
Java 8 Parallel Streams

Ethan Williams

March 5, 2018

Contents

0 Prerequisites 2
0.1 Technical . 2
0.2 Vocabulary Clarification . 2

1 Introduction 3

2 Spliterator 4
2.1 Implementation . 5

3 Collector 7
3.1 Implementation . 8
3.2 Special Uses for Parallelism 10

4 Practical Considerations when Using Parallel Streams 11
4.1 Long-Running/Blocking Operations 11
4.2 Interference . 12
4.3 Stateful Expressions . 13

References 14

1

0 Prerequisites

0.1 Technical

This document was written for Java developers who have an interest in
using concurrency in streams, and assumes knowledge of serial streams and
lambda expressions. Developers in other languages with similar mechanisms
such as C# with Linq may also find the topics useful with the understanding
that syntax, implementation, and functionality will differ.

Additionally, functional knowledge of java.util.concurrent and the
Consumer interface will help in gaining a more practical knowledge but is
not required.

0.2 Vocabulary Clarification

Some of the vocabulary in the paper may be unfamiliar to those with a
knowledge of streams and are defined/clarified below:

• A stream is composed of 3 parts:

– the Collection the stream is built on is the source

– intermediate operations such as map() transforms but doesn’t se-
rialize the stream (see below for serialization definition)

– terminal operations like toArray() serialize the stream

• A stream instantiated with the stream() method only is referred to as
a serial stream

• A stream instantiated with the parallel().stream() or parallelStream()
method is referred to as a parallel stream

• Serializing data or serializing a stream is the final step in a stream
when references to the source are ditched and the new data structure
is instantiated

• Stateful expressions are lambda expressions passed as arguments to
an intermediate operation which depends on the ordering of the input
elements

2

1 Introduction

Parallel streams were introduced into Java 8 alongside serial streams so
that developers could utilize concurrency in order to more efficiently utilize
modern multiprocessor design [4]. Making a serial stream into a parallel
stream is as easy as calling parallel() after stream(). In order for the
parallel() method to be applicable on the stream, the source Collection

must have an implementation of a Spliterator [3]. A Spliterator object
breaks up the original stream into parts which are each handled by a new
thread from the JVM’s common pool, illustrated in Figure 1. The substreams
are then assembled and computed based on the bahavior of the terminal
operation.

Figure 1: Overview of a parallel stream
Source: Ethan Williams

3

The collect() method is the best strategy for reduction of a parallel
stream because ordering of elements isn’t guaranteed [3]. The method uses a
Collector to reduce the stream, an object that defines how input elements
should be added to a given data structure. This document will focus on the
Collector’s functionality and implementation, finishing with an explanation
of special use cases for parallel streams.

Despite parallel streams being introduced into Java to simplify concur-
rency, developers can easily corrupt data and cause system bugs. All possible
bugs in streams derive from developers not following standard concurrency
practices such as using long-running or blocking operations in streams. Ad-
ditionally, considerations have to be taken with streams specifically to avoid
interference with the source and using stateful expressions.

2 Spliterator

The Spliterator is the backbone of parallel streams, allowing the pro-
gram to split a collection apart (illustrated in Figure 2) and iterate through
it [4]. If a class extending a Collection does not have a spliterator()

method returning a Spliterator object, then Java is not able to process the
collection with a parallel stream at all. Figure 2 shows how an instance may
behave when it splits itself. It is worth noting that the splitting doesn’t ac-
tually break up the collection. Spliterators share the collection and simply
keep track of what element it is currently iterating on (index) and one more
than the last element it is allowed to execute with (fence).

4

Figure 2: A Spliterator Before and after splitting
Source: Ethan Williams

2.1 Implementation

A Spliterator must be able to traverse and split the portion of the
stream it represents. tryEachRemaining() and tryNext() are the two meth-
ods which dictate how traversal is handled for the collection [11]. tryEachRemaining()
in Figure 3 takes a Consumer object which is the operation to be executed
on each element of the collection. The example simply iterates through each
element and uses it as a parameter to the accept() method of the Consumer

object. tryNext() in Figure 4 is similar although the operation is only at-
tempted on element at the current cursor position. If that cursor position is
past the fence of the Spliterator, then the method returns false, otherwise it
returns true.

5

public void forEachRemaining(Consumer <? super E>

action) {

for (int i = index; i < fence; ++i)

action.accept ((E) list.elementData[i]);

}

Figure 3: Implementation of forEachRemaining()
Source: Java ArrayList, modified by Ethan Williams

public boolean tryAdvance(Consumer <? super E>

action) {

if(i == fence) return false;

index ++;

action.accept ((E) list.elementData[i]);

return true;

}

Figure 4: Implementation of tryAdvance()
Source: Java ArrayList, modified by Ethan Williams

A Spliterator’s primary functionality is encapsulated within the trySplit()
method in Figure 5. This method is called when the JVM wants to break the
source collection in order to start processing the stream on another thread
and if implemented incorrectly can be a subtle but important error in an ap-
plication [11]. The example implementation simply finds the midpoint and
either returns a new Spliterator from the cursor to the midpoint and the
current instance of Spliterator now covers mid to the fence. The exam-
ple trySplit() method is the code behind the split behavior illustrated in
Figure 2.

