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Novel robotic platforms

Microrobots
Jumper [1] lonocraft 2] Demonstrating control for the first time:

1. No strong prior on robot dynamics

2. High cost-per-test

Isoperimetric Found Obi 5
ft robot [5] oun jects [8]
SOTLTOBO The method for control needs to:

1. Manage uncertainty
2. Be sample efficient

[1] C.B. Schindler, J. T. Greenspun, H. C. Gomez and K. S. J. Pister, "A Jumping Silicon Microrobot with Electrostatic Inchworm Motors and Energy Storing Substrate Springs," 2019 20th International Conference on Solid-State Sensors, Actuators and

Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 2019, pp. 88-91.
[2] Drew, Daniel S., et al. "Toward controlled flight of the ionocraft: a flying microrobot using electrohydrodynamic thrust with onboard sensing and no moving parts." IEEE Robotics and Automation Letters 3.4 (2018): 2807-2813.

[5] Usevitch, Nathan S., et al. "An untethered isoperimetric soft robot." Science Robotics 5.40 (2020).
[7] Piccoli, Matthew, and Mark Yim. "Piccolissimo: The smallest micro aerial vehicle." 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017.
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“Minimum data” controller synthesis for
high-cost robotic systems



This talk

1. Motivation for model-based (MBRL)
2. Pairing of model-controller optimization in MBRL
3. Dynamics model design for model predictive control (MPC) in MBRL
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Why use machine learning for robotics?

Some famous examples from
DARPA Robotics Challenge (2015) 8:13:59 05/06/2015 UTC e
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Why did I start using machine learning?

The Iono Craf t Drew, Daniel S., et al. "Toward controlled flight of the ionocraft: a flying microrobot using

electrohydrodynamic thrust with onboard sensing and no moving parts." IEEE Robotics and Automation
Letters 3.4 (2018): 2807-2813.
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Why use reinforcement learning?

>/ \
Agent

/

Environment

State: s

Reward: r Actions: a

[CS 188, UC Berkeley]
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Supervised learning vs. reinforcement learning

Training Info

(Loss, labels, etc)
¢ * Closed system

Inputs —)» S“Pe"”'ss;;’t Learning . Outputs * Stationary

* Broader (open) system
specification

* Added uncertainty from
interacting with world
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Model-based vs. model-free

Model-based methods (RL, system- Model-free reinforcement learning:
1dentification, PID-tuning):

* Offline planning capabilities .
S * Task-specific
* Generalization

- Sample-efficient * Data hungry

* Difficult to implement * Simple to implement

* Computationally intensive to train * Computationally light
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Why may we want to use models?

Now: Data-efficient

Soon: Generalizable

1 i" 1

(a) CartPole with varying pole lengths

W oWy

(b) Pendulum with varying pendulum lengths

Lee, Kimin, et al. "Context-aware dynamics model
for generalization in model-based reinforcement
learning." International Conference on Machine
Learning. PMLR, 2020.
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Future: Interpretable
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Timestep (T)

Why was this action chosen?



Why may we want to use models?

@&

Doll, Bradley B., Dylan A. Simon, and Nathaniel D. Daw. "The ubiquity of model-based reinforcement learning." Current opinion in
neurobiology 22.6 (2012): 1075-1081.

Current Opinion in Neurobiology
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Model-based Reinforcement Learning (MBRL)

W Y
7 @ @K
74 AN AN

o While improving:
— = 1. Agent acts in environment

2. Learn model of dynamics

Nk Py = arg max Z log po(sti1|se, at)
st+1 = fo(st,at) ’ . =1 ..
Dynamics Model 3. Plan actions to maximize
reward .
Sty T't a” = arg;nanytr(st, a)
t=0

S.t. St41 Np9(5t+1|3taat)
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Feedforward Dynamics Models

Learn model of dynamics

Problem setup: Training: N

St+1 = St + fo(st, a) Py = arggnaleog Po(seq1lse, ar)
1=1

Vo <
Q%‘X%Q
/“\
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Predicting trajectories

st = fo(fo( -+ folsi,ai) -+

Many compounded network passes!

Roll (deg)

LR

. 5
iy, “\‘," a A%*

0.0 2.5 5.0 4.5 10.0 12.5 15.0 175 20.0
Timestep (T)
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Sample-based Model Predictive Control (MPC)

Planning with a model to maximize reward

Optimization:
T
a® = arg max Z vYir(ss, ar) * Sample actions from distribution P
¢ =0 * Plan to horizon % (need to tune)
s.t. Sta1 ~ Po(Ser1l|Se, ar) * Computationally intensive planning

trajectories
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An example using MBRL

* Task: minimize Euler angles
r(s) = —(0" + ¢°)
r(s) = —c(s)

 Onboard state values

s =100V &Y ZEw, w, w,

J * Direct motor PWM application
Lambert, Nathan O., et al. "Low-level control of a quadrotor with deep model-based reinforcement
learning." IEEE Robotics and Automation Letters 4.4 (2019): 4224-4230.

