

Física

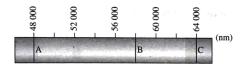
12.ª Classe/2000

República de Moçambique Ministério da Educação

1.ª Época/2.ª Chamada 90 minutos

Leia com atenção o enunciado e responda na sua folha de exame. Na margem direita está indicada, entre parênteses, a cotação de cada pergunta.

Cotação


1. Sabe-se que o campo eléctrico resultante do ponto A é de 6×10^5 N/C . O módulo da carga Q_1 é duas vezes o módulo de $Q_2(|Q_1| = 2|Q_2|)$.

- a) Determine a direcção e o sentido do campo eléctrico resultante no ponto A.
- **b)** Calcule o valor da carga Q_1 .

(10)(20)

2. A figura representa o espectro óptico característico para o elemento cálcio.

a) O que é um espectro óptico?

(10)

b) Calcule a energia que deu origem à linha B, em eV.

(10)

c) Entre as linhas A e C, qual é a de maior energia? Justifique.

Dedoc 1
$$aV = 1.6 \times 10^{-19} \text{ L}$$
 $b = 7 \times 10^{-34} \text{ L}$

(10)

Dados: 1 eV =
$$1.6 \times 10^{-19} \text{ J}$$
; $h = 7 \times 10^{-34} \text{ J s}$.

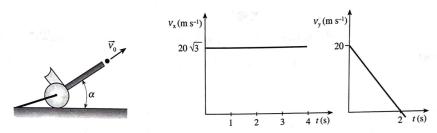
3. Dada a reacção nuclear:

$$^{235}_{92}U + ^{1}_{0}n \longrightarrow ^{139}_{58}Ce + ^{93}_{40}Zr + \longrightarrow + 6 (^{0}_{-1}e)$$

- a) A reacção é de fissão, fusão ou de desintegração? Justifique completando a reacção.
- (20)

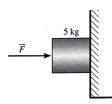
b) Calcule a energia libertada durante a reacção, sabendo que:

(10)


$$U = 235,0439 \text{ u.m.a.}$$

$$Ce = 138,9054 \text{ u.m.a.}$$

$$Zr = 92,9063 \text{ u.m.a.}$$


- c) No caso de uma reacção em cadeia, quantos neutrões se libertam na quarta geração?
- (5)

4. A figura representa um canhão que dispara balas sob um ângulo α com a horizontal.

São dados os gráficos das componentes horizontal v_x e vertical v_y das balas. (Use $g=10~{\rm m/s^2}$.)

- a) Desenhe a trajectória das balas. (5)
- b) Represente num ponto qualquer da trajectória os vectores \vec{v}_x , \vec{v}_y , \vec{v} e \vec{g} . (20)
- c) Calcule o valor da velocidade inicial, v_0 , de lançamento das balas. (10)
- **5.** Um corpo de $\,5\,kg\,$ é pressionado contra uma parede cujo coeficiente de atrito é $\,0,25\,$.

- a) Represente todas as forças que actuam sobre o corpo. (20)
- b) Calcule o valor da força F, para que o corpo não deslize. (Use $g = 10 \text{ m/s}^2$.)
- **6.** Uma esfera de madeira, cujo volume é de 4×10^{-3} m³ e densidade 700 kg/m³, flutua em água de densidade 1000 kg/m³.

- a) Represente todas as forças que actuam sobre a esfera. (10)
- b) Calcule o volume do líquido deslocado pela esfera. (25)