
www.allitebooks.com

http://www.allitebooks.org

Getting Started with tmux

Maximize your productivity by accessing several
terminal sessions from a single window using tmux

Victor Quinn, J.D.

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Getting Started with tmux

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2014

Production reference: 1170914

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-516-6

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Victor Quinn, J.D.

Reviewers
Anders Damsgaard

Azat Khuzhin

Jason Lotito

Thomas Ferris Nicolaisen

Gustavo Sampaio

Ian Yang

방용배(Bang Yongbae)

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Harsha Bharwani

Content Development Editor
Akshay Nair

Technical Editor
Aman Preet Singh

Copy Editors
Roshni Banerjee

Gladson Monteiro

Stuti Srivastava

Project Coordinator
Swati Kumari

Proofreaders
Ting Baker

Ameesha Green

Indexer
Tejal Soni

Graphics
Abhinash Sahu

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Victor Quinn, J.D., is a technology leader, programmer, and systems architect
whose area of expertise is leading teams to build APIs and backend systems.

Currently, he is building the API and backend system for SocialRadar, which is
a startup that builds mobile apps that provide real-time information on people
around you.

Prior to joining SocialRadar, Victor led a rewriting of the financial processing online
forms and APIs for NGP VAN, which is a company that processed billions of
dollars in campaign contributions during the election year of 2012. The system he
orchestrated is on track to process even more contributions in the coming election
years. He led his team to build a system that included auto-filling and a sign-on
system, enabling future contributions with a single click. All of these features
were rolled up in a JavaScript single page app, making a fully functional payment
processing form embeddable into even a static web page with a single tag.

He has spent many years honing his skills with command-line tools such as tmux
in order to be maximally efficient in his work. His editor of choice is Emacs and he
uses the Dvorak keyboard layout.

He has Bachelor of Science degrees in Physics and Computer Science from the
University of Massachusetts Amherst and a Juris Doctor with focus on Intellectual
Property Law from Western New England University. He is an Eagle Scout and a
registered patent agent.

He lives in the Washington, D.C., metro area with his wife and Great Dane and
enjoys brewing his own beer and riding his Harley.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

Thank you my amazing wife, Susan, for your infinite patience and support through
four-and-a-half years of working full-time while attending law school and then more
years of working startup hours while undertaking innumerable side projects, including
this book. Your unending support propels me and allows me to continually work
toward building an awesome life for our future.

Thank you my parents, without whose support early on, I would not have become the
man I am today—ever inquisitive, constantly pushing the boundaries of technology,
and doing things most others do not, such as writing books like this one. I am forever
grateful to you both for my excellent start in life and your loving support always!

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Anders Damsgaard is a researcher at Aarhus University in Denmark, where he
develops applications that simulate granular and glacier mechanics. He believes that
glaciers are a key component in the climate system of the past, present, and future,
and a deep understanding of their behavior is crucial in order to develop credible
and reliable numerical climate models for the warm future of Earth.

In order to overcome the large computational requirements of the scientific
simulations, he has turned to massively parallel modern graphics-processing units
in large-scale cluster environments and has developed his own tools using primarily
CUDA C and the scientific Python stack (Numpy, Scipy, and Matplotlib). The design
and daily usage of high performance GNU/Linux GPU clusters have made him
familiar with many modern POSIX-platform developer tools.

He has also worked with computational fluid dynamics and land surface
reconstruction using the Structure-from-Motion technique, with photos taken from
unmanned aerial vehicles. He is an advocate of free software and digital rights and
runs a Tor relay from his home.

Azat Khuzhin is currently working on an Internet links database project, crawling
websites on the Internet, and building index that currently contains more than 100
billion links. He likes to hack projects that he uses every day, for example, Linux,
libevent, and others. He is keen on investigating complex issues such as when one has
to go to the final software bottom layer as much as high throughput problems.

He also has his own projects, but most of them were done as research or just for fun,
and they are available on his GitHub profile. He's the type of guy who runs strace if
a program doesn't show normal errors on failure.

www.allitebooks.com

http://www.allitebooks.org

Thomas Ferris Nicolaisen is a software developer who blogs, speaks, and
podcasts about tooling and techniques for programmers. He continuously keeps
a check on what the great command-line utilities on all platforms are, and in doing
so, he picked up tmux some years ago. Since then, he has been using and enjoying
working with it for both server work and terminal windows on the desktop.

You can find his blog at www.tfnico.com and his recent podcast project on
www.gitminutes.com.

Gustavo Sampaio is a software developer with different kinds of specializations.
He has experience with a lot of programming languages and various platforms
(Android, iOS, Windows, Linux, Web, and the microcontroller Arduino).

He has also worked with digital image processing and computer graphics, including
advanced rendering techniques (global illumination, shaders, raytracing, and so on),
natural language processing (the Naive Bayes classifier and POS Tagger), and parallel
computing using the OpenMPI library.

He is currently studying Computer Science and has publications in his fields.

Ian Yang has several years of software development experience. Playing with
various productivity tools is one of the things he loves. He is also a keyboard
enthusiast who prefers to finish the job, mostly using keyboard. tmux is one
of his favorite tools.

He has worked remotely for several years as a web developer. He is currently running
a mobile game start-up as the co-founder and CTO.

www.allitebooks.com

www.tfnico.com
www.gitminutes.com
http://www.allitebooks.org

방용배(Bang Yongbae) was a student of School of Computer Science and
Engineering of Seoul National University in the Republic of Korea until last year.
He was attracted to Ubuntu, Vim, and tmux, and therefore, he is always working
with them now. He often says "black background, white text", which is the reverse
of a Korean proverb.

He graduated recently and is now an intern at a small start-up, HyperConnect,
that services an Android voice chat, Azar. His part is making a web tool that
manages their service with Python, HTML, JavaScript, WebRTC, and WebSocket.

He will apply to graduate school next year to study more about computer science.
He has big dreams, as he is young. He believes that the computer has a super power
that will lead the future world. He is proud of his major and always puts on his
thinking cap on how to use it effectively to make the world better.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library
of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Jump Right In 7

Running tmux 7
Sessions 8
Naming the session 9

The window string 10
Creating another window 11
The prefix key 13
Help on key bindings 15
Searching for text 18
Detaching and attaching 19

Explaining tmux commands 20
Tab completion 21
Aliases 21
Renaming windows 21
Killing windows 22

Summary 23
Chapter 2: Configuring tmux 25

Using the set-option command 26
Creating a tmux configuration file 27
Emacs or vi mode 27
Enabling mouse modes 28
Changing the status bar 28

Modifying the background color of the status bar 29
Reloading the configuration 31
Changing the foreground color of the status bar 32

Highlighting the active window 33

Table of Contents

[ii]

Binding keys 34
Viewing current bindings 34
Chaining multiple commands to a single key 37
Comments in the configuration file 37
Binding a new prefix key 38
Binding keys without the prefix key 39

Unbinding keys 40
Status bar revisited 40
Option types 42
Handy configuration tips 43

Binding the double tapping of the prefix key to last-window 43
Changing the escape time 44
Lengthening the history limit 44
Lengthening the display time 45
Starting the base index at 1 46

Accessing the man page 47
Show options 47
Summary 48

Chapter 3: Sessions, Windows, and Panes 49
Overviews 49

Sessions 49
Windows 51
Panes 51

Playing around with sessions, windows, and panes 52
Multiple sessions 53
Multiple panes 54

Working with more panes 55
Zooming panes 56
Resizing panes 56
Switching between panes by number 58
Cycling through pane layouts 58
Other pane operations 59
Summary 60

Chapter 4: Manipulating Text 61
Explaining the Window history 62
Explaining the different tmux modes 63

A sample workflow with Copy mode workflow 64
Entering Copy mode 64
Moving the cursor around 66
Scrolling through the Window history 66

Table of Contents

[iii]

Jump by search or line 68
Leaving Copy mode 68
Copying text into the paste buffer 69

Interacting with the paste buffer 70
Pasting text from the paste buffer 70
Choosing items from the paste buffer 71

Working with the paste buffer 71
Summary 72

Chapter 5: Diving Deeper 73
Understanding tmux commands and Command mode 73
Advanced paste buffer usage 74

Saving a paste buffer to a file 75
Loading a paste buffer from a file 76
Setting a paste buffer directly 77
Capturing pane contents in a paste buffer 78
Deleting copied text from a paste buffer 79
Clearing the paste buffer history 79

An advanced session and window usage 80
Jumping from one window in a session to another window in
another session 80
Moving windows 82
Linking a window between sessions 83

Breaking panes 85
Joining panes 85
Launching with defaults 86
Summary 87

Chapter 6: tmux for SSH, Pair Programming, and More 89
Using tmux over SSH for long lived sessions 90

Benefits of using Vagrant 90
Creating a virtual machine with Vagrant 91
Walking through a sample workflow with tmux over SSH 93
Launching tmux on SSH connect automatically 95

Using tmux for pair programming 96
Connecting to the same session locally 96
Vagrant Cloud for better security pair programming 98
Using grouped sessions for pairing 100

Summary 101

Table of Contents

[iv]

Chapter 7: Using Other Tools with tmux 103
Using tmux with the OS X Pasteboard 103
tmux configuration from the maximum-awesome project, by Square 105
Using tmuxinator to make session management easier 106

Installing tmuxinator 107
Understanding the tmuxinator configuration 107
Revisiting the commented lines 109
Summarizing tmuxinator 111

Using wemux to ease multiuser experience 112
Explaining the wemux modes 113
Explaining other wemux additions to tmux 113

Listing other tools to be used with tmux 114
Summary 115

Appendix 117
Why tmux? 117
The configuration reference 120
Key binding and command reference 121

Chapter 1 – Jump Right In 122
Chapter 2 – Configuring tmux 123
Chapter 3 – Sessions, Windows, and Panes 123
Chapter 4 – Manipulating Text 124
Chapter 5 – Diving Deeper 125

Index 127

Preface
tmux is rapidly becoming the de facto standard with regards to terminal
multiplexers with its breadth of features and ease of configuration. It is one of the
fastest growing tools in the developer's toolkit due to its power in maximizing the
productivity of a terminal window. Developers spending a large amount of time in
the terminal will benefit greatly from learning how to utilize tmux and its powerful
features. By taking a single terminal window and turning it into multiple windows,
each with their own state, tmux is like a supercharger for your console.

We will begin with a simple introduction to tmux and learn some ways in which it
can help increase productivity in your daily terminal usage. From there, we'll move
on to configuring and customizing tmux to make it work, look, and feel the way that
best suits your needs. Along the way, we have tutorials and screenshots aplenty so
that you can follow along and avoid feeling lost. We'll also explain some of the core
concepts of tmux, including the way it uses sessions, windows, and panes in order
to divide content and running programs.

After learning some of these beginner topics, we will dive into some advanced tmux
concepts. We'll touch on how to perform text manipulation to copy and paste text
from one window to another or even to and from a file. We'll learn how to use tmux
for fault-tolerant SSH sessions or pair programming, and we will finish by discussing
some other open source tools that can be used alongside tmux in order to help make
it even more powerful.

tmux is an incredibly capable tool, which has some concepts that can be tricky to
grasp. This book will help demystify some of these tricky bits with many explanations
and rich examples in a manner that cannot be found in the tmux man page.

Preface

[2]

By the end of book, you will have a much richer understanding of tmux and its
capabilities and all the tools necessary to turbocharge your terminal experience.
This book covers the following topics:

Chapter 1, Jump Right In, will have us really hit the ground running, taking us
through a typical tmux workflow, explaining everything along the way. This allows
us to experience how tmux can be useful and illustrating how it can be integrated
into your daily workflow.

Chapter 2, Configuring tmux, will teach us how to change and configure almost
anything about tmux's behavior, from the way it looks and feels to the commands it
executes on the load. You can even configure every key combination to which tmux
responds. In this chapter, we will cover the various ways to configure tmux and
customize it for your workflow.

Chapter 3, Sessions, Windows, and Panes, will help us learn all about sessions,
windows, and panes. These are the fundamental components that make up the
window management feature of tmux and this chapter will help us understand
what they are and how they relate. We will learn, through example, many ways
we can work with them in order to turbocharge our terminal with tmux.

Chapter 4, Manipulating Text, helps us learn about the powerful tools of tmux for
text manipulation. These tools take the form of Copy mode and paste buffers,
and we will learn more about them and how to use them for very powerful text
manipulation with features such as scrolling through text that has scrolled off screen
and copying text from anywhere in the window history and pasting it, often without
ever needing to reach for your mouse.

Chapter 5, Diving Deeper, touches on some more nuanced aspects of topics we have
covered already. These topics include tmux commands and its Command mode,
advanced paste buffer usage, and some advanced usage of windows and panes. We'll
finish it off with learning how to launch a tmux session with some default windows.

Chapter 6, tmux for SSH, Pair Programming, and More, will walk us through a couple of
usage patterns that can prove to be powerful. It will help us learn about using tmux
over SSH for long-lived sessions for pair programming, and along the way, we will
use Vagrant for some predictability and security.

Chapter 7, Using Other Tools with tmux, will allow us to discuss some third-party tools
that can run along with tmux and add more powerful features. We'll learn about
tmuxinator, which simplifies the tmux launch configuration and wemux, which
brings the tmux multiuser experience to a whole new level. We'll learn about these
along with a few other tricks and utilities.

Appendix contains three sections, namely Why tmux?, The configuration reference,
and Key binding and command reference.

Preface

[3]

What you need for this book
A computer running tmux 1.8+ (Unix, Linux, or OS X) which can be downloaded
from the following link:

http://tmux.sourceforge.net

Who this book is for
The book is intended for software developers, DevOps engineers, and other
professionals who make heavy use of the terminal in their daily workflow. Some
familiarity with the terminal is useful but no prior experience with tmux or other
terminal multiplexers (such as GNU Screen) is required.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

When we are describing a key to press, it will appear in italics, like this: "Please
press the letter b now" Often we will describe a key combination, which means
pressing multiple keys at the same time, it will appear like this: Ctrl + b. That means
hold down the Control key and press the letter b. We will also see multiple key
combinations, to be pressed in series. They will appear separated by a comma and
will appear like this: Ctrl + b, c. That means hold down the Ctrl key and press the
letter b, then release both keys and press the letter c.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Simply run the tmux command show-options with a flag for which set of options
you want to view."

A block of configuration code is set as follows:

Set the status bar background to blue
set-option -g status-bg blue
Set the status bar text to white
set-option -g status-fg white

Set the active window background in the status bar
set-window-option –g window-status-current-bg magenta

http://tmux.sourceforge.net

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

Set the active window background in the status bar
set-window-option –g window-status-current-bg magenta

Rebind the prefix key

set-option -g prefix C-t

Add a key binding for reloading our configuration
bind-key C-r source-file ~/.tmux.conf

Any command-line input or output is written as follows:

$ tmux attach-session –t tutorial

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "You
will see Search Up: appear in the lower left-hand corner."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

You can also follow or tweet the author directly on Twitter as @victorquinn.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books—maybe a mistake
in the text or the code—we would be grateful if you would report this to us. By
doing so, you can save other readers from frustration and help us improve
subsequent versions of this book. If you find any errata, please report them by
visiting http://www.packtpub.com/support, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once
your errata are verified, your submission will be accepted and the errata will be
uploaded to our website, or added to any list of existing errata, under the Errata
section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.packtpub.com/support
http://www.allitebooks.org

Jump Right In
Welcome! In this book, you will learn about tmux, a command-line program that can
help maximize your productivity. It will do this by allowing you to control many
virtual windows and processes from a single window, reducing your need to use
your mouse and allowing you to detach and restore sessions later in the same state
you left them. For more on why tmux rocks, see the Why tmux? section in Appendix.

We will eventually go over many of the concepts mentioned in this chapter in greater
detail, but the best way to start getting familiar with everything is to jump right in.

So, in this chapter, we'll do just that: go on a little tour, simulate an everyday use of
tmux, and point out some key concepts along the way. Fear not, if everything is not
clear after the chapter, it will be covered later; this is just meant to be the first exposure.

tmux is short for Terminal Multiplexer.

Running tmux
For now, let's jump right in and start playing with it. Open up your favorite terminal
application and let's get started. Just run the following command:

$ tmux

You'll probably see a screen flash, and it'll seem like not much else has happened;
it looks like you're right where you were previously, with a command prompt.
The word tmux is gone, but not much else appears to have changed.

Jump Right In

[8]

However, you should notice that now there is a bar along the bottom of your terminal
window. This can be seen in the following screenshot of the terminal window:

Congratulations! You're now running tmux.

That bar along the bottom is provided by tmux. We call this bar the status line. The
status line gives you information about the session and window you are currently
viewing, which other windows are available in this session, and more.

Some of what's on that line may look like gibberish now, but we'll learn more
about what things mean as we progress through this book. We'll also learn how to
customize the status bar to ensure it always shows the most useful items for your
workflow. These customizations include things that are a part of tmux (such as the
time, date, server you are connected to, and so on) or things that are in third-party
libraries (such as the battery level of your laptop, current weather, or number of
unread mail messages).

Sessions
By running tmux with no arguments, you create a brand new session. In tmux, the
base unit is called a session. A session can have one or more windows. A window
can be broken into one or more panes. We'll revisit this topic in its own whole
chapter (for more information, refer to Chapter 3, Sessions, Windows, and Panes);
however, as a sneak preview, what we have here on the current screen is a single
pane taking up the whole window in a single session. Imagine that it could be split
into two or more different terminals, all running different programs, and each visible
split of the terminal is a pane. More on this will be covered in the later chapters.

Chapter 1

[9]

What is a session in tmux?
It may be useful to think of a tmux session as a login on your
computer.
You can log on to your computer, which initiates a new session. After
you log on by entering your username and password, you arrive at
an empty desktop. This is similar to a fresh tmux session. You can run
one or more programs in this session, where each program has its own
window or windows and each window has its own state.
In most operating systems, there is a way for you to log out, log back
in, and arrive back at the same session, with the windows just as you
left them. Often, some of the programs that you had opened will
continue to run in the background when you log out, even though
their windows are no longer visible.
A session in tmux works in much the same way. So, it may be useful
to think of tmux as a mini operating system that manages running
programs, windows, and more, all within a session.

You can have multiple sessions running at the same time. This is convenient if you
want to have a session for each task you might be working on. You might have one
for an application you are developing by yourself and another that you could use for
pair programming. Alternatively, you might have one to develop an application and
one to develop another. This way everything can be neat and clean and separate.

Naming the session
Each session has a name that you can set or change.

Notice the [0] at the very left of the status bar? This is the name of the session in
brackets. Here, since you just started tmux without any arguments, it was given
the name 0. However, this is not a very useful name, so let's change it.

In the prompt, just run the following command:

$ tmux rename-session tutorial

Jump Right In

[10]

This tells tmux that you want to rename the current session and tutorial is the name
you'd like it to have. Of course, you can name it anything you'd like. You should see
that your status bar has now been updated, so now instead of [0] on the left-hand
side, it should now say [tutorial]. Here's a screenshot of my screen:

Of course, it's nice that the status bar now has a pretty name we defined rather than
0, but it provides many more utilities than this, as we'll see in a bit!

It's worth noting that here we were giving a session a name, but this same command
can also be used to rename an existing session.

The window string
The status bar has a string that represents each window to inform us about the things
that are currently running. The following steps will help us to explore this a bit more:

1. Let's fire up a text editor to pretend we're doing some coding:
$ nano test

2. Now type some stuff in there to simulate working very hard on some code:

Chapter 1

[11]

First notice how the text blob in our status bar just to the right of our session name
([tutorial]) has changed. It used to be 0:~* and now it's 0:nano*. Depending on the
version of tmux and your chosen shell, yours may be slightly different (for example,
0:bash*). Let's decode this string a bit.

This little string encodes a lot of information, some of which is provided in the
following bullet points:

• The zero in the front represents the number of the window. As we'll shortly
see, each window is given a number that we can use to identify and switch
to it.

• The colon separates the window number from the name of the program
running in that window.

• The symbols ~ or nano in the previous screenshot are loosely names of the
running program. We say "loosely" because you'll notice that ~ is not the
name of a program, but was the directory we were visiting. tmux is pretty
slick about this; it knows some state of the program you're using and changes
the default name of the window accordingly. Note that the name given is the
default; it's possible to explicitly set one for the window, as we'll see later.

• The symbol * indicates that this is the currently viewed window. We only
have one at the moment, so it's not too exciting; however, once we get more
than one, it'll be very helpful.

Creating another window
OK! Now that we know a bit about a part of the status line, let's create a second
window so we can run a terminal command. Just press Ctrl + b, then c, and you
will be presented with a new window!

Jump Right In

[12]

A few things to note are as follows:

• Now there is a new window with the label 1:~*. It is given the number 1
because the last one was 0. The next will be 2, then 3, 4, and so on.

• The asterisk that denoted the currently active window has been moved to 1
since it is now the active one.

• The nano application is still running in window 0.
• The asterisk on window 0 has been replaced by a hyphen (-). The - symbol

denotes the previously opened window. This is very helpful when you have
a bunch of windows.

Let's run a command here just to illustrate how it works. Run the following
commands:

$ echo "test" > test

$ cat test

The output of these commands can be seen in the following screenshot:

This is just some stuff so we can help identify this window. Imagine in the real world
though you are moving a file, performing operations with Git, viewing log files,
running top, or anything else.

Chapter 1

[13]

Let's jump back to window 0 so we can see nano still running. Simply press Ctrl +
b and l to switch back to the previously opened window (the one with the hyphen;
l stands for the last). As shown in the following screenshot, you'll see that nano is
alive, and well, it looks exactly as we left it:

The prefix key
There is a special key in tmux called the prefix key that is used to perform most of
the keyboard shortcuts. We have even used it already quite a bit! In this section, we
will learn more about it and run through some examples of its usage.

You will notice that in the preceding exercise, we pressed Ctrl + b before creating a
window, then Ctrl + b again before switching back, and Ctrl + b before a number to
jump to that window.

When using tmux, we'll be pressing this key a lot. It's even got a name! We call it
the prefix key. Its default binding in tmux is Ctrl + b, but you can change that if you
prefer something else or if it conflicts with a key in a program you often use within
tmux. You can send the Ctrl + b key combination through to the program by pressing
Ctrl + b twice in a row; however, if it's a keyboard command you use often, you'll
most likely want to change it. This key is used before almost every command we'll
use in tmux, so we'll be seeing it a lot.

