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Eddies: Identifiable (spinning) structures in turbulent flows.

- Turbulence -

• In Ocean & Atmosphere: affects mass, momentum, energy, and tracer transport.
• Uneasy to define mathematically.

• Some general characteristics

• irregular, chaotic, and unpredictable with fluctuationing fields.

• enhances nonlinearity of the flow.

• streaks and swirls that deform, spin, merge, and divide.

• mixing and diffusion of mass, momentum, heat, and tracers.

• dissipates as energy transfers to smaller scales and converts to heat.

1. Eddy parameterization
(1) Eddies and turbulence

Fig.1 Oceanic eddies
(obtained from the ECCO state estimate)



1. Eddy parameterization
(2) Ocean is turbulent

• Reynolds number (Re) can be used as a proxy for assessing if a flow is laminar/turbulent.

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡
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=
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• Ocean (with the scale of our interest) is turbulent.

𝑈𝑈 = 0.1𝑡𝑡𝑣𝑣−1,

𝐿𝐿 = 100𝑘𝑘𝑡𝑡,

𝜈𝜈 = 10−6𝑡𝑡2𝑣𝑣−1

𝑅𝑅𝑖𝑖 =
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𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡

≈ 1010

The viscous term is negligible as the ‘nonlinear’ inertial term dominates.

• Momentum equation:    for momentum conservation
𝜕𝜕𝒗𝒗
𝜕𝜕𝑖𝑖

+ 𝒗𝒗 � ∇ 𝒗𝒗 + 2𝜴𝜴 × 𝒗𝒗 = −
1
𝜌𝜌
∇𝑝𝑝 + 𝜈𝜈∇2𝒗𝒗 + 𝒈𝒈

• Flows with high Reynolds number are usually turbulent, given that the turbulence enhances advection.

using

inertial
(or advective) term

viscous term



• Equations of motion (Navier-Stokes equations)

• Mass continuity equation:    for mass conservation

• Momentum equation:    for momentum conservation

• Equation of state:    describes the state of a system in equilibrium

• Thermodynamic equation:    for energy conservation

𝜕𝜕𝜌𝜌
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1. Eddy parameterization
(3) Necessity of numerical modelling

- Ocean modelling is based on the equations of motion.

- Difficulty obtaining analytic solutions due to nonlinearity.

- Alternative: approximate solutions from numerical simulations.



Fig.2 The approximation of a flow field on a discrete grid

(e.g.)  ECCO:  a simulation (or reanalysis) of the global ocean.

• Grid resolution: a nominal 1° (≈ 100 km at mid latitudes).

• Cannot resolve mesoscale eddies (its cut-off is roughly 10 km).

• Uses Gent-McWilliams (GM) scheme to parameterize it.

Fig.3 LLC90 grid spacing (in km) used in ECCO

1. Eddy parameterization
(4) Need for parameterizing sub-grid processes

• Spatial and temporal Discretization of numerical simulations 
in essence and due to computational limit.

• Sub-grid processes need to be parameterized.



with eddy diffusivity tensor

• Note: It is enhanced advection due to eddies.
The name is from its similarity with molecular diffusion.

Apply Reynolds-averaging
(separate fluctuations from time-mean quantities)

Apply turbulent diffusivity hypothesis

• Knowledge from experiments
: eddy-induced advection resembles molecular diffusion in that they are down-gradient.
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1. Eddy parameterization
(5) Mesoscale eddy parameterization

𝜕𝜕𝜑𝜑
𝜕𝜕𝑖𝑖

+ 𝒗𝒗 � ∇ 𝜑𝜑 = 𝜅𝜅∇2𝜑𝜑
1D equation for advection and diffusion 
of a conserved quantity phi in an incompressible fluid

bar:  time-mean
prime:  fluctuation

The fluctuation term  𝒗𝒗′𝜑𝜑′ becomes

Molecular diffusion  𝜅𝜅∇2 �𝜑𝜑 is neglected as eddies dominate it,
and the main issue becomes assigning an adequate value to 𝑲𝑲



