
Public

SMART CONTRACT AUDIT REPORT

for

GRO PROTOCOL

Prepared By: Yiqun Chen

PeckShield
June 11, 2021

1/22 PeckShield Audit Report #: 2021-129

sxwang@peckshield.com

Public

Document Properties

Client Gro Protocol
Title Smart Contract Audit Report
Target Gro Protocol
Version 1.0
Author Xuxian Jiang
Auditors Jing Wang, Xuxian Jiang
Reviewed by Yiqun Chen
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 June 11, 2021 Xuxian Jiang Final Release
1.0-rc1 May 24, 2021 Xuxian Jiang Release Candidate #1
0.3 May 16, 2021 Xuxian Jiang Additional Findings
0.2 May 14, 2021 Xuxian Jiang Additional Findings
0.1 May 3, 2021 Xuxian Jiang Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Yiqun Chen
Phone +86 183 5897 7782
Email contact@peckshield.com

2/22 PeckShield Audit Report #: 2021-129

Public

Contents

1 Introduction 4
1.1 About Gro Protocol . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 6

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Improved Logic In ChainPrice::addAggregators() . 11
3.2 Permissionless Privileged Functions in LifeGuard3Pool 12
3.3 Possible Front-Running/MEV For Reduced Returns 13
3.4 Accommodation of Non-ERC20-Compliant Token Contracts 14
3.5 Proper dollarAmount Calculation in LifeGuard3Pool::invest() 16
3.6 Redundant Code Removal . 18

4 Conclusion 20

References 21

3/22 PeckShield Audit Report #: 2021-129

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
Gro Protocol, we outline in the report our systematic approach to evaluate potential security issues in
the smart contract implementation, expose possible semantic inconsistencies between smart contract
code and design document, and provide additional suggestions or recommendations for improvement.
Our results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About Gro Protocol

The Gro Protocol effectively tokenizes stable coin investments and segments the yield and risk into
two assets: one with leverage (GVT) and one with insurance (PWRD). These two exist in a relation
to one another based on their ratio. Yield from the PWRD gets transferred to the GVT based on the
utilization ratio of the two tokens, creating an incentive for the GVT side to take on the risk of the
PWRD side. On the flip side, and stable coin or protocol failure will first and foremost be paid out from
the GVT side, thus preventing PWRD holder from losing any assets in the event of an exploit or other
issue.

The basic information of the Gro Protocol is as follows:

Table 1.1: Basic Information of Gro Protocol

Item Description
Issuer Gro Protocol

Website https://app.gro.xyz/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report June 11, 2021

In the following, we show the Git repository of reviewed files and the commit hash value used in

4/22 PeckShield Audit Report #: 2021-129

Public

this audit. Note the audited repository contains a number of sub-directories (e.g., insurance, pnl, and
pools) and this audit does not cover the vaults as well as the associated strategies sub-directories.

• https://github.com/groLabs/gro-protocol.git (aaf7ced)

And here is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/groLabs/gro-protocol.git (f27658e)

1.2 About PeckShield

PeckShield Inc. [11] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [10]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

5/22 PeckShield Audit Report #: 2021-129

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [9], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s), i.e., the evaluation result does not guarantee the nonexistence of any further findings
of security issues. As one audit-based assessment cannot be considered comprehensive, we always
recommend proceeding with several independent audits and a public bug bounty program to ensure
the security of smart contract(s). Last but not least, this security audit should not be used as
investment advice.

6/22 PeckShield Audit Report #: 2021-129

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/22 PeckShield Audit Report #: 2021-129

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/22 PeckShield Audit Report #: 2021-129

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the design and implementation of the Gro Protocol.
During the first phase of our audit, we study the smart contract source code and run our in-house
static code analyzer through the codebase. The purpose here is to statically identify known coding
bugs, and then manually verify (reject or confirm) issues reported by our tool. We further manually
review business logics, examine system operations, and place DeFi-related aspects under scrutiny to
uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 2

Low 2

Informational 2

Total 6

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities that need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

9/22 PeckShield Audit Report #: 2021-129

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 2 medium-severity
vulnerabilities, 2 low-severity vulnerabilities, and 2 informational recommendations.

