
EECS 289A AND EE291E FINAL PROJECT, SPRING 2018 1

Platform for Learning Robot Dynamics and
Comparing Methods

Nathan Lambert; University of California, Berkeley

Abstract—This project creates a model-based reinforcement
learning framework for simulating robots and learning dynamics.
The contributions are simple dynamics models, controllers for
exploring state spaces, learning classes for modeling the system
dynamics, and controllers for performing tasks on the learned
dynamics. The dynamics files included are for a Crazyflie and
the Ionocraft [1], [2], with a class structure for adding more.
The system learns dynamics by exploring around hover for
these flying robots. We compare the effectiveness of simple
least squared (LSTSQ) and neural network (NN) solutions for
modeling dynamics used to accomplish simple tasks with Model
Predictive Control (MPC). This simulation platform is the base-
work for testing models to learn dynamics to train the currently
uncontrollable Ionocraft to hover and explore model-based rein-
forcement learning for robots without access to high-fidelity state
variables. We also qualitatively describe initial evaluations of the
dynamics models presented here.

I. INTRODUCTION

Reinforcement learning (RL) conveys the opportunity for
new agents to accomplish tasks in unknown environments
without pre-described instructions, which has clear value to
numerous applications. RL is often broken down into two
categories: model-free learning, where the system is given
goals and attempts to learn a policy via a reward function
directly and model-based learning, where a system attempts
to learn a dynamics model for future use. Current state of the
art algorithms in model-free RL, such as OpenAI’s Proximal
Policy Optimization (PPO) [3], often focus on digital environ-
ments where the cost of obtaining data is low. Alternatively,
model-based learning has been explored in environments with
higher costs-per-run. Deisenroth and Rasmussen showed the
feasibility of learning simple physical tasks in under a minute
using Gaussian Processes (GP) with their algorithm Proba-
bilistic Inference for Learning Control (PILCO) [4].

Building on PILCO and algorithms for low sample dy-
namics learning, numerous applications in exploring new
platforms for these algorithms exists, such as gait discovery
on quadrupedals [5], [6] and hexapods [7]. Work in quadrotors
is of interest to see how new algorithms can perform on tasks
that have been extensively studied in control. Bansal et al.
shows the capabilities of learning generalized trajectories on
quadrotors without explicitly training on trajectories of the
same complexity [8]. Online Bayesian optimization can be
used to learn dynamics in real time that give best control per-
formance, proposed as Dynamics Optimization via Bayesian
Optimization (aDOBO) [9]. The standard approach for control
on the learned dynamics of these systems is with MPC [10].

Our contribution is in the platform to explore above al-
gorithms. The simulation environment makes is simple to

Fig. 1. Physical systems modeled - left: Crazyflie 2.0 quadrotor, right:
ionocraft [1]

experiment with different objective functions on the MPC or
different state variables to learn the dynamics. Changing the
objective function explores if the learned dynamics suitably
cover the state spaces to accomplish diverse tasks. Changing
the state variables allows users to explore the feasibility
of accomplishing tasks on learned dynamics without highly
accurate state feedback systems such as VICON.

II. ROBOTICS SIMULATION

A. Ground Truth Dynamics Model

The dynamics models (as in [11], [12]) we use to simulate
the ionocraft and the crazyflie in Python are based on the
following equations, where ~pg is the position of the ionocraft
with respect to the global frame, R is a matrix that maps
vectors from the body fixed frame to the global frame, ~vb is
the velocity of the ionocraft with respect to the body fixed
frame, ~Fext and ~Mext are the external forces and moments on
the ionocraft with respect to the body fixed frame, Ib is the
moment of inertia matrix, ~wb are the angular velocities of the
ionocraft with respect to the body fixed frame, ~ξ are the Euler
angles, and W is a matrix mapping the angular velocities to
Euler angle rates.

