
Public

SMART CONTRACT AUDIT REPORT

for

KINE PROTOCOL

Prepared By: Shuxiao Wang

PeckShield
February 26, 2021

1/33 PeckShield Audit Report #: 2021-029

sxwang@peckshield.com

Public

Document Properties

Client Kine Protocol
Title Smart Contract Audit Report
Target Kine
Version 1.0
Author Xuxian Jiang
Auditors Xuxian Jiang, Huaguo Shi, Jeff Liu
Reviewed by Jeff Liu
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 February 26, 2021 Xuxian Jiang Final Release
1.0-rc1 February 25, 2021 Xuxian Jiang Release Candidate #1
0.5 February 22, 2021 Xuxian Jiang Add More Findings #4
0.4 February 21, 2021 Xuxian Jiang Add More Findings #3
0.3 February 18, 2021 Xuxian Jiang Add More Findings #2
0.2 February 16, 2021 Xuxian Jiang Add More Findings #1
0.1 February 3, 2021 Xuxian Jiang Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/33 PeckShield Audit Report #: 2021-029

Public

Contents

1 Introduction 4
1.1 About Kine . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 6

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 12
3.1 Suggested Adherence of Checks-Effects-Interactions 12
3.2 Improved Precision By Multiplication-Before-Division 14
3.3 Potential Overflow Mitigation in notifyRewardAmount() 15
3.4 Maturity Miscalculation Across Multiple Release Periods 17
3.5 Same Controller Enforcement In liquidateBorrowAllowed() 18
3.6 Improved Sanity Checks For System/Function Parameters 20
3.7 Safe-Version Replacement With safeApprove(), safeTransfer() And safeTransferFrom() 21
3.8 Improved Ether Transfers . 23
3.9 Inconsistency Between Document and Implementation 24
3.10 Inaccurate Error Reason in redeemAllowedInternal() 26
3.11 Possible Risk in Front-running repayBorrowBehalf() 27
3.12 Trust Issue of Admin Keys . 29

4 Conclusion 31

References 32

3/33 PeckShield Audit Report #: 2021-029

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of
the Kine protocol, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About Kine

Kine is a decentralized protocol that establishes general purpose liquidity pools backed by a customiz-
able portfolio of digital assets. The liquidity pool allows traders to open and close derivatives positions
according to trusted price feeds, avoiding the need of counterparties. Kine lifts the restriction on
existing peer-to-pool (aka peer-to-contract) trading protocols, by expanding the collateral space to
any Ethereum-based assets and allowing third-party liquidation. At its core, the Kine protocol is a
collateralized lending system. While the collaterals are general ERC20 assets and the lending asset
is a special purpose token KUSD representing a stake in a liquidity pool.

The basic information of Kine is as follows:

Table 1.1: Basic Information of Kine

Item Description
Client Kine Protocol

Website https://kine.io/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report February 26, 2021

4/33 PeckShield Audit Report #: 2021-029

Public

In the following, we show the Git repositories of reviewed files and the commit hash values used
in this audit. Note that Kine assumes a trusted entity to update timely and reliable market price
feeds for supported assets.

• https://github.com/Kine-Technology/kine-protocol.git (a8c0a8)

• https://github.com/Kine-Technology/kine-oracle.git (eb64d29)

And here are the commit IDs after all fixes for the issues found in the audit have been checked
in:

• https://github.com/Kine-Technology/kine-protocol.git (ac4036d)

• https://github.com/Kine-Technology/kine-oracle.git (752d5a9)

1.2 About PeckShield

PeckShield Inc. [18] is a leading blockchain security company with the goal of elevating the security,
privacy, and usability of the current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [17]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

5/33 PeckShield Audit Report #: 2021-029

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract
is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [16], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered

6/33 PeckShield Audit Report #: 2021-029

Public

Table 1.3: The Full Audit Checklist

Category Checklist Items

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/33 PeckShield Audit Report #: 2021-029

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/33 PeckShield Audit Report #: 2021-029

Public

comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

9/33 PeckShield Audit Report #: 2021-029

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the Kine implementation. During the first phase of
our audit, we study the smart contract source code and run our in-house static code analyzer through
the codebase. The purpose here is to statically identify known coding bugs, and then manually verify
(reject or confirm) issues reported by our tool. We further manually review business logic, examine
system operations, and place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or
bugs.

Severity # of Findings
Critical 0

High 0

Medium 2

Low 7

Informational 3

Total 12

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

10/33 PeckShield Audit Report #: 2021-029

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 2 medium-severity
vulnerabilities, 7 low-severity vulnerabilities, and 3 informational recommendations.

Table 2.1: Key Kine Audit Findings

ID Severity Title Category Status
PVE-001 Low Suggested Adherence of Checks-Effects-

Interactions
Time and State Fixed

PVE-002 Low Improved Precision By Multiplication-Before-
Division

Numeric Errors Fixed

PVE-003 Medium Potential Overflow Mitigation in notifyRewar-
dAmount()

Numeric Errors Fixed

PVE-004 Low Maturity Miscalculation Across Multiple Re-
lease Periods

Numeric Errors Confirmed

PVE-005 Informational Same Controller Enforcement In liquidate-
BorrowAllowed()

Coding Practices Fixed

PVE-006 Low Improved Sanity Checks Of System/Function
Parameters

Coding Practices Fixed

PVE-007 Low Safe-Version Replacement With safeAp-
prove(), safeTransfer() And safeTransfer-
From()

Coding Practices Fixed

PVE-008 Informational Improved Ether Transfers Business Logics Confirmed
PVE-009 Informational Inconsistency Between Document and Imple-

mentation
Coding Practices Fixed

PVE-010 Low Inaccurate Error Reason in redeemAllowedIn-
ternal()

Business Logic Fixed

PVE-011 Low Possible Risk in Front-running repayBorrow-
Behalf()

Time and State Fixed

PVE-012 Medium Trust Issue of Admin Keys Security Features Mitigated

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

11/33 PeckShield Audit Report #: 2021-029

Public

3 | Detailed Results

3.1 Suggested Adherence of Checks-Effects-Interactions

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: KToken

• Category: Time and State [14]

• CWE subcategory: CWE-663 [8]

Description

A common coding best practice in Solidity is the adherence of checks-effects-interactions principle.
This principle is effective in mitigating a serious attack vector known as re-entrancy. Via this
particular attack vector, a malicious contract can be reentering a vulnerable contract in a nested
manner. Specifically, it first calls a function in the vulnerable contract, but before the first instance
of the function call is finished, second call can be arranged to re-enter the vulnerable contract by
invoking functions that should only be executed once. This attack was part of several most prominent
hacks in Ethereum history, including the DAO [20] exploit, and the recent Uniswap/Lendf.Me hack [19].

