USER GUIDE V3.1 - English

EXERGO ECONOMIC ANALYSIS

INTRODUCTION

This is just a quick start guide, it will show the steps that have to be followed in order to launch the calculation. For more information regarding the solution methods please refer to the *component documentation* file that can be opened from the help section of the app.

For each step, there is a link to a video that shows what is explained in the chapter.

For further explanation or technical issues please contact:

Pietro Ungar *pietro.ungar@unifi.it*

Once installed, the app should be easily found in the *APP* tab of your MATLAB screen as shown in the picture. Click on the icon to open the app.

After the launch of the application, the window shown in figure will appear.

On the top side of the window a tab selector allow you to switch between pages:

- **Main**: contains everything needed for the calculation process
- Streams Check: allow you to check if the connections that you h a v e d e fi n e d b e t w e e n components are correct (further details in the following steps)
- Settings: modify language
- Help: Access documentation file

Main	Streams Check Settings	Help			
	Input Selection		Sele	ct Output Form	nat
	Paste Standard Excel I	File	Output Format	SPECO	•
	Select Excel File			Calculate	
		VIDEC			
		System M	essages		

In order to lunch the simulation, the first thing to do is to **create an excel file** that will be used to pass data to the application.

To do that we recommend to use our default excel file. This file can be copied everywhere in the computer by pressing the button *Paste Standard Excel File* and selecting the desired destination folder in the pop-up window that'll appear. Once the file has been successfully copied the app will show the message: *"Default Excel File Copied"*

In some cases the operating system could prevent Matlab from copying files in a particular location. This issue can be solved by running Matlab *as administrator*

NOTICE Exel file can be renamed

If the file has been successfully copied you can fill it with your input data. Required input data are:

- the topology of the system, that has to be provided as a combination of components connected by some streams, as depicted in the figure
- the cost of each component
- **the exergy value** of the streams.

In compiling the excel file these steps have to be followed:

- Define the **components** of the system (*step 3.1*)
- Set the **connection** (*streams*) between components (*step 3.2*)
- Define **connection's** name and energy value (*step 3.3*)

3.1 Component Definition

At the beginning, the excel file has only one sheet named "Componenti".

To define a new component, **add a new line** in the table shown in picture. Each component needs 4 entries:

- A. **Index:** an integer that identify the component
- B. **Name:** the name of the component (*optional*)
- C. **Type:** the type of the component, (selected from *a dropdown list*). For further information refers to the *Component Documentation*
- D. Cost: the cost of the component in [€/s]
 (e.g. the total cost of the component divided by the expected lifetime)

Support components have to be defined below the component table as shown in figure.

In this app there are two types of support components:

- Input Fuel Components: each exergy stream entering in the system (e.g. the methane entering into the gas turbine's combustion chamber) has to be connected to an input fuel component otherwise Its cost will be set to zero. Important notice on this component:
 - Stream cost has to be set in column D
 - Component Index has to be negative
- Useful Effect Component: Every output stream (e.g. the energy produced in a power plant) has to be connected with this block otherwise the app will consider it an exergy loss. Component Index has to be 0, cost column is neglected.

3.2 Set Connection Between Components

🗥 🕞 🛃 🗶 x² x, ₹

Formule

Dati

Salvataggio automatico

Abadi MT

Disegno Lavout di pagina

Inserisci

Home

Each *component type* has its own way of defining which streams are connected to it (please refers to *Component Documentation* for further information).

For that reason, once each component has been defined, click the "*Enter Suggestions*" button (1). This will add hints in the *connected stream* table (2) that could be useful in inserting the connection number. Replace hints with stream indices in the table, then click *Generate 'Stream' Sheet* (3).

> After the hints replacement, table (2) **should be filled only whit numbers.** Take care not to forget some text (like "...") in it!!

1 Inde					-				1	K	L
	ex (sequantial)	Name (optional)	Component Type	Cost Input [€/s]	Connected Stream (insert	Stream index)					
2											
3	1	Compressor	Compressor		11	1	2				
4	2	Regenerator	Heat Exchanger		1	2	Fuel Input	Fuel Output			
5	3	Combustion Chamber	Combustion Chamber		20	Flow Input	Flow Output				
6	4	Turbine	Expander		Power Output	Flow Input	Flow Output				
7	5	Power Axis	Generic Block		Inputs (positive)	Outputs (negative)		- 1000			
В	-1	Natural Gas	Fundaput		Fuel Input		- 1000				
Э	0	Electrical Power	Dutput		Useful Effect Output		- 1000				
0											
1											
2											
	1										
-	E	nter Suggestions									

Default Excel Input_eng co

Sviluppo

Visualizza

Revisione

Generale

3.3 Define Connection Name and Exergy

Clicking *Generate 'Stream' Sheet* will create a new sheet in your excel file called "*Stream" (1)*.