~̇pg = R~vb (1)

~̇vb =
1

m
~Fext − ~wb × ~vb (2)

Ib ~̇wb = ~Mext − ~wb × Ib ~wb (3)

~̇ξ = W ~wb (4)

The four individually controllable thrusters each generate a
force Fi,ion where i ∈ {1, 2, 3, 4}. This allows roll and pitch

EECS 289A AND EE291E FINAL PROJECT, SPRING 2018 2

Fig. 2. Example of simulated ionocraft dynamics: Left, dynamics of a trajectory hovering. Right, inputs supplied to do so.

to be independently controlled [11]. Traditional quadrotors
are able to control yaw by individually changing the angular
momentum of each of the spinning rotors; a current limitation
of the ionocraft design is that yaw cannot be controlled
independently of roll and pitch because the thrusters do not
intrinsically generate angular momentum. This lack of yaw
control yields a rank deficient controllability Gramian.

Using the dynamics model above, a linear operator relating
the thrust forces Fi to body fixed-frame z-axis thrust T and
torques τx, τy , and τz can be generated. For a standard
quadrotor, where body forces are proportional to the angular
velocity squared of each motor, the map is:

Tz
τz
τy
τx

 ∝


1 1 1 1
−c c −c c
lx lx −lx −lx
−ly ly ly −ly



w2

1

w2
2

w2
3

w2
4

 (5)

For an ionocraft with four thrusters pointing in the body
frame’s z direction, this becomes the following equality:

Tz
τz
τy
τx

 =


1 1 1 1
0 0 0 0
lx lx −lx −lx
−ly ly ly −ly



F1

F2

F3

F4

 (6)

It can be seen that the map for the ionocraft prevents control
authority over τz , which corresponds to yaw. The parameters
lx and ly are defined as the distance from the thruster’s center
of mass to the body fixed-frame’s center of mass in the x and
y directions, respectively.

B. Hovering Controller Design

In order to hover, the controller stays around zero centered
inputs for z̈, pitch, and roll. The equilibrium input for the
Ionocraft is Fi,e = mg

4 for all i ∈ {1, 2, 3, 4}, and for the
Crazyflie it is similar. This provides a stable hover equilibrium
point. Each of the three PID controllers (shown in Fig. 3)

+

PIDz̈

PIDroll

PIDpitch

+ Convert Dynamics

Sensor Noise

xd xt

x̂t

−

Fig. 3. Overall structure of the hovering control scheme. The difference
between the estimated state at time t, x̂t and the global desired state xd is
fed through a single PID loop with 3 independently tuned controllers.

regulates the error between the current state and the desired
state, and has a z-transform of the form:

ũi(z)

ei(z)
= kp + kiTs

1

z − 1
+ kd

N

1 +NTs
1
z−1

(7)

For the Ionocraft, The scalar PID output is transformed
into a vector of desired input voltages by three individual K
transformation matrices.

ui =


δF1

δF2

δF3

δF4

 = Kũi (8)

Kz =


1
1
1
1

 , Kpitch =


1
−1
−1
1

 , Kroll =


1
1
−1
−1

 (9)

These three K matrices map a PID output to a change in input
for all four thrusters. The output of the three transformed PID
outputs, u1, u2, u3 are summed together to form the input into
the conversion block. Each thruster has a maximum force it
can provide (approximately 0.25mN); this saturation makes
the inputs nonlinear.

EECS 289A AND EE291E FINAL PROJECT, SPRING 2018 3

C. Learned Dynamics Models

Here, the state at time t is xt ∈ Rd, where d is a design
parameter, the dimension of the state space, and ut ∈ Rl being
the inputs, which will depend on the robot and it’s control
scheme. The ionocraft and quadrotor dynamics model will
begin as the following 12-dimensional state vector:

x :=


p
v
ζ
ω

 (10)

Where p := (X,Y, Z) is the inertial reference position, v :=
(ẋ, ẏ, ż) is the body frame velocity vector, ζ := (φ, θ, ψ) is
attitude Euler angle vector, and ω := (ωx, ωy, ωz) is the body
frame rotational velocity vector.

We will formulate the problem as fitting a discrete time,
potentially non-linear, state update function f

xt+1 = xt + f(xt, ut) (11)

In order to accurately model this function, the exploration
of the state space when learning dynamics must be complete,
otherwise the function f(·, ·) will model a subset of the dy-
namics. For example, if you only take random actions around
hover, called bubbling, the learned model may only function
around hovering. If a weak controller can be used to explore
the state space slowly, it can improve the expression of the
learned dynamics towards the true dynamics. The randomness
in actions boils down to a bias verses variance trade-off in
the training data. A biased model will be task specific. This
illustration is seen below in Fig. 6, and is more important
when training robots to accomplish diverse tasks on a single
set of training data. This project focuses on simple objective
functions, so this is not a limiting factor.