We notice there is an occasion where the checks-effects-interactions principle is violated. Using
the KToken as an example, the redeemFresh() function (see the code snippet below) is provided to
externally call a token contract to transfer assets. However, the invocation of an external contract
requires extra care in avoiding the above re-entrancy.

Apparently, the interaction with the external contract (line 313) starts before effecting the update
on internal states (lines 316−317), hence violating the principle. In this particular case, if the external
contract has certain hidden logic that may be capable of launching re-entrancy via another entry
function.

283 f unc t i on redeemFresh (address payable redeemer , u in t redeemTokensIn) i n t e r n a l {
284 r equ i r e (redeemTokensIn != 0 , "redeemTokensIn must not be zero") ;
285
286 RedeemLocalVars memory v a r s ;
287

12/33 PeckShield Audit Report #: 2021-029

Public

288 /* Fail if redeem not allowed */
289 (bool a l l owed , s t r i n g memory r e a son) = c o n t r o l l e r . redeemAl lowed (address (t h i s) ,

redeemer , redeemTokensIn) ;
290 r equ i r e (a l l owed , r e a son) ;
291
292 /*
293 * We calculate the new total supply and redeemer balance , checking for

underflow:
294 * totalSupplyNew = totalSupply - redeemTokens
295 * accountTokensNew = accountTokens[redeemer] - redeemTokens
296 */
297 v a r s . to ta lSupp lyNew = t o t a l S u p p l y . sub (redeemTokensIn ,

REDEEM_NEW_TOTAL_SUPPLY_CALCULATION_FAILED) ;
298
299 v a r s . accountTokensNew = accountTokens [redeemer] . sub (redeemTokensIn ,

REDEEM_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED) ;
300
301 /* Fail gracefully if protocol has insufficient cash */
302 r equ i r e (g e tCa shP r i o r () >= redeemTokensIn , TOKEN_INSUFFICIENT_CASH) ;
303
304 // ///////////////////////
305 // EFFECTS & INTERACTIONS
306
307 /*
308 * We invoke doTransferOut for the redeemer and the redeemAmount.
309 * Note: The kToken must handle variations between ERC -20 and ETH underlying.
310 * On success , the kToken has redeemAmount less of cash.
311 * doTransferOut reverts if anything goes wrong , since we can’t be sure if side

effects occurred.
312 */
313 doTrans fe rOut (redeemer , redeemTokensIn) ;
314
315 /* We write previously calculated values into storage */
316 t o t a l S u p p l y = va r s . to ta lSupp lyNew ;
317 accountTokens [redeemer] = va r s . accountTokensNew ;
318
319 /* We emit a Transfer event , and a Redeem event */
320 emit Trans fer (redeemer , address (t h i s) , redeemTokensIn) ;
321 emit Redeem(redeemer , redeemTokensIn) ;
322
323 /* We call the defense hook */
324 c o n t r o l l e r . r ed e emVe r i f y (address (t h i s) , redeemer , redeemTokensIn) ;
325 }

Listing 3.1: KToken::redeemFresh()

In the meantime, we should mention that the supported tokens in the protocol do implement
rather standard ERC20 interfaces and their related token contracts are not vulnerable or exploitable
for re-entrancy. Moreover, the current implementation has taken precautions in making use of
nonReentrant to block possible re-entrancy.

However, it is important to mention that the Kine protocol partitions various functionalities in two

13/33 PeckShield Audit Report #: 2021-029

Public

sets: KToken and KMCD. The first set handles the collateral-side while the second handles the borrow-
side. These two sets are implemented in two different contracts. As a result, the nonReentrant

protection on one contract does not prevent possible re-entrancy from another. With that, it is
strongly suggested to adhere with the checks-effects-interactions principle.

Recommendation Apply necessary reentrancy prevention by following the checks-effects-

interactions best practice.

Status The issue has been fixed by this commit: 36dee57.

3.2 Improved Precision By Multiplication-Before-Division

• ID: PVE-002

• Severity: Low

• Likelihood: Medium

• Impact: Low

• Target: Multiple Contracts

• Category: Numeric Errors [15]

• CWE subcategory: CWE-190 [5]

Description

SafeMath is a widely-used Solidity math library that is designed to support safe math operations by
preventing common overflow or underflow issues when working with uint256 operands. While it
indeed blocks common overflow or underflow issues, the lack of float support in Solidity may
introduce another subtle, but troublesome issue: precision loss. In this section, we examine one
possible precision loss source that stems from the different orders when both multiplication (mul) and
division (div) are involved.

In particular, we use the claimable() (in KUSDMinter contract) as an example. This routine is used
to calculate the claimable rewards so far.

266 /**
267 * @notice Calculate account ’s claimable rewards so far.
268 * @param account Which account to be viewed.
269 * @return Account ’s claimable rewards so far.
270 */
271 f unc t i on c l a imab l e (address account) ex te rna l view re tu rn s (u in t) {
272 u in t accountNewAccruedReward = earned (account) ;
273 u in t pastTime = block . timestamp . sub (accoun tRewardDeta i l s [account] . l a s tC la imTime)

;
274 u in t maturedReward = accountNewAccruedReward . mul (1 e18) . d i v (r ewa rdRe l e a s ePe r i o d) .

mul (pastTime) . d i v (1 e18) ;
275 i f (maturedReward > accountNewAccruedReward) {
276 maturedReward = accountNewAccruedReward ;
277 }
278 re tu rn maturedReward ;

14/33 PeckShield Audit Report #: 2021-029

https://github.com/Kine-Technology/kine-protocol/commit/36dee57a880e26aed9c290792c433298d6a17bd8

Public

279 }

Listing 3.2: KUSDMinter::claimable()

We notice the calculation of the maturedReward (line 274) involves mixed multiplication and
devision. For improved precision, it is better to calculate the multiplication before the division, i.e.,
accountNewAccruedReward.mul(pastTime).div(rewardReleasePeriod). Also, the arithmetic operations
with mul(1e8) and div(1e8) can be canceled out.