Gent-McWilliams (GM) scheme has weakness in representing

- Eddy saturation
: lack of sensitivity of the Southern Ocean circumpolar 
transport to changing wind forcing

- Eddy compensation
: reduced sensitivity of the time-mean residual meridional 
overturning circulation to changing wind forcing

𝜕𝜕
𝜕𝜕𝑖𝑖
�𝐸𝐸 𝑑𝑑𝑑𝑑 + ∇𝐻𝐻 � �𝒖𝒖𝑧𝑧 − 𝑣𝑣 𝒆𝒆𝑥𝑥 �𝐸𝐸 𝑑𝑑𝑑𝑑 = �𝜅𝜅𝑔𝑔𝑔𝑔

𝑀𝑀4

𝑁𝑁2 𝑑𝑑𝑑𝑑 − 𝜆𝜆�𝐸𝐸 𝑑𝑑𝑑𝑑 + 𝜂𝜂𝐸𝐸∇2𝐻𝐻 �𝐸𝐸 𝑑𝑑𝑑𝑑

Geometry and Energetics of Ocean Mesoscale Eddies and Their Rectified Impact on Climate (GEOMETRIC) scheme

- Energetic approach which is still based on GM

- uses eddy energy budget equation

advection source dissipation diffusion

2. Eddy parameterization
(6) GM and GEOMETRIC



Computational fluid dynamics (CFD) emerged in the late 1950s and has rapidly developed since 1970s.

• Numerical simulations - based on the theories of geophysical fluid dynamics
• Comparison between ‘modelling outputs’ and ‘observations’    →    Improvement in theories.

• We may tune model parameters to make modelling outputs as close as possible to observations (infer a&b in y’=ax+b given y).

2. State estimation
(1) Modelling as a tool for parameter inference

Fig.4 Components of physical oceanography



A basic way of tunning parameters
: Repeat tuning & modelling until outputs at the end of the simulation become sufficiently close to observations.
- It is intuitive and easy, but is not adequate for parameter inference.

Fig.5 Wind field of Typhoon 
Maemi (2003) and sea 
surface height (SSH).

Fig.6 SSH comparison 
between a simulation 
and observations.

Fig.7 Flood area comparison between 
a simulation and observations.

2. State estimation
(2) Machine gun approach to tune parameters



MODEL
- Physics
- Numerical schemes
- Parameters
- Initial conditions

Atmospheric boundary conditions

Oceanic boundary conditions

OBSERVATIONS

SIMULATION

COMPARISON at the end
↓
Tune the parameters
↓
Run the model again

Fig.8 A pitcher and a ball that could be seen as 
the real-world oceanic system.

3. State estimation
(2) Machine gun approach to tune parameters

Baseball as an example of numerical simulations.

• Assume ‘a pitcher and a ball he throws’ is the real-world oceanic system,
then the recorded trajectory of the ball could be seen as ocean observations.

• We want to make a machine (model) that mimic the pitcher and the ball (oceanic system).

Called a machine-gun, trial and error,
or gradient-free approach



Possibility of 
dynamical inconsistency

Possibility of
unphysical tuning

Computational cost
(ECCO forward run takes 12~24 hours, while forward+adjoint run takes 5~6 days (using HKUST HPC3 96 cores))

A number of parameters & oceanic/atmospheric forcings (can be t-dep. or 3D) should be optimized together.

3. State estimation
(3) Drawbacks of machine gun approach

Problem 1:

Problems of the basic way of tunning parameters (comparison at the end)

PB2:

PB4:

PB3:



State estimation is a better optimization over the machine-gun approach because it is

1. Dynamically consistent
: comparison between observations and a simulation along the entire trajectory, not at the end only.

2. Driven by mathematical rules
: parameters are tuned by setting up a cost function and control variables, not arbitrarily.

