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EXTENDED ABSTRACT

Physical robotic systems, especially at scales where sig-
nificant dynamical uncertainties dominate, can be extremely
difficult to model and control. Reinforcement learning tech-
niques have proven to be successful in synthesizing con-
trollers without prior system knowledge, but applying these
techniques to real robots using low level sensing and ac-
tuation is underexplored. To this end, our work develops
methods and techniques for the low level hover control of a
mini Crazyflie quadrotor.

Model-based reinforcement learning (MBRL) is a data-
efficient technique that draws from both on and off-policy
experimental data to synthesize a forwards neural network
dynamics model. In our setting, we bypassed the built-in
Crazyflie PID controller and instead utilized only low level
onboard sensors as input and motor pulse width modula-
tion (PWM) signals as output. Architectural details of this
dynamics model such as hyperparameters and state size
were selected to minimize experimental prediction error. We
demonstrated that we could use a simple discrete-action
random shooting model predictive controller (MPC) based on
its current dynamical model to iteratively gather experimental
data and subsequently improve the fidelity of the dynamics
model after each rollout. At the same time, the improve-
ment of the dynamics model induced better MPC hovering
control. To maximize the accuracy of our dynamics model,
we leveraged a probabilistic loss function that penalized
estimation variance to promote output stability, stacked prior
observations to capture more context, pruned misleading
experimental data due to dropped packets, and shaped a
reward function to be properly scaled for convergence. Fur-
thermore, we explored the MPC’s performance at different
control frequencies. Though lower control frequencies had
higher predictive power, it came at a cost of lower control
authority, and this tradeoff was explored quantitatively at
control frequencies of 25, 50, and 100 Hz. With our method,
we most successfully achieved quadrotor hovering of up to
6 seconds from fewer than 10 minutes of collected data.

To further investigate learning algorithms for low level
sensing and control, we also employed model-free learning
techniques using the MPC dynamics model to roll out
policies. The model-free algorithms utilized were double
Q-learning, deep deterministic policy gradient, soft actor-
critic, and twin soft actor-critic. In simulation, we found that
soft actor-critic algorithms yielded the highest returns of all
discrete and continuous action, though high return variance
occurred for all algorithms due to compounded errors in an

Fig. 1: Workflow diagram of the model predictive controller
used to stabilize the Crazyflie during hovering. A trained
dynamics model, using only raw sensor input, is used with
a random shooting MPC to output low level PWM motor
values at a set control frequency.

imperfect dynamics model. Though transferring simulated
policies to the real world was unsuccessful, policies trained
on less expressive state and action spaces demonstrated
more reasonable reactions to Euler angle disturbances on the
real quadrotor. On the other hand, more expressive policies
yielded significantly better results in simulation, but only
because it exploited actions that were infeasible on the real
system. Furthermore, we conducted initial experiments with
synthesizing a PID controller with our neural net dynamics
model that would match the parameters on the Crazyflie
built-in controller, and we wish to improve and automate
this generation via Bayesian optimization.

Physical challenges with using the Crazyflie platform
are also presented in this work. We quantified the shift
of PWM equilibrium values of the motors after a strong
collision of over 10% and measured the increasing sensor
noise degradation over the lifetime of the quadrotor. More-
over, a detailed analysis of the effect of battery voltage
on state predictions was conducted, and it was found that
including battery voltage in the dynamics model explicitly
was superfluous. Specifically, our finding that there was an
inverse relationship between battery voltage and motor thrust
suggests that battery voltage was latent to other network
variables.



Low Level Control of a Quadrotor with
Deep Model-Based Reinforcement Learning

Nathan O. Lambert and Isabella Huang

Abstract— This work demonstrates the first use of model-
based reinforcement learning for stabilizing, low-level control
of a quadrotor at less than 50Hz using only on-board sensors,
with no initial system knowledge. Our approach uses a general
algorithm for learning a low-level (i.e. direct motor input
signals) controller, whereas comparable robot controllers are
typically hand engineered and tuned. We show that the full
radio communication, model prediction, and control pipeline
can function at frequencies greater than 150Hz. We detail
the firmware modifications required for radio communication
of state data and raw PWM commands, as well as the
implementation of a relatively high-frequency external model
predictive controller. Our dynamics model is a neural network
tuned to predict the Euler angles, linear accelerations, and
angular accelerations at the next time step, with a regularization
term on the variance of predictions. The model predictive
controller, sampling uniformly from bounded action spaces
around equilibrium, transmits best actions from a GPU-enabled
ROS base-station to the quadrotor firmware via radio. The
quadrotor achieved hovering capability of up to 6 seconds from
fewer than 7 minutes of fully experimental (either on-policy
or random action) training data. Lastly, model-free algorithms
were explored as well. Although the transfer problem from
simulation to real world flights was not addressed in this
work, the interplay between policy expressiveness and limited
experimental data was explored in both simulation and tests
on the real system.