Similarly, the calculation of liquidateCalculateSeizeTokens() in Controller contract (lines 757 −
758) can be accordingly adjusted. Note that the resulting precision loss may be just a small number,
but it plays a critical role when certain boundary conditions are met. And it is always the preferred
choice if we can avoid the precision loss as much as possible.

Recommendation Revise the above calculations to better mitigate possible precision loss.

Status The issue has been fixed by this commit: bb9a840.

3.3 Potential Overflow Mitigation in notifyRewardAmount()

• ID: PVE-003

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: KUSDMinter

• Category: Numeric Errors [15]

• CWE subcategory: CWE-190 [5]

Description

The Kine protocol is architecturally designed to incentivize users. By design, the contract KUSDMinter
allows an entity i.e., rewardDistribution, to distribute rewards to protocol users. Specifically, there
is a routine notifyRewardAmount() that is defined to apply new rewards for distribution.

To elaborate, we show below the full implementation of the notifyRewardAmount() routine. This
is a protected function that can only be invoked by the configured rewardDistribution to specify the
intended reward.

467 f unc t i on not i fyRewardAmount (u in t reward) ex te rna l on l yR ewa r dD i s t r i b u t i o n
updateReward (address (0)) {

468 i f (block . timestamp > sta r tT ime) {
469 i f (block . timestamp >= p e r i o d F i n i s h) {
470 rewardRate = reward . d i v (r ewardDura t i on) ;
471 } e l s e {
472 u in t r ema in i ng = p e r i o d F i n i s h . sub (block . timestamp) ;
473 u in t l e f t o v e r = rema in i ng . mul (rewardRate) ;
474 rewardRate = reward . add (l e f t o v e r) . d i v (r ewardDura t i on) ;
475 }

15/33 PeckShield Audit Report #: 2021-029

https://github.com/Kine-Technology/kine-protocol/commit/bb9a840

Public

476 l a s tUpdateTime = block . timestamp ;
477 p e r i o d F i n i s h = block . timestamp . add (r ewardDura t i on) ;
478 emit RewardAdded (reward) ;
479 } e l s e {
480 rewardRate = reward . d i v (r ewardDura t i on) ;
481 l a s tUpdateTime = sta r tT ime ;
482 p e r i o d F i n i s h = s ta r tT ime . add (r ewardDura t i on) ;
483 emit RewardAdded (reward) ;
484 }
485 }

Listing 3.3: KUSDMinter::notifyRewardAmount()

However, a further analysis of the logic shows another related routine rewardPerToken(), which is
responsible for calculating the reward rate for each staked token and it is always invoked up-front for
almost every public function to properly update and use the latest reward rate.

235 /**
236 * @notice Calculate new accrued reward per staked Kine MCD.
237 * @return Current accrued reward per staked Kine MCD.
238 */
239 f unc t i on rewardPerToken () pub l i c view re tu rn s (u in t) {
240 u in t t o t a l S t a k e s = t o t a l S t a k e s () ;
241 i f (t o t a l S t a k e s == 0) {
242 re tu rn rewardPerTokenStored ;
243 }
244 re tu rn
245 rewardPerTokenStored . add (
246 l a s tT imeRewa rdApp l i c ab l e ()
247 . sub (la s tUpdateTime)
248 . mul (rewardRate)
249 . mul (1 e18)
250 . d i v (t o t a l S t a k e s)
251) ;
252 }

Listing 3.4: KUSDMinter::rewardPerToken()

A potential issue may surface if an oversized reward is applied. In particular, with the mul-
tiplication of three uint256 integer, it is possible for their multiplication to have an undesirable
overflow (lines 245 − 250), especially when the rewardRate is largely controlled by an external en-
tity, i.e., rewardDistribution. An overflowed computation may revert ongoing transactions and po-
tentially disable the borrow functionality! Fortunately, the authentication check on the caller of
notifyRewardAmount() greatly alleviates such concern. Currently, only the rewardDistribution address
is able to call.

Recommendation Apply necessary measures to mitigate the potential overflow risk in the
incentivizer mechanism.

Status The issue has been fixed by this commit: 980e452.

16/33 PeckShield Audit Report #: 2021-029

https://github.com/Kine-Technology/kine-protocol/commit/980e452

Public

3.4 Maturity Miscalculation Across Multiple Release Periods

• ID: PVE-004

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: KUSDMinter

• Category: Numeric Errors [15]

• CWE subcategory: CWE-190 [5]

Description

As mentioned in Section 3.3, the Kine protocol has developed an incentivizer mechanism to attract
and reward participating users. Users need to stake their assets to be eligible for rewards. The
protocol supports the notion of RewardReleasePeriod, which indicates how long all earned rewards will
be matured. With that, each staking user will be associated with a specific state lastClaimTime that
keeps track of the last time the user claims the reward.

To elaborate, we show below the getReward() routine. This routine is designed to allow users to
claim the matured rewards. Basically, it firstly examines the accuredReward and the computes the
maturedReward. The computed maturedReward will then be transferred to the user.

