion

Given a binary tree structure,
implement a recursive function to
perform an in-order traversal

https://www.geeksforgeeks.org/problems/minimum-cost-path/0
https://www.geeksforgeeks.org/problems/relative-sorting/0
https://www.geeksforgeeks.org/problems/sorting-elements-of-an-array-by-frequency/0
https://www.geeksforgeeks.org/problems/sorting-elements-of-an-array-by-frequency/0
https://www.geeksforgeeks.org/problems/largest-subarray-with-0-sum/1
https://www.geeksforgeeks.org/problems/common-elements/0
https://www.geeksforgeeks.org/problems/count-distinct-elements-in-every-window/1
https://www.geeksforgeeks.org/problems/count-distinct-elements-in-every-window/1
https://www.geeksforgeeks.org/problems/array-subset-of-another-array/0
https://www.geeksforgeeks.org/problems/first-element-to-occur-k-times/0

Module 26: Greedy Algorithms

Module 27: Divide and Conquer

Module 28: Backtracking

Module 29: Dynamic Programming

Revision

Sorting

Activity Selection

N meetings in one room

Coin Piles

Maximize Toys

Largest number possible

Minimize the heights

Minimize the sum of product

Geek collects the balls

Revision

Divide and Conquer Concept

Find the element that appears once in
sorted array

Search in a Rotated Array

Binary Search

Sum of Middle Elements of two sorted
arrays

Quick Sort

Merge Sort

K-th element of two sorted Arrays

Revision

Backtracking Concept

Dynamic Programming Concept

Bottom-Up vs. Top-Down Approach

Fibonacci Series using DP

Minimum Operations

Max length chain

Minimum number of Coins

Longest Common Substring

Longest Increasing Subsequence

Longest Common Subsequence

0 – 1 Knapsack Problem

Maximum sum increasing subsequence

Minimum number of jumps

Edit Distance

Coin Change Problem

Subset Sum Problem

Box Stacking

Rod Cutting

Path in Matrix

Minimum sum partition

Count number of ways to cover a distan
ce

Egg Dropping Puzzle

Optimal Strategy for a Game

Shortest Common Supersequence

Revision

https://www.geeksforgeeks.org/problems/activity-selection/0
https://www.geeksforgeeks.org/problems/n-meetings-in-one-room/0
https://www.geeksforgeeks.org/problems/coin-piles/0
https://www.geeksforgeeks.org/problems/maximize-toys/0
https://www.geeksforgeeks.org/problems/largest-number-possible/0
https://www.geeksforgeeks.org/problems/minimize-the-heights/0
https://www.geeksforgeeks.org/problems/minimize-the-sum-of-product/0
https://www.geeksforgeeks.org/problems/geek-collects-the-balls/0
https://www.geeksforgeeks.org/problems/find-the-element-that-appears-once-in-sorted-array/0
https://www.geeksforgeeks.org/problems/find-the-element-that-appears-once-in-sorted-array/0
https://www.geeksforgeeks.org/problems/search-in-a-rotated-array/0
https://www.geeksforgeeks.org/problems/binary-search/1
https://www.geeksforgeeks.org/problems/sum-of-middle-elements-of-two-sorted-arrays/0
https://www.geeksforgeeks.org/problems/sum-of-middle-elements-of-two-sorted-arrays/0
https://www.geeksforgeeks.org/problems/quick-sort/1
https://www.geeksforgeeks.org/problems/merge-sort/1
https://www.geeksforgeeks.org/problems/k-th-element-of-two-sorted-array/0
https://www.geeksforgeeks.org/problems/find-optimum-operation/0
https://www.geeksforgeeks.org/problems/max-length-chain/1
https://www.geeksforgeeks.org/problems/-minimum-number-of-coins/0
https://www.geeksforgeeks.org/problems/longest-common-substring/0
https://www.geeksforgeeks.org/problems/longest-increasing-subsequence/0
https://www.geeksforgeeks.org/problems/longest-common-subsequence/0
https://www.geeksforgeeks.org/problems/0-1-knapsack-problem/0
https://www.geeksforgeeks.org/problems/maximum-sum-increasing-subsequence/0
https://www.geeksforgeeks.org/problems/minimum-number-of-jumps/0
https://www.geeksforgeeks.org/problems/edit-distance/0
https://www.geeksforgeeks.org/problems/coin-change/0
https://www.geeksforgeeks.org/problems/subset-sum-problem/0
https://www.geeksforgeeks.org/problems/box-stacking/1
https://www.geeksforgeeks.org/problems/cutted-segments/0
https://www.geeksforgeeks.org/find-the-longest-path-in-a-matrix-with-given-constraints/
https://www.geeksforgeeks.org/problems/minimum-sum-partition/0
https://www.geeksforgeeks.org/problems/count-number-of-hops/0
https://www.geeksforgeeks.org/problems/count-number-of-hops/0
https://www.geeksforgeeks.org/problems/egg-dropping-puzzle/0
https://www.geeksforgeeks.org/problems/optimal-strategy-for-a-game/0
https://www.geeksforgeeks.org/problems/shortest-common-supersequence/0

Module 30: Trie

Module 31 - Suffix Trees Module 32 - Advanced Data Structures

N-Queen Problem

Solve the Sudoku

Rat in a Maze Problem

Word Boggle

Generate IP Addresses

Implement Permutation of an Array

Revision

Trie Concept

Trie Implementation

Given an array of strings, find the
longest common prefix shared by all
strings. Use a trie to efficiently traverse
the shared prefix path.

