
Low Level Control of a Quadrotor with
Deep Model-Based Reinforcement Learning

Nathan O. Lambert1,2, Daniel S. Drew2, Joseph Yaconelli 3, Roberto Calandra2,
Sergey Levine2, and Kristofer S. J. Pister2

Abstract— This work demonstrates the first use of model-
based reinforcement learning for stabilizing, low-level control of
a quadrotor using only on-board sensors, with no initial system
knowledge. Our approach uses a general algorithm for learning
a low-level (i.e. direct motor input signals) controller, whereas
comparable robot controllers are typically hand engineered and
tuned. We show that the full radio communication, model pre-
diction, and control pipeline can function at frequencies greater
than 150Hz. We detail the firmware modifications required for
radio communication of state data and raw PWM commands,
as well as the implementation of a relatively high-frequency
external model predictive controller. Our dynamics model is
a neural network tuned to predict the Euler angles, linear
accelerations, and angular accelerations at the next time step,
with a regularization term on the variance of predictions. The
model predictive controller, sampling uniformly from bounded
action spaces around equilibrium, transmits best actions from
a GPU-enabled ROS base-station to the quadrotor firmware
via radio. The quadrotor achieved hovering capability of up
to 2 seconds from fewer than 7 minutes of fully experimental
(either on-policy or random action) training data.

I. INTRODUCTION

The design of appropriate robot controllers is tradition-
ally a time-consuming and expert-based process. Even for
relatively simple systems such as a quadrotor, tuning the
parameters of the low-level PID controller can be chal-
lenging and often results in sub-optimal controllers. Control
frequency and tuning becomes even more critical as the
vehicle size decreases due to the subsequent change in the
highly non-linear dynamics of the system. In this paper,
we investigate the question: Is it possible to autonomously
learn competitive low-level controllers for a quadrotor from
scratch, i.e., without bootstrapping or demonstration? To
answer this we turn to model-based reinforcement learning
(MBRL) — a compelling approach to synthesize controllers
even for systems without analytic dynamics models and
with high cost per experiment. MBRL has been shown to
operate in a data-efficient manner to control robotic systems
by iteratively learning a dynamics model and subsequently
leveraging it to design controllers [1], [2].

Our MBRL solution employs deep neural networks to
learn a forwards dynamics model, coupled with a ‘random
shooter’ model predictive controller (MPC) — see Figure 1
— similar to the one evaluated in simulation by [3]. This ap-
proach can be efficiently parallelized on a graphic processing

1(Corresponding author: Nathan O. Lambert nol@berkeley.edu)
2Authors are with the Department of Electrical Engineering and Com-

puter Sciences, University of California, Berkeley.
3Author is supported by the Berkeley SUPERB REU Program. Author

is affiliated with Department of Computer Science, University of Oregon.

Fig. 1: The closed loop model predictive controller used
to stabilize the Crazyflie. ROS holds the control loop of
radio communication, model prediction, and action choice
at 150Hz. Using this MBRL architecture, we achieve stable
hovering with only 55,000 trained datapoints – equivalent to
360 s of flight.

unit to achieve low-level, real-time control at high frequency.
Using this approach, we demonstrate on the Crazyflie (an
established commercial quadrotor often used for research)
the controlled hover of a quadrotor directly from raw sensor
measurements and application of pulse width modulation
(PWM) motor signals.

Repeated stable hover of around two seconds is achieved
with fewer than 10 minutes of fully-autonomous training
data, demonstrating the ability of MBRL to control robotic
systems in the absence of: any a priori knowledge of dynam-
ics; any pre-configured internal controllers for stability or
actuator response smoothing; and any expert demonstration.

II. RELATED WORK

A. Attitude and Hover Control of Quadrotors

Classical controllers (e.g., PID) in conjunction with the-
oretically derived models for the rigid body dynamics of
the quadrotor are sufficient to control vehicle attitude [4].
Linearized models are sufficient to simultaneously control

mailto:nol@berkeley.edu


for global trajectory, stable hover, and attitude setpoint using
well-tuned nested PID controllers [5].

