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Novel robotic platforms

[1] C. B. Schindler, J. T. Greenspun, H. C. Gomez and K. S. J. Pister, "A Jumping Silicon Microrobot with Electrostatic Inchworm Motors and Energy Storing Substrate Springs," 2019 20th International Conference on Solid-State Sensors, Actuators and 
Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 2019, pp. 88-91.
[2] Drew, Daniel S., et al. "Toward controlled flight of the ionocraft: a flying microrobot using electrohydrodynamic thrust with onboard sensing and no moving parts." IEEE Robotics and Automation Letters 3.4 (2018): 2807-2813. 
[3] Contreras, Daniel S., Daniel S. Drew, and Kristofer SJ Pister. "First steps of a millimeter-scale walking silicon robot." 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, 2017.
[4] Rauf, Ahad M., et al. "Towards Aerodynamic Control of Miniature Rockets with MEMS Control Surfaces." 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2020.
[5] Usevitch, Nathan S., et al. "An untethered isoperimetric soft robot." Science Robotics 5.40 (2020).
[6] Yim, Justin K., and Ronald S. Fearing. "Precision jumping limits from flight-phase control in salto-1p." 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018.
[7] Piccoli, Matthew, and Mark Yim. "Piccolissimo: The smallest micro aerial vehicle." 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017.
[8] Maekawa, Azumi, et al. "Improvised Robotic Design with Found Objects."

Isoperimetric soft robot [5]

Hexapod [3]

Jumper [1] Ionocraft [2]

Rocket [4]

Microrobots

SALTO [6]

Picolissimo [7]

Found Objects [8]
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Isoperimetric 
soft robot [5]

Jumper [1] Ionocraft [2]
Microrobots

Picolissimo [7]
Found Objects [8]

Demonstrating control for the first time:
1. No strong prior on robot dynamics
2. High cost-per-test

The method for control needs to:
1. Manage uncertainty
2. Be sample efficient
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“Minimum data” controller synthesis for 
high-cost robotic systems

4 March 2021 Lambert: MPC in MBRL
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This talk

1. Motivation for model-based reinforcement learning (MBRL)
2. Pairing of model-controller optimization in MBRL
3. Dynamics model design for model predictive control (MPC) in MBRL

4 March 2021 Lambert: MPC in MBRL
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Why use machine learning for robotics? 

4 March 2021

Some famous examples from    
DARPA Robotics Challenge (2015)
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Why did I start using machine learning? 

4 March 2021

The Ionocraft Drew, Daniel S., et al. "Toward controlled flight of the ionocraft: a flying microrobot using 
electrohydrodynamic thrust with onboard sensing and no moving parts." IEEE Robotics and Automation 
Letters 3.4 (2018): 2807-2813.
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Why use reinforcement learning? 

4 March 2021 Lambert: MPC in MBRL

[CS 188, UC Berkeley]
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Supervised learning vs. reinforcement learning

4 March 2021 Lambert: MPC in MBRL

• Broader (open) system 
specification
• Added uncertainty from 

interacting with world

• Closed system
• Stationary
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Model-based vs. model-free

4 March 2021

Model-based methods (RL, system-
identification, PID-tuning):
• Offline planning capabilities
• Generalization
• Sample-efficient
• Difficult to implement
• Computationally intensive to train

Model-free reinforcement learning:
• Reactive policies
• Task-specific
• Data hungry
• Simple to implement
• Computationally light
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Why may we want to use models?

Now: Data-efficient

4 March 2021 Lambert: MPC in MBRL

Soon: Generalizable

Future: Interpretable

Lee, Kimin, et al. "Context-aware dynamics model 
for generalization in model-based reinforcement 
learning." International Conference on Machine 
Learning. PMLR, 2020. Why was this action chosen?
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Why may we want to use models?

4 March 2021 Lambert: MPC in MBRL

Doll, Bradley B., Dylan A. Simon, and Nathaniel D. Daw. "The ubiquity of model-based reinforcement learning." Current opinion in 
neurobiology 22.6 (2012): 1075-1081.
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Model-based Reinforcement Learning (MBRL)

4 March 2021 Lambert: MPC in MBRL

While improving:
1. Agent acts in environment
2. Learn model of dynamics

3. Plan actions to maximize 
reward
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Feedforward Dynamics Models
Learn model of dynamics

4 March 2021 Lambert: MPC in MBRL

Problem setup: Training:

… …st

at
st+1
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Predicting trajectories

4 March 2021

Many compounded network passes!