Table 2.1: Key Audit Findings of Gro Protocol

ID Severity Title Category Status
PVE-001 Informational Improved Logic In Chain-

Price::addAggregators()
Business Logic Fixed

PVE-002 Medium Permissionless Privileged Functions in
LifeGuard3Pool

Security Features Fixed

PVE-003 Low Possible Front-Running/MEV For Re-
duced Returns

Time and State Confirmed

PVE-004 Medium Accommodation of Non-ERC20-
Compliant Token Contracts

Business Logic Fixed

PVE-005 Low Proper dollarAmount Calculation in Life-
Guard3Pool::invest()

Business Logic Fixed

PVE-006 Informational Redundant Code Removal Coding Practices Fixed

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

10/22 PeckShield Audit Report #: 2021-129

Public

3 | Detailed Results

3.1 Improved Logic In ChainPrice::addAggregators()

• ID: PVE-001

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: ChainPrice

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

The Gro protocol has an core Buoy3Pool contract that acts as the price oracle to calculate prices of
underlying assets and LP tokens in Curve pool. It also provides functionality for changing between
stable coins, LP tokens and USD values. In the meantime, it also provides functionality to health
check the curve pools pricing. In essence, it validates the price by comparing price ratios between
the assets in the Curve pool with price ratios of an external oracle.

In the following, we show the addAggregators() routine from the external oracle ChainPrice. It
comes to our attention that the given tokenIndex parameter can be better validated by ensuring
require(tokenIndex < tokens.length), instead of current require(tokenIndex <= tokens.length (line
44).

40 f unc t i on addAggregato r s (uint256 token Index , address _aggregator)
41 ex te rna l
42 on lyGove rnance
43 {
44 r equ i r e (t oken Index <= tokens . length , ’invalid token index’) ;
45 r equ i r e (_aggregator != address (0) , ’Invalid aggregator address ’) ;
46 address _token = tokens [t oken Index] ;
47 i f (t okenPr i c eFeed [_token] . l a t e s t P r i c e != 0) {
48 de le te t okenPr i c eFeed [_token] ;
49 }
50 t okenPr i c eFeed [_token] . a gg r e ga t o r = Agg r e g a t o rV3 I n t e r f a c e (_aggregator) ;
51 t okenPr i c eFeed [_token] . d e c ima l s = u in t (10) ∗∗ IERC20Deta i l ed (_token) . d e c ima l s () ;
52 _updatePr iceFeed (_token) ;

11/22 PeckShield Audit Report #: 2021-129

Public

53 emit LogNewEthStableTokenAggregator (_token , _aggregator) ;
54 }

Listing 3.1: ChainPrice :: addAggregators()

Recommendation Revise the above addAggregators() routine to better validate the given input
arguments.

Status The issue has been fixed by this commit: c2fdb5c.

3.2 Permissionless Privileged Functions in LifeGuard3Pool

• ID: PVE-002

• Severity: Medium

• Likelihood: High

• Impact: Medium

• Target: LifeGuard3Pool

• Category: Security Features [5]

• CWE subcategory: CWE-282 [1]

Description

The Gro protocol has another core Lifeguard contract that is designed to rebalance the investment
according to the target distributions the system needs to meet in order to guarantee insurance. It
does so by swapping assets through the Curve 3pool. Any deposited stable coins that could potentially
affect the exposure negatively will be swapped to a more favorable coin by Lifeguard, and a dollar
value associated with the deposit will be returned in order to establish the number of tokens to mint.
In a similar fashion, the Lifeguard will act as a conduit to allow the protocol to withdraw overexposed
stable coins, and swap the withdrawn coin to what users wishes to withdraw from the protocol.

99 /// @notice Set the upper limit to the amount of assets the lifeguard will
100 /// hold on to before signaling that an invest to Curve action is necessary.
101 /// @param _investToCurveThreshold New invest threshold
102 f unc t i on s e t I n v e s tToCu r v eTh r e s ho l d (uint256 _inves tToCurveThresho ld) ex te rna l {
103 i n v e s tToCu rveTh r e sho l d = _inves tToCurveThresho ld ;
104 emit LogNewCurveThreshold (_inves tToCurveThresho ld) ;
105 }
106
107 /// @notice Set lifeguard to check Curve against external oracle
108 /// @param check Check / no check
109 f unc t i on s e tHea l thCheck (bool check) ex te rna l {
110 hea l thCheck = check ;
111 emit LogHealhCheckUpdate (check) ;
112 }

