상호동안정모델에 대한 정적풍동시험 II

Static Wind Tunnel Test for Standard Dynamic Model II

조태환, 정진덕, 윤성준, 김양원

2003. 12. 4

한국항공우주연구원
항공기술실 공력성능그룹

305-333 대전시 유성구 어운동 45번지
Tel (042) 860-2114, Fax (042) 860-2004
표준동안정모델에 대한 정적풍동시험 II

Static Wind Tunnel Test for Standard Dynamic Model II

취합자 : N/A

Abstract

A standard model test (TEST 060) was done to establish "Research of Subsonic Wind Tunnel Test Technology Standardization" as a part of National Research Laboratory(NRL) program, supported by the Ministry of Science and Technology. To fulfill the general requirement of the standard model such as relatively simple geometry and easy to access test data, the Standard Dynamic Model(SDM) is selected as a model. The wind tunnel test model was newly fabricated to resolve the model discrepancy proposed at the first wind tunnel test(Test044). The normal force and pitching moment of the full configuration
shows excellent agreement with the NRC test results. Some other simple configurations for example BW were tested to use the standard model at 1m size tunnel.
목 립

1. 서론 .. 1
2. 표준모델 풍동시험 ... 1
3. 풍동시험 ... 2
 3.1 항공우주연구원 중형아음속풍동 ... 2
 3.2 내장형 풍동저울 .. 3
 3.3 풍동시험조건 ... 4
4. 시험결과 ... 6
 4.1 Balance Calibration & Deformation ... 6
 4.2 시험데이터 분석 .. 11
 4.3 Flow Angularity .. 15
 4.4 아크각 변경시험 .. 18
 4.5 NRC 보고서와 비교 ... 20
 4.6 모델 검증 ... 26
5. 결론 ... 27

참고문헌 .. 28
1. 서론

아음속풍동 시험기술 표준화 연구의 일환으로 국내 1m급 아음속 풍동에서 사용할 수 있는 표준모델시험이 기획되었다. 최초시험은 2003년 1월에 KARI LSWT에서 수행되었다. 당시 시험에 사용된 모델은 국제적으로 공개된 표준동안정모델의 형상과 일부분이 상이하여 KARI 시험결과가 NRC의 시험결과와 상당한 차이를 나타내고 있다[1]. 시험결과의 신뢰성을 높이기 위해 NRC에서 입수된 모델형상을 기초로 하여 새로 모델을 제작한 후, KARI LSWT에서 2003년 9월에 시험(Test 060)을 수행하였다. 시험에 사용된 모델은 1m급 풍동용 표준모델이나, 시험부 복면효과를 최소화하기 위해 풍동시험은 4x3m 단면을 갖는 KARI LSWT에서 수행하였 다. 시험은 기준형상(BWHV)에 대한 풍동시험을 주로 수행하였으며, 추후 동안정계수 추출검증에 사용할 목적으로 몇 가지 형상에 대한 시험을 추가로 진행하였다. 또한, 국내 대학에서 손쉽게 시험할 수 있도록 일부 조종면을 제거한 형상에 대한 시험을 수행하였다.

2. 표준모델 풍동시험

시험에 사용한 표준모델은 동적시험에서 표준모델로 사용하기 위해 NRC에서 제안한 표준동안정모델(Standard Dynamic Model)로 NRC에서 1.93x2.74m 풍동에서 정적시험을 수행하여 LTR-UA-93에 시험결과와 모델형상을 공개하였다[1]. 이외에도 국제적으로 NASA, DEA등 여러 기관에서 시행결과 검증을 위해 정적시험을 수행하여 그 결과를 NRC 시험결과와 비교하였다. 표준모델로 선정된 NRC SDM 모델은 다음과 같은 특성을 가지고 있다.

1) 모델 동체는 실린더형이며 주익 익형과 평면형상은 사다리꼴로 형상이 단순하며 제작이 용이하다.

2) 모델형상이 공개되어 있으며, 국제적으로 여러 기관에서 시행한 결과가 공개되어 있다. 그림 1에 시험에 사용된 SDM 모델의 개략도가 나타나 있으며 상세도면은 부록에 첨부하였다.
3. 풍동시험

3.1 항공우주연구원 중형아음속풍동

아음속풍동은 폐회로 형으로 항후 응항시험, 지상고속 운송체 풍동시험을 위해 교환형 시험부를 구성되어 있다. 현재 보유한 시험부는 폭 4m, 높이 3m의 표준 시험부이고, 시험부에서 얻을 수 있는 유속은 1 ~ 120 m/s 이다. 시험부 내부는 경계층의 성장에 의한 수평 부력효과를 보상하기 위하여 시험부 단면이 점진적으로 증가하도록 tapered corner fillet이 부착되어 있다[2].
항공우주연구원 중형아음속풍동

풍동의 유질을 확인하기 위해 수행된 시험을 통해 얻어진 시험부 유질을 표 2에 요약하였다.

표 1 측정된 시험부 유질

<table>
<thead>
<tr>
<th>항목</th>
<th>결과(2σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δq/q_0</td>
<td>±0.30%</td>
</tr>
<tr>
<td>ΔC_p/dx</td>
<td>0.002/m</td>
</tr>
<tr>
<td>Δα, β</td>
<td>±0.08°, ±0.12°</td>
</tr>
<tr>
<td>u'/V_∞</td>
<td>0.07%</td>
</tr>
<tr>
<td>v', w'/V_∞</td>
<td>0.12%</td>
</tr>
<tr>
<td>ΔT</td>
<td>±0.3℃</td>
</tr>
</tbody>
</table>

3.2 내장형 풍동저울

시험에 사용된 내장형 풍동저울은 1996년에 Micro Craft사로부터 구입한 6분력 풍동저울이며, 풍동저울의 하중범위는 표 3과 같으며 정밀도는 최대하중의 0.25%이다.