Fig. 4. Conceptual illustration of the importance of explicitly exploring state
spaces (illustrated in lower dimensions). Left: random exploration around
equilibrium, right: naive planed trajectories. The blue area or dashed lines
show how the systems could explore state spaces. With a even poorly tuned
controller, more of the dynamically feasible region can be explored. As
dimensions scale, the volume of states explored around hover decreases
exponentially, so the importance of improved exploration increases.

Code for this section is found in the files: dynamics.py,
dynamics-ionocraft.py, dynamics-crazyflie-linearized.py, con-
trollers.py

III. MODEL LEARNING

The premise of this project is to train different f to fit
the dynamics while trying to achieve the control discussed

below. When training these models, they will be minimizing
a cost to best fit the training data. If one passes easy to model
data in, such as the relationship between global velocity and
position at the next time step, the model will waste expression
on the relationship we already know. The importance of the
model is to find the interaction between forces and states
that we may not easily be able to model with disturbances
or highly nonlinear dynamics. A accurate learned dynamics
will incorporate our known knowledge of dynamical systems
with learned non-linearities. An example of this would be
when training for hover, the user may not want to include
variations on z because we are only considering stability and
the inputs will be around the hover point for z regardless.
Formulation for a dynamics model learning only force and
torque interactions will follow the setup in [8] below in (12),
where αi are separate learned parameters:

ẋ =


ṗ
v̇

ζ̇
ω̇

 = f(x, u;α) =


v

fv(x, u;α1)
Rω

fω(x, u;α2)

 (12)

Fig. 5. An illustration of the accuracy of a learned dynamics model. For
certain tasks, the divergence of the learned model would not guarantee failure.

A. Least Squares

Using least squares, one can quickly linearize a dynamics
model based on the training data to form a linear system of
the form

ẋt = Axt +But (13)

for constant matrices A ∈ Rd×d and B ∈ Rd×l. This follows
from the closed form solution of least squares

argmin
w
‖Xw − y‖22 (14)

Here, X is the stacked training data vectors of the shape[
xt, ut

]T
, y is the change in state

[
xt+1 − xt

]
and w is

the stacked matrices
[
A,B

]T
. Least squares has no strengths

other than it’s ease of implementation. It does not encompass
nonlinearities or probabilistic outputs.

EECS 289A AND EE291E FINAL PROJECT, SPRING 2018 4

B. Neural Networks

Neural networks were the primary method employed for this
project. The main reasons behind this design choice are the
relatively rapid computation, current research interest within
academic, and ability for generic function approximation.
While the neural network may be able to fit a simple next
state update model with high training or cross validation
accuracy, when the model encounters states not trained for, it
can capitulate completely. This is because NNs have complete
confidence in it’s output and has no way on indicating that
a passed state was not trained for. This drawback is why
GP have been successful and re-iterates the importance of
diverse state space exploration when training for varied tasks.
NNs are also very prone to overfitting and do not have
explicit gradient information for control tools (MPC, iLQR,
nonlinear methods). NNs also scale relatively well for higher
dimensional systems, so computation of dynamics within MPC
is less of a concern. In addition, NNs have been shown to
have better generalization capabilities than linear least squares
methods.

1) Learning Dynamics: The Neural Network was used to
learn system dynamics, the neural network input were chosen
to be:[

X,Y, Z, vx, vy, vz, cos(φr), sin(φr), cos(φp), sin(φp),

cos(φy), sin(φy), ωx, ωy, ωz, ~ut
]
(15)

We chose to change raw angles to cos, and sin, as they better
represent angles that are close to one another (i.e. cos(0) =
cos(2π)) and they normalize the angles to appropriate values.
The inputs to the neural network (during training and testing)
were normalized to zero mean and unit variance. This allows
for better training, as the neural network will not be forced
to weight certain state variables higher than others, making
all of the weights in the neural network of similar order.
While

[
x, y, z

]
were not all necessary as state variables (as we

can approximate the dynamics of a flying object as spatially
invariant), we chose to include them in our neural network as
many people in the community got better results while using
them, and they can be used to include more subtle dynamics
in later models. [5], [6]. The output of our neural network
were the normalized change in states xt+1 − xt which helps
keep bounded outputs and allows us to easily tune the system
based on the length of the time step.

