
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321927705
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321927705
https://plusone.google.com/share?url=http://www.informit.com/title/9780321927705
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321927705
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321927705/Free-Sample-Chapter


The Dart Programming Language



This page intentionally left blank 



The Dart Programming Language

Gilad Bracha

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

Sao Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo



Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business, train-
ing goals, marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2015953614

Copyright c© 2016 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction, storage
in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photo-
copying, recording, or likewise. For information regarding permissions, request forms and the appro-
priate contacts within the Pearson Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/.

ISBN-13: 978-0-321-92770-5

ISBN-10: 0-321-92770-2

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.

First printing, December 2015

http://www.pearsoned.com/permissions/


To my mother, Shoshana,
who taught me to be picky.



This page intentionally left blank 



Contents

Foreword xi

Preface xv

Acknowledgments xvii

About the Author xix

Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Design Principles 2

1.2.1 Everything Is an Object 2
1.2.2 Program to an Interface, not an Implementation 2
1.2.3 Types in the Service of the Programmer 3

1.3 Constraints 4
1.4 Overview 4
1.5 Book Structure 10
1.6 Related Work and Influences 10

Chapter 2 Objects, Interfaces, Classes and Mixins 13
2.1 Accessors 14
2.2 Instance Variables 17
2.3 Class Variables 17
2.4 Finals 18
2.5 Identity and Equality 19
2.6 Class and Superclass 21
2.7 Abstract Methods and Classes 22
2.8 Interfaces 23
2.9 Life of an Object 24

2.9.1 Redirecting Constructors 29
2.9.2 Factories 30

2.10 noSuchMethod() 30
2.11 Constant Objects and Fields 31
2.12 Class Methods 32
2.13 Instances, Their Classes and Metaclasses 33

vii



viii Contents

2.14 Object and Its Methods 34
2.15 Mixins 36

2.15.1 Example: The Expression Problem 39
2.16 Related Work 45
2.17 Summary 46

Chapter 3 Libraries 47
3.1 The Top Level 47
3.2 Scripts 48
3.3 Privacy 48
3.4 Imports 49
3.5 Breaking Libraries into Parts 53
3.6 Exports 55
3.7 Diamond Imports 56
3.8 Deferred Loading 57
3.9 Related Work 58
3.10 Summary 59

Chapter 4 Functions 61
4.1 Parameters 61

4.1.1 Positional Parameters 61
4.1.2 Named Parameters 62

4.2 Function Bodies 63
4.3 Function Declarations 64
4.4 Closures 65
4.5 Invoking Methods and Functions 66

4.5.1 Cascades 66
4.5.2 Assignment 67
4.5.3 Using Operators 67

4.6 The Function Class 68
4.6.1 Emulating Functions 68

4.7 Functions as Objects 69
4.8 Generator Functions 71

4.8.1 Iterators and Iterables 72
4.8.2 Synchronous Generators 72

4.9 Related Work 74
4.10 Summary 74

Chapter 5 Types 75
5.1 Optional Typing 75
5.2 A Tour of Types 77
5.3 Interface Types 79
5.4 Types in Action: The Expression Problem, Typed 82
5.5 Generics 85

5.5.1 The Expression Problem with Generics 87



Contents ix

5.6 Function Types 91
5.6.1 Optional Positional Parameters 93
5.6.2 Named Parameters 94
5.6.3 Call() Revisited 94

5.7 Type Reification 95
5.7.1 Type Tests 95
5.7.2 Type Casts 96
5.7.3 Checked Mode 97
5.7.4 Reified Generics 98
5.7.5 Reification and Optional Typing 98
5.7.6 Types and Proxies 99

5.8 Malformed Types 102
5.9 Unsoundness 104
5.10 Related Work 106
5.11 Summary 107

Chapter 6 Expressions and Statements 109
6.1 Expressions 109

6.1.1 Literals 109
6.1.2 Identifiers 116
6.1.3 this 120
6.1.4 Constants 120
6.1.5 Creating Objects 121
6.1.6 Assignment 121
6.1.7 Extracting Properties 122
6.1.8 Method Access 123
6.1.9 Using Operators 124
6.1.10 Throw 124
6.1.11 Conditionals 125

6.2 Statements 125
6.2.1 Blocks 125
6.2.2 If 126
6.2.3 Loops 126
6.2.4 Try-Catch 128
6.2.5 Rethrow 129
6.2.6 Switch 129
6.2.7 Assert 131
6.2.8 Return 133
6.2.9 Yield and Yield-Each 134
6.2.10 Labels 136
6.2.11 Break and Continue 136

6.3 Summary 137

Chapter 7 Reflection 139
7.1 Introspection 139



x Contents

7.1.1 Implications for Speed and Size 142
7.1.2 Example: Proxies 144
7.1.3 Example: Serialization 145
7.1.4 Example: Parser Combinators 155

7.2 Why Mirrors 165
7.3 Metadata 165
7.4 Reflection via Code Generation 166
7.5 Beyond Introspection 169
7.6 Related Work 169
7.7 Summary 170

Chapter 8 Asynchrony and Isolates 171
8.1 Asynchrony 171
8.2 Futures 172

8.2.1 Consuming Futures 172
8.2.2 Producing Futures 173
8.2.3 Scheduling 174

8.3 Streams 174
8.4 Isolates 175

8.4.1 Ports 175
8.4.2 Spawning 176
8.4.3 Security 177

8.5 Example: Client-Server Communication 177
8.5.1 Promise: A Brighter Future 177
8.5.2 Isolates as Distributed Objects 179

8.6 Asynchronous Functions 183
8.6.1 Await 183
8.6.2 Asynchronous Generators 184
8.6.3 Await-For loops 185

8.7 Related Work 185
8.8 Summary 185

Chapter 9 Conclusion 187
9.1 Optional Typing 187
9.2 Object Orientation 188
9.3 Reflection 188
9.4 Tooling 189
9.5 Summary 189