a; = [PW M, PW My PWM; PWM,] € [0, 65535]

* Internal controllers off (MPC
update at 25/50 Hz)
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Limitations & challenges of MBRL

Theoretical Practical

* Optimizing model for control * Computational limits

* Modelling accuracy 1s limited * Getting useful data

* Stochasticity of sample-based e e
ontrol =~ e

_________

//‘M‘M\ _‘,_...;;-.-.-.::','_j: -----
N A -
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This talk

1. Motivation for model-based (MBRL)
2. Pairing of model-controller optimization in MBRL
3. Dynamics model design for model predictive control (MPC) in MBRL
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Key Assumption

Optimizing dynamics model for control

max log-likelihood <+ max episode reward
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Model learning for control: origins

System Identification Reinforcement learning

* Obtain a task-agnostic * Observe task-specific data subset

(sometimes global) model e Iteratively learn model, control

 Then learn control

Goal

Start

Lambert, N., Amos, B., Yadan, O. & Calandra, R.. (2020). Objective Mismatch in Model-based Reinforcement
Learning. Proceedings of the 2nd Conference on Learning for Dynamics and Control, in PMLR 120:761-770
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Revisiting MBRL

Control ] Interacts

[Dynamicsfg —P| Policy gy (x)

Training: Maximum Likelihood \

Trajectories [ State Transitions

[ Environment ]

Objective Mismatch * Responses

Reward ]

Lambert, N., Amos, B., Yadan, O. & Calandra, R.. (2020). Objective Mismatch in Model-based Reinforcement
Learning. Proceedings of the 2nd Conference on Learning for Dynamics and Control, in PMLR 120:761-770
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A dual optimization

N t+T

Training: argmax E log ps(s;|si,ai), Control: argmaxIE, E r(si, a;)
0 — at:t+T .
=1 1=t

Objective Mismatch

Lambert, N., Amos, B., Yadan, O. & Calandra, R.. (2020). Objective Mismatch in Model-based Reinforcement
Learning. Proceedings of the 2nd Conference on Learning for Dynamics and Control, in PMLR 120:761-770
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Underlying assumption of model learning

(7

max log-likelihood <+ max episode reward

Lambert, N., Amos, B., Yadan, O. & Calandra, R.. (2020). Objective Mismatch in Model-based Reinforcement
Learning. Proceedings of the 2nd Conference on Learning for Dynamics and Control, in PMLR 120:761-770
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Model validation likelihood vs episode reward

Ideal relationship

Episode reward

Model likelihood

Lambert, N., Amos, B., Yadan, O. & Calandra, R.. (2020). Objective Mismatch in Model-based Reinforcement
Learning. Proceedings of the 2nd Conference on Learning for Dynamics and Control, in PMLR 120:761-770

4 March 2021



Correlation on different datasets?
max log-likelihood <> max episode reward

Expert On-policy Global

Goal
©) ®

7

o O
Start
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Model Likelihood vs reward

1
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Log Likelihood og Likelihood

Expert (0=0.07) On-Policy (0=0.46)

0: Pearson Correlation Coefficient

Lambert, N., Amos, B., Yadan, O. & Calandra, R.. (2020). Objective Mismatch in Model-based Reinforcement
Learning. Proceedings of the 2nd Conference on Learning for Dynamics and Control, in PMLR 120:761-770
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Task: Cartpole

Adversarial attack

on a dynamics model .
N Goal, model on cartpole with
Dy = arg max Z log po(Ses1|se, ar) * High accuracy (log-likelihood of
2 transitions, LL)

 [Low mean reward with MPC

S .A:’ 7 \. :" 180 @ Start Itr.
a, ‘ ‘ § 160 . 5 .
3 140 v,
Use CMA-ES to 120 °
optimize output 100 @Fnd
layer. 4.6 4.7 4.8 e 4.9 5 5.1
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Adversarial attack
on a dynamics model

Intuition

* Lose model accuracy on area of
Iinterest

* Gain model accuracy on
unimportant areas of the state-space

Hard phenomena to measure!

4 March 2021

Goal, model on cartpole with

* High accuracy (log-likelihood of
transitions, LLL)

 [Low mean reward with MPC

180 @ Start
T 160 o
= 140 = 1
Y @
~ 120
100 @FEnd
4.6 4.7 4.8 4.9 5 5.1

LL

Itr.