2) Neural Network Model: We chose to use a fully con-
nected feedforward neural network with ReLU activation
functions to map from normalized input states to the expected
change in state. Following [5] we optimized over the following
loss function:

argmin
θ

L(θ) =
1

|D|
∑

xt,ut,xt+1∈D

1

2
||(xt+1−xt− fθ(xt, ut)||22

(16)
Where our model is parameterized by θ, which is just the

weight and bias matrices for the neural network. This loss
function is the same as mean squared error where the target
y = xt+1 − xt. We used fully connected units with ReLU
activation functions, as these units do not suffer from the

vanishing gradient problem present in other sigmoid activation
neural networks. Minimization of error was done using the
ADAM optimization method [13] which has been shown to
have good performance.

3) Hyperparameter tuning: To effectively train the neural
network, we partitioned the training data and cross validated
the data with during training. We tuned for number of neural
network layers, learning rate, size of neural network layers,
and training epochs. Our training set was 200 iterations of a
random 50 step sequence with gaussian noise added to each
training point. The results of these parameter sweeps can be
seen in Figures 6 and 7. From these, we can see that more than
3 layers does not provide any benefit to training as we tend to
overfit the data to the training data, while less than 2 layers
does not provide enough dimensionality to capture the data.
This is corroborated by Figure 7, where we see 3-5 layers is
the optimum layer number for lowest test loss. For training
rate, after 200 epochs of training (which we deemed sufficient
to fully train a neural network based on Figure 7), we found
that 10−3 provided the lowest test loss while still fitting with
the minimal amount of data. For the size of the neural network,
we found a generally decreasing trend with with number of
hidden units, but the model seemed to hit a low point at 100
units. Finally, looking at the test error vs. epoch, 100 epochs of
training was sufficient to train the model no matter the number
of layers we used. This led to our decision for using 3 hidden
layers, 100 units per layer, and training with 100 epochs at
10−3 training rate.

C. Gaussian Processes

Gaussian processes form each state variable as a multivari-
ate Gaussian random variable and track correlations between
variables. The main strength of this approach is the posterior
confidence incorporated into state outputs. As the dynamics are
more accurately learned, the system can gain more confidence
on it’s transitions. This probabilistic model allows the con-
troller to supply ut ∝ 1

σ where σ is the uncertainty, so it will
not dive into unexplored dynamics regions. GP scale poorly
with higher number of states, so for complex state systems
can be unfeasible.

D. Advanced Methods

Especially for tasks looking to accomplish goals, training
a loss function on a objective function rather than dynamical
accuracy can be useful. Imagine using LQR to control a model
to a specific goal with a cost function derived as J . One can
tune their (A,B) matrices to iteratively minimize the global
cost function. This would no longer be looking for the smallest
error rate of the model xt+1 = f(xt, ut), but for minimum
cost. This has been shown to work in some cases, and is
primarily used for experiments rather than simulation. This
section would be a future area of research exploration

Code for this section is found in the files: models.py

IV. CONTROL

There are multiple directions of control to explore in this
project. The standard, while computationally intensive, is

EECS 289A AND EE291E FINAL PROJECT, SPRING 2018 5

(a)

(b)

(c)

(d)

Fig. 6. Optimizing the number of layers, number of hidden units, learning
rate, and number of epochs of training. a) Optimizing Layer size was done
using hidden layers of 100 units and a 10−3 training rate. b) Hidden unit
optimization was done using 3 hidden layers, and a 10−3 training rate. c)
Learning rate optimization was done using 3 hidden layers, 100 units each.
d) Epoch optimization was done using a 10−3 learning rate and 100 hidden
units per layer. Number of layers is also swept to validate results in a) where
3-5 layers seems optimal to reduce test error.

model based control (MPC) based on the learned dynamics
model. This works by looking through a range of random
actions in the learned dynamics state, and taking the action
that minimizes the desired cost function. Alternatively, we can
employ a second round of learning to generate a policy for
minimizing a cost function. Good resources for other control
methods for learned dynamics on the crazyflie, such as LQR
and feasibility reference can be found here [8], [9]. Many
methods for control other than MPC require differentiating the
learned dynamics, so advanced convex optimization techniques
must be used for convergence of NN dynamics.