Bibliography 191

Index 195



Foreword

In the early spring of 2006, I wrote a short blog post called “Gilad is Right” where,
as a recovering typaholic, I admitted that Gilad’s idea of optional and layered type
systems, where static types cannot change the runtime behavior of the program and do
not prevent an otherwise legal program from compiling or executing, was a necessary
design trade-off for programming languages aimed at millions of developers. At that
time I was working on Visual Basic, which already supported a form of optional typing
by means of the Option Strict Off statement, but that feature was under heavy fire
from static typing proponents. Type systems are often highly non-linear and after a
certain point their complexity explodes while adding very little value to the developer
and making life miserable for the language implementors. Optional and layered type
systems enable a much more gradual approach by allowing strong static typing to coexist
peacefully with dynamic typing. Now nearly a decade later, the vision Gilad pioneered
has become mainstream under the name gradual typing. Many programming languages
that have been created in the last few years, such as Hack, TypeScript, Flow, Racket,
and of course Dart, are gradually typed. Even academics have embraced the idea and
write papers about it with frivolous titles that include words such as “threesomes” and
“blame.”

Another pragmatic aspect of Dart, but one that language purists have not yet ac-
cepted, is the fact that the Dart type system is deliberately unsound. In normal English
this means that the Dart type checker will not flag certain type errors at compile time,
but relies on runtime checking instead to ensure type safety. The main source of type
unsoundness in Dart is covariant generics. To explain what variance is, let’s first look at
a vending machine from which we can only take drinks. If a cafeteria requires a vending
machine with soda pop, we can legally install a vending machine that dispenses root
beer since root beer is a type of soda pop (but it is illegal to install a vending machine for
soda pop where a vending machine for root beer is required). In programming language
speak we say that vending machines are covariant. Next let’s take a look at garbage
cans into which we can throw only garbage. If a cafeteria requires a garbage can for
recyclables, we can legally install a garbage can for trash since recyclable garbage is a
type of trash (but it is illegal to install a garbage can for recyclables where a garbage
can for trash is required). In programming language speak we say that garbage cans
are contravariant. If you are a little puzzled about contravariance you are not the only
one, and you will appreciate Dart’s decision to make all generic types covariant. The
consequence of that choice is that if you need a garbage can for trash, you can legally
install a garbage can for recyclables, but that garbage can will reject all non-recyclable

xi



xii Foreword

trash that people are trying to dump in it. While theoretically unsound, unsafe vari-
ance actually feels rather natural for most developers, and I applaud the choice the Dart
designers made here. As anyone that has struggled with ? super and ? extends can
attest, languages that have chosen in favor of static type safety for generics do so at the
expense of their users.

The Dart language designers made additional pragmatic choices that make coding in
Dart a smooth experience. For example Dart has no interfaces, abstract base classes, or
“normal” classes. Instead Dart only has classes that can be used as interfaces by imple-
menting them, or used as base classes by extending them, or have their implementation
reused by mixing them in. Every type in Dart is an object, so there is no difference
between primitive (e.g., numeric) types and regular object types. Even though every-
thing in Dart is an object, it is possible to define top-level functions and variables, so
one no longer needs the dreaded public static void main incantation inside a top-level
class to get going. Dart allows user-defined arithmetic operators, but does not support
type-based overloading of methods. This significantly simplifies the language. In other
programming languages that do support type-based overloading, the exact semantics of
that feature often take up an unjustifiably large fraction of the language specification.
Null-aware operators (even null is a normal object) and cascades give more power to
the dot and make every API fluent for the user with little effort from the API writer.

While Dart is essentially a dynamic language because all types are optional, you will
encounter far fewer “wat” moments than with most other dynamic languages. There
is null but no undefined, and hence only == but no ===. Only true is true, so no
more (foo && foo.bar()) to check for null. Dart has regular integer and floating point
numeric types, without the mind-blowing runtime type conversions around + and ==
that make great exam questions, entertaining conference presentations, but frustrating
bugs.

In my opinion, though obviously I am biased, what puts Dart right at the top of
my favorite programming languages is that it is the only language that I know of that
supports all four essential effects of programming:

One Many
sync {. . . return e; . . . } sync* {. . . yield e; . . . for() . . . }
async async {. . . await e . . . } async* {. . . await e . . . yield e; . . . }

async* {. . . await for() . . . }

That is, Dart has deep support for producing and consuming synchronous data
streams (Iterable<T>) using generators and for loops inside sync* blocks, producing
and consuming futures (Future<T>) using await expressions inside async blocks, and
last but not least support for producing and consuming asynchronous data streams
(Stream<T>) using asynchronous generators and for loops inside async* blocks. Built-
in support for asynchronous programming is essential in any modern programming
language, where even data in memory, let alone data across the network, is “far away”
and imposes such high latency that synchronous access is prohibitively expensive. Like
JavaScript, but unlike other languages that support generators, Dart has so-called del-
egating generators that avoid quadratic blowup of nested and recursively generated
streams.



Foreword xiii

Despite all these nice touches, Dart is essentially a rather boring language by design.
Thanks to support for getters, setters, lambdas, enums, reified generics, modules, an
extensive well-crafted standard library, and a snappy package manager, Dart will feel
comfortable, like well-worn shoes, if you are a developer coming from Java or C#, and
feel like a breath of fresh air when coming from Javascript. This book will help you
to understand the why, how, and what of all of Dart’s features in Gilad’s signature
painstaking detail and inimitable style and get you productive in Dart in no time.

Erik Meijer
Palo Alto, California
October 2015



This page intentionally left blank 



Preface

How is this book different from other books on Dart? Other books on Dart are full of
practicalities; this book is focused on principles and ideas.

The practicalities of Dart are very important, but they are different this year than
they were last year, and will likely differ again the year afterwards. In contrast, the
principles behind Dart should be more applicable over time. You should read this book
if you are interested in the ideas that motivate the design of the language, and how they
manifest in the pragmatic, demanding real-world setting that is Dart.

One of the chief ideas in Dart is optional typing. I started working on optional
types decades ago; today we see a proliferation of optional type systems, which I find
immensely satisfying. While neither Dart nor any of its competitors realize optional
types exactly as I would like them to, the fact that the idea has hit the mainstream is
what matters.