I. INTRODUCTION

The design of appropriate robot controllers is tradition-
ally a time-consuming and expert-based process. Even for
relatively simple systems such as a quadrotor, tuning the
parameters of the low-level PID controller can be chal-
lenging and often results in sub-optimal controllers. Control
frequency and tuning becomes even more critical as the
vehicle size decreases due to the subsequent change in the
highly non-linear dynamics of the system. In this paper,
we investigate the question: Is it possible to autonomously
learn competitive low-level controllers for a quadrotor from
scratch, i.e., without bootstrapping or demonstration? To
answer this we turn to model-based reinforcement learning
(MBRL) — a compelling approach to synthesize controllers
even for systems without analytic dynamics models and
with high cost per experiment. MBRL has been shown to
operate in a data-efficient manner to control robotic systems
by iteratively learning a dynamics model and subsequently
leveraging it to design controllers [1], [2]. Building on the
dynamics model, we further investigate the capabilities of
offline dynamics models trained on experimental data to
generate control policies from model free algorithms such
as TSAC [3] and DDPG [4] or parameter regression for
traditional PID controllers. Although model-free algorithms

Fig. 2: The closed loop model predictive controller used to
stabilize the Crazyflie. Using this MBRL architecture, we
achieve stable hovering with only 5,000 trained datapoints –
equivalent to 100 s of flight.

have successfully been used in conjunction with model-based
algorithms to tackle unpredictable noise dynamics, we in-
vestigate the efficacy of model-free algorithms as standalone
controllers in this work.

Our MBRL solution employs deep neural networks to
learn a forwards dynamics model, coupled with a ‘random
shooter’ model predictive controller (MPC) — see Figure 2
— similar to the one evaluated in simulation by [5]. This ap-
proach can be efficiently parallelized on a graphic processing
unit to achieve low-level, real-time control at high frequency.
Using this approach, we demonstrate on the Crazyflie (an
established commercial quadrotor often used for research)
the controlled hover of a quadrotor directly from raw sensor
measurements and application of pulse width modulation
(PWM) motor signals. Repeated stable hover of around
two seconds is achieved with fewer than 10 minutes of
fully-autonomous training data, demonstrating the ability of
MBRL to control robotic systems in the absence of: any a
priori knowledge of dynamics; any pre-configured internal
controllers for stability or actuator response smoothing; and
any expert demonstration. The comparison of different learn-
ing rates and control capability at 25Hz and 50Hz indicate
how changes in prediction time-frame impact performance.



The initial results in model-free policy learning shows the
challenge of generating policies with an imperfect dynamics
model, but hint at future possibilities. The paper concludes
with exploration into many limitations of the Crazyflie
platform including battery voltage measurements and sensor
lifetime.

II. RELATED WORKS

A. Attitude and Hover Control of Quadrotors

Classical controllers (e.g., PID) in conjunction with the-
oretically derived models for the rigid body dynamics of
the quadrotor are sufficient to control vehicle attitude [6].
Linearized models are sufficient to simultaneously control
for global trajectory, stable hover, and attitude setpoint using
well-tuned nested PID controllers [7].

Research focusing on developing novel low-level attitude
and hover controllers has shown functionality in extreme
nonlinear cases, such as for quadrotors with a missing
propeller [8], with multiple damaged propellers [9], or with
the capability to dynamically tilt its propellers [10]. Opti-
mal control schemes have demonstrated results on standard
quadrotors with extreme precision and robustness [11].

Our work differs by specifically demonstrating the pos-
sibility of attitude and hover control via real-time external
MPC. Unlike other work on real-time MPC for quadro-
tors [12], [13], ours uses a dynamics model derived fully
from in-flight data (i.e., with no a priori structure or terms)
that takes motors signals as direct inputs. Effectively, our
model encompasses only the actual dynamics of the system,
while other implementations also incorporate the dynamics
of previously existing internal controllers as well.

B. Learning for Quadrotors

Although learning-based approaches have been widely
applied for trajectory control of quadrotors, implementations
typically rely on sending controller outputs as setpoints to
stable on-board attitude and thrust controllers. Iterative learn-
ing control (ILC) approaches [14], [15] have demonstrated
robust control of quadrotor flight trajectories but require
higher frequency on-board controllers for attitude setpoints.
Learning-based model predictive control implementations
which successfully track trajectories also wrap their control
around on-board attitude controllers by directly sending
Euler angle or thrust commands [16], [17]. Gaussian process-
based automatic tuning of position controller gains has been
demonstrated [18], but only in parallel with on-board motor
thrust and attitude controllers tuned separately.

Model-free reinforcement learning has been shown to
generate control policies for quadrotors that out-perform
linear MPC controllers [19]. Although similarly motivated
by a desire to generate a control policy acting directly on
actuator inputs, this work used an external vision system
for state error correction, operated with an internal motor
speed controller enabled (i.e., thrusts were commanded and
not motor voltages), and generated a large fraction of its data
in simulated rollouts.

Machine learning techniques have also been widely ap-
plied to the problem of system identification for quadrotors.
Bansal et al. used neural network models of the Crazyflie’s
dynamics to plan trajectories [20]. Our implementation dif-
fers by directly predicting change in attitude (e.g. body pose,
angular rates) based on raw actuator signals.

Bayesian optimization has been applied to learn a lin-
earized quadrotor dynamics model for tuning of an optimal
control scheme [21]. While this approach is data-efficient and
is shown to outperform analytic models, the model learned
is task-dependent.