3. Gradient-based
: efficient way of searching the optimum iteratively as it uses mathematical information dJ/dm.

4. Correcting parameters and forcings at the same time
: by assigning them as controls.

3. State estimation
(4) State estimation as a countermeasure

MODEL
- Physics
- Numerical schemes
- Parameters
- Initial conditions

Atmospheric forcings

Oceanic forcings
OBSERVATIONS

SIMULATION



- Dashed line:    our understanding of a system (i.e. theory, model)

• 𝜃𝜃 𝑖𝑖 = 𝑖𝑖 + 𝑏𝑏𝑖𝑖

• We believe that the temperature linearly increases over time

- Dots connected with a solid line:    measurements

• 𝑦𝑦 𝑖𝑖𝑖𝑖 = 𝜃𝜃 𝑖𝑖𝑖𝑖 + 𝑖𝑖 𝑖𝑖𝑖𝑖 = 𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑖𝑖 + 𝑖𝑖 𝑖𝑖𝑖𝑖

- 𝑖𝑖 𝑖𝑖𝑖𝑖 (Open circles)
: noises of the measurements compared to the model after fixing a and b

In a matrix form, 𝑬𝑬𝑬𝑬 + 𝒏𝒏 = 𝒚𝒚 or simply 𝑬𝑬𝑬𝑬~𝒚𝒚

𝑬𝑬 =

1 𝑖𝑖1
1 𝑖𝑖2
� �
� �
1 𝑖𝑖𝑀𝑀

, 𝑬𝑬 = 𝑖𝑖
𝑏𝑏 , 𝒚𝒚 =

𝑦𝑦 𝑖𝑖1
𝑦𝑦 𝑖𝑖2
�
�

𝑦𝑦 𝑖𝑖𝑀𝑀

, 𝒏𝒏 =

𝑖𝑖 𝑖𝑖1
𝑖𝑖 𝑖𝑖2
�
�

𝑖𝑖 𝑖𝑖𝑀𝑀

We want to obtain an optimal solution
by combining our model and measurements.

That is, we will tune the coefficients a and b
to minimize the noise.

3. State estimation
(5) Linear regression as a backbone

A simple case of linear regression:    Temperature over time at a fixed location



- First, we set a cost function
which is the sum of squared noise at every timestep.

𝐽𝐽 = �
𝑖𝑖=1

𝑀𝑀

𝑖𝑖𝑖𝑖2 = 𝒏𝒏𝑇𝑇𝒏𝒏 = 𝒚𝒚 − 𝑬𝑬𝑬𝑬 𝑇𝑇 𝒚𝒚 − 𝑬𝑬𝑬𝑬 = �
𝑖𝑖=1

𝑀𝑀

𝑦𝑦𝑖𝑖 − 𝑖𝑖 − 𝑏𝑏𝑖𝑖𝑖𝑖 2

- Then our goal becomes minimizing 𝐽𝐽 and it is where 𝑑𝑑𝐽𝐽 = 0

𝑑𝑑𝐽𝐽 = �
𝑖𝑖

𝜕𝜕𝐽𝐽
𝜕𝜕𝜕𝜕𝑖𝑖

𝑑𝑑𝜕𝜕𝑖𝑖 =
𝜕𝜕𝐽𝐽
𝜕𝜕𝑬𝑬

𝑇𝑇

𝑑𝑑𝑬𝑬 = 2𝑑𝑑𝑬𝑬𝑇𝑇 𝑬𝑬𝑇𝑇𝒚𝒚 − 𝑬𝑬𝑇𝑇𝑬𝑬𝑬𝑬 = 0

- Assume that 𝑬𝑬𝑇𝑇𝑬𝑬 has inverse. We can get an estimate of the solution    �𝑬𝑬 = 𝑬𝑬𝑇𝑇𝑬𝑬 −1𝑬𝑬𝑇𝑇𝒚𝒚

3. State estimation
(5) Linear regression as a backbone

We want to obtain an optimal solution by combining our model and measurements.
That is, we will tune the coefficients a and b to minimize the noise.