Listing 3.2: LifeGuard3Pool :: setInvestToCurveThreshold()

12/22 PeckShield Audit Report #: 2021-129

https://github.com/groLabs/gro-protocol/commit/c2fdb5c

Public

During our analysis of this Lifeguard contract, we notice it has two privileged functions that are
unfortunately permission-less. To elaborate, we show above these two routines. Note these two
routines manages two related protocol-wide risk parameters investToCurveThreshold and healthCheck.
And the latter can be exploited to subvert the need of validating price ratios between the assets in
the Curve 3pool with price ratios of an external oracle.

Recommendation Validate the caller of the above two privileged functions.

Status The issue has been fixed by this commit: 07171ec.

3.3 Possible Front-Running/MEV For Reduced Returns

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: LifeGuard3Pool

• Category: Time and State [8]

• CWE subcategory: CWE-682 [3]

Description

Within the Gro protocol, there is a constant need of swapping one stable coin to another and inter-
acting with the Curve 3pool by adding or removing liquidity. To elaborate, we show below an example
routine, i.e., investToCurveVault().

As the name indicates, this routine performs the intended investment with current asset balance
by adding them as liquidity into the Curve 3pool (line 121).

115 f unc t i on i n v e s tToCu rveVau l t () ex te rna l o v e r r i d e o n l y W h i t e l i s t {
116 uint256 [N_COINS] memory _inAmounts ;
117 f o r (uint256 i = 0 ; i < N_COINS ; i++) {
118 _inAmounts [i] = a s s e t s [i] ;
119 a s s e t s [i] = 0 ;
120 }
121 c r v 3poo l . a d d_ l i q u i d i t y (_inAmounts , 0) ;
122 _inves tToVau l t (3 , f a l s e) ;
123 }

Listing 3.3: LifeGuard3Pool :: investToCurveVault()

We notice the liquidity addition is routed to Curve 3pool without specifying any restriction on
the returned liquidity amount. As a result, it is susceptible to possible front-running/MEV attacks,
resulting in a smaller gain for this round of liquidity operation.

Note that this is a common issue plaguing current AMM-based DEX solutions. Specifically, a large
trade may be sandwiched by a preceding sell to reduce the market price, and a tailgating buy-back

13/22 PeckShield Audit Report #: 2021-129

https://github.com/groLabs/gro-protocol/commit/07171ec

Public

of the same amount plus the trade amount. Such sandwiching behavior unfortunately causes a loss
and brings a smaller return as expected to the trading user because the swap rate is lowered by the
preceding sell. As a mitigation, we may consider specifying the restriction on possible slippage caused
by the trade or referencing the TWAP or time-weighted average price of UniswapV2. Nevertheless, we
need to acknowledge that this is largely inherent to current blockchain infrastructure and there is
still a need to continue the search efforts for an effective defense.

We emphasize that a number of other related functions also operate with the Curve 3pool. Exam-
ples include distributeCurveVault(), depositStable(), and distributeCurveVault(). The same concern
is also applicable to them.

Recommendation Develop an effective mitigation (e.g., slippage control) to better protect the
interests of investing users.

Status This issue has been confirmed. And the team has assured that this has been considered
when evaluating the usage of Curve for internal swapping and deposit actions

3.4 Accommodation of Non-ERC20-Compliant Token Contracts

• ID: PVE-004

• Severity: Medium

• Likelihood: Medium

• Impact: Low

• Target: LifeGuard3Pool

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow
the specification or have additional functionalities beyond the specification. In the following, we
examine the transfer() routine and related idiosyncrasies from current widely-used token contracts.

In particular, we use the popular token, i.e., ZRX, as our example. We show the related code
snippet below. On its entry of transfer(), there is a check, i.e., if (balances[msg.sender] >= _value

&& balances[_to] + _value >= balances[_to]). If the check fails, it returns false. However, the
transaction still proceeds successfully without being reverted. This is not compliant with the ERC20
standard and may cause issues if not handled properly. Specifically, the ERC20 standard specifies the
following: “Transfers _value amount of tokens to address _to, and MUST fire the Transfer event.
The function SHOULD throw if the message caller’s account balance does not have enough tokens
to spend.”