C. Model-based Reinforcement Learning

Functionality of MBRL has been demonstrated in sim-
ulation for multiple tasks in low data regimes, including
quadrupeds [22] and manipulation tasks [23]. Low-level
MBRL control (i.e., with direct motor input signals) of
an RC car has been demonstrated experimentally, but the
system is of much lower dimensionality and has passive
stability [24]. Relatively low-level control (i.e., mostly thrust
commands only passed through an internal governor before
conversion to motor signals) of an autonomous helicoptor
has been demonstrated, but required a ground-based vision
system for error correction in state estimates as well as expert
demonstration for model training.

Properly optimized neural networks trained on experi-
mental data have shown test error below common analytic
dynamics models for flying vehicles, but the models did not
include direct actuator signals and did not include exper-
imental validation through controller implementation [25].
A model predictive path integral (MPPI) controller using a
learned neural network demonstrated data-efficient trajectory
control of a quadrotor, but results were only shown in
simulation and required the network to be bootstrapped with
30 minutes of control demonstration [2].

MBRL with trajectory sampling for control has been
shown to outperform, in terms of samples needed for con-
vergence, the asymptotic performance of recent model free
algorithms in low dimensional tasks [5]. Our work builds on
strategies presented, with most influence derived from work
on “probabilistic” neural networks, to demonstrate function-
ality in an experimental setting — i.e., in the presence of real-
world higher order effects, variability, and time constraints).

Neural network-based learned dynamics models with
model predictive control have been demonstrated to function
for experimental control of an under-actuated hexapod [26].
The hexapod platform does not have the same requirements
on frequency or control error due to its passive stability,
and incorporates a GPS unit for relatively low-noise state
measurements. Our work has a similar architecture, but has
improvements in the network model and model predictive
controller to allow substantially higher control frequencies
with noisy state data. By demonstrating functionality without
global positioning data, the procedure can be extended to
more robot platforms where only internal state and actuator
commands are available to create a dynamics model and
control policy.



D. Model Free Learning for Quadrotors

The advantage of model-free control is that the complex
non-linear dynamics and uncertainties of a real system do
not have to be modelled perfectly. As such, model-free
methods have proven to be effective for robust control when
disturbances exist and computational resources are limited
[27]. Model-free methods for learning local parameters was
used to augment an LQR feedback controller in [28]. This
method outperformed the pure LQR controller, even when
the LQR parameters were deliberately degraded.

It has also been shown in simulation that a model-free
based terminal sliding-mode control system, which combines
a model-free policy with sliding-mode control techniques to
eliminate bounded tracking errors in finite time, outperforms
control methods like PID, iterative PID, backstepping, and
pure sliding-mode [29]. Augmenting classical controllers
with model-free estimators extends to even more variants,
such as time-delay estimation-based control [30], piecewise
continuous recursive control [31], and algebraic methods-
based adaptive PID control [32]. However, in none of these
works was the control input at the motor-level, since the
mapping between motor control and thrust were assumed to
be known. For the scope of this project, we intend to explore
the usage of different model-free algorithms on the raw
sensor data without using any explicit quadrotor dynamics
model in conjunction. Our motivation for exploring this
regime is to inform future processes of developing control
laws for mechanical systems with even more subtle non-
linearities and uncertainties.

III. HARDWARE SYSTEM

A. ROS System

We used the open-source Crazyflie 2.0 quadrotor as our
experimental hardware platform. The Crazyflie is 27 g and
9 cm2, so the rapid system dynamics create a need for a
high speed controller; by default, the internal PID controller
used for attitude control runs at 500Hz, with Euler angle
state estimation updates at 1 kHz. This section specifies
the system involved in controlling the quadrotor and the
firmware modifications required for external stability control.

All components we used are based on publicly avail-
able and open source projects. We used the Crazyflie ROS
interface supported here: github.com/whoenig/crazyflie ros.
This interface allows for easy modification of the radio
communication and employment of the learning framework.
Our ROS structure is simple, with a Crazyflie subscribing to
PWM values generated by a controller node, which processes
radio packets sent from the quadrotor in order to pass state
variables to the model predictive controller (as shown in
Figure 3). The Crazyradio PA USB radio is used to send
commands from the ROS server; software settings in the
included client increase the maximum data transmission
bitrate up to 2Mbps and a Crazyflie firmware modification
improves the maximum traffic rate from 100Hz to 300Hz.

In packaged radio transmissions from the ROS server
we define actions directly as the pulse-width modulation

Fig. 3: The ROS system and the Crazyflie communicate
in an minimal fashion. The ROS side computer passes
control signals and state data between the model predictive
controller node and the Crazyflie ROS server. The Crazyflie
server packages Tx PWM values to send and unpacks Rx
compressed log data from the robot.