From here on, if we need to reference the prefix key, we'll do it like <Prefix>. This
way if you rebind it, the text will still make sense. If you don't rebound it or see
<Prefix>, just type Ctrl + b.

Jump Right In

[14]

Let's create another window for another task. Just run <Prefix>, c again. Now we've
got three windows: 0, 1, and 2. We've got one running nano and two running shells,
as shown in the following screenshot:

Some more things to note are as follows:

• Now we have window 2, which is active. See the asterisk?
• Window 0 now has a hyphen because it was the last window we viewed.
• This is a clear, blank shell because the one we typed stuff into is over

in Window 1.

Let's switch back to window 1 to see our test commands above still active. The last
time we switched windows, we used <Prefix>, l to jump to the last window, but that
will not work to get us to window 1 at this point because the hyphen is on window 0.
So, going to the last selected window will not get us to 1.

Thankfully, it is very easy to switch to a window directly by its number. Just press
<Prefix>, then the window number to jump to that window. So <Prefix>, 1 will
jump to window 1 even though it wasn't the last one we opened, as shown in the
following screenshot:

Chapter 1

[15]

Sure enough, now window 1 is active and everything is present, just as we left it.
Now we typed some silly commands here, but it could just as well have been an
active running process here, such as unit tests, code linting, or top. Any such
process would run in the background in tmux without an issue.

This is one of the most powerful features of tmux.
In the traditional world, to have a long-running process in a
terminal window and get some stuff done in a terminal, you would
need two different terminal windows open; if you accidentally
close one, the work done in that window will be gone.
tmux allows you to keep just one terminal window open, and
this window can have a multitude of different windows within it,
closing all the different running processes. Closing this terminal
window won't terminate the running processes; tmux will continue
humming along in the background with all of the programs
running behind the scenes.

Help on key bindings
Now a keen observer may notice that the trick of entering the window number
will only work for the first 10 windows. This is because once you get into double
digits, tmux won't be able to tell when you're done entering the number. If this
trick of using the prefix key plus the number only works for the first 10 windows
(windows 0 to 9), how will we select a window beyond 10?

Thankfully, tmux gives us many powerful ways to move between windows. One of
my favorites is the choose window interface.

However, oh gee! This is embarrassing. Your author seems to have entirely forgotten
the key combination to access the choose window interface. Don't fear though; tmux
has a nice built-in way to access all of the key bindings. So let's use it!

Press <Prefix>, ? to see your screen change to show a list with bind-key to the left, the
key binding in the middle, and the command it runs to the right. You can use your
arrow keys to scroll up and down, but there are a lot of entries there!

Thankfully, there is a quicker way to get to the item you want without
scrolling forever.

www.allitebooks.com

http://www.allitebooks.org

Jump Right In

[16]

Press Ctrl + s and you'll see a prompt appear that says Search Down:, where you can
type a string and it will search the help document for that string.

Emacs or vi mode
tmux tries hard to play nicely with developer defaults, so it actually
includes two different modes for many key combinations tailored for
the two most popular terminal editors: Emacs and vi. These are referred
to in tmux parlance as status-keys and mode-keys that can be either
Emacs or vi.
The tmux default mode is Emacs for all the key combinations, but it can
be changed to vi via configuration, something we'll cover in Chapter 2,
Configuring tmux. It may also be set to vi automatically based on the
global $EDITOR setting in your shell.
If you are used to Emacs, Ctrl + s should feel very natural since it's the
command Emacs uses to search.
So, if you try Ctrl + s and it has no effect, your keys are probably in the
vi mode. We'll try to provide guidance when there is a mode-specific
key like this by including the vi mode's counterpart in parentheses after
the default key.
For example, in this case, the command would look like Ctrl + s (/) since
the default is Ctrl + s and / is the command in the vi mode.

Type in choose-window and hit Enter to search down and find the choose-window
key binding. Oh look! There it is; it's w:

However, what exactly does that mean?

Well, all that means is that we can type our prefix key (<Prefix>), followed by the
key in that help document to run the mentioned command. First, let's get out of these
help docs. To get out of these or any screens like them, generated by tmux, simply
press q for quit and you should be back in the shell prompt for window 2.

Chapter 1

[17]

If you ever forget any key bindings, this should be your first step.

A nice feature of this key binding help page is that it is dynamically
updated as you change your key bindings.
Later, when we get to Configuration, you may want to change
bindings or bind new shortcuts. They'll all show up in this interface
with the configuration you provide them with.
Can't do that with manpages!

Now, to open the choose window interface, simply type <Prefix>, w since w was the
key shown in the help bound to choose-window and voilà:

Notice how it nicely lays out all of the currently open windows in a
task-manager-like interface.

It's interactive too. You can use the arrow keys to move up and down to highlight
whichever window you like and then just hit Enter to open it. Let's open the window
with nano running. Move up to highlight window 0 and hit Enter.

You may notice a few more convenient and intuitive ways to switch between the
currently active windows when browsing through the key bindings help. For
example, <Prefix>, p will switch to the previous window and <Prefix>, n will
switch to the next window. Whether refreshing your recollection on a key binding
you've already learnt or seeking to discover a new one, the key bindings help is an
excellent resource.

Jump Right In

[18]

Searching for text
Now we only have three windows so it's pretty easy to remember what's where,
but what if we had 30 or 300? With tmux, that's totally possible. (Though, this is
not terribly likely or useful! What would you do with 300 active windows?)

One other convenient way to switch between windows is to use the find-window
feature. This will prompt us for some text, and it will search all the active windows
and open the window that has the text in it.

If you've been following along, you should have the window with nano currently
open (window 0). Remember we had a shell in window 1 where we had typed some
silly commands? Let's try to switch to that one using the find-window feature.

Type <Prefix>, f and you'll see a find-window prompt as shown in the following
screenshot:

Here, type in cat test and hit Enter.

You'll see you've switched to window 1 because it had the cat test command in it.

However, what if you search for some text that is ambiguous? For example, if you've
followed along, you will see the word test appear multiple times on both windows
0 and 1. So, if you try find-window with just the word test, it couldn't magically
switch right away because it wouldn't know which window you mean.

Thankfully, tmux is smart enough to handle this. It will give you a prompt, similar to
the choose-window interface shown earlier, but with only the windows that match the
query (in our case, windows 0 and 1; window 2 did not have the word test in it). It
also includes the first line in each window (for context) that had the text.

Chapter 1

[19]

Pick window 0 to open it.

Detaching and attaching
Now press <Prefix>, d.

Uh oh! Looks like tmux is gone! The familiar status bar is no more available.
The <Prefix> key set does nothing anymore.

You may think we the authors have led you astray, causing you to lose your work.
What will you do without that detailed document you were writing in nano?

Fear not explorer, we are simply demonstrating another very powerful feature of
tmux. <Prefix>, d will simply detach the currently active session, but it will keep
running happily in the background!

Yes, although it looks like it's gone, our session is alive and well.

How can we get back to it? First, let's view the active sessions. In your terminal,
run the following command:

$ tmux list-sessions

Jump Right In

[20]

You should see a nice list that has your session name, number of windows, and
date of creation and dimensions. If you had more than one session, you'd see
them here too.

To re attach the detached session to your session, simply run the following command:

$ tmux attach-session –t tutorial

This tells tmux to attach a session and the session to attach it to as the target (hence
-t). In this case, we want to attach the session named tutorial. Sure enough, you
should be back in your tmux session, with the now familiar status bar along the
bottom and your nano masterpiece back in view.

Note that this is the most verbose version of this command. You can actually omit
the target if there is only one running session, as is in our scenario. This shortens
the command to tmux attach-session. It can be further shortened because
attach-session has a shorter alias, attach. So, we could accomplish the same
thing with just tmux attach.

Throughout this text, we will generally use the more verbose version, as they tend
to be more descriptive, and leave shorter analogues as exercises for the reader.

Explaining tmux commands
Now you may notice that attach-session sounds like a pretty long command.
It's the same as list-sessions, and there are many others in the lexicon of tmux
commands that seem rather verbose.

Chapter 1

[21]

Tab completion
There is less complexity to the long commands than it may seem because most of them
can be tab-completed. Try going to your command prompt and typing the following:

$ tmux list-se

Next, hit the Tab key. You should see it fill out to this:

$ tmux list-sessions

So thankfully, due to tab completion, there is little need to remember these
long commands.

Note that tab completion will only work in certain shells with certain configurations,
so if the tab completion trick doesn't work, you may want to search the Web and find
a way to enable tab completion for tmux.

Aliases
Most of the commands have an alias, which is a shorter form of each command
that can be used. For example, the alias of list-sessions is ls. The alias of
new-session is new.

You can see them all readily by running the tmux command list-commands
(alias lscm), as used in the following code snippet:

$ tmux list-commands

This will show you a list of all the tmux commands along with their aliases in
parenthesis after the full name.

Throughout this text, we will always use the full form for clarity, but you could just
as easily use the alias (or just tab complete of course).

One thing you'll most likely notice is that only the last few lines are visible in your
terminal. If you go for your mouse and try to scroll up, that won't work either! How
can you view the text that is placed above? We will need to move into something
called the Copy mode that has its own chapter later in this text (See Chapter 4,
Manipulating Text).

Renaming windows
Let's say you want to give a more descriptive name to a window. If you had three
different windows, each with the nano editor open, seeing nano for each window
wouldn't be all that helpful.

Jump Right In

[22]

Thankfully, it's very easy to rename a window. Just switch to the window you'd like
to rename. Then <Prefix>, , will prompt you for a new name. Let's rename the nano
window to masterpiece.

See how the status line has been updated and now shows window 0 with the
masterpiece title as shown in the following screenshot. Thankfully, tmux is not smart
enough to check the contents of your window; otherwise, we're not sure whether the
masterpiece title would make it through.

Killing windows
As the last stop on our virtual tour, let's kill a window we no longer need. Switch
to window 1 with our find-window trick by entering <Prefix>, f, cat test, Enter
or of course we could use the less exciting <Prefix>, l command to move to the last
opened window.

Now let's say goodbye to this window. Press <Prefix>, & to kill it. You will receive
a prompt to which you have to confirm that you want to kill it.

This is a destructive process, unlike detaching, so be sure anything you care about
has been saved.

Once you confirm it, window 1 will be gone. Poor window 1! You will see that now
there are only window 0 and window 2 left:

Chapter 1

[23]

You will also see that now <Prefix>, f, cat test, Enter no longer loads window 1 but
rather says No windows matching: cat test. So, window 1 is really no longer with us.

Whenever we create a new window, it will take the lowest available index, which in
this case will be 1. So window 1 can rise again, but this time as a new and different
window with little memory of its past. We can also renumber windows as we'll see
later, so if window 1 being missing is offensive to your sense of aesthetics, fear not,
it can be remedied!

Summary
In this chapter, we got to jump right in and get a whirlwind tour of some of the
coolest features in tmux.

Here is a quick summary of the features we covered in this chapter:

• Starting tmux
• Naming and renaming sessions
• The window string and what each chunk means
• Creating new windows
• The prefix key
• Multiple ways to switch back and forth between windows
• Accessing the help documents for available key bindings
• Detaching and attaching sessions
• Renaming and killing windows

In the next chapter, we will look into configuration and many of the ways tmux can
be customized to fit your tastes and workflow.

For a reference of all the commands learned in this chapter and every following
chapter, you can refer to the Key binding and command reference section in Appendix.

Configuring tmux
Now that we've had our first taste of tmux, let's dig into our first topic in greater
detail. tmux is a very powerful program and thankfully one that is also highly
configurable. You can change almost anything about its behavior, from the way it
looks and feels to the commands it executes on load; you can even configure every
key combination to which tmux responds.

In this chapter, we will cover various ways to configure tmux to customize and
optimize it for your workflow. We will build a sample configuration that can be
used to make tmux a bit cleaner, prettier, and more useful.

We will be unable to cover every minute detail or configuration option, but we will
hit the most common ones and set you up with the knowledge and toolset to be able
to tackle any configuration you desire. In this chapter, we will discuss the following:

• Using the set-option command
• Creating a tmux configuration file
• Emacs or vi mode
• Enabling mouse modes
• Changing the status bar

 ° Modifying the background color of the status bar
 ° Reloading the configuration
 ° Changing the foreground color of the status bar
 ° Highlighting the active window

• Binding keys
 ° Viewing current bindings
 ° Chaining multiple commands to a single key
 ° Comments in the configuration file
 ° Rebinding the prefix key

Configuring tmux

[26]

• Binding a new prefix key
• Binding keys without the prefix key
• Unbinding keys
• Revising the status bar
• Option types
• Handy configuration tips

By the end of this chapter, we will also have built up a sample configuration file that
you can use as a starting point for your own personalized configuration.

Using the set-option command
The main way in which options are set and configured within tmux is through the
appropriately named set-option command.

This command can be called on its own to set an option temporarily. However, most
of the time, we will use it to set options within a tmux configuration file so each time
we launch tmux, the options are set the way we would like.

For a taste of using the set-option command to set an option temporarily, open
a terminal window and launch tmux; alternatively, if you've been following along
through Chapter 1, Jump Right In, just type the following command in the window:

$ tmux set-option status off

Once you do this, the status bar will disappear! This setting is only temporary, so
if you leave it as is, end the session, and restart tmux or create a new session, it will
not load this setting. In other words, a status bar will appear.

What you have done is that you've told tmux to set the option status to a value of
off. You can use this command to set any tmux option on the fly in this manner.
Having no status bar can be a bit unsettling, so let's turn it back on:

$ tmux set-option status on

If we want these configuration options to persist through tmux restarts and sessions,
we need some way to tell tmux what their values should be. We will do that by
creating a tmux configuration file.

Chapter 2

[27]

Creating a tmux configuration file
In order to keep the settings around after restarting tmux, we will create a
configuration file that will include all the information about what options
we want to set and to what values.

Like many other Unix-based utilities, configuring tmux is as simple as creating
a file with the name .tmux.conf in your home directory.

However, unlike many other configuration files, a tmux configuration file does
not contain some kind of specific configuration language for the program, rather it
consists of a series of tmux commands that are run, in order, when tmux starts up.
Most of the commands we'll see are simple set-option commands similar to the
commands we played with in the previous examples. Let's create and start building
our configuration file:

$ cd ~

$ touch .tmux.conf

Open this newly created file in your favorite text editor and we're ready to rock!

Like with most Unix-based utilities, this file in your personal directory
contains the configuration for your user only.
It is also possible to set the global tmux configuration that will apply
to all the users in the system. It follows the same format as that of a
personal configuration file but generally lives in /etc/tmux.conf.
However, since it is likely that not all the users of a system want the
same global configuration, it's probably best to just modify your own
personal configuration.

Emacs or vi mode
As we discovered in Chapter 1, Jump Right In, tmux tries to help developers by
providing two sets of key bindings, one each for the two most widespread text
editors. If you swing one way or the other, this is likely to be one of the first things
you'll want to change to make tmux feel right for you.

The default for tmux is to use the Emacs mode keys, so if you are an Emacs user,
you may be all set. tmux also tries to help out and might, based on environment
variables, switch to one group or the other by default. To check which mode tmux
is currently in, run the following command:

$ tmux show-options -g | grep key

Configuring tmux

[28]

You should get an output that looks something similar to the following command:

$ status-keys emacs

If you are in the mode you'd like to be in, you can do nothing. If you are in the wrong
mode though, you would most likely want to add the following couple of lines to
your .tmux.conf file, obviously choosing the appropriate editor:

set-option -g status-keys emacs
set-option -g mode-keys emacs

This will allow you to use the shortcut keys you are most familiar with in many
of the modes throughout tmux.

Enabling mouse modes
First, it's worthwhile to note that one of the main benefits of tmux is to obviate the
need to reach for your mouse as often as you otherwise would. So, some purists
would balk at the notion of enabling mouse modes for tmux.

That said, it is often rather convenient to use the mouse to scroll, select text, resize
panes, choose an option from a list, and more. And yes, tmux allows you to do all
of that with the mouse. These features are disabled by default so to enable them,
we need to add the following lines to our .tmux.conf (either Emacs or vi):

set-window-option -g mouse-mode on
set-option -g mouse-select-window on
set-option -g mouse-select-pane on
set-option -g mouse-resize-pane on

This will enable mouse functionality in all of the ways we described. We haven't
yet dealt with panes, but when we touch on that in Chapter 3, Sessions, Windows,
and Panes, it will be more apparent how using the mouse to resize them will be
incredibly convenient.

Changing the status bar
We learned a bit about the status bar in the last chapter when we discussed changing
the session and window names. This status bar is highly customizable, and it's a
great place to start learning about configuring tmux. We can change the status bar
colors, what appears on the status bar, the alignment, and much more.

Chapter 2

[29]

Modifying the background color of the
status bar
Let's add an item to our configuration to change the color of the status bar. As we
saw by jumping in, the default color of the status bar is a shade of green. Note that
there happens to be a shade of green in our configuration as well, but it is likely a
different color on your terminal unless you are using the same color scheme as
we are.

The authors are using a color scheme called Solarized. It is a
color scheme that includes both dark and light variants and is
optimized for the terminal and readability. It was developed by
Ethan Schoonover and has gained quite a following in the tech
community for its precision, symmetry, and because it makes just
about any code look downright pretty. For more information, visit
http://ethanschoonover.com/solarized.

The color scheme of our current terminal is as shown in the following screenshot:

Eeek! That's pretty ugly with our current color scheme.

Say, we want it to be a nicer blue color. Jump into your favorite text editor and
edit ~/.tmux.conf to have the following line:

set-option -g status-bg blue

This line specifies that we want the status bar to be blue rather than its default,
which on our system happened to be green.

http://ethanschoonover.com/solarized

Configuring tmux

[30]

Let's break this line apart and explain it a bit:

• set-option: We want to set an option. This command has a shorter alias
set, which may be preferred.

• -g: This means this option should be applied globally. It is actually possible
to set many options (such as the status bar's color) on a per-window basis
if desired.

• status-bg: This is the option we are setting. In this case, we are setting the
status's background color.

• blue: This is the value we are using on which variable. We want a blue
background. The allowed color values are:

 ° Named colors, such as black, red, green, yellow, blue, magenta,
cyan, or white

 ° colour0 to colour255 (where the number is 0 to 255 on a
256-color palette)

 ° A hex value such as #ff0000
 ° default

Unlike on the Web, a particular color code doesn't necessarily mean the
same thing in every terminal.
Some terminals support the full xterm palette of 256 colors, some only
support 16, and some don't support any colors. Most have their own
flavor of colors due to terminal color themes, so what you specify as
blue may not be rendered on the screen as blue at all.
For example, using the previously mentioned Solarized color theme,
specifying the color of #00ff00 (which is the hex code for pure green)
will actually be rendered on the screen with a hex value of #859900, a
kind of pea soup green optimized to match the Solarized color theme.
However, most of the time, red is some shade of red, green is some
shade of green, and so on; therefore, for our purposes, we'll use these
simple primary colors and assume your terminal will be getting it
somewhat close.

Recall how we said previously that the items in this configuration file are full-fledged
tmux commands? We can put that to the test right now. Jump to your terminal
window, get to a window with a shell (instead of your editor), and run the
following command:

$ tmux set-option -g status-bg red

Chapter 2

[31]

You should see your status bar change to red immediately (again, depending on the
color capabilities of your shell and terminal program).

Notice that all we did was take the same text we put in our configuration file, type it
after tmux, and we were good to go.

Recall that any command run in the shell like this is only temporary, so we still
want our configuration file; however, this is a nice way to quickly test that a given
command is going to work as we'd like.

Reloading the configuration
Now we have a shiny new configuration file with our new command to change
the color of the status bar, but this configuration is useless until we reload the
configuration to tell tmux to load with the commands from our new file.

After you save your configuration file, it's ready for action, but look, your status
bar is still green! How do we tell tmux that it should go fetch the latest configuration
and reload the windows to use that configuration? There are two ways to tell tmux
to reload the configuration.

The first is to kill all the sessions entirely and start tmux fresh. This is not a very
appealing option because it entails closing all of our tmux sessions, which in turn
means closing all the currently open and running programs. We will then have to
reinitiate all of our tmux sessions and windows and restart all of our programs to
get back to where we were before just to reload the configuration. It works but is a
rather messy solution overall. Generally, it is rather nice that tmux loads the new
configuration file when it is restarted because this means any subsequent tmux
initiation will use our latest configuration, which makes sense. However, it forces
us to close all the running applications to load it, which is not ideal.

The second, more common and useful option is to use the tmux source-file
command. This command will tell tmux to go fetch the latest configuration and
load it immediately. In this case, there is no need to leave tmux!

Get to a command-line prompt within tmux (if you followed along Chapter 1, Jump
Right In, you will know that you can just hit <Prefix>, 2 to bring up the command
prompt we left there). If you have no window currently open, just open a new
window within tmux (<Prefix>, c) and it'll start with a command prompt by
default. Now type the following command in the prompt and hit Enter:

$ tmux source-file ~/.tmux.conf

Configuring tmux

[32]

Similar to the following screenshot, you should see the status bar is now blue!

Changing the foreground color of the
status bar
Now the blue status bar looks nice! However, the text is a bit difficult to read; there's
not much of a contrast between the background and the text. Let's fix that!

Open the .tmux.conf file again, this time adding the second line:

set-option -g status-bg blue
set-option -g status-fg white

Reload the configuration with the source-file command using the method we
discussed previously. Now, as can be seen in the following screenshot, the text
on the status bar should be much more readable!

Chapter 2

[33]

Highlighting the active window
Let's make it a bit easier to see which is our currently active window. The asterisk
works, but it could be a bit easier since we have these colors.

Open up the .tmux.conf file again, and this time add the third line:

set-option -g status-bg blue
set-option -g status-fg white
set-window-option -g window-status-current-bg magenta

Here we see our first window option. The first two options were global. This means
that in all windows the status bar will always have a blue background.

This new line is saying that, for each window, if it is the current window, set its
background to magenta. Reload the configuration again with tmux source-file
~/.tmux.conf to see that in action, as shown in the following screenshot:

Change to the other window and watch the magenta highlight follow.

You may be noticing that each time, we're typing a lot to reload this configuration,
going through the whole tmux source-file ~/.tmux.conf command. Surely,
there must be a better way!

The bad news is that there is not a key combination out of the box in tmux to reload
the configuration. The good news is that we can bind our own key to make this
task easier!