Even more important is the idea that Dart is an object-oriented language, not in the
conventional sense of classes, inheritance and the other standard paraphernalia known to
most programmers, but in the deep sense that only the observable behavior of an object
matters. Again, this idea is realized imperfectly, but better than in most mainstream
languages.

Another key idea covered in this book is reflection. The topic of reflection is not
well addressed by books on programming. For that reason, I was very keen to discuss
reflection in this book. However, the history of reflection in Dart has been unexpectedly
tortuous.

On the one hand, many of Dart’s users have been eager to use reflection, sometimes
for purposes it is not ideal for. On the other hand, certain current platforms are severely
limited as compilation targets for Dart, and make reflection support relatively expensive,
especially with respect to program size. This tension put Dart reflection in an awkward
spot.

The sensitivity to code size and reflection’s effect on it were well understood from
the beginning. The problem and its solutions were discussed in the very first design
document for Dart reflection in November 2011. Nevertheless it took some four years
until the solution was realized in a form that programmers could easily apply.

I hope this book conveys these ideas and others effectively, but that is for you, the
reader, to judge. It is possible that one could do better using a more purist language,
but on the other hand it’s not clear one would reach as large an audience. Perhaps
someday I will try that experiment and see.

xv



xvi Preface

This book has been a long time coming. I delayed finishing the book until I could
tell a reasonably cohesive story about reflection. Another reason for the delay is that
the book’s topic has evolved so rapidly that it was constantly at risk of being out of
date. That risk has not passed, but at some point one needs to say “enough is enough.”

Dart is an imperfect realization of the ideas that drove its design. No one is more
aware of this fact than its designers. Nevertheless, it is a real language, in which
millions of lines of mission-critical code have been written. It has moved the culture of
programming forward in some ways, most notably in the area of optional typing. As
they say in Denmark: It could have been worse.



Acknowledgments

The Dart programming language is the result of a large team effort. My work on Dart
has been made much more pleasant because it has involved many colleagues who have
been a pleasure to work with, many of whom are not only co-workers but friends. It
has been my privilege to document some of this effort in this book, as well as via the
Dart Language Specification.

The Dart language was conceived and designed by Lars Bak and Kasper Lund,
and so this book literally could not exist without them. Lars is a longtime friend and
colleague who has led the Dart project from its beginning. Among other things, Lars
got me involved with Dart, and for that I owe him special thanks. Both Lars and Kasper
are not only phenomenally talented systems designers and implementors, but fun to be
with as well!

Special thanks also to Erik Meijer; working with him on the asynchronous features
of Dart was a joy. Erik is a real programming language professional, of a caliber one
meets only rarely.

If Chapter 8 owes a lot to Erik, Chapter 7 owes much to Ryan Macnak, who imple-
mented mirrors in the Dart VM, to Peter Ahé, who pioneered them in dart2js, and to
Erik Ernst, who worked on the reflectable library.

My work on the book you hold in your hands was supported not only by Lars, but
also by my manager Ivan Posva. For the past four years I have shared office space with
Ivan and the other members of the VM team in Mountain View: Zachary Anderson,
Daniel Andersson, Siva Annamalai, Régis Crelier, Matthias Hausner, Ryan Macnak,
John McCutchan, Srdjan Mitrovic and Todd Turnidge. I thank them for the pleasant
company.

My frequent visits to Dart supreme headquarters in Aarhus, Denmark, have always
been fun (even if the actual travel was not). The administrative support of Linda Lykke
Rasmussen has been priceless.

My work on the Dart specification is the direct basis for this book. That work has
benefited from the careful critiques of many people, but none more than Lasse Nielsen
whose phenomenal attention to detail has caught many subtle issues.

I’ve also been heavily involved in the process of standardizing Dart. Anders Sand-
holm has shielded me from much of the burdens involved therein; I owe him for that. I
also thank the other participants in the Dart standards committee, ECMA TC52.

Dart would not be possible without the work of many other Dart team members past
and present. They are too numerous to list but they have all contributed to making
Dart what it is today.

xvii



xviii Acknowledgments

My longtime editor, Greg Doench, has always been exceedingly patient and a plea-
sure to work with.

As always, my wife, Weihong, and my son, Teva, make it all worthwhile.

Gilad Bracha
Los Altos, California
November 2015



About the Author

Gilad Bracha is a software engineer at Google where he
works on Dart. In prior lives he has been a VP at SAP Labs,
a Distinguished Engineer at Cadence, and a Computational
Theologist and Distinguished Engineer at Sun. He is the cre-
ator of the Newspeak programming language, co-author of
the Java Language and Virtual Machine Specifications, and
a researcher in the area of object-oriented programming lan-
guages. Prior to joining Sun, he worked on Strongtalk, the
Animorphic Smalltalk System. He received his B.Sc. in Math-
ematics and Computer Science from Ben Gurion University in
Israel and a Ph.D. in Computer Science from the University
of Utah.

xix



This page intentionally left blank 



Chapter 1

Introduction

Dart is a general purpose programming language. It is a new language in the C tradition,
designed to be familiar to the vast majority of programmers. The obligatory “Hello
World” example illustrates how familiar Dart syntax is:

main(){
print(‘Hello World’);
}

Unless your background in programming and computer science is either extremely
unusual, or lacking entirely, this code should be virtually self-explanatory. We will of
course elaborate on this program and more interesting ones in the pages that follow.

Dart is purely object-oriented, class-based, optionally typed and supports mixin-
based inheritance and actor-style concurrency. If these terms are unfamiliar, fear not,
they will all be explained as we go along.

That said, this book is not intended as a tutorial for novices. The reader is expected
to have a basic competence in computer programming.

While the bulk of this book will describe and illustrate the semantics of Dart, it
also discusses the rationale for certain features. These discussions are included because,
in my experience, good programmers are interested not only in what a programming
language does, but why. And so, the next few sections give a very high level overview
of the philosophy behind Dart. Later sections will also incorporate discussions of design
decisions, alternatives and the history of the key ideas. However, if you are eager to
just dive in, section 1.4 gives a quick tutorial.