그림 3 내장형 풍동저울(IB6-004)
표 2 풍동저울 하중 범위

<table>
<thead>
<tr>
<th>하중</th>
<th>NF</th>
<th>PM</th>
<th>SF</th>
<th>YM</th>
<th>RM</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>lbs, inch</td>
<td>250@0PM</td>
<td>600@0NF</td>
<td>150@0YM</td>
<td>300@0SF</td>
<td>96</td>
<td>90</td>
</tr>
</tbody>
</table>

3.3 풍동시험 조건

풍동시험은 주로 50m/s(1520 Ps)에서 수행되었으며 유속에 의한 영향을 보기위해 30m/s, 70m/s, 100m/s 유속에서 기본형상에 대한 시험을 수행하였다. 모델지지방식은 직선형 스티링을 사용하였으며 모델 피치각도 조절은 요회전각 변경에 의한 방법과 지지부 아크각 변경에 의한 방법을 모두 시험하여 결과를 비교하였다. 그림 4와 5에 요회전각 및 아크각 조절에 의한 모델 피치각 변화시험이 나타나 있다. 표 4에 시험 Run-Log가 나타나 있다. 시험구성은 NRC 보고서에 기재된 형상(기준형상;BWHV)에 대한 시험과 추후 동안정계수 추정에 사용될 시험(B, BW 등)으로 구성되어 있다. 요회전각 영점을 측정하기 위한 호름각 보정시험에 형상별로 추가되어 있다.

표 3 RunLog

<table>
<thead>
<tr>
<th>Run</th>
<th>Config.</th>
<th>Vel.</th>
<th>φ</th>
<th>α</th>
<th>β</th>
<th>Wing</th>
<th>Strake</th>
<th>H. Tail</th>
<th>V. Tail</th>
<th>V. Pin</th>
<th>Canopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>009</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>o</td>
</tr>
<tr>
<td>010</td>
<td>BH</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td>A0</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>o</td>
</tr>
<tr>
<td>011</td>
<td>BH'</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td>A0</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>012</td>
<td>WBH</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td>A0</td>
<td>0</td>
<td>o</td>
<td>o</td>
<td>x</td>
<td>o</td>
</tr>
<tr>
<td>013</td>
<td>WBH</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td>A0</td>
<td>0</td>
<td>o</td>
<td>o</td>
<td>x</td>
<td>o</td>
</tr>
<tr>
<td>014</td>
<td>WB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A0</td>
<td>0</td>
<td>o</td>
<td>x</td>
<td>x</td>
<td>o</td>
</tr>
<tr>
<td>015</td>
<td>WBVH</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td>A0</td>
<td>0</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>016</td>
<td>WBVH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A0</td>
<td>0</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>017</td>
<td>WBVH</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>A1</td>
<td>0</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>019</td>
<td>WBVH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A2</td>
<td>0</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
</tbody>
</table>
모델지지에 사용된 스타팅은 직경 35mm, 길이 92cm로 설측각을 제외한 전체 각도 영역에서 무시할 만한 진동을 나타내었으며, 모델회전중심은 시험부 중심에서 300mm 벗어나 있다. 대부분의 시험은 수행된 50m/s에서 예상되는 수직력 및 피칭모멘트는 30lbs, 3.5 lbs inch로 종동저울 하중범위(수직력 250lbs, 피칭모멘트 600lbs inch)의 10% 미만의 값이다. 이처럼 낮은 하중범위 사용에 의한 측정 정밀도를 떨어지기 위해 1차 시험(Test044)에서는 종동저울과 모델의 축력 90도 회전하여 모델의 수직력이 종동저울의 측력(150lbs)에 부가되도록 하여 시험하였다. 2