Configuring tmux

[34]

Binding keys
Binding keys will allow you to change the keys and key combinations that tmux will
recognize for any command. This also allows us to create new key combinations for
existing commands or change the key binding for any existing keys used by tmux.
It even lets you assign new key bindings to any command we can dream about.

The commands to which we can bind keys can even prompt for user input. There
is no constraint on uniqueness, so we could bind multiple keys to issue the same
command or bind no keys for a particular command.

What this all means is that while there is not an existing key combination available
to reload the tmux source file, we can make up our own key combination and assign
it to the rather lengthy source-file command so we don't have to type the whole
thing each time we want to reload the configuration.

First, let's find a good key combination to bind for this command.

Viewing current bindings
Recall from the first chapter that we were able to see all of the current key bindings
by issuing <Prefix>, ?. This is actually the keyboard shortcut for the list-keys
command. This shows all of the current key bindings within tmux and is nicely
updated whenever we reload the configuration.

This is a very helpful resource if you forget key bindings, but it's also useful as a
heads-up view of which keys are already currently used for bindings. Any keys not
listed here are not currently bound to anything in tmux, so they are fair game for
new uses. Here's a screenshot on the current bindings:

Unfortunately, an easy and memorable choice, r is taken by refresh-client.
We could override this; it is not often used, but let us find one that's not used.

Chapter 2

[35]

Thankfully, by looking through the list of key bindings, it appears that Ctrl + r is not
currently bound to any tmux command. So it's fair game. All the keys that start with
C- in the key binding screen mean that you need to press the Ctrl key. So, C-r is used
in the same way as Ctrl + r.

This will be rather convenient as the default prefix key also uses the Ctrl key.
So assuming the current default prefix key of Ctrl + b, we will be able to hold
down Ctrl and tap B then R to reload the configuration.

Rebinding Ctrl to Caps Lock
One of my favorite programming productivity tips of all time is to rebind
Caps Lock to Ctrl on a system-wide scale. This is easily done on most
computers at the operating system level and even on some more capable
keyboards.
The majority of computer users seldom use Caps Lock, yet its place on
the home row makes it a convenient key to press. Since Ctrl is used often
by command-line programmers and its place on the keyboard is rather
difficult to press, swapping the two can be very helpful. By swapping
them, in the unlikely event that you ever do need to use Caps Lock, it is
still accessible by the old Ctrl key on your keyboard.
The author is a huge fan of Emacs that makes heavy use of the Ctrl key,
and tmux is another program that does as well.
This is by no means a requirement, but if you find yourself using the
Ctrl key regularly, consider making use of this trick!
On a Mac, it is very easy and requires no additional software. It's a bit
trickier on some other systems, but possible everywhere.
For detailed tutorials visit http://vq.io/rebindcaps.

www.allitebooks.com

http://vq.io/rebindcaps
http://www.allitebooks.org

Configuring tmux

[36]

So let's add a key binding for Ctrl + r to reload our configuration. Reopen your
.tmux.conf file and add the fourth line:

set-option -g status-bg blue
set-option -g status-fg white
set-window-option -g window-status-current-bg magenta
bind-key C-r source-file ~/.tmux.conf

Notice that the format of this new bind-key row is very similar to what we saw in
the key bindings list. Interestingly, each row in the key bindings is a verbatim key
binding so we can copy and paste it into our .tmux.conf file, and it will just work.
This is very convenient!

Let's break this bind-key line apart and explain it a bit:

• bind-key: We want to bind a key.
• C-r: The key combination we want to bind is Ctrl + r.
• source-file ~/.tmux.conf: Upon pressing that key combination, we want

to run the source-file command and provide it with the path to our source
file as an argument.

• It is worth noting that, similar to the way we put commands in the tmux
configuration file and they would be if run from the command line after the
tmux keyword, the bind-key syntax also drops the tmux but otherwise is
a valid tmux command.

Now we will need to reload our configuration once in the old way before we can use
our keyboard combination:

$ tmux source-file ~/.tmux.conf

That's it! From here on, we can press <Prefix>, then Ctrl + r, and the configuration
will be reloaded.

Sure enough, if we look at our current key bindings as we did before with the <Prefix>,
? key combination, we'll find that our new binding to reload the source file, which is
bound to C-r, will be right at the top of the screen:

Chapter 2

[37]

Chaining multiple commands to a single key
You may notice that, while we can inspect the key bindings to see that the
configuration was reloaded, we otherwise will get no visual indication that
things have been updated and the configuration reloaded. This is because
the source-file command outputs nothing when it does its job.

There isn't much we can do to change this behavior directly. Thankfully though tmux
does give us a way to chain together multiple commands to a single key binding.

This will allow us to chain two commands, in this case, the source-file command
we currently have and a command to display some text to give us some feedback
that the file has been reloaded.

Reopening our trusty configuration file, change the last line as follows:

set-option -g status-bg blue
set-option -g status-fg white
set-window-option -g window-status-current-bg magenta
bind-key C-r source-file ~/.tmux.conf; display "reloaded!"

Now Ctrl + r will run both the source-file command and the display command
to let us know that it has done its job! This could be used to chain any multiple
commands you desire. Save the file, exit your editor (or switch to another window
leaving your editor running!), and reload your configuration with <Prefix>, Ctrl + r
and you should see the text reloaded! flash in the status bar momentarily.

Comments in the configuration file
OK, so now our configuration is up to four lines, and it's getting a bit unwieldy
without any comments or anything for guidance. Thankfully, we can add arbitrary
comments to our .tmux.conf file with ease. Just start the line with a hashtag (#).

So let's jazz up our .tmux.conf file with some nice comments to explain what
we're doing:

Set the status bar background to blue
set-option -g status-bg blue
Set the status bar text to white
set-option -g status-fg white

Set the active window background in the status bar
set-window-option -g window-status-current-bg magenta

Add a key binding for reloading our configuration
bind-key C-r source-file ~/.tmux.conf

Configuring tmux

[38]

Notice how we also added some spaces between some logical
groupings here as well. Thankfully, the tmux configuration ignores
whitespace so we can space them apart however we'd like.

Binding a new prefix key
We can also rebind the prefix key to make it something more convenient or set it
up in a way that it doesn't get into a conflict with other programs.

Some of you might be from a background where you use GNU screen, another
terminal multiplexer that uses Ctrl + a as its prefix key. So instead of learning the
tmux key, you might want to simply rebind Ctrl + a as your tmux prefix key.

Alternatively, you might be a frequent user of Emacs, nano, or another program
that makes extensive use of Ctrl + b to move the point back one character. In that
case, Ctrl + b is not a convenient key to have rebound globally.

Users in this category may choose to rebind the prefix to something less used or
less important in Emacs or other programs, such as Ctrl + t. This also conveniently
helps to provide guidance on the key (t for tmux!).

Whatever your motives, it is possible to rebind the prefix key. So, as an exercise,
let's rebind it to Ctrl + t. If this makes you uncomfortable, feel free to ignore it in
your own configuration. However, rebinding the prefix key is a bit different than
rebinding any other key. You might think that the following in your .tmux.conf
file would work, but that is not the case:

bind-key C-t prefix

Recall that all of the key bindings within tmux first require the prefix key to work. So
this code snippet, in plain English, is essentially saying, "After you have pressed the
prefix key, press Ctrl and t as the prefix key." It is not saying, "Here is the new prefix
key, please use it."

So in order to set the prefix key, add the following lines to our ever-growing
.tmux.conf:

Set the status bar background to blue
set-option -g status-bg blue
Set the status bar text to white
set-option -g status-fg white

Chapter 2

[39]

Set the active window background in the status bar
set-window-option –g window-status-current-bg magenta

Rebind the prefix key
set-option -g prefix C-t

Add a key binding for reloading our configuration
bind-key C-r source-file ~/.tmux.conf

This will actually change the prefix key. Assuming you still have the default prefix
key of Ctrl + b, try reloading your configuration using Ctrl + b, Ctrl + r, using Ctrl
+ b as the prefix key for the last time to load our configuration. If you have already
changed your prefix key, you might need to use a different key combination.

Now press Ctrl + b, ?. See how this time it just outputted a question mark rather
than load the key binding help page, like it used to. This is because Ctrl + b has been
returned to the underlying program, which, depending on the program, usually
means "move back one character" and then ? means "type a question mark."

Now the prefix key is Ctrl + t, so try it. Do Ctrl + b, ? and you should see the key
binding help we saw before.

Rebinding the prefix key is a rather common operation, and this is
the reason why throughout this book we have been using <Prefix>
to denote it and not the actual key combination.
Most other keyboard combinations are usually left alone but many
people have their reasons to favor another prefix key.

Binding keys without the prefix key
It is generally unadvisable to bind keys without the prefix key since this renders
any key inoperable for all the programs running within tmux, but it is technically
possible. It becomes inoperable because tmux will snag it and do the things tmux
wants without passing that keystroke on to the program running within tmux.
There are workarounds, such as binding <Prefix>, {key} to send the key through
to the underlying program.

Say you wanted to bind the function keys F1, F2, F3, and so on to select windows 1,
2, 3, and so on, respectively. This would be possible by putting the following snippet
into your .tmux.conf file:

bind-key –n F1 select-window –t :1
bind-key –n F2 select-window –t :2
bind-key –n F3 select-window –t :3
...and so on

Configuring tmux

[40]

Notice the -n option? This allows you to press the bound key without first pressing
the prefix key. So you could simply press F1 with no prefix and immediately switch
to window 1!

This sounds like a really cool trick (and it generally is!), until you find even a single
program that you want to run within tmux that expects the key F1. Then, since
you've captured F1 globally for tmux, it's not possible to use that keystroke within
that or any other program because tmux captures it, uses it for the purpose you've
specified, and never passes it along to the program. Again, you can use a trick such
as binding <Prefix>, F1 to send F1 through to the underlying windows; however,
for most users, it's probably not a great practice to get in the habit of globally
overriding keys.

So, the most likely outcome here is that you can create some cool global shortcuts for
something like that so they work for a while until you find an exception. You will
then unbind them and end up having to convince your muscle memory to forget
what it learned.

Unbinding keys
Now let's say there is a key binding that you want to remove for some reason.
This is very easy; just add an unbind directive to your .tmux.conf file.

Say we wanted to unbind 0 from its default action of selecting window 0 for some
reason. To do this, simply add the following code snippet to your configuration:

unbind 0

Note that there is no need to explicitly unbind a key before binding it to something
else; every key can only have one binding. So, we find it rather rare to use this bit of
utility, but it's nice to know it's there when you need it.

Status bar revisited
Last time we touched the status bar, we altered its colors, but we did not do
anything to change its content. tmux allows us to change a lot of different aspects
of the content of the status bar. We won't have an in-depth look at every possible
configuration, but will explain the concept and show one example.

So, the status bar has three chunks basically:

• status-left: This represents the stuff on the status bar on the left-hand side,
including the current session

Chapter 2

[41]

• List of open windows: This appears in the middle by default
• status-right: This represents the stuff on the status bar on the right-hand side,

including the current date

Recall our status bar, which appears as shown in the following screenshot:

By default, status-left shows the name of the current session in brackets. We named
our session tutorial, so status-left for us is [tutorial].

We can change these. They are just simple strings with some magic character pairs
that tmux fills in based on what they mean. For example, one of the magic character
pairs is #S, which tmux will replace with the name of the current session. So the
actual value of status-left according to tmux is [#S].

tmux takes this magic character pair and replaces it with the name of the current
session, and that's how we end up with [tutorial].

The status-right string is similarly made up of these character pairs and can easily
be replaced.

The following is a table with a list of all the possible character replacements.
This comes verbatim out of the tmux man page:

Character pair Replaced with
#(shell-command) First line of the command's output
#[attributes] Color or attribute change
#H Hostname of the localhost
#F Current window flag
#I Current window index
#P Current pane index
#S Session name
#T Current window title
#W Current window name
A literal hash (#)

Configuring tmux

[42]

So let's say we wanted to change the value of status-left so it looks similar to
{username@host} where the username and host are filled in automatically; we
can easily do that. Simply add the following lines to.tmux.conf and reload the
configuration (note that we also widened the status because the default is 10
and it was getting cut off):

set-option -g status-left-length 25

set-option -g status-left "{#(whoami)@#H}"

This will fill in the status bar with {victor@minerva.local} for me because it
executes the whoami command, puts the output of that command into the string
before @, and fills in the hostname after it.

Option types
Thus far, all of the options we have set had the -g flag. This means that the option
applies globally. However, there are three types of options: server options, session
options, and window options.

There are also multiple flags that indicate how a given option should affect or be
affected. This sounds complex, but it's rather simple.

A server option will apply to any client that connects to tmux. Under the hood, when
you type and run the tmux command the first time, tmux creates a server; then, it
creates your client and connects to the server it started. This is the magic that allows
you to detach your session, reattach it later, and have everything running as you left
it because the tmux server keeps chugging in the background. So an option specified
with the -s flag will apply to the server, meaning it will affect any clients that attach
to it.

A session option will apply to the current session. This means that two clients could
connect to the same server and each could have slightly different session options.
This is in contrast with the server option, where every client has that same option
whether they want it or not. Session options do not have a flag; they are set by
leaving off the flag, as they are the default.

Then, there are window options, which apply only to one window. To set a window
option, specify it with the -w flag.

When it comes to configuring options, they cascade down. So there are global
options specified with -g that will serve as the master set. Then, any option further
down the chain will inherit from the global settings or may override the global
setting with its own.

Chapter 2

[43]

There are a couple of other interesting flags. The -g flag as we've mentioned is the
global flag, which means the option applies globally. Most of the time, when people
set settings in tmux, they just use the -g flag because they have no need for more
complex flags or settings.

The -a flag means that the option expects a string to append the supplied value with
the existing setting. So, for example, if the existing setting for an option is banana,
then a client trying to connect will append their own option with set-option –a
" split", rather than override that option entirely. This will make the option
banana split. This is often useful to append custom items to things such as
status-left and status-right without clobbering the global setting.

The -u flag will unset an option, meaning that the session will inherit the option
from the set of global options.

These option types and flags can be a bit confusing, but they provide a lot of power.
Again, most people set options with the -g flag and call it a day.

Handy configuration tips
What follows are a handful of configuration tips we have picked up throughout the
years that are a bit useful and not necessarily obvious even after understanding the
mechanics of how to configure tmux. These tips include the following:

• Binding the double tapping of the prefix key to last-window
• Changing the escape time
• Lengthening the history limit
• Lengthening the display time
• Starting the base index at 1

Binding the double tapping of the prefix key
to last-window
This is one of our favorite tricks. More often than not, once you switch to a window
and see some information, you want to switch back to the one you came from.

As the title here implies, this can be made very easy by creating a key binding for the
prefix key that performs the last-window command. This way you can double tap
the prefix key to jump back and forth between two windows. Once as the prefix and
once to run the last-window command.

Configuring tmux

[44]

To do this, simply add a bind-key entry to your .tmux.conf file and bind the same
key combination as your prefix key to the last-window command. For example, if
you followed the preceding steps and set the prefix key to Ctrl + t, the following line
in your .tmux.conf file is appropriate:

Double tapping the prefix jumps to last window
bind-key C-t last-window

Now moving on to the last window is as easy as holding down Ctrl and
tapping t twice.

Changing the escape time
I have heard from some vim users that tmux adds a short, almost imperceptible
delay between the commands that can cause funny behavior when running vim
inside tmux.

In tmux terms, this delay is called escape-time. By default, it's set to 500 ms.
To fix things with vim, set the escape-time to 0 by adding the following line
to your configuration file:

set-option -s escape-time 0

Note that this option obviously exists for a reason, so tread carefully when doing
this as you may come across unexpected behavior. However, we've heard from a lot
of vi users that make this change and they never look back. Also note, as discussed
previously, this has the -s flag so it is a session-specific option, which means that
if someone else connects to the same server, they could have a different value for
escape-time.

Lengthening the history limit
tmux only has a limited amount of scrollback history. The scrollback history is
the number of lines it retains in memory that have scrolled off the screen and
which are accessible in Copy mode (see Chapter 4, Manipulating Text).

However, the default history-limit for tmux is 2,000, which can be pretty
low for many use cases. In order to crank it up, add the following line to your
configuration file:

set-option -g history-limit 10000

Note that by increasing this history limit, you are also increasing the memory
footprint of tmux. So some tweaking may be necessary if it's set too high,
particularly if you tend to have a lot of open windows and panes.

Chapter 2

[45]

Lengthening the display time
Some commands will cause tmux to display a message to you, replacing the
status bar with the text it displays for you. The time a message is displayed is
called display-time.

Out of the box, the value of display-time for tmux is rather low. Try doing
a search for text in another window with some text that you know doesn't exist.
For example, try <Prefix>, f, then type any search string that you know doesn't
exist in any other window, for example, potato.

You will see the text No windows matching: potato appear in place of the status
bar and then disappear in the blink of an eye:

It will go in a flash because it only stays on the screen for the duration of the current
display-time, which is only 750 ms by default. It's probably a good idea to crank
the value of display-time up a bit so messages stay visible a bit longer, at least
until you are more comfortable with tmux. To do so, add the following line to your
configuration file, changing the duration to 2 seconds:

set-option -g display-time 2000

For a 2-second duration, we set display-time to 2000 because the display time is set
in milliseconds.

Configuring tmux

[46]

Now is also a good time to note the show-messages command, which will bring
up all the messages. It is accessible under the key combination <Prefix>, ~ and will
show a nice list of all the messages that have been displayed:

This is very useful if you know a message was there but were not able to see it before
it timed out and disappeared.

Starting the base index at 1
You probably noticed that, by default, tmux starts indexing the windows (and panes)
with 0. The first window created is given the number 0, the second is given 1, the third
2, and so on.

This is not only a little confusing, but also makes the keyboard shortcuts for accessing
windows a bit odd. To access the window furthest to the left, type <Prefix>, 0, where
0 is the rightmost number key on the keyboard and then the second from the left
<Prefix>, 1, which is the leftmost number key on the keyboard, and so on.

This is easily avoided by changing what's called the base-index value. This
base-index value determines the starting place so we can ensure it starts with
1 rather than 0. Note that we haven't discussed panes yet, but we will, and it also
makes sense to set pane-base-index to 1 as well. So just trust us. Do it for now;
we'll explain why later. Add the following to your configuration:

Set the base-index to 1 rather than 0
set-option -g base-index 1
set-window-option -g pane-base-index 1

Note that if you already have a window 0, it won't go away. However, subsequent
sessions will start without window 0, and if you remove window 0 from this session
and create a new one, tmux will skip window 0.

Chapter 2

[47]

Accessing the man page
For obvious reasons, we usually do not like to suggest going to the man page in this
text as we try to explain most things in far greater detail than they do. However, when
it comes to referring to an exhaustive list of options that can be configured in the
.tmux.conf file, nothing really beats the man page.

To access, you can type the following command:

man tmux

You can also access the man page on the Web at one of many
resources that mirror the man pages online. The following is
an example:
http://man.cx/tmux

If you scroll down about halfway, there is a heading called Options. This contains
the full list of options that could be set in our configuration file and a description of
each one. Now that we understand how a bunch of them work, it should be much
more manageable to view this man page and tinker with things!

Show options
If you find options in the man page, it may be useful to see what their current values
are. Thankfully, this is easy!

Simply run the tmux show-options command with a flag for the set of options you
want to view to look at the global options:

tmux show-options -g

For window options:

tmux show-options -w

For server options:

tmux show-options -s

You will see all the options printed out on the screen. This is nice to get a baseline or
see the kinds of values that would be accepted.

http://man.cx/tmux

Configuring tmux

[48]

Summary
So let's put it all together. Refer to the Appendix to see the final product, the
.tmux.conf file we have built throughout this chapter.

Throughout this chapter, we learned a lot about configuring tmux. Starting with
a blank .tmux.conf configuration file, we built up a much larger configuration
changing many aspects of our tmux experience.

We altered the look and feel by modifying the status bar, and we learned how to
bind keys, including the prefix key. We showed you how to bind multiple commands
to a single key binding and how to unbind keys. We learned how to keep the file
manageable and well documented by adding comments, and how to bind keys
without needing the prefix key. We learned about the different types of options that
can be set in the configuration file and some handy configuration tips that probably
wouldn't be readily obvious to most readers.

By the end of the chapter, we have built up a very rich sample configuration file,
which can be a great starting point for your own personal customization. We learned
a bit about how to browse the man page for an extensive list of the available options.

We hope you treat this .tmux.conf file as a living document and update it with
other neat things you may find and remove or change any bits that exist in it now.
Personalize it to suit your needs; after all that's what it's for!

Now that we've learned all about configuration, in the next chapter, we will move on
to discuss one of the major fundamentals of tmux: the concept of sessions, windows,
and panes.

Sessions, Windows,
and Panes

In the previous chapters, we discussed sessions, windows, and panes; now we are
going to dive deeper to understand the differences between them and how they can
help in maximizing your productivity.

In this chapter, we will cover the following topics:

• What sessions, windows, and panes are, and how they relate to each other
• How to create multiple sessions and switch between them
• How to create multiple panes
• Zooming panes
• Splitting and resizing panes
• Switching between panes
• Cycling through pane configurations

Overviews
First, let us have quick overviews of sessions, windows, and panes before we get into
how they fit together. We have mentioned them lightly in different contexts now,
but they are crucial to understanding tmux and are worthy of more exploration.

Sessions
We got a nice taste of sessions back in Chapter 1, Jump Right In, when we named our
session tutorial and detached and reattached our session.

Sessions, Windows, and Panes

[50]

Sessions are essentially the base unit in tmux. It can have one or more windows, and
a window can be broken into one or more panes.

It may be useful to think of a tmux session like the login process on your computer.
Whether you have a computer that is running Windows, Linux, OS X, or Unix, they
all support multiple simultaneous logins in some form.

When you log on to your computer, it initiates a new session. You type in your
username and password and then hit Enter. You will then arrive at a nice, empty
desktop. This is a session on your desktop computer. On this desktop session,
you can run one or more programs, where each program has its own window or
windows and each window its own state.

Likewise, tmux parallels this concept. When you initiate a new tmux session, you
start with a nice and empty status bar. This is your session on tmux. In this session,
you can create multiple windows, run a program in each window, and each window
has its own state (this is a slight simplification, as we will soon see). When you
switch from one window to the other, the state is maintained. That is, the things
which you typed or entered, before switching from one window to another, are
still there when you switch back to that window.