And now, on with the show!

1.1 Motivation

The rise of the world-wide web has changed the landscape of software development.
Web browsers are increasingly seen as a platform for a wide variety of software ap-
plications. In recent years, mobile devices such as smartphones and tablets have also
become increasingly ubiquitous. Both of these trends have had a large impact on the
way software is written.

1



2 Chapter 1 Introduction

Web browsers started as a tool to display static hypertext documents. Over time,
they evolved to support dynamic content. Dynamic content is computed and re-
computed over time and has grown from simple animations to server-based applica-
tions such as database front-ends and store fronts for internet commerce to full-fledged
applications that can run offline.

This evolution has been organic; a series of accidents, some happy and some less so,
have enabled such applications to run on an infrastructure that was not really designed
for this purpose.

Mobile applications pose their own challenges. These applications must conserve
battery life, providing a new incentive to improve performance. Network access may be
slow, costly or even absent. Mobile platforms tend to impose a particular life cycle with
particular restrictions on size.

Dart is intended to provide a platform that is specifically crafted to support the
kinds of applications people want to write today. As such it strives to protect the
programmer from the undesirable quirks and low-level details of the underlying platform
while providing easy access to the powerful facilities new platforms have to offer.

1.2 Design Principles

1.2.1 Everything Is an Object

Dart is a pure object-oriented language. That means that all values a Dart program ma-
nipulates at run time are objects—even elementary data such as numbers and Booleans.
There are no exceptions.

Insisting on uniform treatment of all data simplifies matters for all those involved
with the language: designers, implementors and most importantly, users.

For example, collection classes can be used for all kinds of data, and no one has to
be concerned with questions of autoboxing and unboxing. Such low-level details have
nothing to do with the problems programmers are trying to solve in their applications;
a key role of a programming language is to relieve developers of such cognitive load.

Perhaps surprisingly, adopting a uniform object model also eases the task of the
system implementor.

1.2.2 Program to an Interface, not an Implementation

The idea that what matters about an object is how it behaves rather than how it is
implemented is the central tenet of object-oriented programming. Unfortunately this
tenet is often ignored or misunderstood.

Dart works hard to preserve this principle in several ways, though it does so imper-
fectly.

• Dart types are based on interfaces, not on classes. As a rule, any class can be
used as an interface to be implemented by other classes, irrespective of whether the
two share implementation (there are a few exceptions for core types like numbers,
Booleans and strings).



1.2 Design Principles 3

• There are no final methods in Dart. Dart allows overriding of almost all methods
(again, a very small number of built-in operators are exceptions).

• Dart abstracts from object representation by ensuring that all access to state is
mediated by accessor methods.

• Dart’s constructors allow for caching or for producing instances of subtypes, so
using a constructor does not tie one to a specific implementation.

As we discuss each of these constructs we will expand on their implications.

1.2.3 Types in the Service of the Programmer

There is perhaps no topic in the field of programming languages that generates more
intense debate and more fruitless controversy than static typechecking. Whether to use
types in a programming language is an important design decision, and like most design
decisions, involves trade-offs.

On the positive side, static type information provides valuable documentation to
humans and computers. This information, used judiciously, makes code more readable,
especially at the boundaries of libraries, and makes it easier for automated tools to
support the developer.

Types simplify various analysis tasks, and in particular can help compilers improve
program performance.

Adherents of static typing also argue that it helps detect programming errors.
Nothing comes for free, and adding mandatory static type checking to a programming

language is no exception. There are, invariably, interesting programs that are prohibited
by a given type discipline. Furthermore, the programmer’s workflow is often severely
constrained by the insistence that all intermediate development states conform to a rigid
type system. Ironically, the more expressive the type discipline, the more difficult it is
to use and understand. Often, satisfying a type checker is a burden for programmers.
Advanced type systems are typically difficult to learn and work with.

Dart provides a productive balance between the advantages and disadvantages of
types. Dart is an optionally typed language, defined to mean:

• Types are syntactically optional.

• Types have no effect on runtime semantics.

Making types optional accommodates those programmers who do not wish to deal
with a type system at all. A programmer who so chooses can treat Dart as an ordinary
dynamically typed language. However, all programmers benefit from the extra docu-
mentation provided by any type annotations in the code. The annotations also allow
tools to do a better job supporting programmers.

Dart gives warnings, not errors, about possible type inconsistencies and oversights.
The extent and nature of these warnings is calibrated to be useful without overwhelming
the programmer.

At the same time, a Dart compiler will never reject a program due to missing or in-
consistent type information. Consequently, using types never constrains the developer’s



4 Chapter 1 Introduction

workflow. Code that refers to declarations that are absent or incomplete may still be
productively run for purposes of testing and experimentation.

The balance between static correctness and flexibility allows the types to serve the
programmer without getting in the way.

The details of types in Dart are deferred until Chapter 5, where we explain the
language’s type rules and explore the trade-offs alluded to above in detail.

1.3 Constraints

Dart is a practical solution to a concrete problem. As such, Dart’s design entails com-
promises. Dart has to run efficiently on top of web browsers as they exist today.

Dart also has to be immediately recognizable to working programmers. This has
dictated the choice of a syntax in the style of the C family of programming languages. It
has also dictated semantic choices that are not greatly at variance with the expectations
of mainstream programmers. The goal has not been radical innovation, but rather
gradual, conservative progress.

As we discuss features whose semantics have been influenced by the above con-
straints, we shall draw attention to the design trade-offs made. Examples include the
treatment of strings, numbers, the return statement and many more.

1.4 Overview

This section presents a lightning tour of Dart. The goal is to familiarize you with all
the core elements of Dart without getting bogged down in detail.

Programming language constructs are often defined in a mutually recursive fashion.
It is difficult to present an orderly, sequential explanation of them, because the reader
needs to know all of the pieces at once! To avoid this trap, one must first get an
approximate idea of the language constructs, and then revisit them in depth. This
section provides that approximation.