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>020</td>
<td>WBVH</td>
<td>A0</td>
<td>0</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>021</td>
<td>B</td>
<td>A0</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>o</td>
</tr>
<tr>
<td>023</td>
<td>BW</td>
<td>A2</td>
<td>0</td>
<td>o</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>025</td>
<td>BWVH</td>
<td>A2</td>
<td>0</td>
<td>o</td>
<td>x</td>
<td>o</td>
<td>o</td>
<td>x</td>
</tr>
<tr>
<td>026</td>
<td>BWVH</td>
<td>A2</td>
<td>0</td>
<td>o</td>
<td>x</td>
<td>o</td>
<td>o</td>
<td>x</td>
</tr>
<tr>
<td>027</td>
<td>BWVH</td>
<td>A2</td>
<td>0</td>
<td>o</td>
<td>x</td>
<td>o</td>
<td>o</td>
<td>x</td>
</tr>
<tr>
<td>028</td>
<td>BWVH</td>
<td>A2</td>
<td>0</td>
<td>o</td>
<td>x</td>
<td>o</td>
<td>o</td>
<td>x</td>
</tr>
<tr>
<td>029</td>
<td>BW</td>
<td>A2</td>
<td>0</td>
<td>o</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>030</td>
<td>BWVH</td>
<td>A0</td>
<td>0</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>031</td>
<td>BWVH</td>
<td>0</td>
<td>B0</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>032</td>
<td>B</td>
<td>0</td>
<td>B0</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>o</td>
</tr>
<tr>
<td>033</td>
<td>BH</td>
<td>0</td>
<td>B0</td>
<td>x</td>
<td>x</td>
<td>o</td>
<td>x</td>
<td>o</td>
</tr>
<tr>
<td>034</td>
<td>BW</td>
<td>0</td>
<td>B0</td>
<td>o</td>
<td>o</td>
<td>x</td>
<td>x</td>
<td>o</td>
</tr>
<tr>
<td>035</td>
<td>BW</td>
<td>0</td>
<td>B1</td>
<td>o</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>036</td>
<td>BWVH</td>
<td>0</td>
<td>B1</td>
<td>o</td>
<td>x</td>
<td>o</td>
<td>o</td>
<td>x</td>
</tr>
<tr>
<td>037</td>
<td>BW</td>
<td>0</td>
<td>B1</td>
<td>o</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>o</td>
</tr>
<tr>
<td>038</td>
<td>BWVH</td>
<td>0</td>
<td>B1</td>
<td>o</td>
<td>x</td>
<td>o</td>
<td>o</td>
<td>x</td>
</tr>
<tr>
<td>039</td>
<td>BWVH</td>
<td>0</td>
<td>B0</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>040</td>
<td>BWVH</td>
<td>5</td>
<td>0</td>
<td>o</td>
<td>x</td>
<td>o</td>
<td>o</td>
<td>x</td>
</tr>
<tr>
<td>041</td>
<td>BWVH</td>
<td>10</td>
<td>0</td>
<td>o</td>
<td>x</td>
<td>o</td>
<td>o</td>
<td>x</td>
</tr>
<tr>
<td>042</td>
<td>BWVH</td>
<td>15</td>
<td>0</td>
<td>o</td>
<td>x</td>
<td>o</td>
<td>o</td>
<td>x</td>
</tr>
</tbody>
</table>

A0: -4〜+46, A1: -4〜+20, A2: -4〜+30
B0: -5〜-2〜+2,+5, B0: -10〜+10,+15
차 시험(Test060)에서는 풍동저울의 축력 주 게이지 X1의 오류로 인해 축력 게이지 를 X2로 대체하였다. X2는 X1에 비해 축력과 축력 간섭량이 매우 큰 특성을 가지고 있어 주 하중을 풍동저울 축력에 부가할 경우 축력 정밀도가 떨어지므로 2차 시험에서는 주 하중을 풍동저울 수직력에 부가하였다.

그림 4 아크 각 변경시험
그림 5 요회전각 변경시험

4. 시험결과

4.1 Balance Calibration & Deformation

풍동시험 측면에 사용된 내장형 풍동저울 IB6-004는 Micro Craft사에서 제작한 풍동저울로서, 1996년 Micro Craft 보정시험에서 보정상수를 추출하였다. IB6-004는 1m 풍동에 사용하도록 제작되었기에 이를 중형아음속풍동에 사용하기 위해 풍동저울 연결선확장 및 중간단자함을 추가로 제작/설치하였다. 중간단자함 및 연결선 확장이 풍동저울 특성에 미치는 영향을 보정하기 위해 중형아음속풍동에 IB6-004를 설치한 후, 내장형 풍동저울 보정장치를 이용하여 간단한 풍동저울 보정을 시행하였다(그림6). 보정하중은 SDM 시험의 주 축정량인 풍동저울 수직력과 피칭모멘트만을 부가하였으며, 하중범위는 50m/s 및 100m/s에서 가해지는 공력으로 계산하여 부가하였다.
그림 6과 같이 풍동저울 보정장치에 하중을 부가했을 때, 풍동저울 지지대는 부가 하중에 의해 트 변형이 일어난다. 지지대의 트 변형은 내장형 풍동저울 축 회전을 일으키므로 정확한 보정을 위해서는 트 변형 정도를 측정하여야 한다. 트 변형 보정을 위해 지지대 고정부에 각도계(zerotronics)를 설치하여 변형각을 측정하였다.

내장형 풍동저울 데이터는 NEFF를 사용하여 획득하였으며, NEFF A/D 변화기 설정값은 다음과 같다.

- **Excitation Voltage**: 6V
- **PGA Gain**: 512
- **PreAmp**: 1

NEFF에서 설정한 A/D 변화기의 정밀도(전압범위 / bit)는

\[\frac{20V}{512} \div 2^{16} \approx 0.6 \mu V \]

1 bit당 하중변화량을 구하기 위해 위 값을 입력전압으로 표준화한 후 하중을 구하면 0.6μV/6V ~ 0.1μV → 0.1μV/1mV*250lbs = 0.025lb ~ 11g ≈ Cz : 11 count 이다.