𝑦𝑦 𝑖𝑖𝑖𝑖 = 𝜃𝜃 𝑖𝑖𝑖𝑖 + 𝑖𝑖 𝑖𝑖𝑖𝑖 = 𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑖𝑖 + 𝑖𝑖 𝑖𝑖𝑖𝑖

𝑬𝑬 =

1 𝑖𝑖1
1 𝑖𝑖2
� �
� �
1 𝑖𝑖𝑀𝑀

, 𝑬𝑬 = 𝑖𝑖
𝑏𝑏 , 𝒚𝒚 =

𝑦𝑦 𝑖𝑖1
𝑦𝑦 𝑖𝑖2
�
�

𝑦𝑦 𝑖𝑖𝑀𝑀

, 𝒏𝒏 =

𝑖𝑖 𝑖𝑖1
𝑖𝑖 𝑖𝑖2
�
�

𝑖𝑖 𝑖𝑖𝑀𝑀

In a matrix form, 𝑬𝑬𝑬𝑬 + 𝒏𝒏 = 𝒚𝒚 or simply 𝑬𝑬𝑬𝑬~𝒚𝒚

- To satisfy 𝑑𝑑𝐽𝐽 = 0,    𝑬𝑬𝑇𝑇𝒚𝒚 − 𝑬𝑬𝑇𝑇𝑬𝑬𝑬𝑬 = 0 in other words    𝑬𝑬𝑇𝑇𝑬𝑬𝑬𝑬 = 𝑬𝑬𝑇𝑇𝒚𝒚



ECCO is different in that…

- MODEL (Instead of linear equation)
: The governing equations of motion and numerical schemes.

- OBSERVATIONS (Instead of 1D temperature over time)
: Various oceanic & atmospheric observations and some of them are 3D and/or time-dependent.

- SUBJECTS (Instead of a & b)
: Multiple parameters and oceanic & atmospheric forcings to be optimized together.

- OPTIMIZATION (Instead of multiplying 𝑬𝑬𝑇𝑇𝑬𝑬 −1 to get �𝑬𝑬)
: Gradient-based optimization that requires 𝑑𝑑𝐽𝐽/𝑑𝑑𝒎𝒎.

Estimating the Circulation and Climate of the Ocean (ECCO) v4r3

- is a global ocean state estimate (or a reanalysis dataset) for a period from 1992 to 2015
- is produced by running MIT General Circulation Model (MITgcm)
- ran 59 forward/adjoint model iterations (together with gradient-based optimization)

3. State estimation
(6) ECCO compared to simple linear regression 



𝐽𝐽 𝔲𝔲 = �
𝑖𝑖

𝑑𝑑𝑖𝑖
𝑇𝑇𝑹𝑹𝑖𝑖−1𝑑𝑑𝑖𝑖 + �

𝑗𝑗

𝔲𝔲𝑗𝑗𝑇𝑇𝔲𝔲𝑗𝑗𝑑𝑑𝑖𝑖 = 𝑃𝑃 𝑡𝑡𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑡𝑡𝑖𝑖 = 𝑆𝑆𝐷𝐷𝑀𝑀 𝔲𝔲

controlsmodelling

diagnosticssubsampling 
or averaging

dataraw model-
data misfits

model 
outputs

post-processor

a set of non-
dimensional 
controls

a set of model-
data misfits

a squared 
model-data 
distance (J)

Table 2. In situ temperature & 
salinity observations.

Table 1. Gridded observations to which ECCO is constrained.
Table 3. Control parameters
and forcings of ECCO.

3. State estimation
(5) ECCO’s cost function and controls

model 
outputs

FORWARD RUN

ADJOINT RUN

- Backward simulation carrying mismatch information.
- Produces dJ/dm at the end.

Gradient-based 
optimization
- Uses dJ/dm.
- Tells what to update.

