A HYUNDAI ROBOTICS

경고

모든 설치 작업은 반드시 자격있는 설치기사에 의해 수행되어야 하며 관련 법규 및 규정을 준수하여야 합니다.

Hi5 제어기 기능설명서

OLP 를 위한 좌표계 캘리브레이션

A HYUNDAI ROBOTICS

A HYUNDAI ROBOTICS

A HYUNDAI ROBOTICS

본 제품 설명서에서 제공되는 정보는 현대로보틱스의 자산입니다. 현대로보틱스의 서면에 의한 동의 없이 전부 또는 일부를 무단 전재 및 재배포할 수 없으며, 제 3 자에게 제공되거나 다른 목적에 사용할 수 없습니다.

본 설명서는 사전 예고 없이 변경될 수 있습니다.

Printed in Korea - 2011 년 1월. 1판 Copyright © 2011 by Hyundai Robotics Co., Ltd

목 차

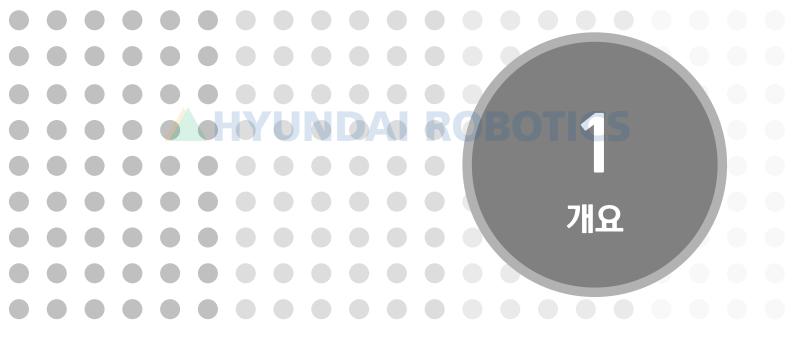
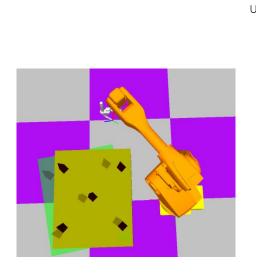
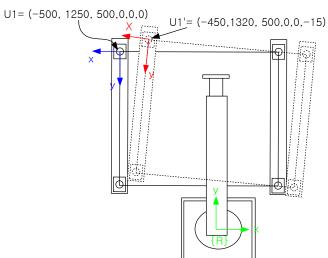

1.	개 요	1-1
	1.1. 개요	1-2
2.	OLP 프로그램의 작성	2-1
	2.1. OLP 기준점 프로그램 작성 (in OLP package) 2.2. OLP 작업 프로그램의 작성	
3.	OLP 프로그램의 제어기 다운로드	3-1
	3.1. OLP 프로그램의(기준점 기록 프로그램 및 작업프로그램) 제어기 다운로드	3-2
4.	기준점 티칭 프로그램 작성	4- 1
5.	작업 프로그램의 좌표계 변환	5-1
	5.1. 사용자 좌표계 생성 5.2. 일괄 기록 좌표계 변환 기능	
6.	OLP를 위한 좌표계 캘리브레이션	6-1
	6.1. 메뉴 항목 설명	6-3
7.	작업 프로그램의 좌표계 환원(User To Base)	7- 1
g Q	작업 프로그램이 구동	8- 1

그림 목차

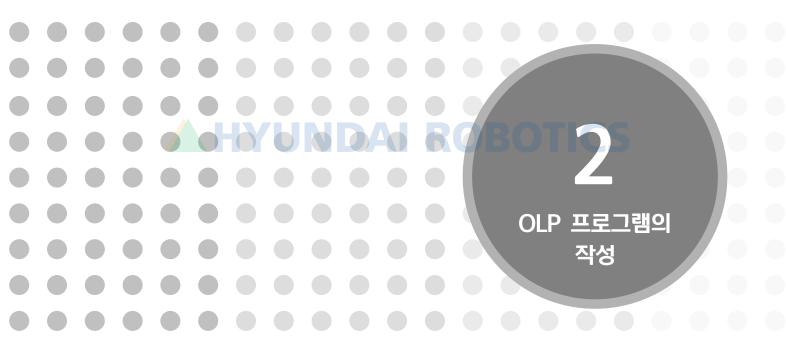
그림 2.1 작업 프로그램 작성 예	2-3
그림 2.2 작업 프로그램 예	2-3
그림 4.1 작업 프로그램 작성 예	4-2
그림 5.1유저 좌표계 설정 프로그램 작성 예	5-3
그림 5.2 사용자 좌표계 설정 예	5-3
그림 6.1 TOOL II단미터 포함 교시 자세 예	