In most operating systems, there is a way for you to log out and log back in to arrive
at the same session, with the windows and the state just as you left them. Often,
some of the programs you had opened will continue to run in the background and
even receive updates when you log out, even though their windows are no longer
visible. With most operating systems, there is some concept of a window manager,
so there is often much more running in the background than you can see at any
given time. For instance, on an iPhone, Android, or other smartphone, only one
program actively fills the screen, but others hum along in the background receiving
mail messages, listening for incoming calls, playing music, and doing other
background tasks.

Likewise, with tmux, you can initiate a session, open some windows, do some work,
detach that session, and everything keeps running in the background as you had
left it. We saw this back in Chapter 1, Jump Right In. You switched from an editor to
another window, typed something, went back to the editor, and it was still humming
along just as you had left it. You also detached a running session and reattached it
later, and everything was still as you had left it. This is the power of sessions.

So, a session in tmux is like a little mini operating system that manages running
programs, windows, and more, all within one or more sessions.

Thus far, we have only seen examples of having a single session open, but it's quite
possible to have multiple sessions open simultaneously and easily switch between
them. We will run through an example of this later in this chapter.

Chapter 3

[51]

It is often easy and convenient to group tasks logically by sessions. Sessions can also
be given names, as we saw when we named our session tutorial back in Chapter 1,
Jump Right In. This way, you could logically group things into sessions having, for
example, one session for one project and another for a different one.

Windows
Windows are the next building block. Each window is what fills up the terminal
application. Think of it like a viewport or tab in your web browser.

By definition, only one window can be active and viewable at a given point in time
in tmux. We created multiple windows in Chapter 1, Jump Right In, and showed you
how to switch back and forth between them.

Each window gets an entry in the status line, much like each browser tab has a tab
visible in your web browser.

By default, windows get their names from the programs that are running within
them, but it's also possible to specify a name for each window.

Each window can be broken down into one or more panes.

Panes
It seems as though we haven't seen any panes yet, but we have. By default, each
window starts with a single pane that takes up the whole window.

Thus far, we have only seen windows with a single pane, so it seems as though we
have only seen windows; however, in reality, we have seen windows, each with a
single pane that took up the whole window.

Things get really neat when we take all of these window panes and split them into
smaller panes, each visible simultaneously. Say, you want unit tests and code linting
running in two different panes, both visible at the same time so when your files are
saved, they will not only run, but will also be visible—a perfect task for two panes!

We can take a pane and divide it into two or more smaller panes, each running
different programs. These panes can be resized, and they can be zoomed to
temporarily take up the entire window. These panes can be converted into a new
window or even attached to other windows. This power and flexibility that panes
provide is something most other programs do not.

Sessions, Windows, and Panes

[52]

A window and a pane are perfect analogies to their real-world counterparts. Check
out the different physical, real-world windows, and you will find that many of them
are nicely divided into multiple panes.

One nice benefit of panes in tmux over panes in the real world is that
they are easy to create, destroy, and resize based on your needs. You
cannot do that with panes on most physical windows.

Playing around with sessions, windows,
and panes
So now that we have a high-level understanding, let's take a little tour of sessions,
windows, and panes. Let's start totally fresh with a new terminal window and no
existing tmux sessions. Start by creating a session named work:

$ tmux new-session -s work

You'll see a new session started with the name work. This session, currently, has a
single window with a single pane.

Let's create another window. Recall that this is done by pressing <Prefix>, c (c for
create). Now you have one session, two windows, and two panes. Each window
has a single pane, as shown in the following screenshot:

Chapter 3

[53]

Multiple sessions
Now let's see what it's like working with more than one session. Let's first detach the
current session. Recall that in order to do so, we'll press <Prefix>, d (d for detach).

Now that the work session is detached, we are back at a command line, and your
screen should be similar to the next screenshot. Instead of reattaching the work
session, let's create a new session and call this session play:

$ tmux new-session -s play

Now it looks like we have an entirely different session. We have a different status bar
with the session name [play] in the bottom-left corner rather than [work].

Now to switch back to the work session, we could detach the play session, arrive
back at a tmux-less terminal and then reattach the session, this time with the work
session as the target; however, there is actually an easier way.

Simply press <Prefix>, s (select the session interactively); this will bring up a dialog
where we can take our pick about which session to attach. So, we didn't even need
to leave the session we were in to switch to the other one. Use the arrow keys to
highlight the session you want, or just tap the number associated with that session
to switch.

Try switching to the other session, then back again, but wait, there is an even easier
way. Simply use <Prefix>,) (next session) and <Prefix>, ((previous session) to cycle
around between the sessions. You'll see it's very easy to switch between sessions.
We'll skip switching between multiple windows since you already know how to do
that from the first chapter; let's move right on to multiple panes.

Sessions, Windows, and Panes

[54]

Multiple panes
Now let's break this window into two panes. Type <Prefix>, % (split the window
vertically) and see how the window is now divided down the middle by vertical
bars; we now have another command prompt. This is the second pane, as can be
seen in the following screenshot:

Now we have two sessions, three windows, and four panes. One session, one
window, and one pane make up the play session (which is no longer visible but
humming along in the background), while one session, two windows, and three
panes make up the work session we saw in the previous screenshot.

Let's play around with panes a bit. First, try typing in some text. You'll see the cursor
is in the right pane. To get it to the left pane, simply press <Prefix>, o (o for other).
Now your cursor is in the other pane. Type some stuff to verify which pane the
cursor is in.

There is actually a better way to tell which pane has the cursor than typing in
random stuff. It may be tough to tell from the previous screenshot; however, when
a window is split into two vertically, the top half of the vertical bars that split the
two windows will be colored when the cursor is in the left pane, and the bottom half
will be colored when the cursor is in the right pane. In the previous screenshot, the
bottom half is colored in green to indicate that the cursor is in the right pane. When
there are more than two panes, tmux tries different schemes to let us know which
pane is active, as we soon shall see.

You can also use <Prefix> and the right arrow key, <Prefix> and the left arrow key,
<Prefix> and the down arrow key, or <Prefix> and the up arrow key to move the
cursor to the pane to the right, left, down, or up, which is a bit easier to remember
and also more useful when we have a more complex pane structure.

Chapter 3

[55]

Working with more panes
Now <Prefix>, % (split the pane vertically) is not the only way to create panes. This
simply splits the current pane into two smaller ones by splitting it vertically. If you
actually do it again, it'll split the current pane in half again with another vertical line,
as shown in the following screenshot:

This is rather silly and scrunched though. First, let's kill that pane and then try
to split it vertically. To kill the new pane we created, we can either terminate the
running program in that pane, in this case, typing exit and pressing Enter as this
will end the shell process. Alternatively, we can press <Prefix>, x (kill pane) to be
prompted whether to kill that pane or not.

Note that killing a pane with a running process will terminate that
process immediately without gracefully ending it, so you will lose
any existing data in that pane. Be careful!

Confirm with y, and you're back to two panes. Note that when a pane is removed,
things are automatically resized appropriately. Let's try to split the left pane
horizontally. In order to do this, type <Prefix>, " (split the pane horizontally),
as shown in the following screenshot:

Sessions, Windows, and Panes

[56]

Now notice how the active pane is rimmed by green. This is the way tmux highlights
the current pane with more splits, as we alluded to previously.

Now we've got a nice horizontal split in that left pane. Let's split that pane vertically
just to show how pane-crazy we can get. Press <Prefix>, % (split the pane vertically)
to split it vertically one more time, as shown in the following screenshot:

Zooming panes
OK! Now the panes are tiny and silly, but we can help them, temporarily at least,
by zooming the current pane to fill up the entire window.

Type <Prefix>, z (zoom the pane), and you'll see the pane zoom to take up the
entire window. If you look at the status bar for the current window, you will see a
Z added after the asterisk (*) to indicate that the window is currently filled with a
zoomed pane.

When you are done operating on this zoomed pane, the same command <Prefix>,
z will zoom it out back to its normal place in the window.

Resizing panes
OK, now things are a bit silly here with all these panes. Let's try to resize them a little
so things are a bit more manageable. First though, let's type some random text in
each pane so we can tell them apart.

Have a look at the following screenshot where we have written Apple, Banana,
Cherry, and Date. You can do so by typing in one window, then using the <Prefix>
key followed by the arrow keys to move on to the next one until all panes have some
unique text, as shown in the following screenshot:

Chapter 3

[57]

Let's try resizing the panes by some decent increments. Get the cursor over to the
Date window, either using <Prefix>, arrow keys or <Prefix>, o.

Now to resize it, let's try <Prefix>, Meta and the right arrow key. You should see the
rightmost pane get a bit smaller. Try it again and it gets even smaller. Try <Prefix>,
Meta and the left arrow key, and you should see the rightmost pane get a bit larger.

If you look at your keyboard and see no Meta key, you are not
missing anything; it does not exist on most keyboards.
Meta is a key often used in terminal programs that historically had a
place on the keyboard, but no longer.
Both iTerm and the stock terminal program on Mac have the choice
to use the Option key as Meta. Other operating systems often have
some way of using the Alt key as Meta.
Though this may seem confusing, we use Meta in this book because
that is the way it is referred to historically, and more importantly,
because this is the key referred to in the tmux documentation.

Thankfully, you don't actually have to type the prefix key every time you want to
resize it a little bit; as soon as you start resizing, you can just type the command to
increase or decrease over and over without the prefix key. So start by using <Prefix>,
Meta and the right arrow key, then you should be able to change the panes by
holding down the Meta key and by pressing the left arrow key, the right arrow key,
or the left arrow key. You will see the panes expand and contract without having
to stop and type the prefix key each time.

This is one way to change the size of a pane. This is actually changing it in steps of
five cells at a time (each cell being basically the space of one mono-spaced character).

Sessions, Windows, and Panes

[58]

It's also possible to be a bit fine-grained with it, changing the size in steps of one cell
at a time. Simply press <Prefix>, Ctrl and the arrow key. However, this will move in
much smaller increments and will also conflict with the command to switch between
spaces on OS X.

If you have followed along with Chapter 2, Configuring tmux, and turned on the
mode-mouse option along with the mouse-select-pane and mouse-resize-pane
options, you can also use your mouse to select the active pane. You can do this by
just clicking on the active pane and resizing the panes by clicking and dragging them
on to the active pane. While this has the downside of reaching for your mouse, it can
be the easiest way to rapidly arrive at a desired pane configuration.

Switching between panes by number
Now that we have so many panes, switching between them can get a bit unwieldy.
The arrow keys are pretty nice but can still be a tad annoying. Thankfully, there is
an easier way. Press <Prefix>, q and you will see a number appear in each pane and
then disappear shortly thereafter.

The currently active pane will be of a different color than the other panes. This will
also show the dimensions of each pane.

Just as each window was assigned a unique number, so also each pane is assigned
with a unique number in every window. If you press <Prefix>, q again and, before the
numbers disappear, type the number that appears in that pane, you'll automatically
switch to it.

By default, the duration for these numbers to remain on the screen is 1 second,
but you can change that by adding the following option to your .tmux.conf file:

set-option -g display-panes-time 3000

This will extend the time that the pane numbers are displayed on screen to 3000 ms
or 3 seconds, allowing you more time to select a pane by its index.

So, to jump to the pane with the word Apple typed in it, simply press <Prefix>, q,
and 1. It does not matter which pane you were in previously since this pane is given
an index of 1; using that key combo will jump to that pane.

Cycling through pane layouts
tmux provides us with a few different ways to change the pane layout automatically
so you don't have to meticulously split and resize in odd ways to get to your
desired result.

Chapter 3

[59]

The most versatile of the bunch is a key binding that will essentially cycle through
to a different preset pane layout each time you press a key combination. This key
combination is <Prefix>, Space bar (cycle through pane layouts).

Try it out; press <Prefix>, Space bar, and you will see your panes move around. The
content stays in them, so any programs in them would keep running fine, but they
get rearranged and resized in different ways each time you use that key combination.

If you look at the status bar, you will see the name of the layout. There are five
different preset layouts that you can cycle through; these are even-horizontal,
even-vertical, main-horizontal, main-vertical, and tiled.

Until you know what you like for a given use case, cycling through them is a pretty
good way to see what the possibilities are.

Once you are comfortable enough with these layouts, you can switch to them
directly, without cycling through all of them, by pressing <Prefix>, then Meta and the
index of the preset layout in the previous list. So, for example, you can use <Prefix>,
Meta + 1 to switch to the even-horizontal view, <Prefix>, Meta + 2 to switch to the
even-vertical view, and so on.

Other pane operations
There are far too many pane operations, so we'll not be able to cover all of them
exhaustively in this book; for most that we'll not discuss, we implore you to dig
into the tmux man page:

$ man tmux

Alternatively, you can refer to them on the Web at http://man.cx/tmux.

Now that you understand panes, the man page should be very manageable and
understandable on the topic of panes.

You can do things like breaking one pane out into its own window; rotating the
panes; swapping one pane with another; moving a pane to another window; and
arranging all the panes horizontally, vertically, tiled, and much more.

There are many more commands to resize panes, many of which don't even have
keyboard shortcuts because they're not used all that much. Of course, you could add
your own, and if you read Chapter 2, Configuring tmux, you should have all the tools
in your toolbox to do so.

http://man.cx/tmux

Sessions, Windows, and Panes

[60]

Summary
In this chapter, we learned a lot about sessions, windows, and panes in tmux.
We learned how each of these fit into the tmux hierarchy, and we played around
with them to solidify some of the concepts. We created multiple sessions, split
windows into multiple panes, moved them around, and learned different ways
to switch the cursor from one pane to another.

In the next chapter, we will move on to text manipulation and learn about how
we can scroll back through the window history, how we can copy text from the
window history into a paste buffer, and how we can paste that content.

Manipulating Text
There are two important components of tmux that we are yet to discuss in more
detail, namely, Copy mode and paste buffers.

Copy mode is a mode in tmux that we can switch to; it allows us to select the text
that already appears on the screen and copy it. Also, it allows us to move our cursor
anywhere on the screen, even to places that have moved off the screen.

When an item is copied from Copy mode, it ends up in the paste buffer. As its
name implies, this is a buffer that exists to hold anything that is copied so it can
be pasted later.

Here is a quick summary of the features we will cover in this chapter:

• Window history and how tmux handles text that has moved off screen
• Explaining the two tmux modes

 ° Scrolling up through the Window history
 ° Jumping by search or line
 ° Copying text into the paste buffer

• Interacting with the paste buffer
 ° Pasting the last copied item
 ° Viewing the whole paste buffer stack
 ° Choosing an item to paste interactively

By the end of this chapter, we will know all about working with text from
within tmux.

Manipulating Text

[62]

Explaining the Window history
One thing you may have noticed in the previous chapters is that commands with
too much text output appear to get cut off. You can see the tail end, but the rest
seems to go above the window. If you try scrolling up, it will not work. What is
going on here?

The start of a command is not lost forever. It still exists; it has simply scrolled off
the screen.

In order to work its magic and keep everything in a single terminal window, tmux
has to hide all of the text that won't fit in the currently viewed pane. It keeps all of
this text stored in something called Window history.

Think of it like pages in a physical book. A book contains far more text than you
can see at any given point in time, but to make it manageable, all of that text is on
pages that aren't visible at the same time. The one page that is visible is the one you
have opened.

Similarly, tmux maintains all of the text that didn't fit on the pane you are currently
viewing and tucks it away in the Window history.

Now, of course, tmux doesn't need to stack its pages in a way that one is on top of
the other, like with a traditional book. So, they're more laid out, one above the next,
for as long as the history is configured.

The following illustration helps visualize it:

tmux Window History

Illustrated

History

Current

Pane

Chapter 4

[63]

The diagram illustrates the entire Window history, most of which is not visible,
followed by the contents of the current pane. Notice how the contents of the current
pane are within the Window history. The Window history does not only contain
contents that have gone off the screen, it also contains everything in the current pane.

By default, the Window history keeps 2000 lines, but as we saw in Chapter 2,
Configuring tmux, we can increase or decrease this history to suit our needs as follows:

Store more history in the buffer than default
set-option –g history-limit 10000

A larger history retains more of the state but also causes tmux to use more memory.

It is also possible to clear this history on demand with the tmux command,
clear-history. You can run it by typing the following in a terminal:

$ tmux clear-history

Now it's nice that tmux stores all of that history for us, but it's useless unless we can
do anything with it. Thankfully, we can access it with Copy mode.

Explaining the different tmux modes
tmux actually has a few different modes that can be used when interacting with
it, such as Default mode and Copy mode. If you're a vi user, these modes are very
similar to vi's insert and normal modes:

• Default mode: This is what we've seen thus far while interacting with
tmux, which is mostly just giving us an interface atop the programs in the
underlying window. This is similar to vi's insert mode. You are in Default
mode by default, and if you go into any other mode and then exit it, you'll
end up back in Default mode.

• Copy mode: This allows us to access the Window history and copy/paste
contents from that history. It is similar to vi's normal mode in that it allows
you to move around without tinkering with the underlying programs, just
like vi's normal mode allows you to move around without altering the
underlying document. It can be accessed by <Prefix>, [.

• Command mode: This mode is used to enter arbitrary tmux commands. It is
similar to the vi mode of the same name and can be accessed by <Prefix>, :.

Manipulating Text

[64]

• Clock mode: This mode shows the current time and is more of a novelty/
utility than an actual mode, like the rest. It can be accessed by <Prefix>, t.

• Control mode: This mode allows third-party applications to interact with
tmux through a text-only protocol.

In addition, this is where we start to get to the text manipulation goodies within
tmux. When we drop into Copy mode, we can scroll back to look back through the
Window history, and we can also access some cool text manipulation tools.

Let's walk through a sample workflow with Copy mode.

A sample workflow with Copy mode workflow
If you have followed us from the beginning of the chapter, you should have a tmux
session started. Let's first rerun the long-running command we used previously to
list the available key bindings:

$ tmux list-keys

Just as we saw the last time we ran this command, only the last few lines are made
visible in our current pane. However, now we are armed with a bit of knowledge
about the Window history and can likely surmise that the remaining lines are there
but have scrolled off the screen. How can we scroll up and see what that text was?
Copy mode!

Entering Copy mode
Let's enter Copy mode so we can scroll back and see the rest of it, which is stored in
our Window history. Press <Prefix>, [to switch back to Copy mode.

The first thing you'll notice is a new interface element added to our screen. There will
be a new box in the upper-right corner of the terminal screen that shows [0/76], as
shown in the following screenshot:

Chapter 4

[65]

This shows us both the number of lines in the history (76) and the current line our
cursor is currently on (0).

Note that these lines are in reverse chronological order, so 0 stands for our currently
viewed pane, 1 is a line above it, 2 is a line above line 1, and 76 is way up at the top
of our Window history. This helps give context as to where in the history we are as
we scroll up through it.

Going back to our Window history diagram, the lines can be thought of as shown in
the following diagram:

76

...

3

2

1

0

The first number in the [0/76] bit will show you the index of the lowest visible line
on the current viewpoint. This can be a bit confusing at times as it seems, when you
scroll up, that the first number doesn't start going up until you scroll your cursor
past the current pane; however, it makes a bit more sense when you scroll down
and bring the lines into the current view one by one.

Manipulating Text

[66]

Moving the cursor around
Now that you're in Copy mode, you can move the cursor up, down, left, or right, one
character at a time. This is, rather intuitively, the up arrow, down arrow, left arrow,
or right arrow keys or Ctrl + p, Ctrl + n, Ctrl + b, Ctrl + f (k, j, h, l). Try moving the
cursor around a bit in Copy mode.

Emacs or vi style key bindings for Copy mode
Actually, there are two main ways to bind keys in tmux for Copy mode:
Emacs-style key bindings or vi-style key bindings.
This is configurable using the mode-keys option. We will be primarily
covering the default (Emacs-style) key bindings and will include the vi
key binding in parenthesis following it. However, note that as we saw in
Chapter 1, Jump Right In, tmux is smart and may alter the defaults based
on your environment variables. So, while Emacs is the usual default, you
may, without any configuration, be set to the vi mode with tmux out of
the box, based on another configuration.
If you are a vi user, know that you can set up vi-style mode keys,
and if you do, then the keys to browse Copy mode are very much like
browsing vi's normal mode.
The Emacs key bindings for Copy mode can be viewed with the following
command:
tmux list-keys -t emacs-copy

The vi key bindings for Copy mode can be viewed with the following
command:
tmux list-keys -t vi-copy

Alternatively, you can look at the man pages under mode-keys for more
details on configuring and which key does what (http://man.cx/tmux
or man tmux from a terminal).

Now let's scroll up and see what's left behind.

Scrolling through the Window history
To scroll up a page, you can use Page Up or Meta + v (Ctrl + b) and you'll see that each
time you press it, the number in the upper-right corner changes from [0/76] to match
wherever you currently are.

http://man.cx/tmux

Chapter 4

[67]

You'll also notice that you will soon see the text that wasn't previously visible. That's
right, now you're scrolling up into the Window history! Of course, you can also use
Page Down or Ctrl + v (Ctrl + f) to navigate to a page back down.

You may find that Meta + v won't work to scroll up in tmux. If you
encounter this, it is likely due to a configuration setting on your terminal.
If you are using iTerm2 on a Mac, you have the ability to specify how the
terminal sends the Option key. To access this, visit Preferences | Profiles
| Keys and you should see Left option (⌥) key acts as:. Set this to +Esc to
have the Option key work like Meta, as shown in the following screenshot:

If you are using Terminal on a Mac, you have the ability to specify how
the terminal sends the Option key. To access this, visit Preferences |
Profiles, pick your active profile, select the Keyboard tab, and check
the box that says Use Option as Meta key.
For other operating systems, Alt will often work as Meta out of the box.

You can also jump directly to the top of the Window history with Meta + > (g) and go
back to the bottom with Meta + < (G).

Manipulating Text

[68]

Jump by search or line
Often, you know exactly what you're searching for when you go back through the
history. When this is true, you can jump by a search term to get to a specific line.

For example, in Copy mode, press Ctrl + r (?). You will see Search Up: appear in
the lower-left corner, as shown in the following screenshot:

Type list-keys and then press Enter. You'll see you jumped directly to the last use
of the term, list-keys, within the Window history. Try it again and you'll jump
back to the time we first entered it.