(PWM) signals sent to the motors. To assign these PWM
values directly to the motors we bypass the controller updates
in the standard Crazyflie firmware by changing the motor
power distribution whenever a CRTP Commander packet is
received (see Figure 3) instead of modifying a controller
setpoint value. The Crazyflie ROS package sends empty
ping packets to the Crazyflie to ask for logging data in
the returning acknowledgment packet; without decreasing
the logging payload and rate we could not simultaneously
transmit PWM commands at the desired frequency due to
radio communication constraints. We created a new internal
logging block of compressed IMU data and Euler angle
measurements to decrease the required bitrate for logging
state information, trading state measurement precision for
update frequency. Action commands and logged state data
are communicated asynchronously; the ROS server control
loop has a frequency set by the ROS rate command, while
state data is logged based on a separate ROS topic frequency.
To verify control frequency and reconstruct state action pairs
during autonomous rollouts we use a round-trip packet ID
system. The controller will not send another command until
the Crazyflie logging confirms that the PWM ID from the
(at most two) prior MPC update has been set to the motors.
This check confirms that a radio delay or buffer growth will
not propagate through the system.

Our firmware code will be made
publicly available upon publication at
github.com/natolambert/crazyflie-firmware-pwm-control.

https://github.com/whoenig/crazyflie_ros
https://github.com/natolambert/crazyflie-firmware-pwm-control


IV. DYNAMICS MODEL

Generating a dynamics model for the robot requires train-
ing a neutral network to fit a parametric function fθ to predict
the next state of the robot as a discrete change in state st+1 =
st + fθ(st, at) or a raw next state as st+1 = fθ(st, at). In
training, using a probabilistic loss function with a penalty
term on the variance of estimates better clusters predictions
for more stable predictions across multiple time-steps [5].

The probabilistic loss function assisted model convergence
and the variance penalty helps maintain stable predictions on
longer time horizons. Our networks are trained for 60 epochs
with the Adam optimizer [33] with a learning rate of .0005
and a batch size of 32. The network design is summarized
in Figure 4. All layers except for the output layer use the
Swish activation function [34] with parameter β = 1.

Training a probabilistic neural network to approximate
the dynamics model requires pruning of logged data (e.g.
dropped packets) and scaling of variables to assist model
convergence. Our state model is the vector of Euler angles
(i.e., yaw, pitch, and roll or φ, θ, ψ), linear accelerations
(ẍ, ÿ, z̈), and angular accelerations (ω̇x, ω̇y, ω̇z), as in Equa-
tion (1). The Euler angles are from the Crazyflie internal
complementary filter algorithm while the linear and angular
accelerations are measured directly from the on-board MPU-
9250 9-axis IMU.

st =
[
ω̇x, ω̇y, ω̇z, φ, θ, ψ, ẍ, ÿ, z̈

]T
(1)

We combine the state data with the four PWM values, at =
[m1,m2,m3,m4]

T , to get the system information at time
t. When fitting a model to prediction accelerations across
time horizons greater than 5, the large steps in predictions
can cause instabilities. To mitigate compounding errors, we
predict the angular and linear accelerations from a Gaussian
distribution, while the Euler angles are predicting a change
in state conditioned on all the inputs. This change does not
have a substantial effect on one time step predictions, but
gave increased stability for offline predictions and longer

Fig. 4: The neural network dynamics model consists of the
past 4 state-action pairs predicting the mean and variance of
the change in state. The input is of dimension 52, predicting
an 18 dimensional output. We use 3 hidden layers of width
500, with the Swish activation function. Training uses the
Adam optimizer for 60 epochs with an initial learning rate
of .0005, with a learning rate scheduler of .5 scaling every
20 epochs, and a batch size of 32.

Fig. 5: One step predictions for change in Euler angles of
the final model across the state space of data collected on the
random action policy. The normalized mean squared errors
from ground truth to the prediction for each of the Euler
angles are Pitch: 0.130, Roll: 0.076, and Yaw: 0.032.

time horizons in the MPC. The neural networks are cross-
validated to confirm using all state data (i.e., including the
relatively noisy raw gyroscope and accelerometer measure-
ments) improves prediction accuracy in the change in state.
The ones step predictions for our final model is shown in
Figure 5.

While the dynamics for a quadrotor are often represented
as a linear system of equations, for a MAV at high con-
trol frequencies motor step response and thrust asymmetry
heavily impact the change in state, resulting in a heavily
nonlinear dynamics model. The step response of a Crazyflie
motor from PWM 0 to max has been shown to be 250ms,
so our update time-step of 6.7ms is short enough for motor
spin-up to contribute significantly to learned dynamics. To
account for spin-up, past system information is appended
to the current state and PWMs to generate an input into
the neural network model that includes past time. From the
exponential step response and with a bounded possible PWM
value within peq ± 5000, the motors need approximately
25ms to reach the desired rotor speed; when operating at
150Hz, the time step between updates is 6.7ms, leading us
to an appended state and PWM history of length 4. This state
action history length was validated as having the lowest test
error on our data-set (lengths 1 to 10 evaluated). This yields
the final input to our neural network, ξ, being of length 52,
with 4 state and action vectors concatenated:

ξt =
[
st st−1 st−2 st−3 at at−1 at−2 at−3

]T
(2)

V. MODEL BASED CONTROL

Model predictive control provides a framework for evalu-
ating many action candidates using a given dynamics model.
We employ a ‘random shooter’ MPC, where a set of N ran-
domly generated actions are simulated over a time horizon T .
The best action is decided by a user designed objective