440 /**
441 * @notice Claim the matured rewards of caller.
442 * Claim will fail if hasn’t reach start time.
443 */
444 f unc t i on getReward () ex te rna l ch e ckS t a r t updateReward (msg . sender) {
445 u in t reward = accoun tRewardDeta i l s [msg . sender] . accruedReward ;
446 i f (reward > 0) {
447 u in t pastTime = block . timestamp . sub (accoun tRewardDeta i l s [msg . sender] .

l a s tC la imTime) ;
448 u in t maturedReward = reward . mul (1 e18) . mul (pastTime) . d i v (r ewa rdRe l e a s ePe r i o d)

. d i v (1 e18) ;
449 i f (maturedReward > reward) {
450 maturedReward = reward ;
451 }

453 accoun tRewardDeta i l s [msg . sender] . accruedReward = accoun tRewardDeta i l s [msg .
sender] . accruedReward . sub (maturedReward) ;

454 accoun tRewardDeta i l s [msg . sender] . l a s tC l a imTime = block . timestamp ;
455 k i n e . s a f eT r a n s f e r (msg . sender , maturedReward) ;
456 emit RewardPaid (msg . sender , maturedReward) ;
457 }
458 }

Listing 3.5: KUSDMinter::getReward()

It comes to our attention that the computation of maturedReward may be improved. Specifically,
it take into account the lastClaimTime that keeps track of the last time the user claims the reward.

17/33 PeckShield Audit Report #: 2021-029

Public

If lastClaimTime occurs at the last reward period, the time range between the end-time of last period
and the start-time of current period will be considered part of maturity time! In other words, the
idle time range that is not supposed to be part of maturity time has been unfortunately taken into
account for maturity.

Recommendation Properly measure the maturity time across multiple release periods so that
the correct rewards can be computed for claims.

Status This issue has been confirmed. This is a design choice to balance the user convenience
and implementation complexity.

3.5 Same Controller Enforcement In liquidateBorrowAllowed()

• ID: PVE-005

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: KMCD

• Category: Business Logic [13]

• CWE subcategory: CWE-841 [9]

Description

At its core, the Kine protocol is a collateralized lending system. While the collaterals are general
ERC20 assets and the lending asset is a special purpose token representing a stake in a liquidity pool.
Accordingly, the protocol has partitioned its functionality into two parts: KToken and KMCD. These two
parts work closely as the first one provides required collaterals so that the second part is allowed to
borrow. When the collaterals are insufficient, the borrow position can be liquidated. In the following,
we examine the liquidateBorrowAllowed() that verifies whether a liquidation should be allowed to
occur.

445 f unc t i on l i q u i d a t eBo r r owA l l owed (
446 address kTokenBorrowed ,
447 address kTokenCo l l a t e r a l ,
448 address l i q u i d a t o r ,
449 address borrower ,
450 u in t repayAmount) ex te rna l r e tu rn s (bool a l l owed , s t r i n g memory r e a son) {
451 // Shh - currently unused
452 l i q u i d a t o r ;
453
454 i f (! markets [kTokenBorrowed] . i s L i s t e d ! markets [kTok enCo l l a t e r a l] . i s L i s t e d) {
455 a l l owed = f a l s e ;
456 r e a son = MARKET_NOT_LISTED;
457 re tu rn (a l l owed , r e a son) ;
458 }
459

18/33 PeckShield Audit Report #: 2021-029

Public

460 /* The borrower must have shortfall in order to be liquidatable */
461 (, u in t s h o r t f a l l) = g e t A c c o u n t L i q u i d i t y I n t e r n a l (bo r rower) ;
462 i f (s h o r t f a l l == 0) {
463 a l l owed = f a l s e ;
464 r e a son = INSUFFICIENT_SHORTFALL ;
465 re tu rn (a l l owed , r e a son) ;
466 }
467
468 /* The liquidator may not repay more than what is allowed by the closeFactor */
469 /* Only KMCD has borrow related logics */
470 u in t bor rowBalance = KMCD(kTokenBorrowed) . bor rowBalance (bo r rower) ;
471 u in t maxClose = mu lSca l a rTrunca t e (Exp ({ mant i s s a : c l o s eF a c t o rMan t i s s a }) ,

bor rowBalance) ;
472 i f (repayAmount > maxClose) {
473 a l l owed = f a l s e ;
474 r e a son = TOO_MUCH_REPAY;
475 re tu rn (a l l owed , r e a son) ;
476 }
477
478 a l l owed = t rue ;
479 re tu rn (a l l owed , r e a son) ;
480 }

Listing 3.6: Controller :: liquidateBorrowAllowed()

The validation logic works as follows: It firstly checks both markets, i.e., kTokenBorrowed and
kTokenCollateral, are indeed listed (line 454), next validates the borrower must have shortfall (lines
461 − 466), and finally ensures the liquidated amount is within allowed range (lines 470 − 476).

The above logic can be improved by further verifying that these two markets share the same
controller. In other words, these two markets should not be allowed to liquidate if they are managed
by two different controllers. The reason is that two different controllers have different policies in gov-
erning various operations, e.g., mint/redeem, borrow/repay, liquidate/seize, and transfer. We notice
that the suggested same controller enforcement have been validated in seizeAllowed(). However,
this enforcement is better performed at the very beginning when the liquidation action is intended.

Recommendation Enforce the controller consistency between the two involved markets:
kTokenBorrowed and kTokenCollateral.

Status The issue has been fixed by this commit: 47a346d.

19/33 PeckShield Audit Report #: 2021-029

https://github.com/Kine-Technology/kine-protocol/commit/47a346d

Public

3.6 Improved Sanity Checks For System/Function Parameters

• ID: PVE-006

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Controller

• Category: Coding Practices [12]

• CWE subcategory: CWE-1126 [4]

Description

DeFi protocols typically have a number of system-wide parameters that can be dynamically config-
ured on demand. The Kine protocol is no exception. Specifically, if we examine the Controller

contract, it has defined a number of protocol-wide risk parameters: closeFactorMantissa and
liquidationIncentiveMantissa. In the following, we show the corresponding routines that allow for
their changes.