A. Model Predictive Control
MPC generally is the optimization of a cost or reward func-

tion over a finite time-horizon subject to dynamics constraints.
A general formulations could be seen in a general form as

u∗ = argmin
u

T∑
i=1

J(xt, ut) (17)

subject to xt+1 = f(xt, ut)

This formulation can be expanded as a quadratic program for
linear, and linearizable systems to be solved as other convex
problems. Using NNs to model the dynamics, the optimal
solution is not feasible with any global optimality guarantees.
To alleviate this lack of optimally, we utilize the power of
computation to simulate many actions and take the locally
optimal solution. This random, ‘shooter’ approach has been
shown to be successful in previous works [6], [8].

Our solution is to update the control at each iteration as
the best solution to the objective function as a sequence of
a single repeated action. We must sample individual random
actions and repeat them T times because the dynamics update
rate is faster than the control update rate, and we want the
action that will perform best until the next control update.
The time horizon T is balanced with the number of random
actions N to maximize computational performance. The last
parameters: J is the objective function and σu is the variance
of random actions to take around equilibrium, which can be
seen as an exploration parameter.

Algorithm 1 MPC(xt, N, T, σu, J)
1: for i = 1 to N do
2: u[i] = randController(σu)
3: end for
4: Tile u to form array U of depth T
5: for i = 1 to N do
6: Seqs[i] = simSeq(xt, U [i, :])
7: ObjV al[i] =

∑T
l=1 J(Seqs[i], U [i, :])

8: end for
9: actionIdx = argminiObjV al

10: return u[actionIdx]

B. Learned Policies
With model-based control, it is possible to separated learn

a control policy π after training dynamics. This is done by

EECS 289A AND EE291E FINAL PROJECT, SPRING 2018 6

training some model to minimize and objective function with
inputs being the current state and output being a desired next
input.

C. Objective Functions

Our implementation has the ability to design arbitrary
objective functions J for the MPC to optimize. As the MPC
evaluates the objective function on each individual state vector
of the trajectories, trajectory optimization is not currently
implemented. To maximize certain variables and minimize
others within the same ‘max’ or ‘min’ objective function, the
function passed into the objective class object should return
the sum of −xi or 1

xi
to actively minimize individual state

values.
As an initial exploration, our cost function for control

was centered around hovering an ionocraft. Without loss of
generality, if the quadrotor is hovering around the origin, a
quadratic cost function would be:

J(xt, ut) = ‖pt‖22 (18)

This would penalize the distance from the origin in Euclidean
distance. We found more stable results in hovering when the
cost function included minimizing the angles yaw, pitch, and
roll.

Our code allows general creation of objective functions as
any mapping J : Rd+l 7→ Rn being a vector of the length
of the states and the inputs to a scalar value, which can
be minimized or maximized. Future work will expand object
functions as combinations of maximization and minimization,
or max and then min as in many game scenarios. We explain in
the following section that more advanced objective functions
did not produce results as we hoped.

Code for this section is found in the files: controllers.py

V. RESULTS

1) Ionocraft: The primary results we achieved is an
ionocraft learning to hover on the full stack of implemented
code. This goes through the dynamics file, to generating
sample trajectories, to fitting a model, to generating MPC,
and finally to simulate the new trajectory. Bridging this result
from simulation to experiment would be a substantial research
contribution to the field of micro-robotics and model-based
reinforcement learning on novel robotics. As in most work
with new implementations of machine learning, substantial
parameter tuning is needed to optimize our learning process.
A good use of time would be to examine the individual
trajectories of the training data to see if we can identify trends
and potential eliminate redundancy and or outliers corrupting
the model. A visualization of the environment used to visualize
animations of learned flight is found in Fig. 7.

The best parameters for learning hovering flight of the
ionocraft from modeling the 12-state dynamics function are
found below in the table below.