Test 044에서는 트 변형 보정을 위주로 한 풍동저울 간이보정을 수행하였다. Test 060에서는 수직력과 피칭모멘트가 풍동저울 전체하중 범위의 10%와 5%이내를 사용함으로써 발생하는 정밀도 하락을 해결하기 위해 시험에서 예상되는 하중범

![그림 6 내장형 풍동저울 하중부가 장치](image)

Test 044에서는 트 변형 보정을 위주로 한 풍동저울 간이보정을 수행하였다. Test 060에서는 수직력과 피칭모멘트가 풍동저울 전체하중 범위의 10%와 5%이내를 사용함으로써 발생하는 정밀도 하락을 해결하기 위해 시험에서 예상되는 하중범
위에 대한 풍동저울 간이보정과 체 변형보정을 동시에 수행하였다. 표 5에 풍동저울 간이보정 결과가 나타나 있다. 표에서 ‘Calibrator Loading’은 보정장치에 부가한 하중을 나타내며, ‘Balance Loading’은 지지부 변형에 의해 풍동저울에 부가된 하중을 나타낸다. 수직력은 50m/s에서 예상되는 최대하중 30kg를 6단계로 나누어 부가하였다. Test 060에서 풍동저울 중심은 모델 모멘트 중심으로부터 29mm 앞단에 위치하므로, 이를 고려하여 풍동저울에 부가되는 피칭모멘트를 계산하면 -0.7 ~ 0.1 kgm 이다. 풍동저울 간이보정에서는 1.0 kgm를 100%하중으로 추정하여 -100%, -50%, -25%, 0%, 50%의 하중을 부가하였다.

표 4에서 풍동저울 부가하중과 측정하중의 최대 차이는 수직력 0.3kg, 피칭모멘트 0.02kgm 이며, 공력계수로 환산하면 Cz 0.03, Cm 0.01이다. 측정 오차를 보정하기 위해 부가하중과 측정하중의 차이를 하중에 대한 주 반응신호인 N1, N2 게이지의 측정값의 함수로 추정하여 이를 보정값으로 사용하였다. 보정값이 반영된 풍동저울 보정행렬의 대각 상수값이 표 6에 나타나 있다. 표에서 Original은 1997년 구한 보정상수값을 Revised 2002는 2002년 5월에 구한 보정상수 값을, Revised 2003은 2003년 2월에 구한 보정상수 값을 나타낸다. 보정상수 값에 차이가 나는 이유는 앞서 설명한 풍동저울 연결확장선 및 중간단자함 이외에도 원본 행렬은 전체범위에 대해 최적화된 행렬값을 제공하지만 간이보정으로 구한 값은 해당 시험범위에 한정된 최적화된 값이므로 시험하중 범위에 따라 약간의 차이가 발생한다. 간이보정에 관한 상세한 사항은 참고문헌 [3]에 나타나 있다. 원본 행렬 및 수정 행렬로 구한 부가하중 계산값이 표 5에 나타나 있다. 표 5에서 간이보정을 적용한 결과 최대오차는 수직력 303g → 37g, 피칭모멘트 23gm → 5gm로, 표준오차는 92g → 10g, 피칭모멘트 표준오차 8gm → 2gm로 측정정확도가 향상된 것을 알 수 있다.
<table>
<thead>
<tr>
<th>Group</th>
<th>Calibrator Loading</th>
<th>Balance Loading</th>
<th>Balance Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NF</td>
<td>PM</td>
<td>Angle</td>
</tr>
<tr>
<td>NF</td>
<td>0</td>
<td>0.000</td>
<td>0.085</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.000</td>
<td>0.192</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.000</td>
<td>0.305</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.000</td>
<td>0.540</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>0.000</td>
<td>0.791</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.000</td>
<td>0.978</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.000</td>
<td>0.600</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.000</td>
<td>0.089</td>
</tr>
<tr>
<td>NF &</td>
<td>PM (+50%)</td>
<td>0.000</td>
<td>0.087</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.499</td>
<td>0.316</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.499</td>
<td>0.426</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.499</td>
<td>0.660</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>0.499</td>
<td>0.910</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.499</td>
<td>1.096</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.499</td>
<td>0.725</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.000</td>
<td>0.096</td>
</tr>
<tr>
<td>NF &</td>
<td>PM (-25%)</td>
<td>0.000</td>
<td>0.094</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-0.250</td>
<td>0.147</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-0.250</td>
<td>0.259</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-0.250</td>
<td>0.493</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-0.250</td>
<td>0.747</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-0.250</td>
<td>0.930</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-0.250</td>
<td>0.532</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.000</td>
<td>0.100</td>
</tr>
<tr>
<td>NF &</td>
<td>PM (-50%)</td>
<td>0.000</td>
<td>0.095</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-0.499</td>
<td>0.883</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-0.499</td>
<td>0.197</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-0.499</td>
<td>0.444</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-0.499</td>
<td>0.687</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-0.499</td>
<td>0.870</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-0.499</td>
<td>0.490</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.000</td>
<td>0.098</td>
</tr>
<tr>
<td>NF &</td>
<td>PM (-100%)</td>
<td>0.000</td>
<td>0.098</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-0.998</td>
<td>0.092</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-0.998</td>
<td>0.324</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-0.998</td>
<td>0.573</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-0.998</td>
<td>0.739</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-0.998</td>
<td>0.598</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.000</td>
<td>0.097</td>
</tr>
</tbody>
</table>

표 4: 동등환을 하중부가 시험결과
<table>
<thead>
<tr>
<th>Group</th>
<th>Loading</th>
<th>Measured</th>
<th>Calibrated</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NF</td>
<td>PM</td>
<td>NF</td>
<td>PM</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.000</td>
</tr>
<tr>
<td></td>
<td>4.000</td>
<td>0.000</td>
<td>3.973</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>8.000</td>
<td>0.000</td>
<td>7.933</td>
<td>-0.009</td>
</tr>
<tr>
<td></td>
<td>15.999</td>
<td>0.000</td>
<td>15.879</td>
<td>-0.017</td>
</tr>
<tr>
<td></td>
<td>23.998</td>
<td>0.000</td>
<td>23.829</td>
<td>-0.020</td>
</tr>
<tr>
<td></td>
<td>29.996</td>
<td>0.000</td>
<td>29.797</td>
<td>-0.022</td>
</tr>
<tr>
<td></td>
<td>15.999</td>
<td>0.000</td>
<td>15.880</td>
<td>-0.016</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>-0.029</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>-0.029</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>-0.029</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>-0.029</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>-0.029</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>-0.029</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>-0.029</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>-0.029</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>-0.029</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