775 /**
776 * @notice Sets the closeFactor used when liquidating borrows
777 * @dev Admin function to set closeFactor
778 * @param newCloseFactorMantissa New close factor , scaled by 1e18
779 */
780 f unc t i on _se tC lo s eFac to r (u in t newClo seFac to rMant i s sa) ex te rna l onlyAdmin () {
781 u in t o l dC l o s eFa c t o rMan t i s s a = c l o s eF a c t o rMan t i s s a ;
782 c l o s eF a c t o rMan t i s s a = newClo seFac to rMant i s sa ;
783 emit NewCloseFactor (o l dC l o s eFac t o rMan t i s s a , c l o s eF a c t o rMan t i s s a) ;
784 }

Listing 3.7: Controller :: _setCloseFactor()

814 /**
815 * @notice Sets liquidationIncentive
816 * @dev Admin function to set liquidationIncentive
817 * @param newLiquidationIncentiveMantissa New liquidationIncentive scaled by 1e18
818 */
819 f unc t i on _s e t L i q u i d a t i o n I n c e n t i v e (u in t n ewL i q u i d a t i o n I n c e n t i v eMan t i s s a) ex te rna l

onlyAdmin () {
820 u in t o l d L i q u i d a t i o n I n c e n t i v eMa n t i s s a = l i q u i d a t i o n I n c e n t i v e M a n t i s s a ;
821 l i q u i d a t i o n I n c e n t i v e M a n t i s s a = n ewL i q u i d a t i o n I n c e n t i v eMan t i s s a ;
822 emit NewL i q u i d a t i o n I n c e n t i v e (o l d L i q u i d a t i o n I n c e n t i v eMan t i s s a ,

n ewL i q u i d a t i o n I n c e n t i v eMan t i s s a) ;
823 }

Listing 3.8: Controller :: _setLiquidationIncentive ()

These parameters define various aspects of the protocol operation and maintenance and need
to exercise extra care when configuring or updating them. Our analysis shows the update logic on
these parameters can be improved by applying more rigorous sanity checks. Based on the current

20/33 PeckShield Audit Report #: 2021-029

Public

implementation, certain corner cases may lead to an undesirable consequence. For example, an
unlikely mis-configuration of liquidationIncentiveMantissa may charge unreasonably high fee in the
liquidate operation, hence incurring cost to keepers or hurting the adoption of the protocol.

Recommendation Validate any changes regarding these system-wide parameters to ensure they
fall in an appropriate range. If necessary, also consider emitting relevant events for their changes.

Status The issue has been fixed by this commit: bfa889c.

3.7 Safe-Version Replacement With safeApprove(),
safeTransfer() And safeTransferFrom()

• ID: PVE-007

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: KineTreasury, KUSDVault

• Category: Coding Practices [12]

• CWE subcategory: CWE-1126 [4]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow
the specification or have additional functionalities beyond the specification. In this section, we
examine the transfer() routine and possible idiosyncrasies from current widely-used token contracts.
In particular, we use the popular stablecoin, i.e., USDT, as our example. We show the related code
snippet below.

121 /**
122 * @dev transfer token for a specified address
123 * @param _to The address to transfer to.
124 * @param _value The amount to be transferred.
125 */
126 f unc t i on t r a n s f e r (address _to , u in t _value) pub l i c on l yPay l o adS i z e (2 ∗ 32) {
127 u in t f e e = (_value . mul (b a s i s P o i n t sR a t e)) . d i v (10000) ;
128 i f (f e e > maximumFee) {
129 f e e = maximumFee ;
130 }
131 u in t sendAmount = _value . sub (f e e) ;
132 ba l a n c e s [msg . sender] = ba l a n c e s [msg . sender] . sub (_value) ;
133 ba l a n c e s [_to] = ba l a n c e s [_to] . add (sendAmount) ;
134 i f (f e e > 0) {
135 ba l a n c e s [owner] = ba l a n c e s [owner] . add (f e e) ;
136 Transfer (msg . sender , owner , f e e) ;
137 }
138 Transfer (msg . sender , _to , sendAmount) ;

21/33 PeckShield Audit Report #: 2021-029

https://github.com/Kine-Technology/kine-protocol/commit/bfa889c

Public

139 }

Listing 3.9: USDT Token Contract

It is important to note the transfer() function does not have a return value. However, the IERC20

interface has defined the following transfer() interface with a bool return value: function transfer(

address recipient, uint256 amount)external returns (bool). As a result, the call to transfer() may
expect a return value. With the lack of return value of USDT’s transfer(), the call will be unfortunately
reverted.

Because of that, a normal call to transfer() is suggested to use the safe version, i.e., safeTransfer
(), In essence, it is a wrapper around ERC20 operations that may either throw on failure or return
false without reverts. Moreover, the safe version also supports tokens that return no value (and
instead revert or throw on failure). Note that non-reverting calls are assumed to be successful. To
use this library you can add a using SafeERC20 for IERC20. Similarly, there is a safe version of
approve()/transferFrom() as well, i.e., safeApprove()/safeTransferFrom().

In the following, we show the transferErc20() routine in the KineTreasury contract. If the USDT

token is given as the routine’s argument, i.e., erc20Addr, the unsafe version of erc20.transfer(target
, amount) (line 64) may revert as there is no return value in the USDT token contract’s transfer()

implementation (but the IERC20 interface expects a return value)!

219 // @notice Only admin can call
220 f unc t i on t r a n s f e r E r c 2 0 (address erc20Addr , address t a r g e t , u in t amount) ex te rna l

onlyAdmin {
221 // check balance;
222 IERC20 e r c20 = IERC20 (erc20Addr) ;
223 u in t balance = erc20 . ba lanceOf (address (t h i s)) ;
224 r equ i r e (balance >= amount , "not enough erc20 balance") ;
225 // transfer token
226 e r c20 . t r a n s f e r (t a r g e t , amount) ;

228 emit Tran s f e rE r c20 (erc20Addr , t a r g e t , amount) ;
229 }

Listing 3.10: KineTreasury :: transferErc20 ()

Note that the same issue exists in the _transferErc20() routine from the KUSDVault contract,
which reverts related liquidation additions.

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related
approve()/transfer()/transferFrom().

Status The issue has been fixed by this commit: 0120eb4.

22/33 PeckShield Audit Report #: 2021-029

https://github.com/Kine-Technology/kine-protocol/commit/0120eb4

Public

3.8 Improved Ether Transfers

• ID: PVE-008

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: KEther

• Category: Business Logic [13]

• CWE subcategory: CWE-841 [9]

Description

As described in Section 3.7, assets are transferred in or out with a number of helper routines such
as doTransferIn() and doTransferOut(). While dealing with ERC20 tokens, we have examined related
helper routines in their handling of non-standard ERC20 implementations. As for the case of trans-
ferring ETH, the Solidity function transfer() is used (line 108 in the code snippet below). However,
as described in [2], when the recipient happens to be a contract that implements a callback function
containing EVM instructions such as SLOAD, the 2300 gas supplied with transfer() might not be
sufficient, leading to an out-of-gas error.