64 f unc t i on t r a n s f e r (address _to , u in t _value) r e tu rn s (bool) {
65 // Default assumes totalSupply can’t be over max (2^256 - 1).

14/22 PeckShield Audit Report #: 2021-129

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20

Public

66 i f (b a l a n c e s [msg . sender] >= _value && ba l a n c e s [_to] + _value >= ba l a n c e s [_to]) {
67 ba l a n c e s [msg . sender] −= _value ;
68 ba l a n c e s [_to] += _value ;
69 Transfer (msg . sender , _to , _value) ;
70 re tu rn t rue ;
71 } e l s e { re tu rn f a l s e ; }
72 }

74 f unc t i on t r a n s f e rF r om (address _from , address _to , u in t _value) r e tu rn s (bool) {
75 i f (b a l a n c e s [_from] >= _value && a l l owed [_from] [msg . sender] >= _value &&

ba l a n c e s [_to] + _value >= ba l a n c e s [_to]) {
76 ba l a n c e s [_to] += _value ;
77 ba l a n c e s [_from] −= _value ;
78 a l l owed [_from] [msg . sender] −= _value ;
79 Transfer (_from , _to , _value) ;
80 re tu rn t rue ;
81 } e l s e { re tu rn f a l s e ; }
82 }

Listing 3.4: ZRX.sol

Because of that, a normal call to transfer() is suggested to use the safe version, i.e., safeTransfer
(), In essence, it is a wrapper around ERC20 operations that may either throw on failure or return
false without reverts. Moreover, the safe version also supports tokens that return no value (and
instead revert or throw on failure). Note that non-reverting calls are assumed to be successful.
Similarly, there is a safe version of transferFrom() as well, i.e., safeTransferFrom().

In the following, we show the withdrawSingleCoin() routine in the LifeGuard3Pool contract. Since
the USDT token is supported as coin, the unsafe version of coin.transfer(recipient, balance); (line
284) may revert as there is no return value in the USDT token contract’s transfer() implementation
(but the IERC20 interface expects a return value)!

249 f unc t i on wi thd r awS ing l eCo i n (
250 uint256 inAmount ,
251 uint256 i ,
252 uint256 minAmount ,
253 address r e c i p i e n t
254) ex te rna l o v e r r i d e o n l y W h i t e l i s t r e tu rn s (uint256 usdAmount , uint256 balance) {
255 i f (hea l thCheck) r equ i r e (_poolCheck () , "withdrawSingle: !pool unhealthy") ;
256 IERC20 co i n = IERC20 (buoy . tokens (i)) ;
257 balance = co i n . ba lanceOf (address (t h i s)) . sub (a s s e t s [i]) ;
258 // Are available assets - locked assets for LP vault more than required
259 // minAmount. Then estimate USD value and transfer ...
260 i f (minAmount <= balance) {
261 uint256 [] memory inAmounts = new uint256 [] (N_COINS) ;
262 inAmounts [i] = balance ;
263 usdAmount = buoy . s tab leToUsd (inAmounts , f a l s e) ;
264 // ...if not , swap other loose assets into target assets before
265 // estimating USD value and transfering.
266 } e l s e {
267 f o r (uint256 j ; j < N_COINS ; j++) {

15/22 PeckShield Audit Report #: 2021-129

Public

268 i f (j == i) cont inue ;
269 IERC20 i nCo i n = IERC20 (buoy . tokens (j)) ;
270 uint256 i nBa l an c e = inCo i n . ba lanceOf (address (t h i s)) . sub (a s s e t s [j]) ;
271 i f (i nBa l anc e > 0) {
272 _exchange (inBa lance , int128 (j) , int128 (i)) ;
273 i f (c o i n . ba lanceOf (address (t h i s)) . sub (a s s e t s [i]) >= minAmount) {
274 break ;
275 }
276 }
277 }
278 balance = co i n . ba lanceOf (address (t h i s)) . sub (a s s e t s [i]) ;
279 uint256 [] memory inAmounts = new uint256 [] (N_COINS) ;
280 inAmounts [i] = balance ;
281 usdAmount = buoy . s tab leToUsd (inAmounts , f a l s e) ;
282 }
283 r equ i r e (balance >= minAmount) ;
284 co i n . t r a n s f e r (r e c i p i e n t , balance) ;
285 }

Listing 3.5: LifeGuard3Pool ::withdrawSingleCoin()

Recommendation Accommodate the above-mentioned idiosyncrasy with safe-version imple-
mentation of ERC20-related transfer(), transferFrom(), and approve().