Fig. 6: Each line is a predicted future state from a candidate
action, with the chosen “best action” highlighted in red. The
candidate actions rapidly diverge around timesteps 3 − 5,
and continue to do so further into the future. The cost
function is designed so the actions with extreme responses
are eliminated by the MPC, which then return a more
reasonable action from the center of the distribution.

function that takes in the simulated trajectories X̂(a, st) and
returns a best action, a∗; as visualized in Figure 6. The
candidate actions are 4-tuples of motor PWM values centered
around the stable hover-point for the tested Crazyflie. The 4
PWM values in one sample action ai = (ai,1, ai,2, ai,3, ai,4),
where the index i = 1, 2, · · ·N . The candidate actions are
constant across the time horizon T . For a single sample ai,
each ai,j is chosen from a uniform random variable on the
interval [peq,j − σ, peq,j + σ], where peq,j is the equilibrium
PWM value for motor j. The range of the uniform distri-
bution is controlled by the tuned parameter σ; this has the
effect of restricting the variety of actions the Crazyflie can
take. For the given range of PWM values for each motor,
[peq − σ, peq + σ], we discretize the candidate PWM values
to a step size of 256 to match the future compression into a
radio packet. This discretization of available action choices
also increases the coverage of the 4- dimensional candidate
action space without an increase in N that would lead to
decreased control frequency.

The objective function we designed for stability seeks
to minimize distance from the origin for pitch and roll,
while adding additional cost terms to Euler angle rates. The
omission of global yaw term is because yaw does not reset to
0 at each takeoff and seeking a yaw of zero is not necessary
for stability.

a∗ = argmin
a

c
(
X̂(a, st)

)
= argmin

a

T∑
t=1

λθ(ψ
2
t + θ2t )

+ λ∇(ψ̇
2
t + θ̇2t + φ̇2t )

(3)

In this objective function, λθ maps roughly to a proportional,

or gain, term and λ∇ corresponds to a derivative, or damping,
term.

The MBRL approach was run at 25Hz and 50Hz to
compare learning rate and flight performance at multiple
frequencies. Both of the MPC’s are operating on a longer
time horizon of T = 12 with N = 5000. At 25Hz this
relates to a time prediction of 480ms and at 50Hz this is
240ms, so both are predicting further out than the motor
rise time to a held action. This controller iteration is limited
by control frequency to correct from minor disturbances or
control errors from unmodeled states. When testing at 50Hz,
about 20% of the flights after rollout 6 failed due to drift and
collisions that were not avoidable with current sensors. The
controller is capable of controlling at over 200Hz with the
current structure of dynamics models, but that will be limited
to T = 1 on an Nvidia Titan Xp. Our control algorithm is
summarized in Algorithm 1.

Early tests controlling at a frequency of 100Hz, T =
6, N = 5000 with a model trained on 50Hz data was
extremely promising, with over 2

3 of flights failing due
to drift, but further experiments on this were limited due
to sensor degradation, as explored in IX-B and shown in
Figure 18. We will explore further testing in this area as it
indicates a potential to leverage the predictive power with a
higher control frequency to mitigate minor disturbences.

Our controller code will be made publicly available upon
publication at github.com/natolambert/crazyflie-ros-mbrl.

Algorithm 1 ROS MPC Summary

1: Gather random data D0, train initial model f0,θ
2: for Rollout r = 1 to R do
3: while Flying do
4: ROS Rx: (st, at)
5: Compile ξt = [st, at, · · · , st−3, at−3]
6: for i = 1 to N do
7: {a}i,j ∼ U

(
peq,j − σ, peq,j + σ

)
8: for k = 1 to T do
9: st+k = st+k−1 + fi,θ(ξt)

10: end for
11: obj(ai) =

∑T
k=1 c(st+k, ai)

12: end for
13: ROS Tx: a∗ = argmina obj(ai)
14: end while
15: Append data D = Dr ∪ · · · ∪ D0, train fr,θ on D
16: end for

VI. MODEL FREE CONTROL

To test the efficacy of model-free algorithms in controlling
the quadrotor, we trained several different policies based on
data collected from real flights. The goal was to investigate
the most promising algorithms on which to based model-free
policies in this setting. To this end, we designed a custom
OpenAI Gym environment and performed all experiments at
50 Hz. An observation in the environment at time t is de-
fined to be (st, st−1, st−2, at−1, at−2), and the policy should
output the best action at. The bounds of a valid observation

https://github.com/natolambert/crazyflie-ros-mbrl


Fig. 7: The pitch over time for each flight in the first four rollouts of MBRL learning at 50Hz, showing the rapid increase in
control ability on limited data. The random and first controlled rollout show little ability to correct, but rollout 3 is already
progressing multiple flights beyond 2 seconds.

were defined based on the numerical state and action bounds
observed in real flight data in order to maintain fidelity with
the physical plant. To preserve the latent dynamics in the
stacked states of each observation, recent states were drawn
from real observed data with added Gaussian noise, and
the environment dynamics were governed by the dynamics
models trained for MPC with 9000 datapoints. Furthermore,
the following reward function was defined similarly as in
the MPC case, except an additional failure penalty λfailwas
found to lead to better converging policies:

r(st−1, at1) =

{
−λfail if st failed
rθ,t + r∇,t otherwise

(4)

where

rθ,t = max
data

(
λθ(ψ

2 + θ2)
)
− λθ(ψ2

t + θ2t ) (5)

is higher for lower pitch and roll angles, and

r∇,t = max
data

(
λ∇(ψ̇

2
t + θ̇2t + φ̇2t ))

)
−λ∇(ψ̇2

t + θ̇
2
t + φ̇

2
t ) (6)

is higher for lower angular accelerations. The failure
condition of st occurred when either its pitch or roll angles
is greater than 30 degrees.