106 f unc t i on doTrans fe rOut (address payable to , u in t amount) i n t e r n a l {
107 /* Send the Ether , with minimal gas and revert on failure */
108 to . t r a n s f e r (amount) ;
109 }

Listing 3.11: KEther::doTransferOut()

As suggested in [2], we may consider avoiding the direct use of Solidity’s transfer() as well. Note
that we need to exercise extra caution during the use of call() as it may lead to side effects such as
re-entrancy and gas token vulnerabilities. In other words, we need to specify the maximum allowed
gas amount when making the (untrusted) external call().

Recommendation When transferring ETH, it is suggested to replace the Solidity function
transfer() with call().

Status This issue has been confirmed.

23/33 PeckShield Audit Report #: 2021-029

Public

3.9 Inconsistency Between Document and Implementation

• ID: PVE-009

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: Multiple Contracts

• Category: Coding Practices [12]

• CWE subcategory: CWE-1041 [3]

Description

There are a few misleading comments embedded among lines of solidity code, which bring unnecessary
hurdles to understand and/or maintain the software. An example comment can be found in line 460
of KUSDMinter::notifyRewardAmount(). The preceding function summary indicates that "Notify will
fail if hasn’t reach start time." However, the implementation logic (lines 479 − 484) indicates if the
start time has not been reached, this routine simply updates the states rewardRate, lastUpdateTime,
and periodFinish, without failing the transaction.

460 /**
461 * @notice Notify rewards has been added , trigger a new round of reward period ,

recalculate reward rate and duration end time.
462 * If distributor notify rewards before this round duration end time , then the

leftover rewards of this round will roll over to
463 * next round and will be distributed together with new rewards in next round of

reward period.
464 * Notify will fail if hasn’t reach start time.
465 * @param reward How many of rewards has been added for new round of reward period.
466 */
467 f unc t i on not i fyRewardAmount (u in t reward) ex te rna l on l yR ewa r dD i s t r i b u t i o n

updateReward (address (0)) {
468 i f (block . timestamp > sta r tT ime) {
469 i f (block . timestamp >= p e r i o d F i n i s h) {
470 rewardRate = reward . d i v (r ewardDura t i on) ;
471 } e l s e {
472 u in t r ema in i ng = p e r i o d F i n i s h . sub (block . timestamp) ;
473 u in t l e f t o v e r = rema in i ng . mul (rewardRate) ;
474 rewardRate = reward . add (l e f t o v e r) . d i v (r ewardDura t i on) ;
475 }
476 l a s tUpdateTime = block . timestamp ;
477 p e r i o d F i n i s h = block . timestamp . add (r ewardDura t i on) ;
478 emit RewardAdded (reward) ;
479 } e l s e {
480 rewardRate = reward . d i v (r ewardDura t i on) ;
481 l a s tUpdateTime = sta r tT ime ;
482 p e r i o d F i n i s h = s ta r tT ime . add (r ewardDura t i on) ;
483 emit RewardAdded (reward) ;
484 }

24/33 PeckShield Audit Report #: 2021-029

Public

485 }

Listing 3.12: KUSDMinter::notifyRewardAmount()

Also, we notice inconsistency in the design document and current implementation. In particular,
it is stated from the Section 3.3.4 of the design document: User’s accrued rewards in KUSD-
Minter will gradually mature in a release period. Every time user claim rewards, the release timer
will be updated. The matured reward of total accrued rewards is calculated as Rewardmatured =
max(1, T imecurernt−T imelastClaim

ReleaseP eriod
) ∗ Rewardaccrued .

440 /**
441 * @notice Claim the matured rewards of caller.
442 * Claim will fail if hasn’t reach start time.
443 */
444 f unc t i on getReward () ex te rna l ch e ckS t a r t updateReward (msg . sender) {
445 u in t reward = accoun tRewardDeta i l s [msg . sender] . accruedReward ;
446 i f (reward > 0) {
447 u in t pastTime = block . timestamp . sub (accoun tRewardDeta i l s [msg . sender] .

l a s tC la imTime) ;
448 u in t maturedReward = reward . mul (1 e18) . mul (pastTime) . d i v (r ewa rdRe l e a s ePe r i o d)

. d i v (1 e18) ;
449 i f (maturedReward > reward) {
450 maturedReward = reward ;
451 }

453 accoun tRewardDeta i l s [msg . sender] . accruedReward = accoun tRewardDeta i l s [msg .
sender] . accruedReward . sub (maturedReward) ;

454 accoun tRewardDeta i l s [msg . sender] . l a s tC l a imTime = block . timestamp ;
455 k i n e . s a f eT r a n s f e r (msg . sender , maturedReward) ;
456 emit RewardPaid (msg . sender , maturedReward) ;
457 }
458 }

Listing 3.13: KUSDMinter::getReward()

The actual implementation (as shown above) shows the total accrued rewards is calculated as
Rewardmatured = min(1, T imecurernt−T imelastClaim

ReleaseP eriod
) ∗ Rewardaccrued .

Last, there are additional contracts in the kine-oracle repository, which may not needed and can
be safely removed. Specifically, the contracts UniswapConfig, and UniswapAnchorView are not currently
used.

Recommendation Ensure the consistency between documents (including embedded comments)
and implementation.

Status The issue has been fixed by the following commits: 980e452, and ac4036d.

25/33 PeckShield Audit Report #: 2021-029

https://github.com/Kine-Technology/kine-protocol/commit/980e452
https://github.com/Kine-Technology/kine-protocol/commit/ac4036d

Public

3.10 Inaccurate Error Reason in redeemAllowedInternal()

• ID: PVE-010

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: AToken

• Category: Business Logic [13]

• CWE subcategory: CWE-841 [9]

Description

In Ethereum, the event is an indispensable part of a contract and is mainly used to record a variety
of runtime dynamics. In particular, when an event is emitted, it stores the arguments passed in
transaction logs and these logs are made accessible to external analytics and reporting tools. Events

can be emitted in a number of scenarios. One particular case is when system-wide parameters or
settings are being changed. Another case is when tokens are being minted, transferred, or burned.