표 5 간이보정시험 적응결과
표 6 풍동저울 보정시험 결과

<table>
<thead>
<tr>
<th></th>
<th>Original 1997</th>
<th>Revised 2002</th>
<th>Revised 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF-R1</td>
<td>-205.68</td>
<td>-211.90</td>
<td>-208.42</td>
</tr>
<tr>
<td>NF-R2</td>
<td>250.06</td>
<td>253.00</td>
<td>250.66</td>
</tr>
<tr>
<td>PM-R1</td>
<td>414.97</td>
<td>394.66</td>
<td>410.48</td>
</tr>
<tr>
<td>PM-R2</td>
<td>373.93</td>
<td>406.03</td>
<td>382.97</td>
</tr>
</tbody>
</table>

표 4의 측정결과를 사용하여 내장형풍동저울의 하중에 대한 각도 변형값을 추출하였다. 그림 7과 같이 하중범위에서 각도 변형은 수직력과 피칭모멘트에 의해 발생하며 계산결과 보정식은 수직력계수 0.02989, 피칭모멘트 계수 0.23429로 나타났다.

그림 7 Deformation 시험결과
각도 변형 계산결과는 아크각 변경 시험에서 각도계로 측정한 각도 변형값과 잘 일치하고 있다.
R040(피치각 5도) : 아크각 시험결과 각도 변형 측정값 0.09, 보정식 계산값 0.08
R041(피치각 10도) : 아크각 시험결과 각도 변형 측정값 0.16, 보정식 계산값 0.15
R042(피치각 15도) : 아크각 시험결과 각도 변형 측정값 0.21, 보정식 계산값 0.20

4.2 시험데이터 분석

4.2.1 측정데이터의 시간별 추이 분석

시험데이터의 획득속도 및 개수를 결정하기 위해 측정데이터의 시간별 추이를 분석하였다. 분석에 사용된 시험은 Run020(BWHV 형상)이며, 시험당시 모델의 진동이 심했던 16도의 데이터를 분석하였다. 분석결과가 그림 8에 나타나 있다. 분석
결과 신뢰구간을 폭동저울 수직력 및 피칭모멘트 10count(수직력 약 18g)로 설정하였을 경우, 99.9% 신뢰도를 확보하기 위해서는 40개의 데이터가 필요하였으므로 시험은 50개의 데이터를 획득(5Hz, 10초)한 후, 평균하여 사용하였다.

4.2.2 Uncertainty

불확도 분석은 기준시험 데이터(Run020)를 사용하였으며, 0도, 8도, 16도 데이터를 사용하여 분석하였다. 불확도는 측정데이터로부터 직접 추정되는 A형 불확도와 경험, 교정결과, 장비사양 등 측정장비에 따라 추정되는 B형 불확도로 구분되며 각 항목별 불확도가 표 9에 나타나 있다. 폭동저울의 B형 불확도는 장비사양(0.25% f.s.)을 사용하여 '4.1'의 보정시험을 통해 보정한 폭동저울의 수직력 및 피칭모멘트에 대한 값은 보정시험결과를 사용하였다. 각도의 경우 B형 불확도는 요약변화시험을 통한 측정치의 추정이 주요한 인사이며 요약변화시험결과의 반복성인 0.1도를 사용하였다.

표 10에 최종 불확도(합성불확도 및 확장불확도-95%)가 나타나 있다. 시험의 주요측정값인 폭동저울 수직력 및 피칭모멘트의 경우 20 count 정도의 합성불확도를 갖고 있으며, 측력의 경우에는 70 count 정도의 불확도를 갖고 있다. 측력 불확도가 수직력에 비해 크게 나타난 것은 수직력은 별도의 보정시험을 통해 장비의 정밀도(B형 불확도)를 항상시켜 사용하였으나 측력은 하중부가시험을 수행하지 못하였으므로 장비사양에 전체하중의 0.25%를 측력정밀도로 사용하였기 때문이다. 이는 추후 폭동저울 보정시험을 통해 수직력과 동일한 범위로 불확도를 항상시킬 수 있다.
표 7 항목별 불확도

<table>
<thead>
<tr>
<th>Test</th>
<th>60</th>
<th>Run</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>피치각</td>
<td>q(pa)</td>
<td>NF(kg)</td>
</tr>
<tr>
<td>평균</td>
<td>1507.0</td>
<td>-0.942</td>
<td>0.025</td>
</tr>
<tr>
<td>A Type</td>
<td>0.6</td>
<td>0.015</td>
<td>0.001</td>
</tr>
<tr>
<td>평균</td>
<td>1511.1</td>
<td>10.582</td>
<td>-0.296</td>
</tr>
<tr>
<td>A Type</td>
<td>0.5</td>
<td>0.014</td>
<td>0.001</td>
</tr>
<tr>
<td>평균</td>
<td>1498.8</td>
<td>20.421</td>
<td>-0.313</td>
</tr>
<tr>
<td>A Type</td>
<td>0.8</td>
<td>0.020</td>
<td>0.001</td>
</tr>
<tr>
<td>B Type</td>
<td>2.4</td>
<td>0.009</td>
<td>0.002</td>
</tr>
</tbody>
</table>