Research focusing on developing novel low-level attitude
and hover controllers has shown functionality in extreme
nonlinear cases, such as for quadrotors with a missing
propeller [6], with multiple damaged propellers [7], or with
the capability to dynamically tilt its propellers [8]. Opti-
mal control schemes have demonstrated results on standard
quadrotors with extreme precision and robustness [9].

Our work differs by specifically demonstrating the pos-
sibility of attitude and hover control via real-time external
MPC. Unlike other work on real-time MPC for quadro-
tors [10], [11], ours uses a dynamics model derived fully
from in-flight data (i.e., with no a priori structure or terms)
that takes motors signals as direct inputs. Effectively, our
model encompasses only the actual dynamics of the system,
while other implementations also incorporate the dynamics
of previously existing internal controllers as well.

B. Learning for Quadrotors
Although learning-based approaches have been widely

applied for trajectory control of quadrotors, implementations
typically rely on sending controller outputs as setpoints to
stable on-board attitude and thrust controllers. Iterative learn-
ing control (ILC) approaches [12], [13] have demonstrated
robust control of quadrotor flight trajectories but require
higher frequency on-board controllers for attitude setpoints.
Learning-based model predictive control implementations
which successfully track trajectories also wrap their control
around on-board attitude controllers by directly sending
Euler angle or thrust commands [14], [15]. Gaussian process-
based automatic tuning of position controller gains has been
demonstrated [16], but only in parallel with on-board motor
thrust and attitude controllers tuned separately.

Model-free reinforcement learning has been shown to
generate control policies for quadrotors that out-perform
linear MPC controllers [17]. Although similarly motivated
by a desire to generate a control policy acting directly on
actuator inputs, this work used an external vision system
for state error correction, operated with an internal motor
speed controller enabled (i.e., thrusts were commanded and
not motor voltages), and generated a large fraction of its data
in simulated rollouts.

Machine learning techniques have also been widely ap-
plied to the problem of system identification for quadrotors.
Bansal et al. used neural network models of the Crazyflie’s
dynamics to plan trajectories [18]. Our implementation dif-
fers by directly predicting change in attitude (e.g. body pose,
angular rates) based on raw actuator signals.

Bayesian optimization has been applied to learn a lin-
earized quadrotor dynamics model for tuning of an optimal
control scheme [19]. While this approach is data-efficient and
is shown to outperform analytic models, the model learned
is task-dependent.

C. Model-based Reinforcement Learning
Functionality of MBRL has been demonstrated in sim-

ulation for multiple tasks in low data regimes, including

quadrupeds [20] and manipulation tasks [21]. Low-level
MBRL control (i.e., with direct motor input signals) of
an RC car has been demonstrated experimentally, but the
system is of much lower dimensionality and has passive
stability [22]. Relatively low-level control (i.e., mostly thrust
commands only passed through an internal governor before
conversion to motor signals) of an autonomous helicoptor
has been demonstrated, but required a ground-based vision
system for error correction in state estimates as well as expert
demonstration for model training.

Properly optimized neural networks trained on experi-
mental data have shown test error below common analytic
dynamics models for flying vehicles, but the models did not
include direct actuator signals and did not include exper-
imental validation through controller implementation [23].
A model predictive path integral (MPPI) controller using a
learned neural network demonstrated data-efficient trajectory
control of a quadrotor, but results were only shown in
simulation and required the network to be bootstrapped with
30 minutes of control demonstration [2].

MBRL with trajectory sampling for control has been
shown to outperform, in terms of samples needed for con-
vergence, the asymptotic performance of recent model free
algorithms in low dimensional tasks [3]. Our work builds on
strategies presented, with most influence derived from work
on “probabilistic” neural networks, to demonstrate function-
ality in an experimental setting — i.e., in the presence of real-
world higher order effects, variability, and time constraints).