In selecting model-free algorithms, one approach was to
discretize the action space and employ double deep Q-
learning [35]. In this regime, each motor j was allowed to
take one of three values in the set {peq,j−σ, peq,j , peq,j+σ}
for a total of 81 unique combined motor actions. The σ
value was selected to be 5000 to adequately cover the range
of PWM values required for hovering using MPC, and to
avoid supplying candidate actions where the dynamics model
has no knowledge. On the other hand, we also investigated
policies over continuous action spaces including deep de-
terministic policy gradients (DDPG) [4], soft actor-critic

Fig. 8: Test returns for the four different model-free algo-
rithms vs. training epoch. High variances appear to be an
artifact of using an imperfect dynamics model whose error
in estimation blows up when compouded.

(SAC) [36], and Twin SAC, a combination of SAC and twin
dueling deep deterministic policy gradient (TD3) [3]. The
benefit of exploring both discrete and continuous policies is
to study the trade-off between desiring an expressive policy
network while not having access to unlimited flight data
to best train it. DDPG, a natural extension to DQN that
also utilizes a replay buffer and separate target network,
employs an actor-critic architecture to handle selecting over
continuous actions. SAC attempts to maximize entropy in its
policy, which evades the traditional Q-learning framework
and implicitly embodies better exploration. Furthermore,
TSAC builds upon SAC by using two critic networks to
minimize overfitting, which is essential to our setting with an
imperfect dynamics model. Fig. 8 details the test returns of
these algorithms during training, with TSAC being superior
amongst the other continuous action algorithms.

Random rollouts of the policy for different initial condi-
tions are plotted for the DQN and TSAC policies in Figures



Fig. 9: Ten simulated rollouts with the DQN policy. Fig. 10: Ten simulated rollouts with the TSAC policy.

Fig. 11: Quadrotor PWM response to Euler angle distur-
bances with the DQN policy. The PWMs respond rea-
sonably to changes in Euler angles, but not consistently
enough for controlled flight.

Fig. 12: Quadrotor PWM response to Euler angle distur-
bances with the TSAC policy. The PWMs do not respond
in a way to fly, but in an exploitative manner of the
dynamics model to maximize reward.

9 and 10 respectively. We see that in the DQN policy, the
quadrotor maintains a pitch and roll angle very close to
the failure value of 30 degrees throughout its trajectory. To
achieve this orientation, the linear accelerations are neces-
sarily non-zero as evidenced in Fig. 9. Though undesirable
for real-world testing where flight space is limited, this result
is reasonable since the action set available in the discretized
environment was not dense enough to fine-tune and steer
the quadrotor pitch and roll angles to zero. On the other
hand, Fig. 10 demonstrates that the TSAC policy is able
to steer the pitch and roll angles much closer to zero and
maintain a hovering status with minimal angular and linear
accelerations.

As expected, since the transfer problem of importing a
simulated policy to the real world was not addressed in this
work, none of these model-free policies yielded successful
hovering on a physical quadrotor. This is because model-
free policies are trained to maximize rewards over longer
horizons than in MPC, so errors in the dynamics model are
compounded. However, the reactiveness of the quadrotor held
in-hand to pitch and roll angle disturbances are shown in
Figures 11 and 12. In the DQN case, the motors do react
to angular disturbances, but the same cannot be said for the
TSAC case, where the motor values are all lower than at
their equilibrium values. It appears that the TSAC policy
had exploited the imperfect dynamics model and converged
on an unrealistic set of feasible actions for flight, where low

motor thrust will keep the quadrotor on the ground following
a brief hop from takeoff.

Overall, without more data to yield a better dynamics
model, the use of an expressive environment with complexi-
ties such as stacked states is unlikely to produce reasonable
actions in the real world, whereas more constrained states
induced by DQN yielded a proper qualitative response.
However, continuous policies are still promising methods
for handling unmodeled noise for use in conjunction with
a model-based controller rather than being standalone. An
additional consideration for improving gradients of policies
trained on neural network dynamics models is to constrain
the gradients to less sensitive to exploding gradients [37].

VII. OTHER CONTROL

The expressive power of a neural network dynamics model
lends it’s hand to use in other types of control. The neural
network can be used as a plant in more traditional controllers
[20] or as an imitative copy of expressive, computationally
intensive control. An notable baseline to compare the per-
formance of the MBRL solution to is that of generated PID
or standard controllers. Recent work showed the capability
of Bayesian optimization for synthesizing PID parameters
for experimental robots [38]. Exploration of the synergy
between Bayesian optimization for parameter tuning with an
expressive neural network dynamics model has potentially
to uncover other viable solutions for control of novel robots
with a lower computational footprint. Initial experiments



Fig. 13: The performance of the MPC algorithm over a test
flight. The time under control for this flight is over 5 s.
Above: The open-loop takeoff followed by the controlled
PWM values over time. Below: Controlled pitch and roll.

showed the ability to close a PID feedback loop matching
the Crazyflie’s design around a neural net dynamics model,
but work is needed to automated the generation of the PID
parameters.