표 8 불확도 분석 결과

<table>
<thead>
<tr>
<th>속도</th>
<th>피치각</th>
<th>불확도</th>
<th>Cz</th>
<th>Cm</th>
<th>Cx</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.00</td>
<td>0</td>
<td>합성불확도</td>
<td>0.0023</td>
<td>0.0017</td>
<td>0.0067</td>
</tr>
<tr>
<td></td>
<td></td>
<td>확장불확도</td>
<td>0.0045</td>
<td>0.0034</td>
<td>0.0134</td>
</tr>
<tr>
<td>50.00</td>
<td>8</td>
<td>합성불확도</td>
<td>0.0022</td>
<td>0.0017</td>
<td>0.0068</td>
</tr>
<tr>
<td></td>
<td></td>
<td>확장불확도</td>
<td>0.0045</td>
<td>0.0034</td>
<td>0.0135</td>
</tr>
<tr>
<td>50.00</td>
<td>16</td>
<td>합성불확도</td>
<td>0.0029</td>
<td>0.0019</td>
<td>0.0067</td>
</tr>
<tr>
<td></td>
<td></td>
<td>확장불확도</td>
<td>0.0057</td>
<td>0.0037</td>
<td>0.0135</td>
</tr>
</tbody>
</table>

4.2.3 반복성

시험모델의 형상변화를 위해서는 모델을 풍동저울에서 분리한 후 재조립하여야 하므로 모델 재조립에 의한 반복성을 측정하였다. 시험반복성을 확인하기 위해 기 준형상으로 설정된 BWVH 형상에 대해 시험도중에 반복성확인 시험을 수행하였다. 그림 9에 반복성 시험으로 수행된 Run008, Run015, Run020, Run030의 시험결과 나타난다. 시험반복성을 정확히 알기 위해 시험결과를 지정각도(정수각)로 내삽한 후 각 각도에서 표준편차를 구하였다. 그림10에서 수직력은 40 count 이내, 축력 및 피칭모멘트는 20 count 이내의 반복성을 갖고 있을음을 알 수 있다.
그림 9 반복성 시험결과
4.3 Flow Angularity

SDM 정적풍동시험은 앞 장에서 설명했듯이 기본적으로 터테이블 회전을 이용하여 모델 회전방향 각도변화를 만들었다. 이 경우 모델 회전각 측정은 터테이블에 부착된 인코더에서 측정한 값에 의존하게 된다. 지지부 아크각 변화를 통해 모델 회전각도를 조절하는 경우에는 모델 내/외부에 각도계를 설치하여 모델의 영점 및 각도를 측정할 수 있으나 이번 시험과 같이 터테이블 회전각을 이용할 경우에는 영점측정을 위해 대칭형상에 대한 요각변화 시험(yaw sweep test)을 수행하여야 한다. 그림 11에 본 시험과 관련된 요각변화시험 결과가 나타나 있다. 요각변화시험은 모델의 대칭성과 밀접히 연관되어 있으므로 대칭성이 가장 잘 보장되는 동체만으로 이루어진 형상을 가지고 시험하였다. 검증을 위해 날개와 동체로 이루어진 형상과 날개동체 조립날개로 이루어진 형상에 대해 동일한 시험을 수행하였다. 시험은 -2~2 사이의 각을 0.5도 간격으로 변화하며 6분력을 측정하였다. 흐름각 측정시험결과 설정된 각도에 대한 흐름각은 0.01도 이내로 나타났으므로 요회전 시험의 경우 흐름각보정은 수행하지 않는다.

그림 10 반복성 시험결과(각도별 표준편차)
그림 11 요방향 흐름각 측정결과
4.4 아크각 변경시험

요회전시험에 대한 비교 자료로 사용하기 위해 몇 개의 아크각 변화를 통한 피치각 변경시험을 수행하였다. 아크각 변경시험은 모델지지부의 아크를 수동으로 지정된 위치 (0도, 5도, 10도, 20도)에 고정한 후 6분력을 측정하는 방법으로 수행하였다. 그림 12-14에 같은 형상에 대한 아크각 변경시험 (Run038, 040∼042)과 회전관요각 변경시험 (Run020) 결과를 비교하였다.

![그림 12 아크각 변화 시험결과](image)