S N A O 00



Ways to mitigate “objective mismatch™

1. Train models to predict 2. Re-weight dynamics data
trajectories around task of interest

I |
® 8 I L.
oL o i
: . tx (]
) - o AR,
. ) o® b -
—1000 4

Log Likelihood

(a) HC traj. loss (p = 0.63)
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From one-step training on trajectories to a
model designed for prediction trajectories!
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This talk

1. Motivation for model-based (MBRL)
2. Pairing of model-controller optimization in MBRL
3. Dynamics model design for model predictive control (MPC) in MBRL
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A model for predicting trajectories

Standard one-step lookahead Trajectory-based models
* Compounding predictions * Time dependent prediction
St+1 — St ‘|‘f9(3t7at) St+h — f@(St,hﬁw)

3
avay
/) L
1 2 U \)‘ O
Lambert, Nathan O., et al. "Learning Accurate
Long-term Dynamics for Model-based

Reinforcement Learning." arXiv preprint
arXiv:2012.09156 (2020)
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“Trajectory-based” dynamics model

Trajectory-based models Advantages

Control conditioned, time indexed * Long-term prediction accuracy
* Collects datapoints at rate of L?

* Computationally efficient planning

* Stable uncertainty propagation

=L Control
O ® Starting state ~ parameters
h [ 97“' )

r N —
{s:,h,0 }M St+h — f9 7
ty 109V f1=1 . |
5 Supervised Prediction
_ M o L ) learning samples horizon
Lambert, Nathan O., et al. "Learning Accurate

(more later)

Long-term Dynamics for Model-based

Reinforcement Learning." arXiv preprint
arXiv:2012.09156 (2020)
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Trajectory-based Model Benefits

Lambert: MPC in MBRL
4 March 2021
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Benefits — prediction accuracy

M Deterministic, one-step: D (0) M Trajectory-based: T ()
M Probabilistic, Ensemble one-step: PE (X) M Long Short-term Memory : LSTM (O)

5 . 5
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Prediction Step

(c) Quadrotor (Simulated)

600 800

Lambert: MPC in MBRL

1000

0 200 400 600 800 1000

Prediction Step

(d) Quadrotor (Real Hardware)

Lambert, Nathan O., et al. "Learning Accurate
Long-term Dynamics for Model-based

Reinforcement Learning." arXiv preprint
arXiv:2012.09156 (2020)
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Benefits — efficient planning

L
* More labelled data Niain = Z (L)(L —1) ~ nL’
t=1

* Predict with time index (rather  Trajectory-based prediction
then recursive trajectory) Spah = f p ( St h, 1977)

- nt=[1234--- L
Recall: one-step prediction Parallel pass in £ = | |

t=L
\\’—] \ t=
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Training trajectories length (L)
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- 102
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Lambert, Nathan O., et al. "Learning Accurate
Long-term Dynamics for Model-based

Reinforcement Learning." arXiv preprint
arXiv:2012.09156 (2020)
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Number of training trajectories (N)
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Benefits — sample efficiency

What is a slice of this heatmap?

A

102

D model

T model

20 .
. Traj. model
16
14
1 101 .

10

One-step model

Model Accuracy
(Higher is better)

)
o
=)

Mean squared prediction error

1IO 2I0 3I0 4'0 5'O 6'O 7'O SIO 9IO 160 10 20 30 40 50 60 70/ 80 90 100
Training trajectories length (L)

v

Trial Number

Model accuracy over trials
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Using the Trajectory-based model in MPC

One-step model planning:
%k _ - A
Uy = arginax Z T(Lo4is Utsi),
Ut:t+r 5=

s.it. By = fo(2e, ue).

4 March 2021

Trajectory-based model planning:

Plan over control parameter (0, ) space

s.t. i't+7' = f@(itaew,tat + T)a ’U,: = 07’:(15)

Lambert, Nathan O., et al. "Learning Accurate
Long-term Dynamics for Model-based

Reinforcement Learning." arXiv preprint
arXiv:2012.09156 (2020)



“No free lunch” and dynamics models

* Long term prediction accuracy, but needs controller parametrization

* One-step models are broadly applicable (so not specialized!)
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Recap & future directions in MBRL

.-+ Predicted State ,..
H1 H2 H3 —e— Ground Truth .+ .-

= Chosen Action ",“_»,'.'-"'
'_‘\\H\/ RO ey ety

Theoretical

* Optimizing both model and
controller

* Modelling accuracy 1s limited

* Stochasticity of sample-based
control

Practical

* Computational limits

* Getting useful data
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Future work: MPC distillation

Can we reduce MPC compute to a
feedforward policy?

251

201

* Imation learning,
151

Count

* Managing uncertainty of sample-based

101

planning,
. . 37
* Huge potential upside to hardware
robots! 0 00075 050-0.25 0:00 0.25 0.50 0.75 100
Actions

Example: action distribution
when re-running MPC at a given
state (learned model, cartpole)
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“Minimum data” controller synthesis for robotics:

* There 1s not time to get data to perfectly understand the world
* RL allows one to build structures to optimize for what matters
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Collaborators!

Brandon Amos, Daniel Drew, Craig Schindler, Sergey Levine, Luis
Pineda, Albert Wilcox, Joseph Yaconelli, Omry Yadan, Howard Zhang

facebook W
research BSAC
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lonocraft

Thanks!
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Crazyflle

Nathan Lambert, nol@berkeley.edu, natolambert.com
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