Fig. 7. Screen-shot of an animation of the quadrotor hovering in simulation
found here. It was trained on random trajectories near hover and is running
model predictive controller.

θ val

dynamics update step .0001 (s)
controller update step .001 (s)

training samples 250
training sequence len 100

training collection time 2.5s

MPC num sim 50
MPC time horizon 5

MPC control variance 25 µN

NN num layers 2
NN hidden nodes 100

TABLE I
IONOCRAFT HOVER LEARNING PARAMETERS.

Our model is less successful when attempting to fly the
ionocraft in more complicated trajectories. We attempted to
maximize the x and y values of the state while minimizing all
other values (z, yaw, pitch, etc.). In terms of axes in Figure 7,
this would be the equivalent of the device flying out of the at
a fixed height. We attempted a variety of techniques to train
this trajectory, including: (a) maximizing the norm of [x, y];
(b) minimizing the inverse norm of [x, y] summed with the
norm of the rest of the vector; and (c) maximizing the norm
of [x, y] summed with the inverse norm of the rest of the
state. We also ran all techniques with both the 1-norm and the
2-norm.

All methods showed incredibly high variability. Most exper-
iments do in fact successfully maximize x and y. However,
we were unable to minimize yaw, pitch, and roll in any
simulation, and the device oscillates wildly around a fixed
point. Most interestingly, it seems that our model consistently
learns a coupling between x and z. As a result, even though
we actively minimize z, the device climbs in height due to
the x maximization resulting in a z increase. There is clearly
significant room for improvement.

A. CrazyFlie

We also attempted to learn the dynamics of a CrazyFlie.
The CrazyFlie is a heavier device than the Ionocraft and thus
has more variable movements. With the same neural network
architecture, we are able to learn the dynamics of the CrayzFlie

https://github.com/natolambert/dynamics-learn/blob/master/ex.gif

EECS 289A AND EE291E FINAL PROJECT, SPRING 2018 7

well enough to hover with high variance. In particular, over
the course of the hover action, the device begins to rotate in
terms of yaw & pitch though it does not change location. Due
to time limitations, we were not able to attempt to learn more
complex trajectories for the CrazyFlie.

Code for this section is found in the files: utils-plot.py

VI. CONCLUSION

This project lays the ground work for using model-based
learning to model dynamics for robots with new dynamics and
or less precise state variables. New dynamics could easily be
modeled in a simple dynamics file and state variables can be
adjusted by passing specific variables into the learning model.
The current standard for model-based learning in robotics has
been learning tasks for known robots with high-fidelity state
feedback and tracking systems such as VICON.

Being able to train novel robotics with lower accuracy state
variables paves the way for more robots to learn tasks in non-
laboratory environments. This project allows one to explore
the minimum quality and quantity of state variables needed
to perform basic tasks by passing specific variables into the
model with different noise levels. The lower bound on state
information will provide insight into the sensors needed for
training novel robotics platforms with potentially unmodeled
dynamics to learn tasks.

As demonstrated by our results, the simplistic models
trained here are functional for basic tasks. However, they
do not scale to more complex tasks. We are interested in
exploring more complex network architectures as well as
different learning strategies to more effectively understand
physical dynamics for real devices.

The work with quadrotors will build the foundation for first
training hovered flight of the ionocraft [1], [2], and then the
framework can be used to investigate other robots. The current
test setup for flying the ionocraft uses a 9-axis IMU to return
ẍ, ÿ, z̈, yaw, pitch, roll at 100Hz with low measured noise.
Initial work on this dynamics file is underway, and simulation
is under way to estimate the best NN structure for training
tethered hovering. For this experiment, we will use external
computation, so updating the MPC once per 10ms should be an
attainable goal. Future balance between update rate and model
accuracy will be needed to train an onboard controller. Specific
values for number of sequences, sequence length, random
action variance, MPC number of iterations, MPC simulation
length, and best objective function for hovering should be
found before testing on hardware.

Our goal is to have the ionocraft hovering by mid-summer
and submit to either the Science Robotics special issue on
learning beyond imitation or the RA-L/ICRA dual submission.
Thank you for another great course.