If you don't have an exact search term, you can still jump directly to a line number.
Simply press g (:) and you'll be prompted for the line to jump to. This is helpful when
you don't know exactly what you may be searching for but would like to jump back
several pages.

Leaving Copy mode
To drop out of Copy mode and go back to Default mode, simply tap Esc or q and
you'll leave Copy mode.

There are many more keys to navigate to Copy mode, but it would be onerous
to describe each one of them. However, we've seen most, and the rest is available
on the tmux man page:

$ man tmux

Alternatively, you can find it with the tmux command list-keys -t emacs-copy
or list-keys -t vi-copy, based on your chosen key bindings.

You can view more keys to navigate to Copy mode online at http://man.cx/tmux.

http://man.cx/tmux

Chapter 4

[69]

Copying text into the paste buffer
Now that we've gotten a taste of navigating around in Copy mode, let's put it
to use.

Copy mode doesn't exist just to have a Window history that you can scroll through,
but also to have a way to copy text from the past and reuse it.

Enter Copy mode by pressing <Prefix>, [and scroll around until you find some text
that is of interest. Once you find something you'd like to copy, make sure the cursor
is at the start of where you'd like to copy and press Ctrl + Space bar (Space bar). This
sets the start point of the selection.

Now move the cursor around using the same keys as provided earlier, and you'll
see the selection is highlighted and grows as you move away from the start of the
selection. The area you select will have a different background color as the area is
highlighted. See the following screenshot, which is an example of this:

When you are satisfied with your selection, simply press Meta + w (Enter) to copy
the text and you will leave Copy mode immediately and will be scrolled back to
where you were. The text you selected will be copied and added to your paste buffer
(more on this soon).

A few things to note are as follows:

• This is set up to model Emacs (or vi) almost identically in terms of key
commands to navigate, copy, and so on. Things should feel rather familiar
to you if you use Emacs or vi. If you aren't familiar with either, things may
seem a bit foreign and will take some time getting used to.

• Note the copy operation is always nondestructive in tmux. You have copied
the text out of the Window history but have not altered the Window history
at all. So, you can go back and copy the same text again and again without
disturbing the history.

Manipulating Text

[70]

• If you have tried copying text from multiple lines, you might have noticed
the selection-wrapped lines. You can toggle it as a rectangle by pressing R
(v) at any time in Copy mode before or after you start the selection. This is
shown in the following screenshot:

• You can also grab all of the text to the right of your cursor or to the end of a
single line of text, much like the kill line in Emacs, with the Ctrl + k keyboard
command. Again, tmux's Copy mode is nondestructive, so this won't actually
kill the line as it would in Emacs but will copy it to the paste buffer.

Interacting with the paste buffer
The paste buffer is a holding bucket for all of the text you will copy, which you will
then be able to access later to paste onto any pane.

It is actually a stack, so each item copied from Copy mode is added at the top of the
stack, and every new item is added at the top with every other item moved down by
one. Each item in the paste buffer is assigned a number based on the order in which
it went into the stack.

Pasting text from the paste buffer
Now that you've grabbed some text, you want to pull it from the paste buffer to get
it back.

In any program that runs within tmux, move your cursor to the point where you
want the text to be pasted and press <Prefix>,].

For example, let's fire up nano:

$ nano

Once we do this, paste what we last copied with <Prefix>,].

Chapter 4

[71]

Sure enough, our text appears! Notice the nice symmetry, where you use <Prefix>,
[to enter Copy mode, and <Prefix>,] to paste the text.

Now <Prefix>,] is nice to paste the most recently copied bit of text, but what about
more complex situations such as copying two items and then pasting two items?
Don't worry, tmux has it covered!

Choosing items from the paste buffer
The paste buffer is not just a single blob of text holding the last thing you copied;
it is actually a stack of all the previously copied items. You can access this and
paste from it in any order.

To access this list, simply press <Prefix>, =. This will bring up an interactive list of
the last things you previously copied, as shown in the following screenshot, and
you can simply highlight one and hit Enter to paste it:

By default, each time you copy it, it will be added to the paste buffer stack.
Interestingly though, by default, when you pull an item out of the paste buffer,
it will not pop the latest copied item out of the cache.

The command <Prefix>,] just quickly grabs and pastes from the top of the stack
in (0).

Working with the paste buffer
There are also a handful of other useful things we can do when working with
the paste buffer.

You can optionally set a limit for the number of items to store in this stack by setting
the buffer-limit option to a number in your tmux configuration. This can be
useful if you only want, say, the last five items you copied in a paste buffer for
security reasons.

Manipulating Text

[72]

You can also list paste buffers non-interactively by pressing <Prefix>, : (list-buffers)
and Enter, which will display all the buffers in a list that you can scroll through.
Notice how each buffer has an index, which is a number, followed by the size of
that buffer. Press q (Esc) to dismiss this list.

This buffer index can be used in a few different operations. It can be used to delete a
buffer, to copy a buffer to another session, to load a buffer at a particular index, to set
the contents in a particular buffer, to write a buffer to a file, and much more. It is a bit
outside the scope of this book to cover all the things that can be done with buffers,
but we will revisit a few very useful tasks in Chapter 5, Diving Deeper.

As in prior chapters, there is a full key binding and command reference in the
appendix with all of the keys and commands we learned in this chapter handy,
all in one place.

Summary
In this chapter, we learned a lot about manipulating text, starting from
understanding the Window history to learning about the two different modes in
tmux to scroll up through the Window history. We then moved on to jumping by
search or line, copying text into a paste buffer, using Copy mode to copy text. We
finished by discussing how to paste items from the paste buffer to the underlying
window, how to view the whole paste buffer stack, and how to limit the number
of items stored in the paste buffer.

In the next chapter, we will get to some more advanced usage topics, including
a deeper understanding of the paste buffer, a bit more on sessions and windows,
and an opportunity to get a taste of launching tmux with defaults.

Diving Deeper
Now that we have learned about text manipulation with Copy mode and paste
buffers, we have discussed most of the basics of working with tmux. Let's dive
deeper into some more advanced usage topics that could be helpful in your
daily workflow.

We have gotten a taste of these items already, but this time around, we will explore
them in more depth. In this chapter, we will cover the following topics:

• Understanding tmux commands and Command mode
• Advanced paste buffer usage
• Jumping from one window in a session to a window in another session
• Moving windows
• Linking a window between sessions
• Breaking panes
• Joining panes
• Launching a session with default windows

Understanding tmux commands and
Command mode
You may have noticed that in prior chapters, we accessed some of our commands
using different methods. For example, we showed you how to list the current key
bindings. This can be done:

• By using the key combination <Prefix>, ?.
• By typing the command directly into a shell, prefacing the command with

the tmux keyword, for example, tmux list-keys.

Diving Deeper

[74]

• By entering Command mode via <Prefix>, : and typing the command
list-keys and then hitting Enter.

Command mode in tmux is a lot like the mode of the same name in vi
or the mode that we get by pressing Meta + x in Emacs. We touched on
Command mode briefly in Chapter 4, Manipulating Text. Once you enter
Command mode in tmux, you will have a prompt starting with a colon
(:), and anything you type is entered into that prompt. Hitting Enter
runs the tmux command you typed, like with vi.

What is going on here and why do all these three methods accomplish the
same thing?

Under the hood, each tmux command is its own small program, much like the small
classic programs underpinning any Linux, Unix, or OS X operating system such as
ls, cd, mkdir, rm, and so on. You can actually view them all in the tmux source code
online at http://sourceforge.net/p/tmux/tmux-code/ci/master/tree/.

Each of the commands is a small program, written in C and starting with the
prefix cmd-.

When we type a key combination or run tmux command-name or <Prefix>, :
command-name, we are instructing tmux to execute the code defined in that C file.

From here on, if we refer to a tmux command, keep in mind that it can be run using
any of the three previously discussed methods.

Advanced paste buffer usage
We just covered paste buffers in the last chapter, but there is more than we were able
to cover there. So let's cover some of the more advanced usage first while it's fresh in
our memory. We'll touch on the following advanced paste buffer topics:

• Saving a paste buffer to a file
• Loading a paste buffer from a file
• Setting a paste buffer directly
• Capturing pane contents to a paste buffer
• Deleting copied text from a paste buffer
• Clearing the paste buffer history

http://sourceforge.net/p/tmux/tmux-code/ci/master/tree/

Chapter 5

[75]

Saving a paste buffer to a file
Assume you've just copied a lot of excellent text to the paste buffer and now you
want to save it to a file.

Of course, you could open a text editor, paste the contents of the buffer, and save a
new file; however, tmux provides us with a handy way to save a paste buffer directly
to a file without all that fuss.

So jump back into your tmux session or start a new one and let's go!

1. First, find some text to copy. It could be any file with some text in it. For
example, we have a sample file with some text that we print out via cat
filename. You can use any file on your computer.

2. Recall that we can enter Copy mode by pressing <Prefix>, [.
3. Then, we can press Ctrl + Spacebar to start copying the text.
4. Move on to highlight the text.
5. Then, press Ctrl + w to copy it.

www.allitebooks.com

http://www.allitebooks.org

Diving Deeper

[76]

Alright, so now we have some text in the paste buffer at index 0. We can check this
out with <Prefix>, =.

We have 628 bytes there in that paste buffer. Hit q to dismiss that dialog. Now we
can run the tmux command save-buffer -b 0 [path]; here, [path] is the location
where we will save it and -b 0 indicates that we want to save the text from the paste
buffer with index 0, in this case, the text we just copied. After you run this command,
we'll have a new file with the contents of that buffer.

So, for instance, <Prefix>, : save-buffer -b 0 ~/sonnet16.poem will save the
contents of our paste buffer to a file. This can be extremely useful in many contexts.
For instance, let's say you are using the tail utility to follow a log file in real time.
If a useful snippet appears on the screen, jumping into Copy mode, copying it to a
paste buffer, and then saving it to a file is a convenient way to copy the relevant text
to a file. Alternatively, imagine you are reading a man file and want to snag a useful
snippet to a file for later use. In this case, copying the snippet first and then writing
that paste buffer directly to a file will store it for later use with expedience.

Loading a paste buffer from a file
We can also achieve the reverse, that is, loading the contents of a file into a paste
buffer. To do this, simply run the tmux command load-buffer [path], and the
contents of that file will be loaded into a paste buffer.

This is very useful if you have text in a file that you want to paste into any program
running within tmux; you can do this without having to navigate to and open that
file in an editor, select all of the text in the file with the cursor, and then copy it in
order to be able to paste it.

This can be incredibly useful, for example, as a way to utilize the core functionality
of tmux to have a very powerful code snippet manager.

Chapter 5

[77]

Say there are a bunch of different common boilerplate things you write in your code,
such as a for loop, a function definition, or a class declaration. You could create a
simple file for each snippet of boilerplate, load it directly into a paste buffer, and
then paste it from within tmux. If you had a folder in your home directory called
~/snippets and had boilerplate for a for loop with the name ~/snippets/forloop,
you could load it with the tmux command load-buffer ~/snippets/forloop and
then simply paste it into the current buffer with <Prefix>,]. Over time, as you build
up snippets for a lot of boilerplate code, you can save a lot of keystrokes.

By default, if no index is specified, the file's contents will be loaded into index 0, just
as if you had copied it normally via <Prefix>, [(with each other paste buffer moving
up one index); however, it's also possible to specify a buffer index to load it into.

Note that if a buffer index is specified, it must be an already existing buffer index,
and it will overwrite the contents of that paste buffer with the index you will
provide. So, for example, specifying buffer 0 with the tmux command load-buffer
-b 0 ~/snippets/forloop will not end up in index 0, pushing all the buffers up by
one; rather, it will entirely displace whatever was previously available in index 0.

Setting a paste buffer directly
It is also possible to set a buffer directly with tmux. This may be useful if you would
like to paste the same text multiple times. There is no need to type the whole text
out first and then copy it before being able to paste it; you can set the contents of a
buffer directly.

For example, say we would like to put a sentence into a buffer directly. We can do
this by issuing the tmux command set-buffer, optionally giving it an index and
providing text to put into that buffer. The following steps will guide you in setting
a paste buffer directly:

1. Try <Prefix>, :, set-buffer "The quick brown fox jumped over the
lazy dog".

2. Since we did not specify a buffer index, it will be pushed to the top of the
stack, in buffer index 0, with the rest of the buffers moving down one index.
We can view the contents of this buffer with the tmux command show-buffer.
Sure enough, you'll see that the content is the sentence we just set.

3. Now paste it onto the screen using <Prefix>,].

Diving Deeper

[78]

Capturing pane contents in a paste buffer
With tmux, we can even capture an entire pane in a paste buffer. Use the tmux
command capture-pane without any arguments to capture the contents of the
current pane in a buffer. The output is shown in the following screenshot:

Then, view the contents of that buffer with the tmux command show-buffer.

Note a few things:

• It will capture the contents of the current pane, but none of the tmux chrome.
In other words, it won't include the tmux status bar or the [0/0] stuff in the
upper-right corner that may have been present when you captured the pane.

• The capture-pane command will not always deal with the encoding of
special characters, if you have any, present in the pane when captured, such
as the ones you'll see in our previous screenshot. For example, see how the
arrows and tilde for my command line came out as \356\202\260.

• It will capture the exact viewable portion of the pane so it knows how small
or large your window is, and it will output exactly what's viewable in that
pane at the current point in time only. (Note that it is possible to capture
more than the pane that is visible, or less, by providing a start line index,
end line index, or both to the capture-pane command.)

This command is very useful if you have a lot you'd like to copy and don't want the
hassle of having to enter Copy mode and select the whole pane.

Chapter 5

[79]

Deleting copied text from a paste buffer
Imagine you have copied some sensitive information using the methods we
discussed. For most cases, it is very nice that tmux keeps it all around in the paste
buffer stack, but what if you want or need to get rid of one or more items from
that stack?

For example, say you used Copy mode of tmux to copy a password or a social
security number; you probably don't want it sticking around forever in the paste
buffer for someone to come along later and paste it. Thankfully, tmux provides us
with the following ways to delete the text from the buffer stack:

• By default, the keyboard command <Prefix>, - will delete the last copied item
from the paste buffer. This is the most convenient way to remove something
you just copied/pasted. This has the side effect of bumping the index down
of every other item in the paste buffer, like popping the top item off a stack.

• The tmux command delete-buffer will allow you to target a specific buffer
and delete it. For example, delete-buffer -b 2 will delete the buffer at
index 2.

Clearing the paste buffer history
Similar to removing sensitive information from the paste buffer, you may desire
to remove sensitive information from the tmux Window history, both on the screen
and information that has scrolled off the screen.

This is particularly helpful if you use something like pass, a
command-line password storage mechanism that will display
your passwords on the screen when you retrieve them.
For more information, visit:
http://www.zx2c4.com/projects/password-store/

Once a password or some other sensitive information is displayed on the screen, it
will seemingly remain in your Window history forever. This means that someone
nefarious accessing your existing session may be able to just scroll back up through
your history in Copy mode and see those passwords.

Running the Unix command clear within a pane will reset the viewport, but it does
so simply by scrolling the other text up and out of the pane. If you move into Copy
mode with <Prefix>, [, the contents of that window would still be visible once you
scroll up.

http://www.zx2c4.com/projects/password-store/

Diving Deeper

[80]

Surely, there must be some way to purge that Window history to help prevent this.
There sure is; it is the tmux command clear-history. Optionally, you can provide
a target pane, and it will clear the history for that pane. For instance, clear-history
-t 1 will clear the history for pane 1 even if that is not your currently active pane.

While clearing the history, it will clear everything that was in the Window
history that scrolled out of that pane, but it will retain everything that is
currently visible in that pane. To clear the history and everything in that
pane, it is best to run the Unix command clear first to push it off the
screen, then the tmux command clear-history to flush everything.
Note that if there is extremely sensitive information that needs to be
cleared, it may be best to restart tmux after you clear the Window history.
This sensitive information, while expunged from the Window history and
therefore not available in Copy mode, could still potentially be sniffed by
a very capable hacker. Its bits may linger and be salvageable from a tmux
memory dump, so restarting tmux is the only way to be entirely sure that
it is gone from the memory as well. While this is a case that is quite on the
fringe, it bears mentioning.

An advanced session and window usage
Back when we discussed sessions, we walked through how to switch from one
session to another. What we didn't cover were some more advanced things such
as switching from one window in one session directly to another specific window
in another session, moving windows between sessions and sharing windows
between sessions.

Jumping from one window in a session to
another window in another session
A couple of chapters back, we discussed switching between multiple sessions using
<Prefix>, s to bring up the list of sessions and select any of them.

OK! So let's get set up a bit. We'll need two active sessions with a couple of windows
each. If you followed along the previous section, we should already have one active
session; let's create another session using the tmux command, new-session -s
"Another".

Now let's create another window using <Prefix>, c and run some command in it, for
instance, top:

$ top

Chapter 5

[81]

The output of this command is shown in the following screenshot:

Let's switch back to our other session with <Prefix>, s and then highlight and select
the other session we want, as shown here:

Jump onto the other session (Advanced, as shown in the preceding screenshot).
Now if we do the same thing again, using <Prefix>, s and switch back to the
Another session, we will arrive back in Another, in window 2 that is running top.
This is because tmux will take us back to the last window we were viewing in an
active session.

However, what if we wanted to move directly from one session to a specific window
in another? Surely, we should not have to switch to the session and then select the
window. Well, we can directly choose a window within a session, and tmux actually
makes this a breeze.

Diving Deeper

[82]

Bring up the choose-tree interface again with <Prefix>, s. Notice the plus symbols
to the left of the session names? They're there because that session can be expanded
to show the windows running in those sessions. Simply highlight the session you
want to drill into and tap the Space bar or right arrow key to unfold that session and
see a list of the windows in that session. Notice how it resembles a file tree, as shown
in the following screenshot. This is why this command has the name that it does.

Recall from our first chapter what some of the magic characters on the window
mean? The characters are as follows:

• The character * indicates the currently active window
• The character - indicates the previously active window

In the preceding screenshot, you can see that window 2 running top was our
currently active window. If we just selected the session by choosing (1), we would be
plopped back into that session with the window running top. However, if we want
to go directly to the other window, we can do this by highlighting it, refer to the
previous screenshot, and hitting Enter.

Moving windows
So we've got top running in the session named Another. Imagine that we want to
move that window to our session named Advanced. First, switch to the window
with top running. Now run the tmux command move-window. It is conveniently
bound to the keyboard shortcut <Prefix>, . so you can type that and then provide
the name of the destination session which, in our case, is Advanced.

Note how that window is gone; now our Another session has only one window.
The window with top was moved to the Advanced session, but we are still in the
Another session. tmux opened the other window to keep us in the current session.

Chapter 5

[83]

Now pull up the session list again using <Prefix>, s and then expand Advanced.
In the following screenshot, we can see how it now has three windows, the last of
which is the window that we just moved by running top:

Note that this same command can also be used to move a window to a different
index within the same session. We can specify the numerical index we'd like the
window moved to within this session rather than providing a session name. For
instance, to move a window to index 5, we could run the same move-window
command via <Prefix>, . and then enter 5; by doing this, the status bar will be
updated to reflect this window's new index.

When being moved from one session to another, the window will, by default, be
placed at the lowest available base index. So, if you have set the base index to 1 and
have windows in index 1 and 3, the moved window will land in this session with
index 2.

To specify both the session and window index as the home for the window, specify
both, separating them with a colon. For example, to move this window to the
Another session in window index 7, you could use the move-window command with
the argument Another:7 where the session comes before the colon and the window
index after.

This is also useful to move a window to a session with a numeric name, such as the
default session name 0. By default, if you specify a number alone to the move-window
command, tmux will assume you meant the window index 0 and not the session
named 0. To specify this, you will use the command move-window 0: to explicitly
specify the session named 0.

Linking a window between sessions
Now moving the window between sessions is quite useful, but what if we want
to use the same program in multiple sessions and not have multiple instances of
it running?

Diving Deeper

[84]

The top command is a great example. We could start another window now in our
Another session which no longer has top because we moved it to Advanced, but
then we will have two copies of top running; this will mean that we will be using
double the amount of CPU and memory. There is nothing particularly interesting
about top that will require us to have two instances of it running so doing so will
be a waste of resources.

Therefore, let's not run two copies of top but instead link one window to both the
sessions so it is accessible from either session.

First, let's open the window with top running. Now run the tmux command
link-window -t Another. This tells tmux to link the window to the Another
session as well.

You can use the same session:window syntax we saw previously for the
move-window command to specify not only a destination session, but also a
destination window index. For example, link-window -t Another:5 will link
this window to the Another session in window index 5.

The window is now accessible from both the sessions. In the following screenshot,
it is window 3 on the Advanced session and window 2 on the Another session:

You can also link a window without first switching to it by specifying it as the source
to the link-window command with the flag -s. For example, link-window -s
Advanced:3 -t Another:2 will link the window to the Advanced session, window
index 3 to the Another session, window index 2 without requiring us to switch to the
Advanced index 3 first as we did in the previous example.

So we are saving some resources by linking a window between sessions rather than
creating a new one. This is useful for any command that does not require multiple
instances to be effective that you may want accessible from multiple sessions. Aside
from top, email clients such as alpine or mutt fall into this category, as do things
such as irssi or a command-line music player. I will often run a window in the
Org mode for Emacs linked like this so the list of to-dos is shared across sessions.

Chapter 5

[85]

Note that if you do this, killing a pane or window in one place will
kill it at both the places.
To later remove a window from one session but not the other, you
will need to unlink the window rather than kill it by using the tmux
command, unlink-window.

Breaking panes
The act of taking a pane within a window and moving it to its own window is called
breaking that pane. It can be accomplished with the tmux command break-pane or
the keys <Prefix>, !.

By default, the break-pane command will operate on the currently selected pane;
however, any arbitrary pane can be specified using the same syntax we saw in
the previous example to select a window within a session, specifically separating
the session and window name by a colon. However, of course, a pane also has an
index, which can be added after the window separated by a period. This all sounds
complex, but it is actually rather intuitive.

For example, to select pane 2 in window 1 in the session Advanced and break it into
its own window, we could use the command break-pane -s Advanced:1.2.

Remember that you can see the current pane indexes flash on the
screen briefly with the key binding <Prefix>, q.

When you break a pane, tmux automatically switches the window to select the
window that now contains that pane.