Status The issue has been fixed by this commit: 1b06a68.

3.5 Proper dollarAmount Calculation in
LifeGuard3Pool::invest()

• ID: PVE-005

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: LifeGuard3Pool

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

As mentioned in Section 3.2, the Lifeguard contract is designed to rebalance the investment according
to the target distributions the system needs to meet in order to guarantee insurance. It does so by
swapping assets through the Curve 3pool. Any deposited stable coins that could potentially affect
the exposure negatively will be swapped to a more favorable coin by Lifeguard, and a dollar value
associated with the deposit will be returned in order to establish the number of tokens to mint. Our
analysis shows the dollar value measurement logic can be improved.

16/22 PeckShield Audit Report #: 2021-129

https://github.com/groLabs/gro-protocol/commit/1b06a68

Public

To elaborate, we show below the invest() routine. This routine implements a rather straight-
forward logic in firstly withdrawing the given LP amount from the Curve 3pool, then transferring to
the configured vaults. (Each stable coin has one associated vault.) However, the dollar amount is
measured via the following statement dollarAmount = buoy.stableToUsd(amounts, false) (line 319),
which needs to be revised as dollarAmount = buoy.stableToUsd(amounts, true). The second argument
indicates whether the dollar amount should be measured as deposit or withdraw. In our case, this is
an intended deposit operation.

296 /// @notice Deposit into underlying vaults
297 /// @param depositAmount LP amount to invest
298 /// @param delta Target distribution of investment (%BP)
299 f unc t i on i n v e s t (uint256 depositAmount , uint256 [] c a l l d a t a d e l t a)
300 ex te rna l
301 o v e r r i d e
302 o n l y W h i t e l i s t
303 r e tu rn s (uint256 do l la rAmount)
304 {
305 bool needSkim = t rue ;
306 i f (depos i tAmount == 0) {
307 depos i tAmount = lpToken . ba lanceOf (address (t h i s)) ;
308 needSkim = f a l s e ;
309 }
310 uint256 [N_COINS] memory _delta ;
311 f o r (uint256 i ; i < N_COINS ; i++) {
312 _delta [i] = d e l t a [i] ;
313 }
314 uint256 [] memory amounts = new uint256 [] (N_COINS) ;
315 _withdrawUnbalanced (depositAmount , d e l t a) ;
316 f o r (uint256 i = 0 ; i < N_COINS ; i++) {
317 amounts [i] = _inves tToVau l t (i , needSkim) ;
318 }
319 do l la rAmount = buoy . s tab leToUsd (amounts , f a l s e) ;
320 emit LogNewInvest (depositAmount , d e l t a , amounts , do l larAmount , needSkim) ;
321 }

Listing 3.6: LifeGuard3Pool :: invest ()

A similar issue is also present in another routine, i.e., Insurance::withdraw(), during the leftUsd

calculation.

Recommendation Revise the above affected routines to calculate the proper dollar amount.

Status The issue has been fixed by this commit: 3f805d3.

17/22 PeckShield Audit Report #: 2021-129

https://github.com/groLabs/gro-protocol/commit/3f805d3

Public

3.6 Redundant Code Removal

• ID: PVE-006

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: Multiple Contracts

• Category: Coding Practices [6]

• CWE subcategory: CWE-563 [2]

Description

The Gro protocol makes good use of a number of reference contracts, such as ERC20, SafeERC20,
SafeMath, and Pausable, to facilitate its code implementation and organization. For example, the
DepositHandler smart contract has so far imported at least five reference contracts. However, we
observe the inclusion of certain unused code or the presence of unnecessary redundancies that can
be safely removed.

For example, if we examine closely the LifeGuard3Pool::invest() implementation, there is an
internal _delta variable that keeps a copy of the given input argument (lines 310 − 312). However,
this internal _delta variable is not used anywhere.