Neural network-based learned dynamics models with
model predictive control have been demonstrated to function
for experimental control of an under-actuated hexapod [24].
The hexapod platform does not have the same requirements
on frequency or control error due to its passive stability,
and incorporates a GPS unit for relatively low-noise state
measurements. Our work has a similar architecture, but has
improvements in the network model and model predictive
controller to allow substantially higher control frequencies
with noisy state data. By demonstrating functionality without
global positioning data, the procedure can be extended to
more robot platforms where only internal state and actuator
commands are available to create a dynamics model and
control policy.

III. EXPERIMENTAL SETUP

We used the open-source Crazyflie 2.0 quadrotor as our
experimental hardware platform. The Crazyflie is 27 g and
9 cm2, so the rapid system dynamics create a need for a
high speed controller; by default, the internal PID controller
used for attitude control runs at 500Hz, with Euler angle
state estimation updates at 250Hz. This section specifies
the system involved in controlling the quadrotor and the
firmware modifications required for external stability control.

All components we used are based on publicly avail-
able and open source projects. We used the Crazyflie ROS
interface supported here: github.com/whoenig/crazyflie ros.
This interface allows for easy modification of the radio
communication and employment of the learning framework.

https://github.com/whoenig/crazyflie_ros


Fig. 2: The ROS system and the Crazyflie communicate
in an minimal fashion. The ROS side computer passes
control signals and state data between the model predictive
controller node and the Crazyflie ROS server. The Crazyflie
server packages Tx PWM values to send and unpacks Rx
compressed log data from the robot.

Our ROS structure is simple, with a Crazyflie subscribing to
PWM values generated by a controller node, which processes
radio packets sent from the quadrotor in order to pass state
variables to the model predictive controller (as shown in
Figure 2). The Crazyradio PA USB radio is used to send
commands from the ROS server; software settings in the
included client increase the maximum data transmission
bitrate up to 2Mbps and a Crazyflie firmware modification
improves the maximum traffic rate from 100Hz to 250Hz.

In packaged radio transmissions from the ROS server
we define actions directly as the pulse-width modulation
(PWM) signals sent to the motors. To assign these PWM
values directly to the motors we bypass the controller updates
in the standard Crazyflie firmware by changing the motor
power distribution whenever a CRTP Commander packet is
received (see Figure 2) instead of modifying a controller
setpoint value. The Crazyflie ROS package sends empty
ping packets to the Crazyflie to ask for logging data in
the returning acknowledgment packet; without decreasing
the logging payload and rate we could not simultaneously
transmit PWM commands at the desired frequency due to
radio communication constraints. We created a new internal
logging block of compressed IMU data and Euler angle
measurements to decrease the required bitrate for logging
state information, trading state measurement precision for
update frequency. Action commands and logged state data
are communicated asynchronously; the ROS server control
loop has a frequency set by the ROS rate command, while
state data is logged based on a separate ROS topic frequency.
To verify control frequency and reconstruct state action pairs

during autonomous rollouts we use a round-trip packet ID
system. The controller will not send another command until
the Crazyflie logging confirms that the PWM ID from the
(at most two) prior MPC update has been set to the motors.
This check confirms that a radio delay or buffer growth will
not propagate through the system.

Our firmware code will be made
publicly available upon publication at
github.com/natolambert/crazyflie-firmware-pwm-control.

IV. LEARNING FORWARD DYNAMICS

Generating a dynamics model for the robot requires train-
ing a neutral network to fit a parametric function fθ to predict
the next state of the robot as a discrete change in state
st+1 = st+ fθ(st, at). In training, using a probabilistic loss
function with a penalty term on the variance of estimates
better clusters predictions for more stable predictions across
multiple time-steps [3].

The probabilistic loss function assisted model convergence
and the variance penalty helps maintain stable predictions on
longer time horizons. Our networks are trained for 60 epochs
with the Adam optimizer [25] with a learning rate of .0005
and a batch size of 32. The network design is summarized
in Figure 3. All layers except for the output layer use the
Swish activation function [26] with parameter β = 1.