After reading this section, you should be able to grasp the essence of the many
examples that appear in later sections of the book, without having read the entire book
beforehand.

Here then, is a simple expression in Dart:

3

It evaluates, unsurprisingly, to the integer 3. And here are some slightly more
involved expressions:

3 + 4
(3+4)*6
1 + 2 * 2
1234567890987654321 * 1234567890987654321



1.4 Overview 5

These evaluate to 7, 42, 5 and 1524157877457704723228166437789971041 respec-
tively. The usual rules of precedence you learned in first grade apply. The last of these
examples is perhaps of some interest. Integers in Dart behave like mathematical inte-
gers. They are not limited to some maximal value representable in 32 or 64 bits for
example. The only limit on their size is the available memory.1

Dart supports not just integers but floating-point numbers, strings, Booleans and so
on. Many of these built-in types have convenient syntax:

3.14159 // A floating-point number
‘a string’
“another string - both double quoted and single quoted forms are supported”
‘Hello World’ // You’ve seen that already
true
false // All the Booleans you’ll ever need
[] // an empty list
[0, 1.0, false, ’a’, [2, 2.0, true, “b”]] // a list with 5 elements, the last of which is a list

As the above examples show, single-line comments are supported in Dart in the
standard way; everything after // is ignored, up to the end of the line. The last two
lines above show literal lists. The first list is empty; the second has length 5, and its
last element is another literal list of length 4.

Lists can be indexed using the operator []

[1, 2, 3] [1]

The above evaluates to 2; the first element of a list is at index 0, the second at index
1 and so on. Lists have properties length and isEmpty (and many more we won’t discuss
right now).

[1, 2, 3]. length // 3
[].length // 0
[].isEmpty // true
[‘a’].isEmpty // false

One can of course define functions in Dart. We saw our first Dart function, the
main() function of “Hello World”, earlier. Here it is again

main(){
print(‘Hello World’);
}

Execution of a Dart program always begins with a call to a function called main(). A
function consists of a header that gives its name and any parameters (our example has

1. Some Dart implementations may not always comply with this requirement. When Dart is translated
to Javascript, Javascript numbers are sometimes used to represent integers since Javascript itself does
not support an integer datatype. As a result, integers greater than 253 may not be readily available.



6 Chapter 1 Introduction

none) followed by a body. The body of main() consists of a single statement, which is
a call to another function, print() which takes a single argument. The argument in this
case is the string literal ‘Hello World’. The effect is to print the words “Hello World”.

Here is another function:

twice(x) => x * 2;

Here we declare twice with a parameter x. The function returns x multiplied by 2.
We can invoke twice by writing

twice(2)

which evaluates to 4 as expected. The function twice consists of a signature that
gives its name and its formal parameter x, followed by => followed by the function
body, which is a single expression. Another, more traditional way to write twice is

twice(x) {
return x * 2;

}

The two samples are completely equivalent, but in the second example, the body
may consist of zero or more statements—in this case, a single return statement that
causes the function to compute the value of x*2 and return it to the caller.

As another example, consider

max(x, y){ if (x > y) return x; else return y; }

which returns the larger of its two arguments. We could write this more concisely
as

max(x, y) => (x > y) ? x : y;

The first form uses an if statement, found in almost every programming language in
similar form. The second form uses a conditional expression, common throughout the
C family of languages. Using an expression allows us to use the short form of function
declarations.

A more ambitious function is

maxElement(a) {
var currentMax = a.isEmpty ?

throw ‘Maximal element undefined for empty array’ : a[0];
for (var i = 0; i < a.length; i++) {

currentMax = max(a[i], currentMax);
}
return currentMax;
}

The function maxElement takes a list a and returns its largest element. Here we
really need the long form of function declaration, because the computation will involve



1.4 Overview 7

a number of steps that must be sequenced as a series of statements. This short function
will illustrate a number of features of Dart.

The first line of the function body declares a variable named currentMax, and ini-
tializes it. Every variable in a Dart program must be explicitly declared. The variable
currentMax represents our current estimate of the maximal element of the array.

In many languages, one might choose to initialize currentMax to a known value
representing the smallest possible integer, typically denoted by a name like MIN INT.
Mathematically, the idea of “smallest possible integer” is absurd. However, in languages
where integers are limited to a fixed size representation defined by the language, it makes
sense. As noted above, Dart integers are not bounded in size, so instead we initialize
currentMax to the first element of the list. If the list is empty, we can’t do that, but
then the argument a is invalid; the maximal element of an empty list is undefined.
Consequently, we test to see if a is empty. If it is, we raise an exception, otherwise we
choose the first element of the list as an initial candidate.

Exceptions are raised using a throw expression. The keyword throw is followed by
another expression that defines the value to be thrown. In Dart, any kind of value can
be thrown—it need not be a member of a special Exception type. In this case, we throw
a string that describes the problem.

The next line begins a for statement that iterates through the list.2 Every element
is compared to currentMax in turn, by calling the max function defined earlier. If the
current element is larger than currentMax, we set currentMax to the newly discovered
maximal value.

After the loop is done, we are assured that currentMax is the largest element in the
list and we return it.

Until now, this tutorial has carefully avoided any mention of terms like object, class
or method. Dart allows you to define functions (such as twice, max and maxElement) and
variables outside of any class. However, Dart is a thoroughly object-oriented language.
All the values we’ve looked at — numbers, strings, Booleans, lists and even functions
themselves are objects in Dart. Each such object is an instance of some class. Operations
like length, isEmpty and even the indexing operator [] are all methods on objects.

It is high time we learned how to write a class ourselves. Behold the class Point,
representing points in the cartesian plane:

class Point {
var x, y;
Point(a, b){x = a; y = b;}
}

The above is an extremely bare-bones version of Point which we will enrich shortly.
A Point has two instance variables (or fields) x and y. We can create instances of Point
by invoking its constructor via a new expression:

var origin = new Point(0, 0);
var aPoint = new Point(3, 4);

2. We start at index 0, but we could be slightly more efficient and start at 1 in this case.



8 Chapter 1 Introduction

var anotherPoint = new Point(3, 4);

Each of the three lines above allocates a fresh instance of Point, distinct from any
other. In particular, aPoint and anotherPoint are different objects. An object has an
identity, and that is what distinguishes it from any other object.