UPDATE



𝜕𝜕
𝜕𝜕𝑖𝑖
�𝐸𝐸 𝑑𝑑𝑑𝑑 + ∇𝐻𝐻 � �𝒖𝒖𝑧𝑧 − 𝑣𝑣 𝒆𝒆𝑥𝑥 �𝐸𝐸 𝑑𝑑𝑑𝑑 = �𝜅𝜅𝑔𝑔𝑔𝑔

𝑀𝑀4

𝑁𝑁2 𝑑𝑑𝑑𝑑 − 𝜆𝜆�𝐸𝐸 𝑑𝑑𝑑𝑑 + 𝜂𝜂𝐸𝐸∇2𝐻𝐻 �𝐸𝐸 𝑑𝑑𝑑𝑑

Geometry and Energetics of Ocean Mesoscale Eddies and Their Rectified Impact on Climate (GEOMETRIC) scheme

- Energetic approach which is still based on GM

- uses eddy energy budget equation

advection source dissipation diffusion

eddy dissipation coefficient

Table 3. Control parameters
and forcings of ECCO.

3. State estimation
(5) ECCO’s cost function and controls
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1. South China Sea (SCS) topography

• Maximum depth: 5559 m

• Continental shelves: shallower than 100 m

• A chain of islands and seamounts
: separates the basin into the NSCS and SSCS.

• Sill depth of straits

• Luzon Strait: ~2000m
• Mindoro Strait: ~400m
• Taiwan, Karimata and Balabac Straits: < 100 m

Fig.1 Schematic annual mean CAC circulation, 
based on Stokes's Theorem [Cai and Gan, 2019].

Fig.2 Topography of the SCS. The red dots indicate 
islands and seamounts [Zhu et al., 2019].



2. 3-layer Sandwiched flow at Luzon Strait

• Upper L (~500m):  westward intrusion of Kuroshio WBC

• Intermediate L (500~1700m):  compensatory eastward countercurrents

• Deep L (1700m~):  westward deepwater overflow from Western Pacific

• rough topography
→ energetic internal tides, internal waves and mesoscale eddies

→ enhanced abyssal diapycnal mixing
→ more vertically homogenous than WP counterpart
→ opposite density gradients across Luzon Strait at inter. & deep LFig.3 Modeled transport values across the Luzon Strait 

and the resulting upwelling [Xu and Oey, 2014].



3. 3-layer Sandwiched circulation in SCS

Main drivers
• Surface L: Monsoon wind (directly exposed), Kuroshio intrusion.
• Subsurface L: Kuroshio intrusion (and Monsoon wind)

- Circulation similar to surface L, but steadier and persistent.

Fig.5 Schematic diagram of the SCS 
meridional overturning circulation [Wang 
et al., 2016].

Fig.4 PV flux (thicker arrows) in SCS 
[Zhu et al., 2019].Fig.1 Schematic annual mean CAC circulation, 

based on Stokes's Theorem [Cai and Gan, 2019].



4. ITCZ and monsoon wind

Fig.6 Boreal summer ITCZ (red) and winter ITCZ 
(yellow) [Ardi et al., 2020].

Fig.7 Mean sea surface wind from NOAA-CIRESS 
20th C Reanalysis, ver 2 [Park and Choi, 2017].



5. Upper layer circulation – observation

Fig.8 Seasonal mean geostrophic currents at the surface derived from satellite 
altimetry data [Bao et al., 2005].

Weakness
• Ship drift, and hydrographic observations: the issue of sparsity, especially for deeper regions.
• Satellite observations: only provide SSH, SST, SSS.



Fig.9 Blue streamline: SCSWBC in winter. (a) Green: SCSWBC in summer in some studies. (b) 
Green and red: two branches of SCSWBC in summer in some other studies [Quan et al., 2016].

6. Upper layer circulation – numerical modelling

Weakness
• Depends on model configuration

: temporal·spatial resolution, initial conditions, atmospheric forcings, boundary conditions.



7. My work

Forward model using MITgcm (before setting up a regional state estimate)
• Bathymetry: GEBCO08+ETOPO
• Artificial walls at the boundaries
• Plain temperature & salinity profiles as initial conditions
• 2 years (1992, 93) of JRA-55 wind forcings Initial condition After 2 years
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