Training a probabilistic neural network to approximate
the dynamics model requires pruning of logged data (e.g.
dropped packets) and scaling of variables to assist model
convergence. Our state model is the vector of Euler angles
(i.e., yaw, pitch, and roll or φ, θ, ψ), linear accelerations
(ẍ, ÿ, z̈), and angular accelerations (ω̇x, ω̇y, ω̇z), as in Equa-
tion (1). The Euler angles are from the Crazyflie internal
complementary filter algorithm while the linear and angular
accelerations are measured directly from the on-board MPU-
9250 9-axis IMU.

st =
[
ω̇x, ω̇y, ω̇z, φ, θ, ψ, ẍ, ÿ, z̈

]T
(1)

Fig. 3: The neural network dynamics model consists of the
past 4 state-action pairs predicting the mean and variance of
the change in state. The input is of dimension 52, predicting
an 18 dimensional output. We use 3 hidden layers of width
500, with the Swish activation function. Training uses the
Adam optimizer for 60 epochs with an initial learning rate
of .0005, with a learning rate scheduler of .5 scaling every
20 epochs, and a batch size of 32.

https://github.com/natolambert/crazyflie-firmware-pwm-control


Fig. 4: One step predictions for change in Euler angles of
the final model across the state space of data collected on the
random action policy. The normalized mean squared errors
from ground truth to the prediction for each of the Euler
angles are Pitch: 0.130, Roll: 0.076, and Yaw: 0.032.

We combine the state data with the four PWM values,
at = [m1,m2,m3,m4]

T , to get the system information
at time t. The neural networks are cross-validated to con-
firm using all state data (i.e., including the relatively noisy
raw gyroscope and accelerometer measurements) improves
prediction accuracy in the change in state. The ones step
predictions for our final model is shown in Figure 4.

While the dynamics for a quadrotor are often represented
as a linear system of equations, for a MAV at high con-
trol frequencies motor step response and thrust asymmetry
heavily impact the change in state, resulting in a heavily
nonlinear dynamics model. The step response of a Crazyflie
motor from PWM 0 to max has been shown to be 250ms,
so our update time-step of 6.7ms is short enough for motor
spin-up to contribute significantly to learned dynamics. To
account for spin-up, past system information is appended
to the current state and PWMs to generate an input into
the neural network model that includes past time. From the
exponential step response and with a bounded possible PWM
value within peq ± 5000, the motors need approximately
25ms to reach the desired rotor speed; when operating at
150Hz, the time step between updates is 6.7ms, leading us
to an appended state and PWM history of length 4. This state
action history length was validated as having the lowest test
error on our data-set (lengths 1 to 10 evaluated). This yields
the final input to our neural network, ξ, being of length 52,
with 4 state and action vectors concatenated:

ξt =
[
st st−1 st−2 st−3 at at−1 at−2 at−3

]T
(2)

V. CONTROL ALGORITHM

Model predictive control provides a framework for evalu-
ating many action candidates using a given dynamics model.
We employ a ‘random shooter’ MPC, where a set of N ran-
domly generated actions are simulated over a time horizon T .

Fig. 5: Each line is a predicted future state from a candidate
action, with the chosen “best action” highlighted in red.
The near-linearity of the predictions at time-steps 3 to 5
indicates that the trade-off in control frequency is not worth
the potential for increased predictive power of nonlinear
effects. For example, at N = 5000, a time horizon of 2 will
run at a control frequency of about 150Hz, while a time
horizon of 5 the frequency drops to 80Hz.