Each instance of Point has its own copies of the variables x and y, which can be
accessed using the dot notation

origin.x // 0
origin.y // 0
aPoint.x // 3
aPoint.y // 4

The variables x and y are set by the constructor based on the actual parameters
provided via new. The pattern of defining a constructor with formal parameters that
correspond exactly to the fields of an object, and then setting those fields in the con-
structor, is very common, so Dart provides a special syntactic sugar for this case:

class Point {
var x, y;
Point(this.x, this.y);
}

The new version of Point is completely equivalent to the original, but more concise.
Let’s add some behavior to Point

class Point {
var x, y;
Point(this.x, this.y);
scale(factor) => new Point(x * factor, y * factor);
}

This version has a method scale that takes a scaling factor factor as an argument and
returns a new point, whose coordinates are based on the receiving point’s, but scaled
by factor.

aPoint.scale(2).x // 6
anotherPoint.scale(10).y // 40

Another interesting operation on points is addition

class Point {
var x, y;
Point(this.x, this.y);
scale(factor) => new Point(x * factor, y * factor);
operator +(p) => new Point(x + p.x, y + p.y);
}



1.4 Overview 9

Now we can write expressions like

(aPoint + anotherPoint).y // 8

The operator + on points behaves just like an instance method; in fact, it is just an
instance method with a strange name and a strange invocation syntax.

Dart also supports static members. We can add a static method inside of Point to
compute the distance between two points:

static distance(p1, p2) {
var dx = p1.x - p2.x;
var dy = p1.y - p2.y;
return sqrt(dx * dx + dy * dy);
}

The modifier static means this method is not specific to any instance. It has no
access to the instance variables x and y, as those are different for each instance of Point.
The method makes use of a library function, sqrt() that computes square roots. You
might well ask, where does sqrt() come from? To understand that, we need to explain
Dart’s concept of modularity.

Dart code is organized into modular units called libraries. Each library defines its
own namespace. The namespace includes the names of entities declared in the library.
Additional names may be imported from other libraries. Declarations that are available
to all Dart programs are defined in the Dart core library which is implicitly imported
into all other Dart libraries. However, sqrt() is not one of them. It is defined in a library
called dart:math, and if you want to use it, you must import it explicitly.

Here is a complete example of a library with an import, incorporating class Point

library points;

import ‘dart:math’;

class Point {
var x, y;
Point(this.x, this.y);
scale(factor) => new Point(x * factor, y * factor);
operator +(p) => new Point(x + p.x, y + p.y);
static distance(p1, p2) {

var dx = p1.x - p2.x;
var dy = p1.y - p2.y;
return sqrt(dx * dx + dy * dy);
}
}

We have declared a library called points and imported the library dart:math. It is
this import that makes sqrt available inside the points library. Now, any other library
that wants to use our Point class can import points.



10 Chapter 1 Introduction

A key detail to note is that the import clause refers to a string ‘dart:math’. In
general, imports refer to uniform resource indicators (URIs) given via strings. The
URIs point the compiler at a location where the desired library may be found. The
built-in libraries of Dart are always available via URIs of the form ‘dart:σ’, where σ
denotes a specific library.

There is a lot more to Dart than what we’ve shown so far, but you should have a
general idea of what Dart code looks like and roughly what it means. This background
will serve you well as we go into details later in the book.

1.5 Book Structure

The rest of the book is structured around the constructs of the Dart programming
language. The next chapter discusses objects, classes and interfaces. These are the core
concepts of Dart and are the foundation for all that follows.

Next, we examine libraries in detail, followed by a deeper look at functions. In
Chapter 5, we finally take a look at types and the role they play in Dart. We review
Dart’s expressions and statements in Chapter 6. The final chapters investigate reflection
and concurrency.

1.6 Related Work and Influences

The design of Dart has been influenced by earlier languages, in particular Smalltalk[1],
Java and Javascript. Dart’s syntax follows in the C tradition, via Java and Javascript.
Dart’s semantics are in some ways closer to Smalltalk - in particular, the insistence on
a pure object model.

However, there are crucial differences. Dart introduces its own library-based en-
capsulation model. This differs from all three of the languages mentioned above.
Smalltalk supports object-based encapsulation for fields, with methods and classes uni-
versally available. Java has a mix of class-based encapsulation and package privacy, and
Javascript relies exclusively on closures for encapsulation.

Like Smalltalk and Java, Dart is class based and supports single inheritance, but it
augments this with mixin-based inheritance, very similar to the model first implemented
in the Strongtalk dialect of Smalltalk[2]. Because class methods in Dart are not true
instance methods as in Smalltalk, but instead Java-style static methods, the models are
not exactly the same.

Dart’s constructors have a syntactic similarity to those of Java, but in fact differ in
critical ways. All of the above topics are discussed in the next chapter.

Dart’s approach to type checking is also very close to the one developed for Strongtalk.
Types are explored exhaustively in Chapter 5.

Dart’s view of concurrency is close to the original actor model (albeit, imperative),
again very different from any of the languages cited above. The success of Erlang has
been a factor in the adoption of an actor model, yet unlike Erlang, Dart has a non-



1.6 Related Work and Influences 11

blocking concurrency model. Dart also has built-in support for asynchrony heavily
influenced by C#. See Chapter 8 for details.