Lambert: MPC in MBRL
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Sample-based Model Predictive Control (MPC)
Planning with a model to maximize reward

4 March 2021 Lambert: MPC in MBRL

Optimization:

• Sample actions from distribution P
• Plan to horizon h (need to tune)
• Computationally intensive planning 

trajectories
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An example using MBRL

4 March 2021 Lambert: MPC in MBRL

Lambert, Nathan O., et al. "Low-level control of a quadrotor with deep model-based reinforcement 
learning." IEEE Robotics and Automation Letters 4.4 (2019): 4224-4230.

• Task:	minimize	Euler	angles

• Onboard	state	values

• Direct	motor	PWM	application

• Internal	controllers	off	(MPC	
update	at	25/50	Hz)
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Limitations & challenges of MBRL

Theoretical
• Optimizing model for control
• Modelling accuracy is limited
• Stochasticity of sample-based 

control

Practical
• Computational limits
• Getting useful data 

4 March 2021 Lambert: MPC in MBRL
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This talk

1. Motivation for model-based reinforcement learning (MBRL)
2. Pairing of model-controller optimization in MBRL
3. Dynamics model design for model predictive control (MPC) in MBRL

4 March 2021 Lambert: MPC in MBRL
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Key Assumption

4 March 2021 Lambert: MPC in MBRL

Optimizing dynamics model for control
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Model learning for control: origins
System Identification
• Obtain a task-agnostic 

(sometimes global) model 
• Then learn control

Reinforcement learning
• Observe task-specific data subset
• Iteratively learn model, control

4 March 2021 Lambert: MPC in MBRL

Lambert, N., Amos, B., Yadan, O. & Calandra, R.. (2020). Objective Mismatch in Model-based Reinforcement 
Learning. Proceedings of the 2nd Conference on Learning for Dynamics and Control, in PMLR 120:761-770
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Revisiting MBRL

Dynamics 𝑓! Policy 𝜋!(𝑥) Environment

State Transitions RewardTrajectories

Training: Maximum Likelihood Objective Mismatch

Control Interacts

Responses

4 March 2021 Lambert: MPC in MBRL

Lambert, N., Amos, B., Yadan, O. & Calandra, R.. (2020). Objective Mismatch in Model-based Reinforcement 
Learning. Proceedings of the 2nd Conference on Learning for Dynamics and Control, in PMLR 120:761-770
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A dual optimization

4 March 2021

Objective Mismatch

Lambert: MPC in MBRL

Lambert, N., Amos, B., Yadan, O. & Calandra, R.. (2020). Objective Mismatch in Model-based Reinforcement 
Learning. Proceedings of the 2nd Conference on Learning for Dynamics and Control, in PMLR 120:761-770
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Underlying assumption of model learning

4 March 2021

?

Lambert: MPC in MBRL

Lambert, N., Amos, B., Yadan, O. & Calandra, R.. (2020). Objective Mismatch in Model-based Reinforcement 
Learning. Proceedings of the 2nd Conference on Learning for Dynamics and Control, in PMLR 120:761-770
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Model validation likelihood vs episode reward

4 March 2021

Model likelihood

Ep
iso

de
 re
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d

Ideal relationship

Lambert: MPC in MBRL

Lambert, N., Amos, B., Yadan, O. & Calandra, R.. (2020). Objective Mismatch in Model-based Reinforcement 
Learning. Proceedings of the 2nd Conference on Learning for Dynamics and Control, in PMLR 120:761-770
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Correlation on different datasets?

4 March 2021 Lambert: MPC in MBRL

GlobalOn-policyExpert

?
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Model Likelihood vs reward

4 March 2021

Expert (ρ=0.07) On-Policy (ρ=0.46) Global (ρ =0.19)

Lambert: MPC in MBRL

ρ: Pearson Correlation Coefficient

Lambert, N., Amos, B., Yadan, O. & Calandra, R.. (2020). Objective Mismatch in Model-based Reinforcement 
Learning. Proceedings of the 2nd Conference on Learning for Dynamics and Control, in PMLR 120:761-770
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Adversarial attack 
on a dynamics model 

4 March 2021 Lambert: MPC in MBRL

… …st

at
st+1

Use CMA-ES to 
optimize output 
layer.

Goal, model on cartpole with
• High accuracy (log-likelihood of 

transitions, LL)
• Low mean reward with MPC

Task: Cartpole
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Adversarial attack 
on a dynamics model 

4 March 2021 Lambert: MPC in MBRL

Goal, model on cartpole with
• High accuracy (log-likelihood of 

transitions, LL)
• Low mean reward with MPC

Intuition
• Lose model accuracy on area of 

interest
• Gain model accuracy on 

unimportant areas of the state-space
Hard phenomena to measure!
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Ways to mitigate “objective mismatch”

2. Re-weight dynamics data 
around task of interest

4 March 2021

1. Train models to predict 
trajectories 

Lambert: MPC in MBRL
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From one-step training on trajectories to a 
model designed for prediction trajectories!