The best action is decided by a user designed objective
function that takes in the simulated trajectories X̂(a, st) and
returns a best action, a∗; as visualized in Figure 5. The
candidate actions are 4-tuples of motor PWM values centered
around the stable hover-point for the tested Crazyflie. The 4
PWM values in one sample action ai = (ai,1, ai,2, ai,3, ai,4),
where the index i = 1, 2, · · ·N . The candidate actions are
constant across the time horizon T . For a single sample ai,
each ai,j is chosen from a uniform random variable on the
interval [peq,j − σ, peq,j + σ], where peq,j is the equilibrium
PWM value for motor j. The range of the uniform distri-
bution is controlled by the tuned parameter σ; this has the
effect of restricting the variety of actions the Crazyflie can
take. For the given range of PWM values for each motor,
[peq − σ, peq + σ], we discretize the candidate PWM values
to a step size of 256 to match the future compression into a
radio packet. This discretization of available action choices
also increases the coverage of the 4- dimensional candidate
action space without an increase in N that would lead to
decreased control frequency.

The objective function we designed for stability seeks
to minimize distance from the origin for pitch and roll,
while adding additional cost terms to Euler angle rates. The
omission of global yaw term is because yaw does not reset to
0 at each takeoff and seeking a yaw of zero is not necessary
for stability.

a∗ = argmin
a

c
(
X̂(a, st)

)
= argmin

a

T∑
t=1

λθ(ψ
2
t + θ2t )

+ λ∇(ψ̇
2
t + θ̇2t + φ̇2t )

(3)



Fig. 6: Overlaid trajectories in pitch of the longest 15 flights from each model’s roll-out. The data shows not only an increase
in flight length for the controllers trained on more data, but also the ability to recover from more extreme states.

In this objective function, λθ maps roughly to a proportional,
or gain, term and λ∇ corresponds to a derivative, or damping,
term.

Our MPC operates on a short time horizon, T = 2 to
leverage the predictive power of our model but maintain
control frequency. The low predictive range of this con-
troller makes the performance sensitive to damping factors
in the objective function because dangerous actions will not
strongly diverge on our prediction timescale. At T = 1,
the controller can run over 200Hz, but we do not have
reliable derivative information on our predictions. Experi-
ments show that for time horizons greater than T = 2 the
neural network predictions are primarily linear, with areas
of substantial jumps corresponding to untrained state-space.
Linearity implies that the objective function will not gain
substantial predictive power from a longer time horizon,
while substantial prediction jumps would add instability to
the chosen best action. On a system running with an Nvidia
Titan Xp, we achieved a maximum control frequency of
230Hz with N = 5000, T = 1. For testing we use a locked
frequency of 150Hz at N = 5000, T = 2. Our control
algorithm is summarized in Algorithm 1.

Our controller code will be made publicly available upon
publication at github.com/natolambert/crazyflie-ros-mbrl.

VI. EVALUATION

The performance of our controller is measured by the
average flight length over each roll-out. Failure is primarily
due to collision with an object due to drift, or, as in many
eariler roll-outs, when flights reach a pitch or roll angle
over 40◦. In both cases, an emergency stop command is
automatically sent to the motors to prevent quadrotor damage
during data collection. Along with the collisions due to drift,
the simple onboard state estimator shows heavy drift on the
Euler angles following a rapid throttle ramping; both are
limiting factors on the length of controlled flight without a
dead reckoning system.

Algorithm 1 ROS MPC Summary

1: Gather random data D0, train initial model f0,θ
2: for Rollout r = 1 to R do
3: while Flying do
4: ROS Rx: (st, at)
5: Compile ξt = [st, at, · · · , st−3, at−3]
6: for i = 1 to N do
7: {a}i,j ∼ U

(
peq,j − σ, peq,j + σ

)
8: for k = 1 to T do
9: st+k = st+k−1 + fi,θ(ξt)

10: end for
11: obj(ai) =

∑T
k=1 c(st+k, ai)

12: end for
13: ROS Tx: a∗ = argmina obj(ai)
14: end while
15: Append data D = Dr ∪ · · · ∪ D0, train fr,θ on D
16: end for

A. Learning Process

The learning process follows the reinforcement learning
framework of collecting data and iteratively updating the
policy. We trained an initial model f0 on 5,209 points of
dynamics data from the Crazyflie being flown by a random
action controller supplying PWM values. Starting with this
initial model as the MPC plant, the Crazyflie undertakes
a series of autonomous flights from the ground with a
250ms open-loop takeoff followed by on-policy control
while logging data to the ROS base-station. The initial roll-
outs have less control authority and inherently explore more
unstable state spaces, which is valuable to future iterations
that wish to recover from higher pitch and or roll.