In the following, we use the Controller contract as an example. This contract is designed to
enforce various policies when a number of protocol operations are performed. During our analysis,
we notice the redeemAllowedInternal() enforcement (line 275) contains incorrect information. Specif-
ically, if the KToken-mapped market is not listed, the returned failure should be MARKET_NOT_LISTED.
not EXIT_MARKET_REJECTION.

266 /**
267 * @param kToken The market to verify the redeem against
268 * @param redeemer The account which would redeem the tokens
269 * @param redeemTokens The number of kTokens to exchange for the underlying asset in

the market
270 * @return false and reason if redeem not allowed , otherwise return true and empty

string
271 */
272 f unc t i on r e d e emA l l owed I n t e r n a l (address kToken , address redeemer , u in t redeemTokens)

i n t e r n a l view re tu rn s (bool a l l owed , s t r i n g memory r e a son) {
273 i f (! markets [kToken] . i s L i s t e d) {
274 a l l owed = f a l s e ;
275 r e a son = EXIT_MARKET_REJECTION;
276 re tu rn (a l l owed , r e a son) ;
277 }
278
279 /* If the redeemer is not ’in’ the market , then we can bypass the liquidity

check */
280 i f (! markets [kToken] . accountMembership [redeemer]) {
281 a l l owed = t rue ;
282 re tu rn (a l l owed , r e a son) ;
283 }
284
285 /* Otherwise , perform a hypothetical liquidity check to guard against shortfall

*/

26/33 PeckShield Audit Report #: 2021-029

Public

286 (, u in t s h o r t f a l l) = g e tH y p o t h e t i c a l A c c o u n t L i q u i d i t y I n t e r n a l (redeemer , KToken (
kToken) , redeemTokens , 0) ;

287 i f (s h o r t f a l l > 0) {
288 a l l owed = f a l s e ;
289 r e a son = INSUFFICIENT_LIQUIDITY ;
290 re tu rn (a l l owed , r e a son) ;
291 }
292
293 a l l owed = t rue ;
294 re tu rn (a l l owed , r e a son) ;
295 }

Listing 3.14: Controller :: redeemAllowedInternal()

Recommendation Properly report the correct reason when an enforced policy is violated. The
failure reason will be returned to the caller or emitted to better reflect the true logic and is very
helpful for external analytics and reporting tools.

Status The issue has been fixed by this commit: 2a6c0d9.

3.11 Possible Risk in Front-running repayBorrowBehalf()

• ID: PVE-011

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: KMCD

• Category: Time and State [11]

• CWE subcategory: CWE-362 [7]

Description

At its core, the Kine protocol is a collateralized lending system that supports basic borrow and repay
operations. In the following, we examine the logic behind the repay operation.

To elaborate, we show below the code snippet of repayBorrowFresh(). This function implements
a rather straightforward logic in firstly performing sanity checks of this repay operation, next fetching
the amount the borrower owes, and calculating the new borrower and total borrow balances. It comes
to our attention that when repayAmount == -1, current implementation logic considers the purpose of
performing a full repayment with the amount of accountBorrows (line 217).

198 /**
199 * @notice Borrows are repaid by another user , should be the minter.
200 * @param payer the account paying off the MCD
201 * @param borrower the account with the MCD being payed off
202 * @param repayAmount the amount of MCD being returned
203 * @return the actual repayment amount.
204 */

27/33 PeckShield Audit Report #: 2021-029

https://github.com/Kine-Technology/kine-protocol/commit/2a6c0d9

Public

205 f unc t i on r epayBor rowFresh (address payer , address borrower , u in t repayAmount)
i n t e r n a l r e tu rn s (u in t) {

206 /* Fail if repayBorrow not allowed */
207 (bool a l l owed , s t r i n g memory r e a son) = c o n t r o l l e r . r epayBorrowAl lowed (address (

t h i s) , payer , bor rower , repayAmount) ;
208 r equ i r e (a l l owed , r e a son) ;

210 RepayBorrowLoca lVars memory v a r s ;

212 /* We fetch the amount the borrower owes */
213 v a r s . accountBorrows = accountBorrows [bo r rower] ;

215 /* If repayAmount == -1, repayAmount = accountBorrows */
216 i f (repayAmount == u in t (− 1)) {
217 v a r s . repayAmount = va r s . accountBorrows ;
218 } e l s e {
219 v a r s . repayAmount = repayAmount ;
220 }

222 /*
223 * We calculate the new borrower and total borrow balances , failing on underflow

:
224 * accountBorrowsNew = accountBorrows - actualRepayAmount
225 * totalBorrowsNew = totalBorrows - actualRepayAmount
226 */
227 v a r s . accountBorrowsNew = va r s . accountBorrows . sub (v a r s . repayAmount ,

REPAY_BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED) ;
228 v a r s . tota lBorrowsNew = to t a lBo r r ow s . sub (v a r s . repayAmount ,

REPAY_BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED) ;

230 /* We write the previously calculated values into storage */
231 accountBorrows [bo r rower] = va r s . accountBorrowsNew ;
232 t o t a lBo r r ows = va r s . tota lBorrowsNew ;

234 /* We emit a RepayBorrow event */
235 emit RepayBorrow (payer , bor rower , v a r s . repayAmount , v a r s . accountBorrowsNew , v a r s

. tota lBorrowsNew) ;

237 /* We call the defense hook */
238 c o n t r o l l e r . r e payBo r r owVe r i f y (address (t h i s) , payer , bor rower , v a r s . repayAmount) ;

240 re tu rn v a r s . repayAmount ;
241 }

Listing 3.15: KMCD::repayBorrowFresh()

However, the full repayment logic exposes a possible race condition issue [1]. Specifically, when
a user intends to fully repay the current borrow amount, the borrower may race to further borrow
up to a large amount. This breaks the user’s intention of restricting the full repayment of current
borrow amount, not including the new borrow amount. In other words, the user may not intend to
repay the sum of old borrow amount and new borrow amount.