요각변경시험 (Run020) 결과를 내삽하여 해당 아크각으로 변환한 결과가 표 11에 나타나 있다. 표에서 수직력 100 count, 피칭모멘트 30 count, 축력 20 count의 차이를 보이고 있다. 스팅의 길이가 짧아 각도에 따라 모델의 위치가 변한다는 점과 앞선 불확도 및 반복성 시험결과와 비교하였을 때 회전방법에 따른 이러한 차이는 받아들 만한 수치이다. 그러므로 회전관요각 변경을 통한 모델 피치각 변경은 시험결과에 큰 영향은 주지 않는 것으로 생각된다.
<table>
<thead>
<tr>
<th>Pitch</th>
<th>변경시험</th>
<th>Cz</th>
<th>Cm</th>
<th>Cx</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.33</td>
<td>요각</td>
<td>-0.0129</td>
<td>-0.0083</td>
<td>0.0450</td>
</tr>
<tr>
<td></td>
<td>아크각</td>
<td>-0.0287</td>
<td>-0.0034</td>
<td>0.0461</td>
</tr>
<tr>
<td>4.67</td>
<td>요각</td>
<td>0.3544</td>
<td>-0.0322</td>
<td>0.0341</td>
</tr>
<tr>
<td></td>
<td>아크각</td>
<td>0.3450</td>
<td>-0.0317</td>
<td>0.0364</td>
</tr>
<tr>
<td>9.78</td>
<td>요각</td>
<td>0.6025</td>
<td>-0.0156</td>
<td>0.0313</td>
</tr>
<tr>
<td></td>
<td>아크각</td>
<td>0.6030</td>
<td>-0.0137</td>
<td>0.0288</td>
</tr>
<tr>
<td>14.91</td>
<td>요각</td>
<td>0.8176</td>
<td>-0.0371</td>
<td>0.0371</td>
</tr>
<tr>
<td></td>
<td>아크각</td>
<td>0.8144</td>
<td>-0.0355</td>
<td>0.0341</td>
</tr>
</tbody>
</table>

4.5 NRC 보고서와 비교

4.5.1. Cz 및 Cm 비교

수직력 및 피칭모멘트 비교결과가 그림 13에 나타나 있다. 그림에서 LTR100은 NRC 보고서에 나타난 시험값으로 100m/s에서 수행된 시험결과이다. KARI 모델은 NRC 모델에 비해 2배정도 크기이므로 레이놀즈수를 기준으로 하였을 경우 KARI 50m/s 시험결과는 NRC 100m/s 시험결과와 대응된다. 그림에 2차시험결과(Test060)과 1차시험결과(Test044)가 나타나 있다. 서론에서 밝혔듯이 1차시험결과는 모델형상차이로 인해 NRC 시험결과와 차이를 보이고 있으나 2차시험결과는 NRC 시험결과와 잘 일치하고 있다. 자세한 비교를 위해 양 기관이 시험결과를 같은 각도로 내삽하여 비교한 결과가 그림 14에 나타나 있다. 비교결과 수직력은 100 count, 피칭모멘트는 30 count 둘의 일치성을 보이고 있다. 이 값은 앞서 밝힌 불확정도 및 측정반복성과 비교하였을 때 매우 좋은 결과이다.
그림 13 수직력 및 피칭모멘트 비교
4.5.2. 속도에 따른 변화

속도에 따른 수직력 및 피칭모멘트 비교를 그림 15에 나타내었다. 그림에서 NRC 100m/s 시험결과와 KARI 50m/s 시험결과가 같은 레이놀즈수를 가지며 NRC 70m/s 시험결과와 KARI 37m/s 시험결과가 같은 레이놀즈수를 갖는다. 같은 레이놀즈수에 대한 양 기관의 시험결과는 매우 좋은 일치성을 보이고 있다. KARI에서는 추후 비교를 위해 70m/s와 100m/s에서 시험을 수행하였다. 시험결과 수직력은 레이놀즈수에 따른 변화가 미미하다 피칭모멘트는 레이놀즈수에 따라 서로 다른 형상을 보이고 있다.
그림 15 속도에 따른 변화 비교
4.5.3. 모델형상에 따른 변화

시험에 사용된 NRC SDM은 동식시험용 표준모델로 제안되었으므로 아음속풍동정식시험 표준모델로 최적화된 형상이 아니다. 특히, 벤트럴 핀 및 스트레이크의 두께가 너무 작아 1m급 평동시험에 사용하기에는 모델제작 및 보관에 어려움이 있다. 이에 제작이 어려운 조종면을 제외한 형상에 대해 추가 시험을 수행하였다. 벤트럴 핀과 스트레이크, 캐노피가 제거된 형상을 기준형상으로 하여 미익 및 주익달부착에 따른 시험을 수행하였다. 그림 16에서 ‘s’는 스트레이크, ‘p’는 벤트럴 핀, ‘c’는 캐노피를 나타내며, ‘+’는 각 부품이 설치된 상태를, ‘-’는 제거된 상태를 나타낸다. 그림에서 캐노피는 수직력 및 피칭모멘트에 거의 영향을 주지 않으며 스트레이크는 주익 실속각도인 8도 이전의 받음각에서는 수직력에 큰 영향을 주지 않으나 8도 이후에는 수직력에 큰 영향을 주고 있다.
그림 16 형상에 따른 변화
4.5.4. 표준모델 시험결과

표준모델 시험결과의 기준형상 BWVH 데이터(Run020)가 부록에 수록되어 있다. 시험결과는 앞서 밝힌 호흡자보정, 지지부 휘 보정과 백면효과 보정이 적용되었다. 백면효과보정은 ‘shindo’ 방법을 사용하였으며 코리날게에 의한 모멘트 보정은 수행하지 않았다. 백면효과보정에 사용된 계수 dw는 0.1188이다. 그림 19에 백면효과 보정에 의한 변화량이 나타나 있다. 모델 날개폭과 시험부 높이의 비율이 0.45/3 ~ 15% 정도이며, 면적비는 0.56%로 매우 작은 값이므로 그림에서 백면효과보정량은 크게 나타나지 않는다. 받음각 14도 이전의 경우 백면효과에 의한 동업변화는 1Pa 이내, 각도변화 0.03도 이내, 힘 및 모멘트 3count 이내로 무시할 수 있는 보정량을 보이고 있다.