6

public Spliterator <E> trySplit () {

int mid = (index + fence) >>> 1;

return (index >= mid) ? null : new

Spliterator <E>(list , index , index = mid);

}

Figure 5: Implementation of trySplit()
Source: Java ArrayList, modified by Ethan Williams

3 Collector

A Collector object defines a mutable reduction operation for a group of
input elements [1]. In other words, it provides information on how to instan-
tiate a data structure and perform several operations on it. Its functionality
is encompassed in 4 methods (illustrated in Figure 6):

• supplier() provides information on how to construct a new instance
of the desired data structure

• accumulator() details how to add any given element to the data struc-
ture

• combine() directs how to assemble multiple instances of the data struc-
ture

• finisher() simply serializes the stream, completing the reduction

7

Figure 6: How a Collector is used
Source: Ethan Williams

Collector objects are used during a reduction operation to join sub-
streams together in the form of the data structure defined by the instance.
Java has a static class called Collectors which provide basic reduction
instances via method calls. For example Collectors.toMap() returns a
Collector instance which reduces the stream to a Map [2].

3.1 Implementation

A Collector object has four methods which comprise the majority of its
functionality: supplier(), accumulator(), combiner(), and finisher()

[1]. The examples below are a Collector which will yield an ImmutableSet

when used.
The supplier() method returns a mechanism to build an instance of a

mutable data structure that will hold the elements of the stream called an
accumulator [8], in our code example this is a builder for ImmutableSet.

8

public Supplier <ImmutableSet.Builder <T>> supplier ()

{

return ImmutableSet :: builder;

}

Figure 7: Implementation of supplier()
Source: [8]

The accumulator() method takes an accumulator and an element as
parameters and will return a Consumer object which details how the element
should be added to the accumulator. In the example a BiConsumer object
will add the element to the given ImmutableSet.

public BiConsumer <ImmutableSet.Builder <T>, T>

accumulator () {

return (builder , t) -> builder.add(t);

}

Figure 8: Implementation of accumulator()
Source: [8]

The combiner() method details the logic on how two accumulators should
be joined together and is used to assemble all instances of the new data
structure that were derived from substreams. In the code example the
combiner()’s behavior is that when two ImmutableSets are combined, one
is simply appended to the other.

public BinaryOperator <ImmutableSet.Builder <T>>

combiner () {

return (left , right) -> {

left.addAll(right.build());

return left;

};

}

Figure 9: Implementation of combiner()
Source: [8]

9

Finally, the finisher() method serializes the accumulator that is the
result of combining all the substreams, completing the reduction. In the code
example, this is as easy as returning the build() method which serializes
the ImmutableSet, completing the conversion of the source.

public Function <ImmutableSet.Builder <T>,

ImmutableSet <T>> finisher () {

return ImmutableSet.Builder ::build;

}

Figure 10: Implementation of finisher()
Source: [8]

3.2 Special Uses for Parallelism

Although the collect() method can be used on both serial and par-
allel streams, Java also includes special Collector instances for parallel
performance. For example, Figure 11 shows two parallel streams where
the first one utilizes the groupingBy() method and the other one uses
groupingByConcurrent(). Although Java’s official documentation says the
second should be more performant [9], in my benchmarks that I ran I got a
significant slowdown, .736 ms/op vs 2.533 ms/op [10]. Additional research
as to why this is the case yielded no results and as such the author suggests
every developer should benchmark these operations themselves to validate
performance.

10

// Example 1

ConcurrentHashMap <Department , List <Employee >> byDept

= employees.stream ()

.parallel ()

.collect(Collectors

.groupingBy(Employee :: getDepartment)

);

// Example 2

Map <Department , List <Employee >> byDept

= employees.stream ()

.parallel ()

.collect(Collectors

.groupingByConcurrent(Employee :: getDepartment)

);

Figure 11: Reduction of employees into map by a Collector

Source: Ethan Williams

4 Practical Considerations when Using Par-

allel Streams

Parallel streams were introduced to make implementing parallelism in a
Java application easier, but with this ease comes common pitfalls that arise
from the abstraction. For example, a common mistake is using long-running
or blocking operations in a stream which is a bad concurrency practice to be-
gin with. Additionally, many developers aren’t familiar with stream-specific
concurrency practices which can lead to bugs. These are known as interfer-
ence and use of stateful expressions and are extremely difficult to debug.