28/33 PeckShield Audit Report #: 2021-029

Public

Recommendation Instead of using -1 to indicate the full repay amount, it is suggested to
require a specific repay amount. By doing so, we can eliminate the risk behind the race condition.

Status The issue has been fixed by this commit: 8014c40.

3.12 Trust Issue of Admin Keys

• ID: PVE-012

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: KUSDMinter

• Category: Security Features [10]

• CWE subcategory: CWE-287 [6]

Description

In Kine, the privileged account plays a critical role in governing and regulating the system-wide
operations (e.g., oracle management, reward adjustment, and parameter setting). It also has the
privilege to control or govern the flow of assets managed by this protocol. Our analysis shows that
the privileged account needs to be scrutinized. In the following, we examine the privileged account
and their related privileged accesses in current contracts.

531 /**
532 * @notice Mint KUSD to treasury account to keep on-chain KUSD consist with off -

chain trading system
533 * @param amount The amount of KUSD to mint to treasury
534 */
535 f unc t i on t r e a s u r yM i n t (u in t amount) ex te rna l on l yT r e a s u r y {
536 kUSD . mint (vau l t , amount) ;
537 emit TreasuryMint (amount) ;
538 }
539
540 /**
541 * @notice Burn KUSD from treasury account to keep on-chain KUSD consist with off -

chain trading system
542 * @param amount The amount of KUSD to burn from treasury
543 */
544 f unc t i on t r e a s u r yBu rn (u in t amount) ex te rna l on l yT r e a s u r y {
545 kUSD . burn (vau l t , amount) ;
546 emit TreasuryBurn (amount) ;
547 }
548
549 /**
550 * @notice Change treasury account to a new one
551 * @param newTreasury New treasury account address
552 */
553 f unc t i on _setTreasu ry (address newTreasury) ex te rna l onlyOwner {
554 address o l dT r e a su r y = t r e a s u r y ;

29/33 PeckShield Audit Report #: 2021-029

https://github.com/Kine-Technology/kine-protocol/commit/8014c40

Public

555 t r e a s u r y = newTreasury ;
556 emit NewTreasury (o l dTrea su r y , newTreasury) ;
557 }

Listing 3.16: Various Privileged Routines in KUSDMinter

Specifically, we examine the privileged functions treasuryMint()/treasuryBurn() in KUSDMinter.
Notice that the privileged account is able to mint/burn KUSD to/from specified treasury account.
Note that the treasury account can be dynamically configured from the privileged owner. We point
out that a compromised privileged account would allow the attacker to add a malicious treasury

to mint arbitrary KUSD tokens. It can also be configured to burn KUSD tokens from a specified user
account.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations need to be mediated with necessary timelocks. Even-
tually, activate the normal on-chain community-based governance life-cycle and ensure the intended
trustless nature and high-quality distributed governance.

Status This issue has been confirmed. The team confirmed the plan to hold the admin key in
a multi-sig account. All changed to privileged operations will be mitigated with necessary timelocks.

30/33 PeckShield Audit Report #: 2021-029

Public

4 | Conclusion

In this audit, we have analyzed the Kine design and implementation. The system presents a unique,
robust offering as a decentralized non-custodial money market protocol that establishes general
purpose liquidity pools backed by a customizable portfolio of digital assets. The current code base
is well structured and neatly organized. Those identified issues are promptly confirmed and fixed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

31/33 PeckShield Audit Report #: 2021-029

Public

References

[1] HaleTom. Resolution on the EIP20 API Approve / TransferFrom multiple withdrawal attack.

https://github.com/ethereum/EIPs/issues/738.

[2] Steve Marx. Stop Using Solidity’s transfer() Now. https://diligence.consensys.net/blog/2019/

09/stop-using-soliditys-transfer-now/.

[3] MITRE. CWE-1041: Use of Redundant Code. https://cwe.mitre.org/data/definitions/1041.

html.

[4] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[5] MITRE. CWE-190: Integer Overflow or Wraparound. https://cwe.mitre.org/data/definitions/

190.html.

[6] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[7] MITRE. CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization

(’Race Condition’). https://cwe.mitre.org/data/definitions/362.html.

[8] MITRE. CWE-663: Use of a Non-reentrant Function in a Concurrent Context. https://cwe.

mitre.org/data/definitions/663.html.

[9] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

32/33 PeckShield Audit Report #: 2021-029

https://github.com/ethereum/EIPs/issues/738
https://diligence.consensys.net/blog/2019/09/stop-using-soliditys-transfer-now/
https://diligence.consensys.net/blog/2019/09/stop-using-soliditys-transfer-now/
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html

Public

[10] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[11] MITRE. CWE CATEGORY: 7PK - Time and State. https://cwe.mitre.org/data/definitions/

361.html.

[12] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[13] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[14] MITRE. CWE CATEGORY: Concurrency. https://cwe.mitre.org/data/definitions/557.html.

[15] MITRE. CWE CATEGORY: Numeric Errors. https://cwe.mitre.org/data/definitions/189.html.

[16] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[17] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[18] PeckShield. PeckShield Inc. https://www.peckshield.com.

[19] PeckShield. Uniswap/Lendf.Me Hacks: Root Cause and Loss Analysis. https://medium.com/

@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09.

[20] David Siegel. Understanding The DAO Attack. https://www.coindesk.com/

understanding-dao-hack-journalists.

33/33 PeckShield Audit Report #: 2021-029

https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/557.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists

	Introduction
	About Kine
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Suggested Adherence of Checks-Effects-Interactions
	Improved Precision By Multiplication-Before-Division
	Potential Overflow Mitigation in notifyRewardAmount()
	Maturity Miscalculation Across Multiple Release Periods
	Same Controller Enforcement In liquidateBorrowAllowed()
	Improved Sanity Checks For System/Function Parameters
	Safe-Version Replacement With safeApprove(), safeTransfer() And safeTransferFrom()
	Improved Ether Transfers
	Inconsistency Between Document and Implementation
	Inaccurate Error Reason in redeemAllowedInternal()
	Possible Risk in Front-running repayBorrowBehalf()
	Trust Issue of Admin Keys

	Conclusion
	References