B. Performance Summary

The best results over the model roll-outs are shown in
Figure 6, where later roll-outs are clearly longer on average.
The data used for training and the results of the roll-outs
is summarized in Table I, which shows the average flight

https://github.com/natolambert/crazyflie-ros-mbrl


Fig. 7: The performance of the control algorithm over a test
flight. The time under control for this flight is 2 s. Above: The
open-loop takeoff followed by the controlled PWM values
over time. Below: Controlled pitch and roll.

length double from the initial random policy to the final
controller deployed after 1 random and 4 on-policy roll-outs.
This controller demonstrated the ability to hover, following a
“clean” open-loop takeoff, for multiple seconds. An example
of a test flight is shown in Figure 7, where the response to
pitch and roll error is visible.

The system has multiple limitations resulting in the short
time-scale of flight. First, the PWM equilibrium values of
the motors shift by over 10% following a strong collision,
causing the true dynamics model to shift semi-randomly over
time. Additionally, the internal state estimator does not track
extreme changes in Euler angles accurately; our controller,
which operates at a relatively low rate for motor control,
needs carefully tuned damping terms to eliminate oscillations
from open loop takeoff or control overshoot. Future iterations
of a MPC with longer time horizons could mitigate this
effect. Although relatively short hover times are achieved,
we believe that overcoming the considerable system-level
and dynamical limitations of controlling the Crazyflie in this
manner showcase the expressive power of MBRL.

Current and future results will be updated here:
https://sites.google.com/berkeley.edu/mbrl-quadrotor/

R Flights Collected
Points

Trained
Points

Top 20 Flights Time
(ms / flight)

0 91 5,209 0 686.6
1 173 8,616 5,091 843.7
2 301 15,480 13,348 980.1
3 165 12,098 28,559 1,207.1
4 188 14,446 39,861 1,332.3
5 222 16,320 55,731 1,401.1

TABLE I: The data statistics for each autonomous roll-out.

VII. CONCLUSIONS AND FUTURE WORK

This work is an exploration of the capabilities of model-
based reinforcement learning for the low-level control of an
initially unknown system at high frequencies. We demon-
strate the firmware modifications, system design, and model

learning considerations required to enable the use of a
MBRL-based MPC system over radio at 150Hz. We re-
moved all robot-specific transforms and higher level com-
mands (e.g. thrust and Euler angle rate setpoints) to only
design the controller on top of a learned dynamics model to
accomplish a simple task. The controller shows the capability
to hover for multiple seconds at a time off of less than 7
minutes of collected data — approximately the full battery
life flight time of a Crazyflie quadrotor. The successful
hovering of a quadrotor underscores potential extensions of
the presented MBRL framework for future low-level control.

There are multiple pathways to investigate for improving
the performance of the current system as presented. Cur-
rently, the random shooter MPC method devotes a substantial
amount of computation on action samples that will never
produce a desirable state change. The controller could be
improved by developing a prior weighting on the reward
of each action that is developed over time, resulting in a
weighted action sampling based on the current state. Another
way to reduce computation could be to use a neural network
policy trained to imitate the initial model predictive controller
that would no longer require evaluating every candidate
action. Also, in our work, we maintained a general approach
to the MPC block to avoid using a priori system knowledge;
it is likely that performance could be improved with further
controller specialization and objective function tuning.