Revision

Suffix trees and arrays

Suffix Tree Operations

Practical Implementation

Applications

Longest Common Substring Problem

Longest Repeated Substring Problem

Longest Palindromic Substring
Problem

Revision

Bloom Filters

Self-Balancing Trees

Red-Black Trees

Segment Trees

Disjoint Sets

LRU Cache

Skip List

Revision

https://www.geeksforgeeks.org/problems/n-queen-problem/0
https://www.geeksforgeeks.org/problems/solve-the-sudoku/0
https://www.geeksforgeeks.org/problems/rat-in-a-maze-problem/1
https://www.geeksforgeeks.org/problems/word-boggle/0
https://www.geeksforgeeks.org/problems/generate-ip-addresses/1

1. Two Pointers:

Example Problems:

2. Sliding Window:

Example Problems:

3. Island (Matrix Traversal) Pattern

Example Problems:

Essential Coding Patterns

Pros: Brings time complexity of O(n^2) to O(n)•
Challenges: Might take some time to get used to the pointer's movement. •

1. Pair with Target Sum

2. Find Non-Duplicate Number Instances

3. Squaring a Sorted Array

4. Triplet Sum to Zero

Pros: Mostly used in problems involving subarrays. Brings time complexity of O(n^2) to O(n)•
Challenges: Takes time to understand how to adjust the window size based on the problem.•

1. Maximum Sum Subarray of Size K

2. Fruits Into Baskets

 3. Longest Substring with K Distinct Characters

4. Longest Substring with Same Letters after Replacement

Challenges: Complex and occupies more space.•

1. Number of Islands

https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/638ca0aa5b41522e8a2e3395
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/638e33feac0cc8a9358a25ac
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/638e39bd1756319ef156bebc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddad0980798b625e14ef14
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63dd98d73b437c425266aa11
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63dd9abf488110f74a92a47d
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63dd9a7261dc5307bdb7918a
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/6385d4b24a29c96532f7bb19
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63dda29dee94a9f69d1cbef3

4. Slow and Fast Pointers

Example Problems:

5. Counting Sort

Example Problems:

6. Merge Intervals

Example Problems:

2. Biggest Island

3. Flood Fill

Used mainly for: •
Cycle Detection•
Finding Middle Elements•

1. LinkedList Cycle

2. Middle of the LinkedList

3. Palindrome LinkedList

Usage: to sort elements when the range of elements is small.•

1. Height Checker - LeetCode

2. Array Partition - LeetCode

Used mainly for: •
Overlapping Intervals•
Interval Scheduling•

1. Merge Intervals

2. Insert Interval

3. Intervals Intersection

https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63dda2d09bb0342f49ed249a
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63dda305ee94a9f69d1cd835
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63dda065488110f74a930ebc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63dda1feee94a9f69d1cb026
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63dda22b2f02a9827daaa00a
https://leetcode.com/problems/height-checker/description/
https://leetcode.com/problems/array-partition/description/
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63dd974b61dc5307bdb78545
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63dd97a861dc5307bdb7890e
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63dd97e13b437c4252668d2a

7. Cyclic Sort

Example Problems:

8. In-place Reversal of a Linked List
Usage: Used for reversing a Sub-Linked List or Sub-list/array.

Example Problems:

9. Subsets

Example Problems:

10. Modified Binary Search

Example Problems:

Used mainly for: •
Consecutive Numbers•
In-Place Sorting•

1. Find the Missing Number

2. Find all Duplicates

3. Duplicates In Array

1. Reverse a LinkedList

2. Reverse a Sub-list

3. Reverse Every K-element Sub-list

Used mainly for: •
Combinatorial Problems•
Exhaustive Search•

1. Subsets

2. Subsets With Duplicates

3. Permutations

1. Order-agnostic Binary Search

https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc

11. Bitwise XOR

Example Problems:

12. Top 'K' Elements

Example Problems:

13. K-way Merge

Example Problems:

2. Ceiling of a Number

3. Next Letter

Used mainly for: •
Finding Missing or Duplicate Numbers•
Bit Manipulation•

1. Single Number

2. Two Single Numbers

3. Complement of Base 10 Number

Used mainly for: •
Priority Queue•
Streaming Data•

1. Top 'K' Numbers

2. Kth Smallest Number

3. ‘K’ Closest Points to the Origin

Used mainly for: •
Multiple Sorted Arrays•
External Sorting•

1. Merge K Sorted Lists

https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc

14. Topological Sort

Example Problems:

15. Trie

Example Problems:

16. Monotonic Stack

Example Problems:

2. Kth Smallest Number in M Sorted Lists

3. Find the Smallest Range Covering Elements from K Lists

Used mainly for: •
Task Scheduling•

1. Topological Sort

2. Tasks Scheduling

3. Tasks Scheduling Order

Used mainly for: •
Autocomplete•
Spell Checker•
IP Routing•

1. Insert into and Search in a Trie

2. Longest Common Prefix

3. Word Search

Used mainly for: •
Next Greater or Smaller Element•
Maximum Area Histogram•

1. Next Greater Element (NGE) for every element in given Array

https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.geeksforgeeks.org/next-greater-element/

17. 0/1 Knapsack

Example Problems:

18. Prefix Sum

Example Problems:

Resources:

Visualization Tools:

2. Next Smaller Element

3. Largest Rectangular Area in a Histogram using Stack

4. The Stock Span Problem

Used mainly for: •
Resource Allocation•
Budgeting•

1. 0/1 Knapsack

2. Equal Subset Sum Partition

3. Subset Sum

1. Equilibrium index of an array

2. Find if there is a subarray with 0 sums

3. Maximum subarray sum modulo m

4. Maximum occurred integer in n ranges

1. book.pdf (cses.fi)

2. Main Page - Algorithms for Competitive Programming (cp-algorithms.com)

1. Algorithm Visualizer (algorithm-visualizer.org)

2. visualising data structures and algorithms through animation - VisuAlgo

https://www.geeksforgeeks.org/next-smaller-element/
https://www.geeksforgeeks.org/largest-rectangular-area-in-a-histogram-using-stack/
https://www.geeksforgeeks.org/the-stock-span-problem/
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.designgurus.io/course-play/grokking-the-coding-interview/doc/63ddacd4fcc4ca873d5fbfbc
https://www.geeksforgeeks.org/equilibrium-index-of-an-array/
https://www.geeksforgeeks.org/find-if-there-is-a-subarray-with-0-sum/
https://www.geeksforgeeks.org/maximum-subarray-sum-modulo-m/
https://www.geeksforgeeks.org/maximum-occurred-integer-n-ranges/
https://cses.fi/book/book.pdf
https://cp-algorithms.com/
https://algorithm-visualizer.org/
https://visualgo.net/en

Additional Challenges

By following this comprehensive roadmap, you'll develop the capabilities to confidently pursue
jobs with salaries ranging 10, 20 LPA and even more.

You'll also have to learn :

Syllabus to cover for different packages:

4-6 LPA (Mostly service-based
companies)

6-20LPA (Mostly product-based
companies)

Creating Realistic Goals, Timeframes and Study Schedule

Staying Motivated

Overcoming Hurdles

Finding a mentor/guide

Aptitude (only for freshers)

OOPS Concepts,

Operating Systems Concepts

Database Concepts

Networking Concepts

System Design Basics (Very few big tech companies ask this. So, can be ignored)

Focus: Providing expertise and
manpower to develop, maintain,
and manage client projects.
Examples: TCS, Infosys, Wipro.

•

Work: Relies on client requirements
and specifications. Can involve
diverse projects and technologies.

•

Scalability: Limited scalability as
adding more clients requires more
manpower.

•

Focus: Creating and selling
software products or applications.
Examples: Zoho, Flipkart,
MakeMyTrip.

•

Work: Develops and maintains a
core product, requiring strong
focus and expertise in that domain.

•

Scalability: High scalability; a
successful product can serve
millions with minimal additional
manpower.

•

While some of the above concepts can be learnt quickly, mastering Data Structures & Algorithms
(DSA) and problem-solving skills takes dedicated practice, typically ranging from 6 months to 2
years.

You can solve problems from Leetcode to get more expertise on each topic.
Feel free to take a printout of the roadmap and use it as a checklist to track your progress.

Learning: Opportunity to learn a
wide range of technologies but may
lack depth in specific areas.

•

Compensation: Generally offer
competitive salaries but may be
lower than product-based
companies on average.

•

Learning: Deep expertise in
specific technologies related to the
product.

•

Compensation: Often offer
higher salaries and stock options
due to growth potential.

•

Learn Modules 1-21 along with
aptitude, OOPS basics and DBMS
basics.

• Requires in-depth knowledge of
everything mentioned in our
modules.

•

Remember, consistency is key! Dedicate some time daily or weekly to practice, even if it's just
solving a few problems.