Joining panes
In addition to linking windows between one session and another, you can also do
something called joining panes. The name can seem a bit misleading at first, but
essentially, this is used to take a pane in one window and move it to another window.

It can be used to move one pane in a multipaned window to another window, but it
can also be used to take a window, which has only one pane, and join it with another
(now its name is probably a bit less misleading). This is very useful if you have two
windows running different things but decide you'd prefer them as two panes of the
same window.

Diving Deeper

[86]

For example, let's say we have a pane running in one window and we want to join it
with another window. In the simplest case, we could switch to the pane we want to
join and run the command join-pane -t :1 where :1 indicates that we want the
window in index 1 in the current session. After running this command, the window
index 1 in the current session will have the contents of any panes it had before in
addition to the new pane we just joined to it.

Using the same elaborate session:window.pane syntax we saw previously, we
can specify a source pane and target destination to get really slick about it. Say
we want to take the pane in the session Advanced, window 2, pane 1, and move
it to the session Another, window 1, and not specify a pane number so it defaults
to the lowest available index. We can do this with the command join-pane -s
Advanced:2.1 Another:1

As you can now see, joining panes is an incredibly powerful tool in your tmux
arsenal that will allow you to combine multiple panes into one. Now you have
learned how to break a pane off into its own window, how to combine it with
other panes, how to move windows and link them between sessions, and more.

Launching with defaults
Imagine you integrate tmux into your workflow such that you get very used to
certain things being in certain places, perhaps a shell at the root of your code
repository in window 1, Emacs in window 2, top in window 3, and so on. Now every
time you reboot your machine, you spend some time to set up everything again, start
a new session, create three windows, launch the programs in each window, and
so on; there must be a better way. Of course there is!

tmux gives us some ways to configure things with nice defaults out of the box. We'll
also see another way to do this later in Chapter 7, Using Other Tools with tmux, with a
third-party utility.

So let's take the previous example and run through it. There are ways to make some
of this happen within your .tmux.conf, file but it's generally more powerful to do
it externally via a separate bash script. So hop into your favorite editor and start
editing a new file named .tmux.defaults. You can name this file anything, so if
you have multiple sessions you may want to name it based on the session name.

Now let's specify our configuration. In this file, copy the following code:

new -n term zsh
neww -n emacs emacs
neww -n htop htop

Chapter 5

[87]

Of course, your commands may be slightly different based on your system
configuration and what you would like to run by default.

Now, to run with this configuration file, start tmux as follows:

$ tmux source-file ~/.tmux.defaults

That's it! You'll see yourself get started in a new session with three windows: the first
running a terminal, the second in Emacs, and the third in top.

Again, you can create multiple configurations like this by simply creating multiple
files, one for each session you'd like to automate.

For more details on launching tmux with defaults, check out the
tmux manual section on session initialization: https://wiki.
archlinux.org/index.php/Tmux#Session_initialization

It is possible to create more complex session initializations than our previous
example, but complex configurations are often tasks better suited to third-party
tools, as we will see in Chapter 7, Using Other Tools with tmux.

Summary
In this chapter, we revisited a handful of tmux topics, going into far more depth than
we were able to in earlier chapters. At this point, you should have a great grasp and
depth of information on paste buffers, sessions, windows, panes, and all of the other
topics we covered in great depth here.

In the next chapter, we will not learn more about the mechanics of tmux itself, but
rather a bunch of tricks and tips for its use that can help maximize your productivity.

https://wiki.archlinux.org/index.php/Tmux#Session_initialization
https://wiki.archlinux.org/index.php/Tmux#Session_initialization

tmux for SSH, Pair
Programming, and More

By now, we have gone over nearly everything about the mechanics of tmux. Putting
together everything from the previous chapters, we now know about configuration,
sessions, windows and panes, text manipulation, and a smorgasbord of advanced
usage in topics such as the paste buffer, moving windows, panes, and even
launching sessions with some defaults. So at this point, we can use, configure,
and customize tmux in many awesome ways.

Now, we will not explore new concepts in the mechanics of using tmux, but new
ways to utilize the things we have already learned in order to simplify everyday
workflows. In this chapter, we will cover the following topics:

• Using tmux over SSH for long lived sessions
 ° Setting up a virtual machine with Vagrant
 ° Workflow with tmux over SSH
 ° Launching tmux over SSH on connect

• Using tmux for pair programming
 ° Connection to the same session
 ° Using Vagrant Cloud for pair programming
 ° Using grouped sessions for pairing

tmux for SSH, Pair Programming, and More

[90]

Using tmux over SSH for long lived
sessions
How many times have you been connected to a remote server over SSH just to have
some network blip terminate your session, putting you back at square one when
you reconnect?

With tmux, you can connect to a remote server, start a tmux session, and set up
windows and panes the way you'd like them. Then, if you get disconnected from
the remote server for any reason—be it a network blip, the SSH session timing
out, disconnecting from a VPN, or simply closing your laptop to go home for
the day—you can SSH into that machine later and reconnect to your tmux session
which has continued running, preserving your state as you left it.

This is my favorite use of tmux and one that saves the most time in my daily
workflow. Not only because it is useful to deal with network connectivity issues
gracefully, but also since most remote servers running Linux are rarely terminated;
this means that once you start a tmux session, it can persist for weeks or months.

Practically speaking, this means that every day when you connect to some remote
server, you could be saving time setting everything up by using tmux. You won't
have to change to the directory you usually want open in one window, you won't
have to connect tail to a logfile in another window, and you won't have to open a
file for editing in your favorite text editor in another. They'll already be there, just
the way you left them before—thanks to tmux.

Let's walk through a hands-on example of this in action. For this, either connect to
a remote server over SSH, or we have short instructions on using Vagrant to create
a virtual machine locally to which you can connect.

Benefits of using Vagrant
Vagrant is an incredibly easy way to use virtualization to get a machine up and
running locally. We suggest using it here for consistency.

The instructions we give should work when connected to just about any Linux server,
but since there are so many different Linux distributions, versions, and more, there
are bound to be slight inconsistencies.

By using Vagrant, we can ensure that the environment we authors have locally
matches the instructions we provide which will match the environment you readers
have locally if you also use Vagrant to set up your environment.

Chapter 6

[91]

Having Vagrant set up will also prove helpful later in this chapter when we discuss
using tmux for pair programming, which could open security vulnerabilities without
a sandboxed instance like this.

If you would still like to skip Vagrant and just connect to a local machine, simply
skip the next section and you should be able to continue with your remote box
instead. Again, be forewarned that without Vagrant, some of these commands may
not work exactly as specified and may need tweaking based on your Linux distro.

Creating a virtual machine with Vagrant
Ok, so we are going to create a virtual machine with Vagrant and we will then
connect to it via SSH to illustrate some of the topics we will discuss relating to SSH.
This will help give some consistency to the instructions and allow you, even if you
have no access to a Linux server, to follow along.

First, install Vagrant. Instructions are available on the Vagrant website at:

http://docs.vagrantup.com/v2/installation/index.html

Next, navigate to a directory in which you'd like the Vagrantfile to live. A
Vagrantfile specifies what should be installed when this machine is brought
to life and its file can go basically anywhere.

So jump into your terminal and navigate to and/or create a directory for this file to
call home. Now let's create a Vagrantfile. In a terminal, in your directory of choice,
run the following command:

$ vagrant init ubuntu/trusty64

This will create a file in that directory named Vagrantfile. If you inspect that file,
you will see it's rather simple with most of it commented out. We can leave most of
the content in the file alone, but one bit we want to uncomment is the highlighted
portion of the following snippet:

 # Create a private network, which allows host-only
 access to the machine
 # using a specific IP.
 # config.vm.network "private_network", ip: "192.168.33.10"

To uncomment it, remove the # at the start of that line. It was line 26 in our
Vagrantfile. This one change will ensure that we can connect to our machine
locally via the IP address 192.168.33.10.

http://docs.vagrantup.com/v2/installation/index.html

tmux for SSH, Pair Programming, and More

[92]

Next, let's add one line, directly after that line we just uncommented so that bit of the
file should now look like the following code snippet:

 # Create a private network, which allows host-only
 access to the machine
 # using a specific IP.
 config.vm.network "private_network", ip: "192.168.33.10"
 config.vm.hostname = "tmux.dev"

This snippet is added so that we can SSH into our Vagrant box just as though it was
our remote server in the cloud, and we can do so using the hostname tmux.dev.

This hostname trick may not work depending on your version of
Vagrant and your OS. If later, the machine seems inaccessible at
the previous hostname, you can still access the Vagrant box at its
IP address.

If we skip this, Vagrant does give us a way to connect to the box over SSH without
needing the IP address (vagrant ssh), but then it will not look/feel like a remote
server which is the intent here. So, although we'll be creating a machine locally,
pretend it's the cloud server you connect to in doing your job. Let's start our virtual
machine. Thanks to Vagrant, this is as easy as using the following command:

$ vagrant up

Now, the first time you run this, it'll take a little while. How long it takes will depend
on the speed of your Internet connection, but for us it took about 7 minutes. It takes
so long because it is downloading an image of an entire virtual machine with the
latest version of Ubuntu.

Vagrant will give you some helpful output about what it's doing and near the end
will ask for your password. This is your local user password and necessary because
it asks for permission to write to your /etc/hosts file to add the entry to the name
we provided (in our case, tmux.dev).

After Vagrant works its magic, we can connect to it. Make sure you detach your
current tmux session if you have one active and run the following command line
from a shell (not within tmux). If you run it from within tmux, you will end up with
nested tmux sessions, which will be rather troublesome. From your command line,
run the following command:

$ ssh -i ~/.vagrant.d/insecure_private_key vagrant@tmux.dev

Let's break this command line down a bit.

Chapter 6

[93]

The -i ~/.vagrant.d/insecure_private_key part of the command specifies
that we connect using this private key. This is the default created by Vagrant for this
box. You can modify it to use your own personal private key but that's beyond the
scope here.

The vagrant@tmux.dev part of the command specifies that we want to connect to
the hostname we created, tmux.dev, and we want to connect as the vagrant user;
the default user Vagrant creates when it initializes the box.

When you run this command you should be connected by SSH to our Vagrant
machine!

Walking through a sample workflow with tmux
over SSH
Let's now walk through our workflow with tmux over SSH. Thankfully, Trusty Tahr,
the Ubuntu version we installed via Vagrant, comes with tmux already installed so
we are ready to rock.

If you followed along and created a Vagrant box, you should have an SSH session
connected to that machine. If you skipped the last session, SSH into your server
and ensure you have tmux installed. Now, from your terminal on your SSH session
in either Vagrant or a remote server, let's run the following familiar command to
initiate a new tmux session:

$ tmux new-session -s MyServer

This command will launch a new tmux session called MyServer.

Now, let's do some stuff. Since every user has different needs and different
workflows, we have a sample workflow we'll run through; as we run through the
workflow, imagine substituting these steps for those which apply to your specific
use. First, create a new window using the keyboard command <Prefix>, c.

tmux for SSH, Pair Programming, and More

[94]

One thing you may notice is that if you followed along earlier with
Chapter 2, Configuring tmux, or if you created your own prefix key, it no
longer works. Why is this?
You have created a brand new machine with Vagrant (or connected to a
server). This is not your local machine. tmux pulls its configuration from
the file ~/.tmux.conf, which does not exist on this other machine!
You can copy the file onto this machine (using the command $ scp
-i ~/.vagrant.d/insecure_private_key ~/.tmux.conf
vagrant@tmux.dev:~), create a new .tmux.conf file on that machine,
or create a repository on GitHub with this (and possibly other dotfiles)
that can be cloned on any remote machine you touch.

In this new window, open a file for editing using the following command:

$ nano myfile

Now create another window using <Prefix>, c and let's run top:

$ top

Open one more window by pressing <Prefix> c and let's tail a logfile this time:

$ tail -f /var/log/boot.log

Note that this is a rather boring logfile to tail as it won't change until next boot, but
pretend it's an exciting web server logfile or something.

Ok, so now we've got four windows as shown in the following screenshot, each
running different things on this remote machine using tmux:

Chapter 6

[95]

Now close your terminal window. Yes, I'm serious, trust me—everything will keep
running! Imagine this is the same as dropping your network connection, having an
SSH timeout, or going home for the day. Open a brand new terminal window. Run
the following SSH command we ran before:

$ ssh -i ~/.vagrant.d/insecure_private_key vagrant@tmux.dev

Once you're connected via SSH, run the following command:

$ tmux attach-session -t MyServer

You can even run the following abbreviated version of the command to attach the
session that you had running:

$ tmux attach

Lo and behold, there is everything just as you had left it! It will persist through all
your disconnections for as long as that server stays up. Imagine the daily time saving
in not having to open all these windows every morning when you connect to the
server or any time you get disconnected!

Launching tmux on SSH connect
automatically
You can also trigger tmux to be run on SSH connect automatically so you don't have
to connect then start tmux. Close your terminal window again and open a new one.
In this new window, run the following command:

$ ssh -i ~/.vagrant.d/insecure_private_key vagrant@tmux.dev -t -- 'tmux
attach-session -t "MyServer"'

This tells SSH that after you connect, you want to immediately run the tmux
attach-session command and reattach the session you had before. Now this is
handy, but your command to connect to your server is getting rather long! We could
place this long command in an executable shell script and run that script to connect
to your remote server. Alternatively, we can also make things a bit easier by tucking
most of it away in our SSH configuration. Jump into your favorite editor and edit
the ~/.ssh/config file. This file probably already exists; it is used whenever you
connect to a server using SSH. Add the following lines to the file:

Host tmux
 HostName tmux.dev
 User vagrant
 IdentityFile ~/.vagrant.d/insecure_private_key

tmux for SSH, Pair Programming, and More

[96]

Now you can connect more easily with the following simplified command:

$ ssh tmux -t -- 'tmux attach-session -t MyServer'

Unfortunately, there is not a great way to tuck away the tmux command
into the ~/.ssh/config file. There is, however, a way to do it on the
server by tweaking the ~/.ssh/authorized_keys file.
We leave this as an exercise for the user as this is going in-depth into the
concept and because it's not always desirable to initiate tmux every single
time you connect to a remote host.
It could also create issues connecting to the remote host. For example,
imagine you specify that on connecting the remote session should always
run tmux attach-session -t MyServer. However, what happens
when the session MyServer doesn't already exist? You could be locked
out of the server! So tread carefully here dear reader.

Using tmux for pair programming
So we saw how to create sessions and how you can attach an existing session,
but did you wonder what would happen if more than one terminal attached
to the same session?

The ability to connect multiple terminals to the same session ends up being one of
the biggest advantages tmux offers. By allowing two or more terminal windows
to connect to the same tmux session, tmux becomes an extremely powerful
collaboration tool. With tmux, two or more people can see and even interact
with the same content at the same time!

Connecting to the same session locally
Before we get to full pair programming, let's try just connecting to the same session
locally in two different terminal windows and see what happens.

If you followed the previous instructions, you should be able to pull up your tmux
session by opening a new terminal window and running:

$ ssh tmux -t -- 'tmux attach-session -t MyServer'

Chapter 6

[97]

That will connect to the box over SSH and attach your tmux session. Now, open
another terminal window and run that exact same command again in this new
window. You should notice that it is connecting and the session is looking
very familiar.

Notice what happens if you type something in one window; it appears immediately
in the other window! Now type in the other and you'll see the same happens in
reverse. What you're seeing is the magic of tmux in all its glory. Each character
entered in one window is propagated to the other and vice versa. You could even
open up a third and you'd see the same behavior—typing in any of them also occurs
immediately in the others.

Try switching from one window to another within tmux with the keyboard
command <Prefix>, n. See how it changes in all windows simultaneously? How
cool is that? Now you should be starting to see how this could be useful for pair
programming. You could have one person in one place connected to a machine and
someone else far away connected to the same machine and one person would see
the other coding in real time and be able to interact as well!

Now try resizing one of the windows. Make it a bit wider and taller than the other
window. Notice how there are dots along the edge in the larger window as shown
in the following screenshot:

These dots are used as padding to ensure that the usable window size is the same
for both viewers, regardless of the size of their terminal windows. This ensures the
window within the dots will always be the size of the minimum height or width
across all windows. This ensures consistency in terms of what each viewer sees,
how each cursor moves, and so on.

tmux for SSH, Pair Programming, and More

[98]

This behavior can also be modified slightly with a setting called
aggressive-resize.
What we described in this section is the default behavior, but
this kind of resizing with dots may be unnecessary in certain
circumstances—particularly if attached clients are not both looking at
the same window at the same time.
The behavior can be modified to only pad with dots, as we have seen,
when another client with a smaller window is currently looking at
it. This helps constrain the resizing and letterboxing to only the case
where it is likely useful. To enable aggressive-resize, put the
following snippet in your .tmux.conf file:
set-option -w aggressive-resize on

Vagrant Cloud for better security pair
programming
Now you may have seen the preceding example and noticed that in our example
we both SSH'd into the same box as the same user. Unless you want to give your
password or worse your private key to your pair, this is not a very workable
solution. Your company may have a central server you both can access with your
own accounts, in which case this may not be an issue for you. Otherwise, you may
see this solution as a massive security hole. Even if you do have a shared server
space, whichever of the pair is the "host" will open up their machine for shared
viewing, which could be dangerous. If the other in the pair decided to copy the
host's private key on a company server, there could be trouble.

This is why we suggest Vagrant Cloud for better security when pair programming.
By spinning up a fresh virtual machine in the cloud, there is unlikely to be sensitive
information accessible. You can share it at will with someone, trusted or not, and
have a bit more piece of mind about security.

I have actually done this and used the pair programming for the coding part of a job
interview on more than one occasion. You certainly wouldn't want to do that with an
internal company server! If you'd prefer not to deal with Vagrant, simply jump to the
next section.

Chapter 6

[99]

So let's get started. The following steps will guide you in using Vagrant:

1. Go to https://vagrantcloud.com/ and sign up. It's free to create
an account.

2. Next, go back to a terminal, one not in the SSH session already (you can open
a new one or detach one of the existing tmux sessions with the keyboard
command <Prefix>, d), and enter the following command:
$ vagrant login

3. Provide your username and password and you'll be logged in.
4. Navigate back to the directory where you created your Vagrantfile and

run the command:
$ vagrant share --ssh

5. You will be prompted to provide a password to encrypt the SSH key. Give
it something that is a decent password but which you can share with the
person you're pairing with.

6. On the screen, Vagrant will give instructions for the other user to connect
and issue your machine a random name. Your current screen will look
similar to the following screenshot:

https://vagrantcloud.com/

tmux for SSH, Pair Programming, and More

[100]

7. Now open another terminal window (simulating another user on a remote
machine) and run the command it suggested. In my case, the command
used was:
$ vagrant connect --ssh greedy-lamb-6478

However, the machine name will be different for you since it's randomized.
After entering the SSH key password, you'll be connected via SSH to the
server! This could be a person on the other side of the world.

8. Now run tmux and attach the session of interest:
$ tmux attach-session -t MyServer

And you're ready to rock.

Of course, the other person connecting will also have to sign up for Vagrant Cloud in
order to connect. This is an incredibly easy way to come up with a relatively safe pair
programming environment so two (or more) people can collaborate in real time over
the Web without fear of compromising one of the collaborator's environments.

If the worst happens and one of the pair is nefarious, the worst they can do is make a
mess of this virtual machine, which was created with only a handful of commands.

Using grouped sessions for pairing
You may have seen the previous pairing and thought, "Well that's great and seeing
what the other person sees in real time is cool, but what if you want each person
to be able to have different windows?"

This is where grouped sessions come in. You can have one person create a session
and the next to join create a new session, but specify the grouped session as well.
This way, each person has their own control over the windows in a session, but
anything they do in each session is shared. This allows one person to be in one
window and the other in another.

They can switch to each other's sessions at will, but otherwise don't need every
command and keystroke to enact on both windows. To create a grouped session,
one person must initiate the session as we discussed previously. If you still have
the MyServer session running, you can use that.

Chapter 6

[101]

In a new terminal window, connect to the same server but instead of attaching that
same session with tmux, run the following command:

$ tmux new-session -t MyServer -s MySession

This instructs tmux to create a new session, but with the same target. This initializes
a grouped session. The MyServer session is the grouped session, so the new
connector can view it, but new connector can also switch to another window
without stealing the initial user's view.

While this new session shares the same target, it essentially clones the original
session and creates another for the second viewer. They are linked; so as one user
opens new windows or changes anything in one session, the same will happen in
the other session, but both sessions can have different names and both sessions will
appear in the list of sessions as two different sessions. This way, if the second viewer
kills their session (with the tmux command kill-session -t {session name}),
the first session will continue running.

This allows the second user that connected to go off and do their own thing,
creating more windows, using a different program, and so on, but without
stealing the spotlight and forcing the host to watch their every move.

Now in each of our examples, we only showed two clients connecting to the same
session. However, that could just as easily be 3, 13, 37, 359, or more. While there is
no stated limit to the number of clients that can connect to a session simultaneously,
there will be a practical limit on throughput and bandwidth and memory at some
point. However, tmux does not enforce a set limit.

Summary
We learned some tricks of using tmux in a daily workflow. We learned how it can
be used to help created long-lived SSH sessions and how it can be used for pair
programming with a stop along the way to learn about using Vagrant to set up a
shareable virtual machine.

In the next chapter, our last, we will discuss how we can use some other third-party
tools with tmux to make it even more powerful.

Using Other Tools with tmux
As we saw in the past chapter, tmux is great for long lived SSH sessions and for
pair programming with its own core functionality. However, as much as tmux is a
fantastic development tool on its own, there are still some bits of functionality that
it lacks. For example, as we saw back in Chapter 5, Diving Deeper, starting a tmux
session with defaults is a bit difficult.

Thankfully, like many open source applications, there are many third-party tools
that have sprung up to help fill those gaps.

In this last chapter, we will explore some of the best tools to augment tmux and
make the tmux experience even more awesome. We will touch on the following
topics/tools:

• Using tmux with the OS X Pasteboard
• tmux configuration from the maximum-awesome project, by Square
• Using tmuxinator to make session management easier
• Using wemux to ease the multiuser experience

Using tmux with the OS X Pasteboard
As the title implies, this first section is a Mac specific one. If you're on any other
platform, skip it.

If you're used to the OS X Pasteboard and the command line, you may be familiar
with the pbcopy and pbpaste tools. These are two small command line utility
programs that ship with OS X that allow you to pipe command line content
to the system-wide clipboard and vice versa.