299 f unc t i on i n v e s t (uint256 depositAmount , uint256 [] c a l l d a t a d e l t a)
300 ex te rna l
301 o v e r r i d e
302 o n l y W h i t e l i s t
303 r e tu rn s (uint256 do l la rAmount)
304 {
305 bool needSkim = t rue ;
306 i f (depos i tAmount == 0) {
307 depos i tAmount = lpToken . ba lanceOf (address (t h i s)) ;
308 needSkim = f a l s e ;
309 }
310 uint256 [N_COINS] memory _delta ;
311 f o r (uint256 i ; i < N_COINS ; i++) {
312 _delta [i] = d e l t a [i] ;
313 }
314 uint256 [] memory amounts = new uint256 [] (N_COINS) ;
315 _withdrawUnbalanced (depositAmount , d e l t a) ;
316 f o r (uint256 i = 0 ; i < N_COINS ; i++) {
317 amounts [i] = _inves tToVau l t (i , needSkim) ;
318 }
319 do l la rAmount = buoy . s tab leToUsd (amounts , f a l s e) ;
320 emit LogNewInvest (depositAmount , d e l t a , amounts , do l larAmount , needSkim) ;
321 }

Listing 3.7: LifeGuard3Pool :: invest ()

In the same vein, the same contract has another function deposit() that has an input argument
inAmounts. But this input argument is not used either.

18/22 PeckShield Audit Report #: 2021-129

Public

197 f unc t i on d e p o s i t (uint256 [] c a l l d a t a inAmounts)
198 ex te rna l
199 o v e r r i d e
200 o n l y W h i t e l i s t
201 r e tu rn s (uint256 newAssets)
202 {
203 i f (hea l thCheck) r equ i r e (_poolCheck () , "deposit: !pool unhealthy") ;
204 uint256 [N_COINS] memory _inAmounts ;
205 f o r (uint256 i = 0 ; i < N_COINS ; i++) {
206 IERC20 co i n = IERC20 (buoy . tokens (i)) ;
207 _inAmounts [i] = co i n . ba lanceOf (address (t h i s)) . sub (a s s e t s [i]) ; //skim(

inAmounts[i], i);
208 }
209 uint256 p r e v i o u sA s s e t s = lpToken . ba lanceOf (address (t h i s)) ;
210 c r v 3poo l . a d d_ l i q u i d i t y (_inAmounts , 0) ;
211 newAssets = lpToken . ba lanceOf (address (t h i s)) . sub (p r e v i o u sA s s e t s) ;
212 }

Listing 3.8: LifeGuard3Pool :: deposit ()

Recommendation Consider the removal of the redundant code with a simplified implementa-
tion.

Status The issue has been fixed by this commit: 295b7d7.

19/22 PeckShield Audit Report #: 2021-129

https://github.com/groLabs/gro-protocol/commit/295b7d7

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the Gro Protocol. The audited
system presents a unique addition to current DeFi offerings by effectively tokenizing stable coin
investments and segmenting the associated yield and risk with leverage and insurance, respectively.
The current code base is neatly organized and those identified issues are promptly confirmed and
fixed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

20/22 PeckShield Audit Report #: 2021-129

Public

References

[1] MITRE. CWE-282: Improper Ownership Management. https://cwe.mitre.org/data/definitions/

282.html.

[2] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[3] MITRE. CWE-682: Incorrect Calculation. https://cwe.mitre.org/data/definitions/682.html.

[4] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[5] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[8] MITRE. CWE CATEGORY: Error Conditions, Return Values, Status Codes. https://cwe.mitre.

org/data/definitions/389.html.

[9] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

21/22 PeckShield Audit Report #: 2021-129

https://cwe.mitre.org/data/definitions/282.html
https://cwe.mitre.org/data/definitions/282.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html

Public

[10] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[11] PeckShield. PeckShield Inc. https://www.peckshield.com.

22/22 PeckShield Audit Report #: 2021-129

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Gro Protocol
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improved Logic In ChainPrice::addAggregators()
	Permissionless Privileged Functions in LifeGuard3Pool
	Possible Front-Running/MEV For Reduced Returns
	Accommodation of Non-ERC20-Compliant Token Contracts
	Proper dollarAmount Calculation in LifeGuard3Pool::invest()
	Redundant Code Removal

	Conclusion
	References