그림 17 백면효과보정 결과
4.6 모델 검증

시험모델과 NRC 모델의 일치성을 확인하기 위해 그림18과 같이 모델 검증용 치구를 제작하여 정반에서 각 부위의 치수를 측정하였다. 수직도 측정은 테오도라이트(theodolite) Leica TPS 1000과 사용하였으며 부품치수 측정은 버어니어 캘리퍼스와 높이게이저를 사용하였다. 측정정밀도는 0.5mm 정도이며 측정결과 각 부위의 치수오차는 측정정밀도 이내의 값을 나타내었다. 표 10에 주요부위 치수가 나타나 있다.

그림 18 모델검증용 치구 및 결합도

<table>
<thead>
<tr>
<th>항목</th>
<th>좌측부위(mm)</th>
<th>우측부위(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>좌측</td>
<td>우측</td>
</tr>
<tr>
<td></td>
<td>도면</td>
<td>실측</td>
</tr>
<tr>
<td>주익 root</td>
<td>164.4</td>
<td>163.87</td>
</tr>
<tr>
<td>주익 span/2</td>
<td>176.3</td>
<td>176.23</td>
</tr>
<tr>
<td>주익 위치(높이)</td>
<td>44.5</td>
<td>44.46</td>
</tr>
<tr>
<td>스트레이크 (길이)</td>
<td>173.7</td>
<td>172.66</td>
</tr>
<tr>
<td>동체 직경</td>
<td>100</td>
<td>99.99</td>
</tr>
<tr>
<td>수직미익(길이)</td>
<td>109.3</td>
<td>109.74</td>
</tr>
</tbody>
</table>
 항공우주연구원 아음속풍동의 표준모델로 NRC 보고서에 나타난 표준동안정모델을 선택한 후 중형아음속풍동에서 기본형상에 대한 시험을 수행하였다. 시험결과는 모델형상에 대한 차이로 인해 NRC 보고서와 약간의 차이를 보이고 있다. 형상차이에 대한 부분은 추후 연구를 통해 보완할 계획이다. 본 연구의 결과는 모델형상 및 시험결과 공개를 통해 국내 각 풍동의 시험시스템 비교에 활용될 예정이다.

5. 결론
참고문헌

부록

1. 표준동안정모델 도면
2. 표준동안정모델 시험 사진
3. 표준동안정모델 KARI 시험결과
1. 표준동안정모델 도면
2. 표준동안정모델의 시험사진

그림 19 모델 0점 측정

그림 20 Body Only 형상
그림 21 BVH

그림 22 BWVH(+$s+p+c$) ; NRC 기준 형상
그림 23 BWVH(−s−p−c) : 1m 평동용으로 새로 제안된 기준형상

그림 24 BW(−s−p−c)
3. 표준동안정모델 KARI 시험결과
서지정보 양식

<table>
<thead>
<tr>
<th>1. 기관명:</th>
<th>2. 부서명:</th>
<th>3.관리번호:</th>
<th>4. 발행일:</th>
</tr>
</thead>
</table>

10. 계목: 표준동안정모델에 대한 정적풍동시험 II 11. 주제분야: 풍동시험

12. 저자명(공저자): 조태환, 김양원, 윤성준

13. 보충사항: 해당사항 없음.

14. 초록:

국가지정연구실사업인 아음속풍동 시험기술 표준화 연구의 일환으로 진행된 Test 060은 국내 풍동간의 비교시험에 활용할 목적으로 수행한 표준모델풍동시험이다.
표준모델로는 시험자료가 공개되어 있고 형상이 단순한 표준동안정모델을 사용하였으며, 2003년 1월에 수행된 1차 풍동시험(Test044)에서 제기된 모델형상이 갖는 문제점을 해결하기 위해 시험모델을 새로 제작하여 시험을 수행하였다. NRC의 시험결과와 비교하기 위해 동일한 형상의 시험을 수행한 결과 수직력 및 피치모멘트는 양기관의 시험결과가 잘 일치하고 있다. 국내 1m급 풍동에서 사용할 수 있도록 단순화한 모델형상에 대한 시험을 추가로 수행하였다.

15. 키워드 (6개이상): 풍동시험, 표준모델, SDM, 흐름각, 벽면효과

Bibliographic Data Sheet

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KARI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N03120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Joint Research Organization:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Title: Static Wind Tunnel Test for SDM II</td>
<td>11. Subject Category: Wind Tunnel Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Author(s): Cho Taehwan, Kim Yangwon, Cho Sangoh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Supplementary Notes:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Abstract:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A standard model test (TEST 060) was done to establish “Research of Subsonic Wind Tunnel Test Technology Standardization” as a part of National Research Laboratory(NRL) program, supported by the Ministry of Science and Technology. To fulfill the general requirement of the standard model such as relatively simple geometry and easy to access test data, the Standard Dynamic Model(SDM) is selected as a model. The wind tunnel test model was newly fabricated to resolve the model discrepancy proposed at the first wind tunnel test(Test044). The normal force and pitching moment of the full configuration shows excellent agreement with the NRC test results. Some other simple configurations for example BW were tested to use the standard model at 1m size tunnel.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Keywords: Wind Tunnel Test, Standard Test, SDM, Flow Angularity, Wall Interference</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2003년 12월 24일
한국항공우주연구원 발간
305-333 대전시 유성구 어은동 45번지
Tel (042) 860-2114, Fax (042) 860-2004