4.1 Long-Running/Blocking Operations

Using long-running or blocking operations in a stream will degrade per-
formance drastically, a result of how streams implement threading. The JVM
begins by processing on the calling thread and as more subtasks are broken
off, the JVM gets threads from ForkJoinPool.common(), which is a thread

11

pool used in the background of the whole application [6].
With the JVM’s use of a common thread pool, a long-running operation

in a parallel stream as shown in the first example of Figure 12 will degrade
performance drastically. Benchmarking puts both of these operations at the
same runtime, but the parallel version can degrade performance of other
parallel streams that are being processed in the application [10].

In a situation where several streams are all attempting to process in par-
allel, each stream’s performance will suffer even if it should have no problem.
Java does allow a custom ThreadPool like in example 2 of Figure 12 which can
help by using threads created outside the common pool [7]. Unfortunately,
since the issue described above results from a bad concurrency practice, more
threads won’t provide any significant performance enhancement.

// Example 1

Optional <String > result =

collection.stream ().parallel ().map((base) ->

longOperation(argument)).findAny ();

// Example 2

ForkJoinPool customPool = new ForkJoinPool (4);

Optional <String > result = customPool.submit (() ->

collection.stream ().parallel ().map((arg) ->

longOperation(arg)).findAny ()).get();

Figure 12: Reduction of employees into map by a Collector

Source: Ethan Williams

4.2 Interference

Since streams don’t contain any of the elements of the collection, instead
iterating via each Spliterator’s index, adding to the collection can cause
problems and is called interference. Figure 14 shows why this will throw
a ConcurrentModificationException [9]; to start, the Spliterator starts
processing elements until the index is 3. A new item is added to the beginning
of the collection and now the index suggests we re-process that element while
never touching the newly added element. Writing interfering code dangerous
because is easy to write and Figure 14 shows an extremely simple example
where each element is inserted into the collection again.

12

Figure 13: Why interference is a problem
Source: Ethan Williams

collection.stream ().parallel ().map((x) ->

collection.add(x)).toArray ();

Figure 14: A stream which causes interference and will throw an error
Source: Ethan Williams

4.3 Stateful Expressions

The third practice which will cause errors in a stream is using stateful
expressions, operations that depend on the ordering of the elements [5]. The

13

code in Figure 15 shows an example of a stateful operation while attempt-
ing to add elements to parallelStorage and print them. Although the
forEachOrdered() method is just fine and will print in the expected or-
der, parallelStorage will have a different ordering every time the stream
is executed. The addition is stateful, meaning it depends on ordering and in
parallel streams ordering can’t be guaranteed in intermediate operations [9].

List <String > parallelStorage =

Collections.synchronizedList(new ArrayList <>());

collection.stream ().parallel ().map(x ->

parallelSotrage.add(x)).forEachOrdered(x ->

System.out.println(x));

Figure 15: A stream which causes interference and will throw an error
Source: Ethan Williams

References

[1] Collector. Java SE 8. Oracle Help Center. Version 8. Oracle. 2017.
url: https://docs.oracle.com/javase/8/docs/api/java/util/
Collector.html.

[2] Collectors. Java Platform SE 8. Oracle Help Center. Version 8. Oracle.
2017. url: https://docs.oracle.com/javase/8/docs/api/java/
util/stream/Collectors.html.

[3] Brian Goetz. Java Streams. Version 8. IBM. Feb. 2016. url: https:
//www.ibm.com/developerworks/library/j-java-streams-1-

brian-goetz/index.html.

[4] Java 8: A quick introduction to Parallelism and the Spliterator. Rapid7Blog.
Rapid7. Aug. 2015. url: https://blog.rapid7.com/2015/10/28/
java-8-introduction-to-parallelism-and-spliterator/.

[5] Java 8 Streams. Stateful vs Stateless behavioral parameters. LogicBig.
Feb. 2017. url: http://www.logicbig.com/tutorials/core-java-
tutorial/java-util-stream/stateful-vs-stateless/.

14

[6] Lucas Krecan. Think Twice Before Using Java 8 Parallel Streams.
DZone. Feb. 2014. url: https : / / dzone . com / articles / think -

twice-using-java-8.

[7] Dan Newton. Common Fork Join Pool and Streams. DZone. Feb. 2017.
url: https://dzone.com/articles/common-fork-join-pool-and-
streams.

[8] Tomasz Nurkiewicz. Introduction to Writing Custom Collectors in Java
8. Tomasz Nurkiewicz around Java and Concurrency. July 2014. url:
http://www.nurkiewicz.com/2014/07/introduction-to-writing-

custom.html.

[9] Parallelism. The JavaTM Tutorials. Version 8. Oracle. 2017. url: https:
//docs.oracle.com/javase/tutorial/collections/streams/

parallelism.html.

[10] Nicolai Parlog. Java 8 Stream Performance Benchmark Tool. CodeFX.
url: https://github.com/CodeFX-org/lab-java8streamperformancebenchmark.

[11] Spliterator. Java SE 8. Oracle Help Center. Version 8. Oracle. 2017.
url: https://docs.oracle.com/javase/8/docs/api/java/util/
Spliterator.html.

15