These initial results create opportunities for numerous
experiments to improve and apply the MBRL system:

While in this work data is collected with human assistance
when the robot crashes or drifts substantially, we envision a
future approach that allows for data collection with no human
intervention. Defining safety constraints within the model
predictive controller, rather than just a safety kill-switch in
firmware, could enable intelligent, safe exploration of state
space, opening the door for fully autonomous learned control.

With similar robots, training can be run in parallel and
the related dynamics models can be used as a weighted
ensemble for prediction, hopefully decreasing total training
time and improving performance. The ROS Crazyflie system
is structured to easily interface with multiple robots, allowing
a natural extension from safe state space exploration to
multiple agents learning autonomously to fly together.

Direct synthesis of robot controllers operating on raw
actuator inputs has exciting implications for development of
novel robotic platforms. The emergent area of microrobotics
combines the issues of under-characterized actuators and
dynamics, weak or non-existent controllers, “fast” system
dynamics and therefore instabilities, and extremely high cost-
to-test [27]–[29]. Controller development based on data-
efficient MBRL approaches could aid in the efforts to deploy
autonomous millimeter-scale robots without significant time
investment in controller design.

ACKNOWLEDGMENT

The authors thank the UC Berkeley Sensor & Actuator
Center (BSAC), Berkeley DeepDrive, and Nvidia Inc.

https://sites.google.com/berkeley.edu/mbrl-quadrotor/


REFERENCES

[1] M. Deisenroth, D. Fox, and C. Rasmussen, “Gaussian processes for
data-efficient learning in robotics and control,” IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), vol. 37, no. 2, pp.
408–423, 2015.

[2] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic MPC for model-based
reinforcement learning,” in International Conference on Robotics and
Automation (ICRA), 2017.

[3] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep Reinforce-
ment Learning in a Handful of Trials using Probabilistic Dynamics
Models,” Neural Information Processing Systems, 2018.

[4] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles,” IEEE
Robotics and Automation magazine, vol. 20, no. 32, 2012.

[5] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation
and control for precise aggressive maneuvers with quadrotors,” The
International Journal of Robotics Research, vol. 31, no. 5, pp. 664–
674, 2012.

[6] W. Zhang, M. W. Mueller, and R. D’Andrea, “A controllable flying
vehicle with a single moving part,” in Robotics and Automation
(ICRA), 2016 IEEE International Conference on. IEEE, 2016, pp.
3275–3281.

[7] M. W. Mueller and R. D’Andrea, “Stability and control of a quadro-
copter despite the complete loss of one, two, or three propellers,” in
Robotics and Automation (ICRA), 2014 IEEE International Conference
on. IEEE, 2014, pp. 45–52.

[8] M. Ryll, H. H. Bülthoff, and P. R. Giordano, “Modeling and control of
a quadrotor uav with tilting propellers,” in Robotics and Automation
(ICRA), 2012 IEEE International Conference on. IEEE, 2012, pp.
4606–4613.

[9] H. Liu, D. Li, J. Xi, and Y. Zhong, “Robust attitude controller
design for miniature quadrotors,” International Journal of Robust and
Nonlinear Control, vol. 26, no. 4, pp. 681–696, 2016.

[10] M. Bangura, R. Mahony, et al., “Real-time model predictive control
for quadrotors,” 2014.

[11] M. Abdolhosseini, Y. Zhang, and C. A. Rabbath, “An efficient model
predictive control scheme for an unmanned quadrotor helicopter,”
Journal of intelligent & robotic systems, vol. 70, no. 1-4, pp. 27–38,
2013.

[12] A. P. Schoellig, F. L. Mueller, and R. DAndrea, “Optimization-
based iterative learning for precise quadrocopter trajectory tracking,”
Autonomous Robots, vol. 33, no. 1-2, pp. 103–127, 2012.

[13] C. Sferrazza, M. Muehlebach, and R. D’Andrea, “Trajectory track-
ing and iterative learning on an unmanned aerial vehicle using
parametrized model predictive control,” in Decision and Control
(CDC), 2017 IEEE 56th Annual Conference on. IEEE, 2017, pp.
5186–5192.

