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Shortest Paths
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# Given a weighted graph and two vertices u and v, we want to
find a path of minimum total weight between u and v.

= Length of a path is the sum of the weights of its edges.
@ Example:

= Shortest path between Providence and Honolulu
@ Applications

= Internet packet routing

» Flight reservations

= Driving directions




Shortest Path Properties

Property 1:
A subpath of a shortest path is itself a shortest path
Property 2:
There is a tree of shortest paths from a start vertex to all the other vertices
Example:
Tree of shortest paths from Providence
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Dijkstra’ s Algorithm

@ The distance of v from s is the length of a shortest path
between s and v

@ Dijkstra’ s algorithm computes the distances of all the vertices
from a given start vertex s

@ Assumptions:
= the graph is connected
= the edges are undirected
» the edge weights are nonnegative




Dijkstra’ s Algorithm

Té We grow a “cloud” of vertices, beginning with s and eventually
covering all the vertices.

#® We store with each vertex v a label d(v) representing the
distance of v from s in the subgraph consisting of the cloud and
its adjacent vertices

@ At each step

m We add to the cloud the vertex u outside the cloud with the smallest
distance label d(u)

= We update the labels of the vertices adjacent to u




Edge Relaxation
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# Consider an edge e =(u,2)
such that

= u is the vertex most recently
added to the cloud

m zis notin the cloud

- ~o

@ The relaxation of edge e
updates distance d(z) as
follows:

d(z) « min{d(z), d(u) + weight(e)}
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Example (cont.)

Final Shortest Paths & Lengths
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‘Dijkstra’ s Algorithm

Algorithm ShortestPath(G,s):

Input: A weighted graph G with nonnegative edge weights, and a distinguished
vertex s of G.
Output: The length of a shortest path from s to v for each vertex v of G.

Initialize D|[s| = 0 and D[v] = oo for each vertex v # s.
Let a priority queue Q contain all the vertices of G using the D labels as keys.
while Q is not empty do
{pull a new vertex u into the cloud}
u = value returned by Q.remove_min()
for each vertex v adjacent to u such that visin Q do
{perform the relaxation procedure on edge (u,v)}
if D[u] +w(u,v) < D|v| then
D[v| = D[u] +w(u,v)
Change to D|[v| the key of vertex v in Q.
return the label D[v| of each vertex v
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Analysis of Dijkstra’ s Algorithm

@ Graph operations
= We find all the incident edges once for each vertex

# Label operations
= We set/get the distance and locator labels of vertex z O(deg(z)) times
m Setting/getting a label takes O(1) time

@ Priority queue operations

= Each vertex is inserted once into and removed once from the priority
queue, where each insertion or removal takes O(log n) time

= The key of a vertex in the priority queue is modified at most deg(w)
times, where each key change takes O(log n) time

@ Dijkstra’ s algorithm runs in O((n + m) log n) time provided the
graph is represented by the adjacency list/map structure
= Recall that X, deg(v) = 2m

4 The running time can also be expressed as O(m log n) since the
graph is connected
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Java Implementation

/*x Computes shortest-path distances from src vertex to all reachable vertices of g. x/
public static <V> Map<\Vertex<V>, Integer>
shortestPathLengths(Graph<V,Integer> g, Vertex<V> src) {
// d.get(v) is upper bound on distance from src to v
Map<Vertex<V>, Integer> d = new ProbeHashMap<>();
// map reachable v to its d value
Map<Vertex<V>, Integer> cloud = new ProbeHashMap<>();
// pq will have vertices as elements, with d.get(v) as key
AdaptablePriorityQueue<Integer, Vertex<V>> pq;
10 pg = new HeapAdaptablePriorityQueue<>();
11 // maps from vertex to its pq locator
12 Map<Vertex<V>, Entry<Integer,Vertex<V>>> pqTokens;
13 pqTokens = new ProbeHashMap<>();
14
15 // for each vertex v of the graph, add an entry to the priority queue, with
16 // the source having distance 0 and all others having infinite distance
17 for (Vertex<V> v : g.vertices()) {

O 00 O B W

18 if (v == src)

19 d.put(v,0);

20 else

21 d.put(v, Integer MAX_VALUE);

22 pqTokens.put(v, pq.insert(d.get(v), v)); // save entry for future updates
23 }
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Java Implementation, 2

}

// now begin adding reachable vertices to the cloud
while (!pq.isEmpty()) {
Entry<Integer, Vertex<V>> entry = pq.removeMin();
int key = entry.getKey();
Vertex<V> u = entry.getValue();
cloud.put(u, key); // this is actual distance to u
pqTokens.remove(u); // u is no longer in pq
for (Edge<Integer> e : g.outgoingEdges(u)) {
Vertex<V> v = g.opposite(u,e);
if (cloud.get(v) == null) {
// perform relaxation step on edge (u,v)
int wgt = e.getElement();
if (d.get(u) + wgt < d.get(v)) { // better path to v?
d.put(v, d.get(u) + wgt); // update the distance
pq.replaceKey(pgTokens.get(v), d.get(v)); // update the pq entry

}
}
}
}

return cloud; // this only includes reachable vertices

14



Why It Doesn’ t Work for Negative-Weight Edges

A
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@ Dijkstra’ s algorithm is based on the greedy method.
It adds vertices by increasing distance.

= If a node with a negative
incident edge were to be
added late to the cloud, it
could mess up distances for
vertices already in the cloud.

C’ s true distance is 1, but it is
already in the cloud with d(C)=5!
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Works even with negative-
weight edges

Must assume directed
edges (for otherwise we
would have negative-
weight cycles)

Iteration i finds all shortest
paths that use i edges.

Running time: O(nm).

Bellman-Ford Algorithm

Algorithm BellmanFord(G, s)
for all v € G.vertices()
if v=ys
setDistance(v, 0)
else
setDistance(v, )
fori< Iton—1do
for each ¢ € G.edges()
{ relax edge e }
u < G.origin(e)
z < G.opposite(u,e)
r < getDistance(u) + weight(e)
if r < getDistance(z)
setDistance(z,r)
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Bellman-Ford Example
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i=0

Nodes are labeled with their d(v) values
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i=3

* Algorithm finds the optimum
result after 2nd iteration

e But it will run 5 iterations
(n-1 times)

Bellman-Ford (cont.)

Algorithm BellmanFord(G, s)
for all v € G.vertices()
if v=ys
setDistance(v, 0)
else
setDistance(v, )
fori< Iton—1do
for each ¢ € G.edges()
{ relax edge e }
u < G.origin(e)
z < G.opposite(u,e)

r < getDistance(u) + weight(e)

if r < getDistance(z)
setDistance(z,r)
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Final Exam Content

OOP Principles

Stack, Queue, Linked list

Hash Table, Resolving Hashing Problems
Heap, Priority Queue

Tree-Walks, Implementation with OOP
Binary Search Trees

Red-Black Trees

B-Trees

Minimum Spanning Tree Algorithms
Shortest Path Algorithms
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