This page intentionally left blank 



This page intentionally left blank 



Index

assert, 131
async, 183
async*, 184
await, 183
break, 136
catch, 128
continue, 136
do, 128
dynamic, 78
for, 126
hide

useful, 55
if, 126
null

is a message, 176
null

implicitly returned, 63
rethrow, 129
return, 133
return, 63
super, 120
switch, 129
this, 120
throw, 124
try, 128
while, 128
yield, 134
ClassMirror, 140
Function class, 68, 91
Iterable, 65
Iterator class, 72
MirrorSystem, 143
NoSuchMethodError, 30, 62, 77, 78
Object, 78

API of, 34
implementation of NoSuchMethod-

Error, 30
Timer, 173, 174
Type class, 33, 46
apply(), 68
basicNew, 152
call(), 69
currentMirrorSystem, 153
double, 79
getName, 143
getSymbol, 143
hashCode, 20
instanceMembers, 140
main(), 59, 64
noSuchMethod(), 30, 70
noSuchMethod, 45
num, 79
reduce(), 65
reflectClass, 140
reflectable, xvii
runtimeType(), 70
runtimeType, 34
spawnUri, 176
staticMembers, 141
toString(), 146
where(), 65

Aarhus, Denmark, xvii
Abstract datatype, 59
accessor(s), 3
actor(s), 1, 10, 185

in Scala, 185
Ada programming language, 59
Ahé, Peter, xvii
Akka, 185
Anderson, Zachary, xvii
Andersson, Daniel, xvii
Animorphic, xix

195



196 Index

Annamalai, Siva, xvii
annotation(s), 102

processing tool, in Java, 170
for optimizing reflection, 166
metadata, 165

ASCII
identifier(s) must be in, 116

assert statement, 131
AssertionError, 132
assignment, 67
AST, 160
autoboxing

no such thing, 2

Backus-Naur Form, 155
Extended, 155

Bak, Lars, xvii
Ben-Gurion

University, xix
Beta programming language, 107
binding

user interface, 189
block statement, 125
blocking, 175
boilerplate, 180
Boolean(s), 110

in tests, 126
are messages, 176
in asserts, 132
in loops, 128

braces
curly

delimiting class body or mixin,
36

delimiting named parameters, 62
Bracha, Teva, xviii
Bracha, Weihong Victoria, xviii
brackets

square
delimiting optional parameters, 61
in indexing operator, 5

break statement, 136, 178
in switch, 130

builder(s)
APIs, 67

mirrors, 189
built-in identifier(s), 119
bytecode

new, 152

C programming language, 1, 10, 46
family, 4

C++ programming language, 45, 59, 107
C# programming language, xiii, 11, 59,

107, 169, 185
callback(s), 177, 186
canonicalization

of constants, 32
capabilities

for reflection, 166
mirrors are, 165

cascade(s), 66
cdspawn, 176
checked mode, 178

non-Boolean in Boolean expression,
110

class(es), 2, 7, 107
abstract, 22
are objects, 33
as objects, 188
private, 33

class-based, 1
encapsulation, 59
language

definition, 13
closure(s), 65

equality, 70
for specifying grammar productions,

156
CLU programming language, 59
Common Lisp programming language,

107
commutativity, 20
compiler error

ambiguous export of names, 55
ambiguously imported names, 51
conflicting prefixes, 52
Part URI is not a part, 54
return expression from a generator,

73



Index 197

URI
not constant, 54, 55
interpolated string, 54, 55

using this in class methods, 32
violating mixin restrictions, 39

Computational Theologist, xix
concurrency

shared memory, 175
conditional expression, 125
configuration(s), 188
constant(s), 31, 46

as default parameter values, 61
expression(s), 120
in metadata, 165
list(s), 114
map(s), 115
user-defined objects, 31

constructor(s), 3, 7, 46
are functions, 64
classic

flaws, 45
redirecting, 29
support abstraction, 3

continue statement, 136, 178
control constructs, 178

first class, 74
Cook, William R., 46
Crelier, Régis, xvii

Dart
designers of, xvii
VM team, xvii

deadlock, 175
debugging, 170

fix-and-continue, 169
declaration(s)

represented by symbols, 113
deferred loading, 57
Denmark, xvi, xvii
dependency-injection, 188, 189
deployment

and reflection, 166
benefits from mirrors, 165
to Javascript, 142

distribution

benefits from mirrors, 165
do loop, 128
Doench, Greg, xviii
DOM, 70
dot operator, 66
double(s), 110
dynamic language

definition of, 189
dynamic loading, 169

E programming language, 185
EBNF, 155
ECMA, xvii
encapsulation, 59
equality

of closures, 70
operator, 19
user-defined

banned in switch, 131
Erlang programming language, 10, 185
Ernst, Erik, xvii
event

handlers, 174
loop, 174

example(s), 145
Point, 79

exception(s)
and futures, 173
in an await, 184
throwing, 124
uncaught

inside a function, 63
export(s), 55
expression(s), 109

await, 183, 185
conditional, 6, 125
throw, 7

factories, 30
field(s)

constant, 31
Fletch, 169
Flow programming language, xi
fluent API(s), 67
for loop(s), 126



198 Index

for loops
asynchronous, 185

for statement, 7
foreign function interface (FFI), 35
function(s), 61, 74

asynchronous, 183
emulation of, 68
expression(s), 115
generator, 184
mathematical, 61
type(s), 91

functional programming languages, 74
future(s), 171, 172, 177, 186

completed with error, 184
delayed, 174, 185
in Scala, 185

generator(s), 71, 134, 184
asynchronous, 184

getter(s), 66
parameter list of, 61

gradual typing, xi

Hack programming language, xi
Hausner, Matthias, xvii
Heisenbugs, 18
Hello World program, 1
Hewitt, Carl, 185
HTTP, 184
hypertext, 2