VIII. EVALUATION

The performance of our controller is measured by the
average flight length over each roll-out. This section is
discussing the performance of the MBRL solutions using
a MPC, as the model-free solutions are yet to demonstrate
any controlled flight. An example flight with clear controlled
Euler angles is shown in Figure 13. Failure is primarily due
to collision with an object due to drift, or, as in many eariler
roll-outs, when flights reach a pitch or roll angle over 40◦.
In both cases, an emergency stop command is automatically
sent to the motors to prevent quadrotor damage during data
collection. Along with the collisions due to drift, the simple
onboard state estimator shows heavy drift on the Euler angles
following a rapid throttle ramping; both are limiting factors
on the length of controlled flight without a dead reckoning
system.

A. Learning Process

The learning process follows the reinforcement learning
framework of collecting data and iteratively updating the
policy. We trained an initial model f0 on 124 and 394
points of dynamics data at 25Hz and 50Hz, respectively,
from the Crazyflie being flown by a random action controller
supplying PWM values. Starting with this initial model as the
MPC plant, the Crazyflie undertakes a series of autonomous
flights from the ground with a 250ms ramp up, open-loop
takeoff followed by on-policy control while logging data
to the ROS base-station. Each rollout is a series of 10
flights, which causes large variances in flight time. The
initial roll-outs have less control authority and inherently
explore more unstable state spaces, which is valuable to
future iterations that wish to recover from higher pitch and
or roll. The learning curves are showing in Figure 14. There
is a trend between learned performance at both frequencies

Fig. 14: Mean and standard deviation of the 10 flights during
each flight for MBRL at 25Hz and 50Hz. The 50Hz shows
a slight edge on final performance, but a much quicker
learning ability per flight by having more PWM switches
during control.

Fig. 15: Mean flight time of each MBRL rollout plotted
verses the logarithm of the number of available points at train
time for each model. The higher control frequency allows the
controller to learn faster on wall time, but the plot indicates
that there is not a notable difference between control ability
when the number of trained points are equal. There is a
continuing upward trend of flight time verses training points,
but it is difficult to obtain more data in experiment.

and the number of trained points for the model, as shown in
Figure 15. The continuing upward trend between logarithmic
points and flight time indicates further data collection could
enhance flight performance.

B. Performance Summary

The initial learning results are shown in Figure 7, where
the rapid visible improvement in results is evident. Both
25Hz and 50Hz control show a level off in performance
after reaching a certain data threshold. The longest flights
during these rollouts is over 5 s for both frequencies. The
leveling off could be caused by a slow in improvement of the
dynamics model, with orders of magnitude growth in amount
of data potentially being needed for further performance
improvements.

The best results over the model roll-outs are shown in
Figure 7, where later roll-outs are clearly longer on average.



Fig. 16: The logged battery voltage and mean PWM of the
4 motors across a flight. There is a dominant relationship
between the logged battery voltage and the current thrust.

The data used for training and the results of the roll-outs is
summarized in Figure 14, which shows the average flight
length double from the initial random policy to the final
controller deployed after 1 random and 4 on-policy roll-outs.
This controller demonstrated the ability to hover, following a
“clean” open-loop takeoff, for multiple seconds. An example
of a test flight is shown in Figure 13, where the response to
pitch and roll error is visible.

The system has multiple limitations resulting in the short
time-scale of flight. First, the PWM equilibrium values of
the motors shift by over 10% following a strong collision,
causing the true dynamics model to shift semi-randomly
over time. Additionally, the internal state estimator does
not track extreme changes in Euler angles accurately; our
controller, which operates at a relatively low rate for motor
control, needs carefully tuned damping terms to eliminate
oscillations from open loop takeoff or control overshoot.
Although relatively short hover times are achieved, we
believe that overcoming the considerable system-level and
dynamical limitations of controlling the Crazyflie in this
manner showcase the expressive power of MBRL.

Current and future results will be updated here:
https://sites.google.com/berkeley.edu/mbrl-quadrotor/

IX. DISCUSSION

A. Battery Voltage Context

The Crazyflie has a short battery voltage of about 7
minutes of flight time and operation depends heavily on
battery voltage, with it becoming uncontrollable on low
voltages. When training models, we investigated logging
battery voltage and adding it to the state passed to the neural
network to improve prediction accuracy.

When operating the Crazyflie at control frequencies of
greater than 100Hz, the state dynamics become clearly
biased at battery voltages less than 3,650 mV. The biased
state dynamics can be seen in Figure 17, but the predictions
do not improve when passing the battery voltage into the
neural network dynamics model at any battery level. The
RMS delta between a model trained with and without battery
voltage is less than 1%.