Open it and fill the table represented in the figure:

- A. **Index:** an integer that identify the stream (fixed by the program according to the connections defined in the "*Componenti*" sheet - **DO NOT MODIFY**)
- B. Name: Stream's name (optional)
- C. **Exergy:** The exergy value of the stream (in kW)

Once the table has been filled **save and close** the Excel file. Then return to the Matlab app.

	Δ					
Appunti Ti C11 A	$\begin{array}{c c} A & \bullet & \bullet \\ \hline A & \bullet & \bullet \\ \hline A & \bullet & Allineamento \\ \hline A & \bullet & f_x & B \end{array}$	Formattazione condizionale V Formatta come tabella V Ila V				
Index	Name (Optional)		Exergy [kW]	D	E	
1 2 3 4 5 6 10 11 12 20 3 4 5 6	Air Input Compressor Output Combustion Chamber In Turbine Input Turbine Output Regenerator Output Turbine Power Output Compressor Power Outpu Electrical Power Outpu Fuel Input	put t but ut				
Pronto	mponenti Stream	+		– –		

Now the input file is ready so it's time to launch the calculation!

These are the steps needed:

- 1. Open the app and click "Select Excel Path"
- 2. Select the input file from the dialog box that'll appear (if the file has been successfully selected the system will display the message "Excel Path Selected")
- 3. Select the output format from the dropdown list and press "*Calculate*".

If the calculation succeeded the system will display the message "*Calculation Completed*"

WARNING

Close Excel file before launching the calculation, otherwise Matlab'll not be able to write the output sheets After the calculation it's possible to use the "Streams Check" tool:

- 1. Select the "Streams Check" tab
- 2. On the left side of the window you can select the stream that you want to check (the numbers are the same as defined in the excel file)
- 3. On the right side information regarding such stream are reported:
 - At the top are displayed name and index of the stream
 - In the center are reported the values of (from top to bottom) Exergy, Relative Cost and Absolute Cost for the selected stream

 Finally, at the bottom are shown the names of the components connected by the stream, in this way you can identify possible connection issues.

Finally it's possible to find the results of the calculation:

- 1. Open the excel file
- 2. You will find three new excel sheets inside the file:
 - Stream Out, contains the cost of each stream in particular:

D. Exergy value of the stream

- E. Specific exergy cost in the stream (in [€/kJ])
- F. Total exergy cost (in [€/s])