Using Other Tools with tmux

[104]

A sample usage would be to run a command like the following:

$ cat Sonnet16.text | pbcopy

This command will print out the contents of the Sonnet16.text file and pipe them
into the pbcopy program, which will then make the contents of that file easy to be
pasted in OS X in any program with simply ⌘ + v.

The problem is that if you try this trick within a tmux session, it won't work! This
is because the OS X Pasteboard doesn't play nicely. A short way to explain it is that
because tmux runs its server as a daemon (which is what allows you to detach then
reattach with it still running), OS X denies permission for it to access the Pasteboard.
This is done for security purposes, so other programs running in the background are
unable to access the Pasteboard. However, programs we'd like to have access to the
Pasteboard, such as tmux, cannot access it without some tricks.

For the more information, see this lengthy description in README for
a utility that fixes the issue: https://github.com/ChrisJohnsen/
tmux-MacOSX-pasteboard#mac-os-x-pasteboard-access-
under-tmux-and-screen.

However, since we do want tmux to have access to the OS X Pasteboard, surely there
must be some way around this security restriction! Thankfully, some smart minds
have come before us and solved the problem.

It'll take two steps. First, we'll install the small utility program. Second, we'll update
our .tmux.conf file to launch every new window using this utility.

Let's first install the program. If you are a developer, you may already have
Homebrew or MacPorts installed. (If not, we recommend that you install
Homebrew: http://brew.sh)

Now, use the following command to install this utility using Homebrew:

$ brew install reattach-to-user-namespace

You can even use the following command if you prefer MacPorts:

$ port install tmux-pasteboard

Now, add the following lines to your .tmux.conf file:

Make tmux and OS X Pasteboard play nicely
set-option -g default-command "reattach-to-user-namespace -l zsh"

https://github.com/ChrisJohnsen/tmux-MacOSX-pasteboard#mac-os-x-pasteboard-access-under-tmux-and-screen
https://github.com/ChrisJohnsen/tmux-MacOSX-pasteboard#mac-os-x-pasteboard-access-under-tmux-and-screen
https://github.com/ChrisJohnsen/tmux-MacOSX-pasteboard#mac-os-x-pasteboard-access-under-tmux-and-screen
http://brew.sh

Chapter 7

[105]

Here, zsh can be replaced by your shell of choice, so it could be bash, or fish, or
any other shell of your choice. By adding these lines to your configuration, you are
basically telling tmux that any new window it launches should launch with that
command rather than just a normal new shell. This new command is a shell that has
been patched to play nicely with the OS X Pasteboard so pbcopy and pbpaste work
as intended.

You may notice that this will only work on a system with the reattach-to-user-
namespace utility installed and will cause issues on Linux or another Mac that did not
have that installed. This can be remedied by using the following formulation instead:

if-shell 'test -x /usr/local/bin/reattach-to-user-namespace' 'set-
option -g default-command "reattach-to-user-namespace -l zsh"'

This will run only on systems that have this reattach-to-user-namespace
command. The if-shell bit is a very useful little tmux command that will run the
second command that follows it, provided the first command that follows it returns
success. In our case, using the test -x command allows us to check and see whether
the reattach-to-user-namespace file exists. If it does, it runs the tmux set-option
to use the fixed item. If not, it runs nothing, so it will not break on systems that do
not have this script.

tmux configuration from the
maximum-awesome project, by Square
While we're on the topic of configuration, we should discuss the maximum-awesome
project, and the configuration files for Vim and tmux from the folks at Square. Square
specializes in payments and is very active in the open source community.

They have put a ton of thought and effort over the years into curating what they
consider to be the ideal configuration for Vim and tmux and they have it freely
available on GitHub: https://github.com/square/maximum-awesome.

Be forewarned, their configuration is rather Vim opinionated, but that caveat aside,
they have baked up a truly awesome set of configurations.

Our favorite thing about these configuration files is that they provide a good set of
defaults and recently added support for a .tmux.conf.local file intended for user
overrides and custom commands. They are both great drop-in configuration files
and great sources of inspiration for creating your own configuration.

https://github.com/square/maximum-awesome

Using Other Tools with tmux

[106]

So let's give maximum-awesome a go. Navigate to a directory where you can clone
this repository. For example, we'll do it in our home directory. Enter the following
command to get started:

$ cd

Then, clone the repository with the following command:

$ git clone https://github.com/square/maximum-awesome.git

Next, change into that directory:

$ cd maximum-awesome

Run the rake command to install the project:

$ rake

Here, rake is short for the Ruby command make and it is the ruby
analogue to make. If you do not have it installed, it can be installed
with the command gem install rake. If you do not have
gem installed, look to the RubyGems website for instructions:
https://rubygems.org/pages/download.

Now, the gems should be installed! Now if you launch tmux, you'll be in
maximum-awesome's configuration.

Also, be forewarned that loading maximum-awesome can wipe
out your locally configured .tmux.conf file (since the whole
point, in essence, is that it is an awesome .tmux.conf file).
So be sure to back up your .tmux.conf file before running this
command.

Using tmuxinator to make session
management easier
In Chapter 5, Diving Deeper, we touched a bit on starting tmux with some default
session configuration in the Launch with defaults section.

You may have noticed that even a rather simple configuration turned out to be
a bit complex and tricky. This is one of those areas of core tmux that leaves a little
to be desired.

https://rubygems.org/pages/download

Chapter 7

[107]

Thankfully, the open source world has stepped up to the plate and created an
excellent utility called tmuxinator to make this kind of configuration far simpler.

Built in ruby, tmuxinator is easy to install and provides a ton of useful capability. It
does so by allowing you to specify in a simple and intuitive YAML syntax how you'd
like your window laid out, any programs that should be run on launch, and more.
tmuxinator allows you to create hooks that run before any window configuration is
run and makes it much, much easier to specify a set of default windows and panes
than in core tmux.

Let's run through the workflow of installing and creating a sample tmuxinator
configuration file.

Installing tmuxinator
Since it is built in ruby, it's available as a ruby gem so installation is a breeze. In a
command line, simply run:

$ gem install tmuxinator

Depending on your system setup, you may have to use sudo to
install gems. We'd suggest trying without sudo first, then falling
back to it if the installation fails.

tmuxinator helpfully tells us during install that it includes a tmuxinator doctor
command that can be used to check your local system configuration and ensure all
is well. We recommend running that now and fixing any issues it finds:

$ tmuxinator doctor

When you see all items confirmed as Yes, you can move on.

Understanding the tmuxinator configuration
First, open a terminal and run the following command to create the initial tmuxinator
configuration file:

$ tmuxinator new tutorial

The tmuxinator new command will start a new tmuxinator configuration file
and we gave it the name tutorial. Feel free to name your file whatever you'd
like of course.

Using Other Tools with tmux

[108]

You'll be dropped right into your editor of choice with the default contents of a
tmuxinator configuration file already in your editor. A few things to note about
this file:

• It is located in ~/.tmuxinator/<name>.yml (in our case ~/tmuxinator/
tutorial.yml). This is where tmuxinator will store all of its configuration
files. This is nice because you can have multiple configuration files and they
will all live in one place and be accessible by tmuxinator.

• After a couple lines, there are a bunch of comments. These comments
indicate options that could be used but aren't by default. We will dig
into these in a bit.

• At the bottom of the file is the YAML that actually lays out the windows,
panes, and so on. tmuxinator includes a default set of layouts.

tmuxinator includes its own kind of domain-specific language to build a rich
configuration of windows, panes, and the default programs to run in them.

For example, what follows is a sample configuration file. We have added useful
comments starting with # before each line to describe what the following line is doing:

sets the name for this tmuxinator config
name: tutorial
sets the root directory, all new panes will start with a
terminal opened to this directory
root: ~/

this is the start of the specification for which windows
windows:
 # this specifies the first window named "editor"
 - editor:
 # the "editor" window should have a vertical layout
 layout: main-vertical
 # this specifies that the "editor" window should have two
 # panes
 panes:
 # emacs should be running in one pane
 - emacs
 # top should be running in the other pane
 - top
 # now we have a second window called "server" that should start
 # running the command "node ~/myapp.js" on opening
 - server: node ~/myapp.js
 # there should be a third window called "logs" which should
 # start with the tail command to view the logs
 - logs: tail -f log/development.log

Chapter 7

[109]

This is a very succinct way to specify some very complex behavior for windows and
panes! Feel free to make any tweaks you would like to the file and save it. Now to
start it, simply run:

$ tmuxinator start tutorial

Again, tutorial could be replaced with your filename. You'll see tmux is launched,
but not only did it launch, but it also opened multiple windows and it has the name
you gave it in the bottom left hand corner! If you open a new window, it should
open to the root path specified in your configuration file, and so on.

So how does this black magic work you may wonder? Well under the hood it's a
bunch of ruby scripts that start tmux and set it all up for you using the configuration
YAML to guide that setup.

Revisiting the commented lines
Going back to the configuration file, there were some commented lines at the top that
we said we'd dig into later. Well here we are! Let's dig in.

In the following code snippet we've copied the comment chunk from the top of the
default tmuxinator configuration file:

Optional tmux socket
socket_name: foo

Runs before everything. Use it to start daemons etc.
pre: sudo /etc/rc.d/mysqld start

Runs in each window and pane before window/pane specific commands.
Useful for setting up interpreter versions.
pre_window: rbenv shell 2.0.0-p247

Pass command line options to tmux. Useful for specifying a different
tmux.conf.
tmux_options: -f ~/.tmux.mac.conf

Change the command to call tmux. This can be used by derivatives/
wrappers like byobu.
tmux_command: byobu

You will see that there are comments to help explain the commands but let's go into
a bit more depth.

Using Other Tools with tmux

[110]

We have not yet discussed sockets much as we get into rather esoteric territory, but
the first line allows you to specify a socket name.

By default, when tmux is first launched, a server is launched on the machine and that
server creates a socket on which it begins listening. Then the client is launched and
connects to that socket. This is all rather seamless under normal usage.

This socket persisting is what allows you to detach the tmux session and reattach it.
In reality, when you detach you are terminating the client; however, the tmux server
continues humming along, listening on that socket for incoming connections. When
you decide to reattach to a session, you are launching a client and connecting to
that socket.

This socket is also what allows multiple people to connect to a single tmux session as
we saw in Chapter 6, tmux for SSH, Pair Programming, and More, when we discussed
using tmux for pair programming.

So far, whenever we ran a tmux command to connect, we seamlessly connected to
that default socket, but you can launch tmux and specify your own socket path or
name. This will allow us to run more than one independent instance of tmux on
the same machine.

So, this configuration option allows us to specify the socket name when we launch
with tmuxinator start <name>.

The next section starting with the pre command is copied in the following
code snippet:

Runs before everything. Use it to start daemons etc.
pre: sudo /etc/rc.d/mysqld start

This section allows you to specify any commands to run when the tmuxinator
session is started as its name implies. This is great to start any background tasks
that do not have a UI but which we would like to be running and available for the
session. This is convenient because it prevents us from having to open a new pane
(or panes), launch a program, then leave it around forever but just ignore it. The
following code snippet allows us to specify tmux options specific to this tmuxinator
instance that may not appear in the standard .tmux.conf file:

Runs in each window and pane before window/pane specific commands.
Useful for setting up interpreter versions.
pre_window: rbenv shell 2.0.0-p247

Chapter 7

[111]

This command allows us to run a command with every window or pane that we
create rather than just on tmux launch. In the following commands we're passing
the configuration file:

Pass command line options to tmux. Useful for specifying a different
tmux.conf.
tmux_options: -f ~/.tmux.mac.conf

There could be simpler commands such as changing the prefix key or anything
else we saw back in Chapter 2, Configuring tmux or more powerful as in the example
where they are loading another configuration file and sucking in all of its commands.
The following code allows us to change the command used to call tmux:

Change the command to call tmux. This can be used by derivatives/
wrappers like byobu.
tmux_command: byobu

This code snippet mentions byobu, which is a program that basically sits atop tmux
(or GNU Screen) and adds additional functionality to them. The idea behind this
is that if you prefer to use tmuxinator to call some command other than tmux that
wraps tmux, you can do so using this line.

Summarizing tmuxinator
In summary, tmuxinator is an extremely powerful program that adds a lot of useful
features to tmux and will save any tmux user a lot of time, every time they have to
relaunch tmux and get all set up with their environment.

Not only can it be a huge timesaver, but can also be incredibly helpful for beginners
as it can act as training wheels until a tmux user has grown accustomed to all the
nuances of creating windows and panes. As we saw in Chapter 3, Sessions, Windows,
and Panes, creating and manipulating panes can be fairly difficult. Having a simple
tmuxinator configuration file that can jumpstart that process without much effort
can be incredibly helpful.

For detailed command reference for tmuxinator, visit
its project page on GitHub:
https://github.com/tmuxinator/tmuxinator

https://github.com/tmuxinator/tmuxinator

Using Other Tools with tmux

[112]

Using wemux to ease multiuser
experience
Another fantastic utility built by the community is wemux. It seeks to simplify the
multiuser experience in tmux. As we saw in the last chapter, setting tmux up for pair
programming is an awesome feature of tmux. It builds upon that experience, making
it easier to configure and adds some very useful functionality.

Jump on over to the wemux GitHub page to get started and install wemux:

https://github.com/zolrath/wemux

If you are in an active tmux session, detach it before proceeding with <Prefix>, d.

Now let's jump into wemux. From your terminal, run the following command:

$ wemux start

Boom! But wait, you may say that this looks exactly like tmux. You would be right,
wemux is a wrapper around tmux so it is the tmux you know and love with some
special sauce added to facilitate some of the multi-user concepts.

From your command line, run the following command:

$ wemux users

The output of this command can be seen in the following screenshot:

You should see a list containing one user. As you can imagine, if you had other users
connected, they would appear in this list. Moreover, if there were another user in
that list and we wanted to boot them out of our current wemux session, you could
run the following command:

$ wemux kick username

https://github.com/zolrath/wemux

Chapter 7

[113]

This will boot username out of this wemux session. We can also configure wemux
much as we did tmuxinator. First, we need to detach the current wemux session
with <Prefix>, d and then run the command:

$ wemux config

It will open your configured editor to the wemux configuration file. You'll notice that
most of it is commented out but there are very detailed comments that describe what
each line does. Since it is so well commented, we won't go into great detail about
each item.

Explaining the wemux modes
At a high level though, some of the coolest things about wemux are its modes.
It has three modes:

• Mirror mode: This mode allows clients to attach to a wemux session
read-only. This is great if you want to share your session but have no
ability to edit anything in your session.

• Pair mode: This mode allows clients to attach and for all clients to share
the same view and even the same cursor. This is great for many pair
programming setups where either user should be able to touch the code
and you want both users seeing the same view.

• Rogue mode: This mode allows multiple clients to attach and each be
connected to the same tmux session, but both be able to have separate cursors
and even open different windows. This is ideal when multiple people have
to share a tmux session, but don't both need to be looking at the same thing.

Explaining other wemux additions to tmux
In addition to the modes, the user list, and the ability to kick users that wemux adds
over tmux core, wemux also includes a user list you can add to your tmux status bar.
It will display messages when users connect, and you can use wemux to connect to
a remote server.

When you configure wemux, you are configuring the behavior of the server. Then
clients can connect in one of the three modes, assuming, of course, you have enabled
that mode on the server.

Using Other Tools with tmux

[114]

So, if you have configured your server in mirror mode only, a client will be able to
connect via mirror mode (using wemux mirror) but will not be able to connect in
rogue mode (using wemux rogue).

Using wemux is a fantastic way to streamline and tame the tmux multi-user
experience.

Listing other tools to be used with tmux
Pairing down the preceding list of other tools to be used with tmux was incredibly
difficult. We tried to discuss the most popular of each flavor but there are
countless others.

One of the greatest strengths of tmux is the incredibly vibrant developer community,
which has resulted in many great tools that work with tmux to enhance and extend
the tmux experience.

For instance, the excellent Teamocil (http://teamocil.com/) is somewhat similar
to tmuxinator in that they are both tmux configuration helpers that use YAML-based
configuration files and ruby to configure tmux. We would have loved to discuss
both, but since they are similar in many ways, it seemed like it could confuse our
readers. We urge you to take a look at it if you have interest, as there are benefits
of using one over the other and vice versa. A lot of it comes down to personal
preference and taste.

Along with Teamocil, there are countless others, including vim-slime, tmuxp,
tmuxifier, and many other excellent projects that extend tmux and add additional
functionalities that can be incredibly useful in certain contexts. In the time between
when this book was being written and when it is read there are likely others that
have popped up and grown.

Perhaps you have noticed something about tmux that could use some optimizing
and, equipped with the knowledge from this book, can start your own open source
project extending tmux and furthering the community.

http://teamocil.com/

Chapter 7

[115]

Summary
In this chapter, we learned about a handful of very useful third-party tools that can
be used to extend the power and functionality of tmux. From turbocharging our
configuration with maximum-awesome to a simpler and cleaner session management
with tmuxinator and better pair programming with wemux, we had a nice taste of
some really awesome utilities that improve upon and enhance the core features
of tmux.

You may notice that while you learned a lot of different things throughout this
book, when you sit down in front of your screen with an empty terminal window,
your fingers may not know what to press to make things happen. For instance,
you may remember that there is a way to split the current window into two panes
horizontally, but may not remember the keystroke. This is expected! Unless you are
a prodigy, one run through these concepts and keys will not solidify things entirely.

One learning trick that is very helpful is to choose three items to integrate into your
workflow each week. Write the key combinations and descriptions of those items
on an index card, place it by your computer, and try to integrate them into your
workflow. By the end of the week, you will probably be able to drop the index
card for those items and start anew.

Of course, there will be commands you forget or need to look up. For this, we have
placed a comprehensive list of all new commands learned in each chapter at the
end of the book. This way, you can immediately jump to the commands themselves
without having to sift through all of the explanations we provided the first time you
went through the text.

While we tried our best to give an overview of everything you would need to use
tmux, there were inevitably some things we were unable to cover in this book. For
everything else, the tmux man page we have mentioned many times throughout
this book is the ultimate, exhaustive resource for the available tmux commands
and key combinations.

So, we come to the end of our journey. We hope you have enjoyed learning about
tmux with this book.

Appendix
The appendix will cover the following three topics:

• Why tmux?
• The configuration reference
• Key binding and command reference

Why tmux?
Many developers spend much of their day in a terminal. Whether using it for coding;
SSH sessions to remote servers; browsing the filesystem; local tasks such as checking,
compiling, or linting code, running unit tests; or even for mail or Internet Relay Chat
(IRC), the terminal is one of the most widely used weapons in the developer's arsenal.

tmux is a command-line application that runs within your terminal and turbocharges
it. Its powerful features allow for the simplification of many everyday tasks, as
illustrated throughout this book. However, the main reason most people use a
program like tmux is that it allows you to take a single terminal window and turn
it into many virtual windows, each having their own state. It is one in a class of
applications called terminal multiplexers (tmux is just a shortening of this term).
It has some brethren, but the most prominent is GNU Screen.

Remember browsing in web browsers without tabs? If you answered no, you weren't
missing much, and enjoy your youth! However, if you answered yes, it might take
you a second to remember how much less convenient it was. Sure, there was nothing
you can do with multiple tabs that you couldn't with no tabs and many browser
windows, but it was still a very helpful boost to productivity to be able to group
them together. Having many browser windows got very confusing. The advent
of tabs allowed you to separate your browsing experience logically. Before tabs
you would have had one browser window for reference documents, another for
shopping, and so on.

Appendix

[118]

Likewise, a terminal multiplexer such as tmux allows you to do the same, logically
grouping multiple windows into a single terminal window, like tabs in a browser.
Just as each browser tab contains its own state, so does each tmux window.

However, unlike browser tabs, which mostly just add organization, tmux actually
adds a rich set of additional functionality to the terminal. Not only does tmux allow
for dividing a window into panes so that multiple different bits of content can be on
the screen at the same time, but tmux also adds Copy mode and other constructs that
allow heavy terminal users to do more without leaving tmux or even having to reach
for their mouse as often. We touch on many of these benefits throughout this book,
so it's unnecessary to repeat them here.

Why use a terminal multiplexer over a standard terminal app with native tabs
(for example, OS X Terminal, iTerm, Gnome Terminal, and so on)? There are many
reasons, but the following are a few:

• The addition of Copy mode allows for copying and pasting between terminal
windows without reaching for your mouse. This is not something that can be
easily achieved with a standard tabbed terminal application.

• The addition of the saved state means that you can close a terminal window
that is running tmux, and your entire session state will be saved and can be
reattached later (assuming your terminal program allows the tmux server
to continue running in the background; not all do). Any programs that were
running continue running in the background. This is not the case with tabs
in iTerm, OS X Terminal, or any Linux terminal. Closing one of these will
drop your state for that window.

• There is much more power and flexibility to using tmux to split a window
into panes and rearranging those panes than in using any tabbed terminal
interface. Most modern terminal applications will now support simply a
vertical or horizontal split, and that's about it. With tmux, the possibilities
are (nearly) endless in terms of the number of splits, layouts, and so on.

• All of the tmux keyboard shortcuts for changing the size and layout of these
splits translate into less dependence on your mouse, which is something
most normal tabbed terminal applications cannot offer.

• Not only are there more shortcuts with tmux for tweaking the size of this or
that, but tmux also offers a much broader range of customizability in terms
of keyboard shortcuts for every operation it can handle. Literally, every single
tmux shortcut can be changed or rewired with a simple configuration file, as
shown in Chapter 2, Configuring tmux. Some terminal applications might offer
some customization, but none are quite as powerful as tmux in this regard.

Appendix

[119]

• The addition of capabilities in pair programming, setup configuration, and
third-party utilities, as we discuss throughout this book, is unachievable
with a standard terminal application.

Of course, the list goes on, as you have seen or will see throughout this book, but
these are some of the highlights as to why a terminal multiplexer is preferred over
a regular terminal app with tabs.

Now that you are most likely sold on using a terminal multiplexer rather than just
tabs in a terminal program, why choose tmux over its main competitor, GNU Screen
(Screen hereafter)? There are many reasons, but the following are a few:

• The tmux Command mode was written in order to allow other utilities
to control tmux. This is the reason for the rich developer community that
has sprung up around it. Screen is more difficult and complicated to
control remotely.