A potential explanation for the lack of model improvement
with logged battery voltage is that the current battery reading
is latent in other variables past into the network, and the
natural charge based variations in data are not dominant. The
logged data shows a clear inverse relationship between bat-
tery voltage and current Crazyflie thrust, shown in Figure 16.
This relationship is less likely to be apparent on quadrotors
with separate motor voltage controllers, where the impedance
of the motors changing with revolutions per minute would
be compensated for.

B. Crazyflie Lifespan

Extended period of testing on individuals quadrotors
demonstrated a finite lifetime. After many flights, perfor-
mance would dip inexplicably. This is due to a combination
of motor damage and or sensor decay. Motor damage causes
a measureable change in the equilibrium PWMs for a given
quadrotor. Figure 18 shows the change in the noise on the
gyroscope before takeoff for all of the flights taken by the
quadcopter used to collect data for this publication. The left
two sections includes the data included in VIII, but the data
taken at a control frequency of 75Hz was abandoned due to
inconsistent performance. Some initial flights at 75Hz were
extremely promising, but after a series of collisions via drift
the quadrotor would not take off cleanly. Future work should
investigate methods of mitigating the effect of sensor drift,
potentially by conditioning the dynamics model on a sensor
noise measurement or enforcing more safety constraints on
flight.

X. CONCLUSION

This work is an exploration of the capabilities of model-
based reinforcement learning for the low-level control of
initially unknown systems. We demonstrate the firmware
modifications, system design, and model learning consider-
ations required to enable the use of a MBRL-based MPC
system over radio at 150Hz. We removed all robot-specific
transforms and higher level commands (e.g. thrust and Euler
angle rate setpoints) to only design the controller on top
of a learned dynamics model to accomplish a simple task.
The controller shows the capability to hover for multiple
seconds at a time off of less than 7 minutes of collected
data — approximately the full battery life flight time of a
Crazyflie quadrotor. The successful hovering of a quadrotor
underscores potential extensions of the presented MBRL
framework for future low-level control.

There are multiple pathways to investigate for improving
the performance of the current system as presented. Cur-
rently, the random shooter MPC method devotes a substantial
amount of computation on action samples that will never
produce a desirable state change. The controller could be
improved by developing a prior weighting on the reward
of each action that is developed over time, resulting in
a weighted action sampling based on the current state.
Another way to reduce computation could be to use a neural
network policy trained to imitate the initial model predictive
controller that would no longer require evaluating every

https://sites.google.com/berkeley.edu/mbrl-quadrotor/


Fig. 17: This plot shows the effect of battery voltage on state predictions. The top row is the ground truth one step pitch
changes, the middle is the predictions through a model trained with battery voltage included in the state, and the bottom is
predictions without battery voltage included in the state. Both of the predictions show tighter grouping from the variance term
on the probabilistic loss function, but there is an extremely low difference between the predictions with and the predictions
without battery. The lack of difference in predictions indicates the battery voltage is latent to other variables passed into the
network.

candidate action. Also, in our work, we maintained a general
approach to the MPC block to avoid using a priori system
knowledge; it is likely that performance could be improved
with further controller specialization and objective function
tuning. Combining the strides in improving the MPC with
the model free and other controllers will allow us to expand
the capabilities of the current system.

These initial results create opportunities for numerous
experiments to improve and apply the MBRL system:

While in this work data is collected with human assistance
when the robot crashes or drifts substantially, we envision a
future approach that allows for data collection with no human
intervention. Defining safety constraints within the model
predictive controller, rather than just a safety kill-switch in
firmware, could enable intelligent, safe exploration of state
space, opening the door for fully autonomous learned control.

With similar robots, training can be run in parallel and
the related dynamics models can be used as a weighted
ensemble for prediction, hopefully decreasing total training
time and improving performance. The ROS Crazyflie system
is structured to easily interface with multiple robots, allowing
a natural extension from safe state space exploration to

multiple agents learning autonomously to fly together.
Direct synthesis of robot controllers operating on raw

actuator inputs has exciting implications for development of
novel robotic platforms. The emergent area of microrobotics
combines the issues of under-characterized actuators and
dynamics, weak or non-existent controllers, “fast” system
dynamics and therefore instabilities, and extremely high cost-
to-test [39]–[41]. Controller development based on data-
efficient MBRL approaches could aid in the efforts to deploy
autonomous millimeter-scale robots without significant time
investment in controller design.

Moreover, our investigation into developing closed-form
model-free policies indicated that although the policies were
able to converge in simulation, it proved unsuccessful in the
real world. This was largely due to imprecision in the trained
dynamics model, and we expect these errors to be mitigated
with more training data and better pruning. It would also
be very interesting for future work to include leveraging
MPC as a supervisor to train a closed-form policy, exploring
trust-region policy optimization techniques [42], as well as
using model-free policies to augment MPC rather than being
standalone.



Fig. 18: The sensor noise on the 3 angular accelerations measured by the gyroscope of the MPU9250 of the Crazyflie before
the robot takes off. The black vertical lines separate the rollouts at 25Hz, 50Hz and 75Hz from left to right. The vertical
lines indicate changes in hardware and collisions that would change the dynamics or state of the robot. The sensors clearly
are subject to increasing noise over lifespan.
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