4 March 2021 Lambert: MPC in MBRL
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This talk

1. Motivation for model-based reinforcement learning (MBRL)
2. Pairing of model-controller optimization in MBRL
3. Dynamics model design for model predictive control (MPC) in MBRL

4 March 2021 Lambert: MPC in MBRL
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A model for predicting trajectories

Standard one-step lookahead
• Compounding predictions

Trajectory-based models
• Time dependent prediction

4 March 2021 Lambert: MPC in MBRL

Lambert, Nathan O., et al. "Learning Accurate 
Long-term Dynamics for Model-based 
Reinforcement Learning." arXiv preprint 
arXiv:2012.09156 (2020)
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“Trajectory-based” dynamics model
Trajectory-based models
Control conditioned, time indexed

4 March 2021

• Long-term prediction accuracy
• Collects datapoints at rate of L2 

• Computationally efficient planning
• Stable uncertainty propagation

Advantages

Starting state

Prediction 
horizon

Control 
parameters

Lambert: MPC in MBRL

Supervised 
learning samples
(more later) Lambert, Nathan O., et al. "Learning Accurate 

Long-term Dynamics for Model-based 
Reinforcement Learning." arXiv preprint 
arXiv:2012.09156 (2020)



Slide 35 of 45

Trajectory-based Model Benefits

4 March 2021
Lambert: MPC in MBRL
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Benefits – prediction accuracy

4 March 2021 Lambert: MPC in MBRL

Lambert, Nathan O., et al. "Learning Accurate 
Long-term Dynamics for Model-based 
Reinforcement Learning." arXiv preprint 
arXiv:2012.09156 (2020)
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Benefits – efficient planning

• More labelled data

• Predict with time index (rather 
then recursive trajectory)

4 March 2021

Parallel pass in 

Lambert: MPC in MBRL

Recall: one-step prediction

Trajectory-based prediction
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Benefits – sample efficiency

4 March 2021 Lambert: MPC in MBRL

Lambert, Nathan O., et al. "Learning Accurate 
Long-term Dynamics for Model-based 
Reinforcement Learning." arXiv preprint 
arXiv:2012.09156 (2020)
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Benefits – sample efficiency

4 March 2021 Lambert: MPC in MBRL

What is a slice of this heatmap?

Model accuracy over trials
Trial Number
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One-step model
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Using the Trajectory-based model in MPC

Trajectory-based model planning:
Plan over control parameter (𝜃!) space

4 March 2021 Lambert: MPC in MBRL

One-step model planning:

Lambert, Nathan O., et al. "Learning Accurate 
Long-term Dynamics for Model-based 
Reinforcement Learning." arXiv preprint 
arXiv:2012.09156 (2020)
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“No free lunch” and dynamics models

• Long term prediction accuracy, but needs controller parametrization
• One-step models are broadly applicable (so not specialized!)

4 March 2021 Lambert: MPC in MBRL
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Recap & future directions in MBRL

Theoretical
• Optimizing both model and 

controller
• Modelling accuracy is limited
• Stochasticity of sample-based 

control
Practical
• Computational limits
• Getting useful data 

4 March 2021 Lambert: MPC in MBRL
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Future work: MPC distillation

4 March 2021 Lambert: MPC in MBRL

Can we reduce MPC compute to a 
feedforward policy?
• Imation learning,
• Managing uncertainty of sample-based 

planning,
• Huge potential upside to hardware 

robots!
Example: action distribution 
when re-running MPC at a given 
state (learned model, cartpole)
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“Minimum data” controller synthesis for robotics:

4 March 2021 Lambert: MPC in MBRL

• There is not time to get data to perfectly understand the world
• RL allows one to build structures to optimize for what matters



Slide 45 of 45

Collaborators!

4 March 2021 Lambert: MPC in MBRL

Brandon Amos, Daniel Drew, Craig Schindler, Sergey Levine, Luis 
Pineda, Albert Wilcox, Joseph Yaconelli, Omry Yadan, Howard Zhang

Roberto Calandra        Kris Pister
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Thanks! Ionocraft

4 March 2021

Nathan Lambert, nol@berkeley.edu, natolambert.com
Lambert: MPC in MBRL

Crazyflie

mailto:nol@berkeley.edu