• As a result, the third-party tools for working with tmux are much more
prevalent and powerful.

• The tmux commands are simple utilities, taking a very good page from the
UNIX playbook. These small commands can be run via key combinations, by
entering the command after the tmux utility, or via tmux's Command mode.
Screen is more of a monolith without these nicely separated commands.

• tmux is newer project, often learning from Screen's mistakes. The first
Screen release was way back in 1987. The first tmux release was 22 years
later in 2009.

• The tmux source has fewer lines of code while offering more features.
• Screen has been a mostly abandoned project for many years. In fact, there

was not even a single minor Screen release between 2008 and April, 2014.
It had been dormant since before tmux was released and finally had a
minor release six years after the last one.

• tmux has a clean client-server model that allows tmux to keep running when
you detach a tmux session. While you can detach from Screen, it has a less
defined client-server model.

• Screen has, essentially, one set of key bindings. In contrast, tmux tries to stay
more friendly to developers and includes both vi and Emacs key bindings for
most of its commands.

Appendix

[120]

• The pane and window management in tmux is much simpler and more
powerful. With tmux, it is easy to split a window into many different panes,
move them around, attach them to different windows, move windows, attach
windows to different sessions, and so on. Many of these tasks are not possible
in Screen, and they end up being far more complex than they are with tmux.

• The tmux status bar configuration, out of the box, is quite simple and
defaults to what most people would like. Screen, on the other hand, does
not include a status bar by default, and the way to specify it is very complex.
For example, this is an actual line from my Screen configuration to enable a
tmux-style status bar:
hardstatus string '%{= kG}[%{G}%H %{g}[%{=kw}%?%-Lw%?%{r}(%{W}%n*
%f%t%?(%u)%?%{r})%{w}%?%+Lw%?%= %{g}][%{B}%Y-%m-%d %{W}%c %{g}]'

No; this is not a joke. This is the actual line and all it does is display the same things
that the tmux status bar supports out of the box.

There are more benefits of tmux over Screen, but this should give any reader a good
indication of the rationale here.

As it was the first terminal multiplexer we ever used, Screen still has
a special place in the author's heart. The intent here is certainly not
to bash Screen, which, impressively, is celebrating its 27th year at the
time of writing this. Screen is still quite a great program and very much
paved the way for tmux. However, you purchased this book because
you wanted to learn about tmux and our intent was to enumerate some
reasons why tmux is the most awesome program of its type.

The configuration reference
What follows is the configuration file that we built over the course of Chapter 2,
Configuring tmux:

Enable mouse mode for mouse scrolling (tmux 1.9a+)
set-window-option –g mouse-mode on
Enable mouse for selecting the window by clicking on the title
in the status bar
set-option -g mouse-select-window on
Enable mouse for selecting the pane by clicking on it
set-option -g mouse-select-pane on
Enable the mouse for clicking and dragging to resize panes
set-option -g mouse-resize-pane on

Appendix

[121]

Set the status bar background to blue
set-option -g status-bg blue
Set the status bar text to white
set-option -g status-fg white

Widen the status-left a bit to fit more
set-option -g status-left-length 25
Change status-left to be {username@host}
set-option -g status-left "{#(whoami)@#H}"

Set the active window background in the status bar
set-window-option –g window-status-current-bg magenta

Rebind the prefix key
set-option -g prefix C-t

Add a key binding for reloading our configuration
bind-key C-r source-file ~/.tmux.conf
Double tapping the prefix jumps to last window
bind-key C-t last-window

Set escape time to not break vim
set-option -s escape-time 0

Set the base-index to 1 rather than 0
set-option -g base-index 1
set-window-option -g pane-base-index 1

Extend the display time to 2 seconds
set-option –g display-time 2000

Store more history in the buffer than default
set-option –g history-limit 10000

Key binding and command reference
This is not intended as an exhaustive reference on tmux key bindings and
commands. For that, view the tmux manual page by typing the following
in your terminal:

$ man tmux

You can also view more information on tmux by visiting http://man.cx/tmux.

http://man.cx/tmux

Appendix

[122]

This is, instead, a chapter-by-chapter reference for the tmux keys and commands
mentioned in each chapter along with a small description of what they do in the
order in which they are mentioned.

This makes it easy to review and recall these key bindings and commands in the
same order that they were covered in the chapter without having to wade through
all of the text of that chapter.

Chapter 1 – Jump Right In
In this chapter, we jumped right in and went on a tour of many of the features of
tmux. As a result, the following list of commands is widely varied:

• Launch tmux: $ tmux
• Rename a session: $ tmux rename-session {session name}
• Create a new window: <Prefix>, c
• Switch to the last window: <Prefix>, l
• Switch to a window by its index: <Prefix>, {index of window}
• List all key bindings: <Prefix>, ?
• Initiate a search within the key bindings list: Ctrl + s (or / for vi users)
• Close any dialog opened by tmux, such as the key bindings list: q
• Open the choose window interface: <Prefix>, w
• Switch to the next window (by the window index): <Prefix>, n
• Switch to the previous window (by the window index): <Prefix>, p
• Find an open window with the specified search text: <Prefix>, f
• Detach the current tmux session: <Prefix>, d
• List all active sessions: $ tmux list-sessions
• Start tmux and attach a session by name: $ tmux attach-session -t

{session-name}

• A shorter way to start tmux and attach a session: $ tmux attach -t
{session-name}

• An even shorter way to start tmux and attach a session (only works when
there is a single active session): $ tmux attach

• List all active sessions' aliases: $ tmux ls
• List all tmux commands: $ tmux list-commands
• List all tmux commands' aliases: $ tmux lscm

Appendix

[123]

• Rename the current window: <Prefix>, ,
• Kill the current window: <Prefix>, &

Chapter 2 – Configuring tmux
In this chapter, we dealt a lot with configuration. Listed here are the key bindings
and commands introduced in Chapter 2, Configuring tmux, but see the Configuration
reference section for information on the new configuration items we discussed:

• Set a tmux option: $ tmux set-option {option to set} {value}
• Disable the status bar: $ tmux set-option status off
• Enable the status bar: $ tmux set-option status on
• See whether you are in the Emacs or vi mode: $ tmux show-options –g |

grep key

• Reload the tmux configuration: $ tmux source-file ~/.tmux.conf
• Show all previously displayed messages: <Prefix>, ~

Chapter 3 – Sessions, Windows, and Panes
In Chapter 3, Sessions, Windows, and Panes, we learned all about how to move and
organize your content within a terminal window using the three core building blocks
of tmux: sessions, windows, and panes. As a result, the key commands we learned
throughout this chapter relate to manipulating one of those three items. The key
commands covered in this chapter are as follows:

• Launch tmux with a named session: $ tmux new-session –s
{session name}

• Access the switch session interactive dialog: <Prefix>, s
• Switch to the next session: <Prefix>,)
• Switch to the previous session: <Prefix>, (
• Split a pane into two panes (horizontally): <Prefix>, %
• Switch the cursor to the other pane: <Prefix>, o
• Move the cursor to the pane to the right, left, down, or up: <Prefix>, right

arrow; <Prefix>, left arrow; <Prefix>, down arrow; <Prefix>, up arrow
• Kill the current pane: <Prefix>, x
• Split a pane into two panes (vertically): <Prefix>, "
• Resize the current pane: <Prefix>, Alt + {arrow key}

Appendix

[124]

• Resize the current pane in 1 cell steps: <Prefix>, Ctrl + {arrow key}
• View current pane indexes: <Prefix>, q
• Switch to the pane by index: <Prefix>, q, {index of pane}
• Cycle through pane layouts: <Prefix>, Space
• Switch to the even-horizontal pane layout: <Prefix>, Meta + 1
• Switch to the even-vertical pane layout: <Prefix>, Meta + 2
• Switch to the main-horizontal pane layout: <Prefix>, Meta + 3
• Switch to the main-vertical pane layout: <Prefix>, Meta + 4
• Switch to the tile pane layout: <Prefix>, Meta + 5

Chapter 4 – Manipulating Text
We spent this chapter learning about Copy mode, paste buffers, and other concepts
related to text manipulation.

• Clear the tmux history: $ tmux clear-history
• Enter Copy mode: <Prefix>, [
• Enter Command mode: <Prefix>, :
• Enter Clock mode: <Prefix>, t
• View the Emacs key bindings for Copy mode: tmux list-keys -t

emacs-copy

• View the vi key bindings for Copy mode: tmux list-keys -t vi-copy

Many of the following commands are valid only after entering
Copy mode. We will start these commands with [CM] to indicate
that Copy mode should be activated first.
This is also the first command set that really has two different
modes, Emacs and vi mode. As such, each command actually has
two different key bindings, depending on your chosen mode. We
will display the default key binding (Emacs) first, and then we
will display the alternative (vi) in parentheses.
For the Emacs key bindings, many involve the key Meta, which
is often bound to the Alt / Option key and is a key to which any
Emacs user should be accustomed.
We discussed how to set the mode keys as Emacs or vi back in
Chapter 2, Configuring tmux.

Appendix

[125]

• [CM] Scroll up by page: Page Up or Meta + v (Ctrl + b)
• [CM] Scroll down by page: Page Down or Ctrl + v (Ctrl + f)
• [CM] Move the cursor up: up arrow or Ctrl + p (k)
• [CM] Move the cursor down: down arrow or Ctrl + n (j)
• [CM] Move the cursor left: left arrow or Ctrl + b (h)
• [CM] Move the cursor right: right arrow or Ctrl + f (l)
• [CM] Jump to top of window history: Meta + > (g)
• [CM] Jump to bottom of window history: Meta + < (G)
• [CM] Search up: Ctrl + r (?)
• [CM] Search down: Ctrl + s (/)
• [CM] Jump to a specific line: g (:)
• [CM] Exit Copy mode: q (Esc)
• [CM] Start the selection for copying: Ctrl + Space bar (Space bar)
• [CM] Copy the selection to the paste buffer: Meta + w (Enter)
• [CM] Toggle the rectangular selection: R (v)
• Paste the text from the paste buffer: <Prefix>,]
• Open the interactive paste buffer chooser: <Prefix>, =
• List all buffers for viewing only: <Prefix>, :, list + buffers, Enter

Chapter 5 – Diving Deeper
In this chapter, we went a bit more in depth on a smorgasbord of topics. As a result,
our keyboard commands and configuration items for this chapter are quite widely
varied over a range of tmux capabilities:

• Enter Command mode: <Prefix>, :
• Open the interactive paste buffer chooser: <Prefix>, =
• Save the paste buffer to a path: save-buffer –b {buffer index}

{file path}

• Load the paste buffer from a file: load-buffer {file-path}
• Set a paste buffer directly: set-buffer "{text to set in buffer}"
• Capture contents of the current pane to the paste buffer: capture-pane
• View the contents of the most recently copied paste buffer: show-buffer

Appendix

[126]

• View the contents of a paste buffer by index: show-buffer –b {index}
• Delete the last copied item from the paste buffer: <Prefix>, -
• Delete items from the paste buffer by index: delete-buffer –b {index}
• Clear the tmux history for the current pane: clear-history
• Clear the tmux history for a pane by index: clear-history –t {index}
• Move the window from one session to another: move-window or <Prefix>, .
• Link a window between two sessions: link-window –t {target session}
• Unlink the window from the current session: unlink-window
• Break the current pane from the current window: <Prefix>, !
• Break a pane into its own window: break-pane –s {session}:

{window}.{pane}

• Join the current pane to a target window: join-pane -t
{session}:{window}

• Join a pane to a target window: join-pane -s {session}:{window}.
{pane} -t {session}:{window}

Index
A
active window

highlighting 33
advanced paste buffer usage

about 74
copied text, deleting from paste buffer 79
pane contents, capturing in paste buffer 78
paste buffer history, clearing 79, 80
paste buffer, loading from file 76, 77
paste buffer, saving to file 75, 76
paste buffer, setting directly 77

advanced session, and window usage
window, linking between sessions 83, 84
window, jumping in sessions 80-82
window, moving 82, 83

aggressive-resize setting 98
aliases 21

B
background color

modifying, of status bar 29, 30
binding keys

about 34
comments, in configuration file 37
current bindings, viewing 34-36
multiple commands, chaining to

single keys 37
prefix key, binding 38, 39
URL, for tutorials 35
without prefix keys 39

break-pane command 85

C
capture-pane command 78
choose window interface 15
clear-history command 80
Clock mode 64
Command mode 63, 74
command reference 121
commented lines, tmuxinator 109-111
configuration reference 120
Control mode 64
copied text

deleting, from paste buffer 79
Copy mode

about 61-63
cursor, moving 66
Emacs-style key bindings 66
entering 64, 65
jump by search or line 68
leaving 68
reference 68
vi-style key bindings 66
workflow 64

Ctrl to Caps Lock
rebinding 35

D
Default mode 63
default windows

sessions, launching with 86, 87
delete-buffer command 79

[128]

E
Emacs mode 16, 27, 28
Emacs-style key bindings, Copy mode 66

F
file

paste buffer, loading from 76, 77
paste buffer, saving to 75, 76

foreground color
modifying, of status bar 32

G
grouped sessions

used, for pairing 100, 101

H
handy configuration tips

about 43
base index, starting at 1 46
display time, lengthening 45, 46
double tapping of prefix key, binding to

last-window 43
escape time, modifying 44
history limit, lengthening 44

Homebrew
URL 104

I
installation, tmuxinator 107
items

selecting, from paste buffer 71

K
key binding

about 121
help page 15-17

keys
unbinding 40

L
link-window command 84
load-buffer [path] command 76

M
man page

accessing 47
reference, for example 47, 66

Mirror mode, wemux 113
modes, tmux

Clock mode 64
Command mode 63
Control mode 64
Copy mode 63
Default mode 63

modes, wemux
Mirror 113
Pair 113
Rogue 113

mouse modes
enabling 28

multiple panes
working with 54-56

multiple sessions
working with 53

O
option types 42, 43
OS X Pasteboard

tmux, using with 103-105

P
Pair mode, wemux 113
pair programming, tmux

about 96
connecting to same session, locally 96, 97
grouped sessions, using 100, 101
Vagrant Cloud, for better security pair

programming 98-100
pane contents

capturing, in paste buffer 78
pane layouts

cycling through 58, 59
panes

benefits 52
breaking 85
joining 85, 86
operations 59
overview 51

[129]

reference 59
resizing 56-58
switching between 58
working with 52
zooming 56

password storage mechanism
URL 79

paste buffer
about 61
copied text, deleting from 79
history, clearing 79, 80
interacting with 70
items, selecting from 71
loading, from file 76, 77
pane contents, capturing in 78
saving, to file 75, 76
setting, directly 77
text, copying into 69
text, pasting from 70
working with 71, 72

pbcopy tool 103
pbpaste tool 103
prefix key

about 13-15
binding 38, 39

R
Rogue mode, wemux 113
RubyGems

URL 106

S
sessions

about 8, 9
attaching 19
detaching 19
launching, with default windows 86, 87
naming 9, 10
overview 49, 50
windows, linking between 83, 84
working with 52

set-option command
using 26

show-buffer command 78
show options 47

Solarized
about 29
URL 29

source-file command 34
SSH connect

tmux, launching on 95, 96
status bar

about 40, 41
background color, modifying of 29, 30
configuration, reloading 31
foreground color, modifying of 32
list of open windows 41
modifying 28
status-left 40
status-right 41

status line 8

T
tab completion 21
Teamocil

about 114
URL 114

Terminal Multiplexer. See tmux
text

copying, into paste buffer 69
pasting, from paste buffer 70
searching for 18

tmux
about 7, 117
features 15
launching, on SSH connect 95, 96
need for 117-120
reference 121
running 7, 8
using, with OS X Pasteboard 103-105

tmux commands
about 20, 73, 74
aliases 21
tab completion 21

tmux configuration
about 105, 106
file, creating 27
reference 105

tmuxinator
about 107
commented lines 109-111

[130]

installing 107
reference 111
summarizing 111
used, for making session

management easier 106, 107
tmuxinator configuration 107-109
tmuxinator new command 107
tmux manual section, session initialization

reference 87
tmux modes

about 63
Clock mode 64
Command mode 63
Control mode 64
Copy mode 63
Default mode 63

tmux, over GNU Screen
reasons 119, 120

tmux, over SSH
sample workflow 93-95
using, for long lived sessions 90

tmux, over standard terminal app
reasons 118, 119

tmux show-options command 47
tmux source code

reference 74

U
unlink-window command 85

V
Vagrant

about 90
benefits, of using 90
reference 99
URL, for installation instructions 91
virtual machine, creating with 91-93

Vagrantfile
creating 91

vi mode 16, 27, 28
virtual machine

creating, with Vagrant 91-93
vi style key bindings, Copy mode 66

W
wemux

about 112
modes 113
reference 112
used, for easing multiuser

experience 112, 113
user list 113, 114

window
creating 11, 12
killing 22, 23
linking, between sessions 83, 84
moving 82, 83
overview 51
renaming 21
working with 52

Window history
about 62, 63
scrolling up through 66, 67

window string 10, 11

Thank you for buying
Getting Started with tmux

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning Cython Programming
ISBN: 978-1-78328-079-7 Paperback: 110 pages

Expand your existing legacy applications in C
using Python

1. Extend C applications with pure Python code.

2. Expand low-level C open source projects with
pure Python – Tmux.

3. Get the most out of highly computational
Python code using Cython.

4. Integrate your C applications with Python
Distutils and Automake/Autoconf.

Getting Started with oVirt 3.3
ISBN: 978-1-78328-007-0 Paperback: 140 pages

A practical guide to successfully implementing and
calibrating oVirt 3.3, a feature-rich open source server
virtualization platform

1. Understand and master the internal
arrangement of oVirt.

2. Quickly install and configure the oVirt
virtualization environment.

3. Create your own infrastructure using
the data centers, clusters, and networks
within oVirt.

Please check www.PacktPub.com for information on our titles

Apache Solr PHP Integration
ISBN: 978-1-78216-492-0 Paperback: 118 pages

Build a fully-featured and scalable search application
using PHP to unlock the search functions provided
by Solr

1. Understand the tools that can be used
to communicate between PHP and Solr,
and how they work internally.

2. Explore the essential search functions of
Solr such as sorting, boosting, faceting, and
highlighting using your PHP code.

3. Take a look at some advanced features of
Solr such as spell checking, grouping, and
auto complete with implementations using
PHP code.

Learning Shell Scripting with Zsh
ISBN: 978-1-78328-293-7 Paperback: 132 pages

Your one-stop guide to reading, writing, and
debugging simple and complex Z shell scripts

1. A step-by-step guide that will show you how to
use zsh and its repertoire of powerful features
to improve the efficiency of your daily tasks.

2. Learn how to configure and use zsh.

3. Discover some advanced features of zsh
such as process and parameter substitution,
running on restricted functionality mode,
and emulating other shells.

Please check www.PacktPub.com for information on our titles

www.allitebooks.com

http://www.allitebooks.org

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Jump Right In
	Running tmux
	Sessions
	Naming the session
	The window string
	Creating another window
	The Prefix key
	Help on key bindings
	Searching for text
	Detaching and attaching

	Explaining tmux commands
	Tab completion
	Aliases
	Renaming windows
	Killing windows

	Summary

	Chapter 2: Configuring tmux
	Using the set-option command
	Creating a tmux configuration file
	Emacs or vi mode
	Enabling mouse modes
	Changing the status bar
	Modifying the background color of the
status bar
	Reloading the configuration
	Changing the foreground color of the
status bar
	Highlighting the active window

	Binding keys
	Viewing current bindings
	Chaining multiple commands to a single key
	Comments in the configuration file
	Binding a new prefix key
	Binding keys without the prefix key

	Unbinding keys
	Status bar revisited
	Option types
	Handy configuration tips
	Binding the double tapping of the prefix key to last-window
	Changing the escape time
	Lengthening the history limit
	Lengthening the display time
	Starting the base index at 1

	Accessing the man page
	Show options
	Summary

	Chapter 3: Sessions, Windows, and Panes
	Overviews
	Sessions
	Windows
	Panes

	Playing around with sessions, windows, and panes
	Multiple sessions
	Multiple panes

	Working with more panes
	Zooming panes
	Resizing panes
	Switching between panes by number
	Cycling through pane layouts
	Other pane operations
	Summary

	Chapter 4: Manipulating Text
	Explaining the Window history
	Explaining the different tmux modes
	A sample workflow with Copy mode workflow
	Entering Copy mode
	Moving the cursor around
	Scrolling through the Window history
	Jump by search or line
	Leaving Copy mode
	Copying text into the paste buffer

	Interacting with the paste buffer
	Pasting text from the paste buffer
	Choosing items from the paste buffer

	Working with the paste buffer
	Summary

	Chapter 5: Diving Deeper
	Understanding tmux commands and Command mode
	Advanced paste buffer usage
	Saving a paste buffer to a file
	Loading a paste buffer from a file
	Setting a paste buffer directly
	Capturing pane contents in a paste buffer
	Deleting copied text from a paste buffer
	Clearing the paste buffer history

	An advanced session and window usage
	Jumping from one window in a session to another window in another session
	Moving windows
	Linking a window between sessions

	Breaking panes
	Joining panes
	Launching with defaults
	Summary

	Chapter 6: tmux for SSH, Pair Programming, and More
	Using tmux over SSH for long lived sessions
	Benefits of using Vagrant
	Creating a virtual machine with Vagrant
	Walking through a sample workflow with tmux over SSH
	Launching tmux on SSH connect automatically

	Using tmux for pair programming
	Connecting to the same session locally
	Vagrant Cloud for better security pair programming
	Using grouped sessions for pairing

	Summary

	Chapter 7: Using Other Tools with tmux
	Using tmux with the OS X Pasteboard
	tmux configuration from the
maximum-awesome project, by Square
	Using tmuxinator to make session management easier
	Installing tmuxinator
	Understanding the tmuxinator configuration
	Revisiting the commented lines
	Summarizing tmuxinator

	Using wemux to ease multiuser experience
	Explaining the wemux modes
	Explaining other wemux additions to tmux

	Listing other tools to be used with tmux
	Summary

	Appendix
	Why tmux?
	The configuration reference
	Key binding and command reference
	Chapter 1 – Jump Right In
	Chapter 2 – Configuring tmux
	Chapter 3 – Sessions, Windows, and Panes
	Chapter 4 – Manipulating Text
	Chapter 5 – Diving Deeper

	Index