[14] P. Bouffard, A. Aswani, and C. Tomlin, “Learning-based model predic-
tive control on a quadrotor: Onboard implementation and experimental
results,” in Robotics and Automation (ICRA), 2012 IEEE International
Conference on. IEEE, 2012, pp. 279–284.

[15] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-
based model predictive control for safe exploration and reinforcement
learning,” arXiv preprint arXiv:1803.08287, 2018.

[16] F. Berkenkamp, A. P. Schoellig, and A. Krause, “Safe controller
optimization for quadrotors with gaussian processes,” in Robotics and
Automation (ICRA), 2016 IEEE International Conference on. IEEE,
2016, pp. 491–496.

[17] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a Quadrotor
with Reinforcement Learning,” IEEE Robotics and Automation Letters,
vol. 2, no. 4, pp. 2096–2103, 2017.

[18] S. Bansal, A. K. Akametalu, F. J. Jiang, F. Laine, and C. J. Tomlin,
“Learning Quadrotor Dynamics Using Neural Network for Flight
Control,” CDC, no. 0931843, 2016.

[19] S. Bansal, R. Calandra, T. Xiao, S. Levine, and C. J. Tomiin, “Goal-
driven dynamics learning via bayesian optimization,” in Decision and
Control (CDC), 2017 IEEE 56th Annual Conference on. IEEE, 2017,
pp. 5168–5173.

[20] I. Clavera, A. Nagabandi, R. S. Fearing, P. Abbeel, S. Levine, and
C. Finn, “Learning to adapt: Meta-learning for model-based control,”
arXiv preprint arXiv:1803.11347, 2018.

[21] A. Kupcsik, M. P. Deisenroth, J. Peters, A. P. Loh, P. Vadakkepat,
and G. Neumann, “Model-based contextual policy search for data-
efficient generalization of robot skills,” Artificial Intelligence, vol. 247,
pp. 415–439, 2017.

[22] P. Abbeel, Apprenticeship learning and reinforcement learning with
application to robotic control. Stanford University, 2008.

[23] A. Punjani and P. Abbeel, “Deep learning helicopter dynamics mod-
els,” in IEEE International Conference on Robotics and Automation
(ICRA), May 2015, pp. 3223–3230.

[24] A. Nagabandi, G. Yang, T. Asmar, G. Kahn, S. Levine, and R. S.
Fearing, “Neural network dynamics models for control of under-
actuated legged millirobots,” Intelligent Robots and Systems (IROS),
2018.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[26] P. Ramachandran, B. Zoph, and Q. V. Le, “Swish: a self-gated
activation function,” arXiv preprint arXiv:1710.05941, 2017.

[27] D. S. Drew, N. O. Lambert, C. B. Schindler, and K. S. Pister,
“Toward controlled flight of the ionocraft: A flying microrobot using
electrohydrodynamic thrust with onboard sensing and no moving
parts,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 2807–
2813, 2018.

[28] D. S. Contreras, D. S. Drew, and K. S. Pister, “First steps of a
millimeter-scale walking silicon robot,” in Solid-State Sensors, Ac-
tuators and Microsystems (TRANSDUCERS), 2017 19th International
Conference on. IEEE, 2017, pp. 910–913.

[29] R. J. Wood, B. Finio, M. Karpelson, K. Ma, N. O. Pérez-Arancibia,
P. S. Sreetharan, H. Tanaka, and J. P. Whitney, “Progress on picoair
vehicles,” The International Journal of Robotics Research, vol. 31,
no. 11, pp. 1292–1302, 2012.


	Introduction
	Related Work
	Attitude and Hover Control of Quadrotors
	Learning for Quadrotors
	Model-based Reinforcement Learning

	Experimental Setup
	Learning Forward Dynamics
	Control Algorithm
	Evaluation
	Learning Process
	Performance Summary

	Conclusions and Future Work
	References