IDE(s), 189
live, 169
metacircular, 189

identifier(s), 116
identity, 8, 20

of doubles, 110
of functions, 69
of integers, 109

IEEE 754, 109, 110
if statement, 6, 126
import(s), 9, 49

deferred, 58
diamond, 56
weaknesses of, 59

indexing operator, 5

indirection
any problem in computing can be

solved by, 165
inheritance

mixin-based, 1, 36, 46
multiple, 36
of class methods, 33
of grammars, 156
single, 36

initializing formal(s)
types of, 79

integer(s), 5, 109
interface(s), 2, 46, 79, 107

declaration(s)
unnecessary, 23

introspection, 139
isolate(s), 165, 171, 175, 185

as objects, 179
Israel, xix
iterable(s), 72, 134
iterator(s), 72

Java programming language, xiii, xix,
10, 59, 107, 169

Javascript
compilation to, 178

Javascript programming language, xiii,
5, 10, 46, 165

broken integers, 109
compiling Dart

implications for reflection, 142
JDI, 170
json, 185
JVM, 152

Kronecker, Leopold, 109

label(s), 136
in breaks, 137

libraries, 9, 47
as objects, 188
main method of, 176
root, 176

Lisp programming language, 46, 169
Common Lisp dialect, 107

list(s), 113



Index 199

are messages, 176
listener(s), 70
literal(s), 109

are constants, 31
function, 65

live evaluators, 169
live program modification, 170
live programming, 189
loading

dynamic, 188
of libraries, deferred, 57

lock(s), 175
loop(s), 126
Lund, Kasper, xvii

Macnak, Ryan, xvii
main

function, 5
isolate, 176, 179
method, 176

map(s), 114
are messages, 176

McCutchan, John, xvii
Meijer, Erik, xvii, 185
message passing, 171, 175, 186
metacircular

IDE(s), 189
metaclass, 33, 45, 46
metadata, 142, 165, 170
method(s)

abstract, 22
class, 32
final, 3
main, 176
overloading, 75
static, 32

microtask(s), 174
minification, 142, 168
mirror(s), 139, 170

API, 143
builder(s), 189
system(s)

in reflectable, 167
Mitrovic, Srdjan, xvii
mixin(s), 36, 46

and expression problem, 39
application, 38
origins of, 46

mobile
application(s), 2
device(s), 1
platform(s), 2

Modula programming language family,
59

Modula-3 programming language, 107
Mountain View, CA, xvii

namespace combinators, 52
namespace(s), 9
NaN

unequal to itself, 110
new

bytecode, 152
Newspeak programming language, xix,

46, 170, 185, 188
non-Roman scripts, 116
noSuchMethod, 163, 169, 177, 182
number(s)

are messages, 176

Oberon programming language, 59
object(s)

creation of, 121
everything is an, 2, 13, 46
inspector(s), 169

object-based encapsulation, 59
object-capability model, 165
object-oriented programming, 68

pure, 1, 188
performance of, 190

Odersky, Martin, 91
operator(s), 9, 67, 124
optional typing, xi, xv, 1, 107

definition of, 3, 75
overriding, 3, 21

parameter(s)
named, 62
optional, 61
positional, 61
required, 61



200 Index

parser(s)
combinator(s), 155

using reflectable, 166
part(s), 53
PEG(s), 155
point(s)

constant, 31
port(s), 175, 182
Posva, Ivan, xvii
prefix(es), 51

as objects, 188
required for deferred imports, 58

privacy, 48, 59, 177
promise(s), 177

in E, 185
property extraction, 122

and closure equality, 70
proxies, 68, 169, 178

for isolates, 182
puzzler(s), 119

race(s), 175
Racket programming language, xi, 59,

106
Rasmussen, Linda, xvii
read-eval-print loop(s), 169
receive

port(s), 175
recursion

generator definition, 135
infinite, 132
mutual

of grammar productions, 156
of locals, 125

reference(s)
forward, 156

reflectable package, 142, 166, 167
reflection, xv, 34, 139, 188

can violate privacy, 177
definition of, 139
implications for speed and size, 142
used to discover runtime type of an

integer, 109
reflective change, 169
reflexivity, 20

related work
asynchrony and concurrency, 185

representation
independence, 3

representation independence, 45, 66
reserved word(s), 119
rethrow statement, 129
return

non-local, 74
statement, 4, 133, 178

in async function, 184
inside a generator, 73

root library, 176
Ruby programming language, 46
runtimeType

of integers, 109
of strings, 112

Rx, 185

Sandholm, Anders, xvii
Scala programming language, 46, 185
Scheme programming language, 106
scope, of block statement, 125
script(s), 48
security, 169, 177

benefits from mirrors, 165
object-capability based, 165

Self programming language, 45, 169
self-modification, 139
send port(s), 175

are messages, 176
serialization, 179
setter(s), 66, 67
shadowing

of identifier(s), 118
size

of deployed reflective code, 168
Smalltalk programming language, 10, 45,

59, 152, 169, 189
smartphone(s), 1
spawning, 176
statement(s), 125

compound, 126
grouping, 125
return, 133



Index 201

simple, 126
static, 188

modifier, 9
stream(s), 71, 134, 171, 174, 176, 184,

186
looping over, 185
related work, 185

strict function(s), 178
string(s), 111

are messages, 176
escape sequences, 112
implicit concatenation of, 111
interpolation, 112
multiline, 111
raw, 112

Strongtalk, xix, 10, 46, 106, 169
subclassing

disallowed for bool, 110, 111
disallowed for double, 110

switch statement, 129
symbol(s), 113, 168

and minification, 143
mapping to/from strings, 143

tablets, 1
TC52, xvii
thread(s), 175
tool(s), 188, 189
Torgersen, Mads, 91
trait(s), 46
transitivity, 20
tree-shaking, 142
try statement, 128
turn, 174
Turnidge, Todd, xvii
type(s), 3

checking
static, 3

dynamic checking, 107, 178
generic, 107
optional, 187, 190

See optional typing, 3
pluggable, 187
runtime

of functions, 71

Typescript programming language, xi

UI, 70
unary minus

creating a symbol
footnote, 113

uniform reference
principle of, 46, 66

URI(s), 10, 176, 179
Utah

university of, xix

value(s)
default

of optional parameters, 61
variable(s)

final
may not be reassigned, 67

Wadler, Philip, 46
web

browser(s), 1, 4, 142, 171, 177
world-wide, 1

while loop, 128

yield statement, 73, 134, 184, 185

Zenger, Matthias, 91


	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Design Principles
	1.2.1 Everything Is an Object
	1.2.2 Program to an Interface, not an Implementation
	1.2.3 Types in the Service of the Programmer

	1.3 Constraints
	1.4 Overview
	1.5 Book Structure
	1.6 Related Work and Influences

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z