HomeInserisciDisegnoLayout di paginaFormuleDatiRevisioneVisImage: Abadi MT12AAImage: Abadi MT12AAImage: Abadi MTImage: Abadi MTIma	Ualizza Svilup Formattazione o Formatta come fo ili cella ∨ Euro/s] 0 0,21054375 0	ppo 〈 condizior tabella 〈 G
Abadi MT 12 A A' Image of the state of the s	Formattazione d Formatta come ili cella ~ Euro/sj 0,21054375	condizior tabella G
1 Stream Point Name Exergy Value [kW] Specific Cost [Euro/kl] Total Cost 3 1 Air Input 0 0 0 0 4 2 Compressor Output 150 0.001403625 0 0 5 3 Combustion Chamber Input 200 0,002361438 0 6 4 Turbine Input 700 0.000747554 0 0 7 5 Turbine Output 350 0,00044375 0 0 9 10 Turbine Power Output 170 0.000944375 0 0 11 Compressor Power Output 160 0,000944375 0 0 12 Electrical Power Output 500 0,0001 0 0 13 12 Fuel Input 500 0,0001 0 14 500 0,0001 0 0 0	Euro/s] 0 0,21054375	G
2 Stream Point Name Exergy Value [kW] Specific Cost [Euro/kl] Total Cost 3 1 Air Input 0 0 0 0 4 2 Compressor Output 150 0,001403625 0	Euro/s] 0 0,21054375	
3 1 Air Input 0 0 4 2 Compressor Output 150 0,001403625 5 3 Combustion Chamber Input 200 0,002361438 6 4 Turbine Input 700 0,000747554 7 5 Turbine Output 350 0,000747554 8 6 Regenerator Output 230 0,000944375 10 Turbine Power Output 170 0,000944375 11 12 Electrical Power Output 160 0,000944375 12 20 Fuel Input 500 0,0001 13 14 500 0,0001	0 0,21054375	
4 2 Compressor Output 150 0,001403625 5 3 Combustion Chamber Input 200 0,002361438 6 4 Turbine Input 700 0,000747554 7 5 Turbine Output 350 0,000747554 8 6 Regenerator Output 290 0 9 10 Turbine Power Output 330 0,000944375 10 11 Compressor Power Output 170 0,000944375 12 Electrical Power Output 160 0,000944375 12 Electrical Power Output 500 0,0001	0,21054375	
5 3 Combustion Chamber Input 200 0,002361438 6 4 Turbine Input 700 0,000747554 7 5 Turbine Output 350 0,000747554 8 6 Regenerator Output 290 0 9 10 Turbine Power Output 330 0,000944375 10 11 Compressor Power Output 170 0,000944375 12 Electrical Power Output 160 0,000944375 12 O Fuel Input 500 0,0001 13 O 0 0 14 15 VIDEC 0	0.4700075	
6 4 Turbine Input 700 0,000747554 7 5 Turbine Output 350 0,000747554 8 6 Regenerator Output 290 0 9 10 Turbine Power Output 330 0,000944375 10 11 Compressor Power Output 170 0,000944375 11 12 Electrical Power Output 160 0,000944375 12 20 Fuel Input 500 0,0001 13 500 0,0001 0 14 15 15 16	0,4/228/5	
7 5 Turbine Output 350 0,000747554 8 6 Regenerator Output 290 0 9 10 Turbine Power Output 330 0,000944375 10 11 Compressor Power Output 170 0,000944375 11 12 Electrical Power Output 160 0,000944375 12 20 Fuel Input 500 0,0001 13 14 500 0,0001 15 VIDEC 17	0,5232875	
8 6 Regenerator Output 290 0 9 10 Turbine Power Output 330 0,000944375 10 11 Compressor Power Output 170 0,000944375 11 12 Electrical Power Output 160 0,000944375 12 20 Fuel Input 500 0,0001 13 14 500 0,0001	0,26164375	
9 10 Turbine Power Output 330 0,000944375 10 11 Compressor Power Output 170 0,000944375 11 12 Electrical Power Output 160 0,000944375 12 20 Fuel Input 500 0,0001 13 14 15 VIDEC 16 16 17 17 17 17	0	
10 11 Compressor Power Output 170 0,000944375 11 12 Electrical Power Output 160 0,000944375 12 20 Fuel Input 500 0,0001 13 14 15 VIDEC 17	0,31164375	
11 12 Electrical Power Output 160 0,000944375 12 20 Fuel Input 500 0,0001 13 14 15 VIDEC 16 17 14	0,16054375	
12 20 Fuel Input 500 0,0001 13 14 15 16 17 VIDEC 17	0,1511	
13 14 15 16 17	0,05	
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
Componenti Stream Stream Out - 06 Nov - 14.40 Comp Out - 06 Nov -	14.40 Eff Ou	ıt - 06 N

- **Comp Out,** contains the description of the exergy loss in each component:
 - A. Exergy destruction and loss balance
 - B. SPECO indices

• •	Salvataggio automatico	• • • • • • • • •	🚰 X ² X ₂ 🗢 💁 Defau	It Excel Input_eng c	opia ~			۹ 🛓
Home	Inserisci Disegno	Layout di pagina	Formule Dati Rev	risione Visualizz	a Sviluppo	🖗 Dimmi	🖻 Condi	vidi 🛛 🖓 Commenti
Incolla	Å ☐ ↓ ≪ G C S ↓	 12 < A[^] 		Numero	ormattazione condizio ormatta ci tili cella x	onale ~ Elle	• O • Modifica	
111	$\begin{array}{c} \bullet \\ \bullet $				B			
A	B C		r	ſ			v	M
2	index Component Name	EXDL [kW]	Exergy Distruction [kW]	Exergy Loss [kW]	r_k[-]	eta_k [-]	f_k [-]	y_k [-]
3	1 Compressor	20	20	0	0,4863004	0,882352941	0,725821085	0,117647059
4	2 Regenerator	300	10	290	0,2004586	0,833333333	7,6434E-05	5
5	3 Combustion Chamber	0	0	0	0	,02 1	1	0
6	4 Turbine	20	20	0	0,263287	39 0,942857143	0,769810242	0,057142857
7	5 Power Axis	0	0	0	-1,14806E	-16 1		0
8								
9								
10						_		
11						_		
12								
13								
14								
15								
16								
17								
18								
19								
20								
21								
22					•			
23								
24								
25								
20								
20								
20								
30								
30								
			Nov - 14.40 Comp	Out - 06 Nov - 14.40	Eff Out - 06 I		+	
							m	
								+ 100%

- Eff Out, sum up the efficiency calculation and the cost of the output exergy stream:

A. Efficiency calculation

B. Cost of streams identified as useful effects

APPENDIX

Common Error Messages:

Error

MATLAB: xlsread: WorksheetNotFound Worksheet 'Stream' not found.

Solution

Open excel file, save it and try again

Developed by:

Website

università degli studi FIRENZE