ACKNOWLEDGEMENTS

The code base for this project can be found on GitHub
at https://github.com/natolambert/dynamics-learn. We would
like to thank Somil Bansal and Dr. Roberto Calandra for the
guidance on the project development.

APPENDIX
CODE

Github: https://github.com/natolambert/dynamics-learn
- controllers.py: File containing controller class, random

controller for exploration, PID controllers for hovering.
- dynamics.py: File containing Dynamics class and func-

tions to generate simulated trajectory data
- dynamics-crazyflie-linearized.py: Dynamics file for the

crazyflie
- dynamics-ionocraft.py: Dynamics file for the ionocraft
- models.py: Contains the code for the least squares and

neural network models. These work stand alone and do
processing internally.

- testing.py: Script for testing the full stack of the project,
with comments.

- testing-nn: Script for testing nueral network specficis.
- utils-data.py: Utilities for reshaping data.
- utils-plot.py: Utilities for generating plots to show results.
The following packages are required for use:
- python3
- math
- matplotlib
- numpy
- pytorch
- sklearn

REFERENCES

[1] D. Drew, D. S. Contreras, and K. S. Pister, “First thrust from a
microfabricated atmospheric ion engine,” in Micro Electro Mechanical
Systems (MEMS), 2017 IEEE 30th International Conference on. IEEE,
2017, pp. 346–349.

[2] D. S. Drew and K. S. Pister, “First takeoff of a flying microrobot with
no moving parts,” in Manipulation, Automation and Robotics at Small
Scales (MARSS), 2017 International Conference on. IEEE, 2017, pp.
1–5.

[3] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[4] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and
data-efficient approach to policy search,” in Proceedings of the 28th
International Conference on machine learning (ICML-11), 2011, pp.
465–472.

[5] A. Nagabandi, G. Yang, T. Asmar, G. Kahn, S. Levine, and
R. S. Fearing, “Neural network dynamics models for control of
under-actuated legged millirobots,” CoRR, vol. abs/1711.05253, 2017.
[Online]. Available: http://arxiv.org/abs/1711.05253

[6] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural Network
Dynamics for Model-Based Deep Reinforcement Learning with Model-
Free Fine-Tuning,” ArXiv e-prints, Aug. 2017.

[7] B. Yang, G. Wang, R. Calandra, D. Contreras, S. Levine, and K. Pister,
“Learning flexible and reusable locomotion primitives for a microrobot,”
IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1904–1911,
July 2018.

[8] S. Bansal, A. K. Akametalu, F. J. Jiang, F. Laine, and C. J. Tomlin,
“Learning quadrotor dynamics using neural network for flight control,”
in 2016 IEEE 55th Conference on Decision and Control (CDC), Dec
2016, pp. 4653–4660.

[9] S. Bansal, R. Calandra, T. Xiao, S. Levine, and C. J. Tomiin, “Goal-
driven dynamics learning via bayesian optimization,” in 2017 IEEE 56th
Annual Conference on Decision and Control (CDC), Dec 2017, pp.
5168–5173.

[10] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic mpc for model-based
reinforcement learning,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), May 2017, pp. 1714–1721.

https://github.com/natolambert/dynamics-learn
https://github.com/natolambert/dynamics-learn
http://arxiv.org/abs/1711.05253

EECS 289A AND EE291E FINAL PROJECT, SPRING 2018 8

[11] E. Altuğ, J. P. Ostrowski, and C. J. Taylor, “Control of a quadrotor
helicopter using dual camera visual feedback,” The International Journal
of Robotics Research, vol. 24, no. 5, pp. 329–341, 2005.

[12] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles,” IEEE
Robotics and Automation magazine, vol. 20, no. 32, 2012.

[13] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

http://arxiv.org/abs/1412.6980

	Introduction
	Robotics Simulation
	Ground Truth Dynamics Model
	Hovering Controller Design
	Learned Dynamics Models

	Model Learning
	Least Squares
	Neural Networks
	Learning Dynamics
	Neural Network Model
	Hyperparameter tuning

	Gaussian Processes
	Advanced Methods

	Control
	Model Predictive Control
	Learned Policies
	Objective Functions

	Results
	Ionocraft
	CrazyFlie

	Conclusion
	Appendix: Code
	References