A HYUNDAI ROBOTICS


1.1. 개요

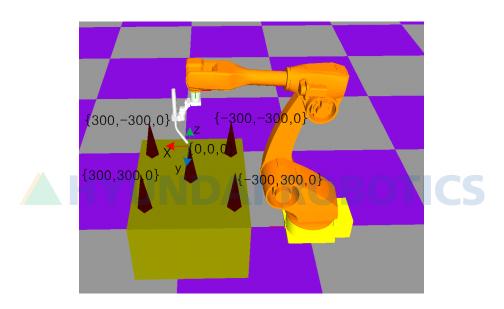

OLP(Off-Line Programming)는 시뮬레이션 환경에서 작업을 계획하여 실제 작업 현장에서의 추가적인 티칭작업을 최소화하기 위해 사용합니다. OLP 에 의해 작성된 프로그램은 이론적으로는 그대로 다운로드 하여 실제 작업을 대체할 수 있습니다. 그러나 실제 작업 공간에서는 로봇의 정확도, 로봇의 설치위치 정확도, 작업물이 놓인 설치 위치의 정확도 등 다양한 오차가 존재합니다. 이와 같은 오차는 OLP 에서 작성한 프로그램을 그대로 작업현장에 적용할 수 없는 이유가 됩니다.

따라서 OLP에서 계산한 위치와 실제 작업 위치를 보정하는 작업이 필요하게 됩니다. 이와 같은 기능을 'OLP 설치오 차 캘리브레이션'이라고 합니다. 본 기능은 OLP에서 이용한 CAD 상의 기준 프로그램과, 동일한 위치에 대해 로봇을 티칭하여, 두 좌표계 간의 차이를 변환하는 관계를 생성함으로써 OLP 설치오차를 보정할 수 있습니다.

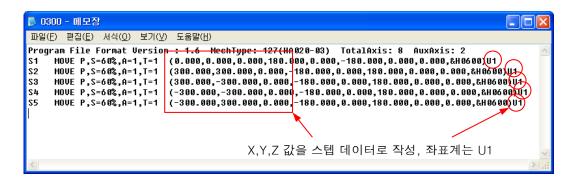

본 기능에서 제공하는 보정 방법은 사용자 좌표계를 이용합니다. 사용자는 로봇 프로그램을 사용자 좌표계로 교시합니다. OLP에서 생성된 기준 프로그램과 사용자의 티칭에 의해 생성된 프로그램을 입력하면 두 프로그램 사이의 변환 값이 미리 지정된 유저 좌표계의 변환으로 가산됩니다. 결과적으로 사용자 좌표계로 교시된 프로그램의 작업 위치가실제 작업물의 위치와 맞도록 보정됩니다.

아래의 그림과 같이 OLP 상에서는 작업물 1 이 U1 과 같이 놓여 있었으나, 실제 설치과정에서 U1'와 같이 설치 된다면 두 좌표계는 X, Y, Z 방향으로 -50 mm, 70 mm, 0 mm Rx, Ry, Rz 방향으로 0 deg, 0 deg, -15 deg 의 차이가 있습니다. 본 기능은 U1 대신 U1'를 계산하여 설치오차를 보상합니다.

Hi5 제어기는 유저 좌표계를 10 개 지원합니다. 따라서 작업물 마다 각각 유저 좌표계를 설정하여 설치 오차를 보상할 수 있습니다.



2.1. OLP 기준점 프로그램 작성 (in OLP package)


ARCON 문은 아크 용접을 시작하는 명령어 입니다.

본 기능을 사용하기 위해서는 OLP 상에서도 랜드마크(Landmark) 위치가 존재하고, 실제 작업물에도 동일한 위치에 랜드마크가 가공되어 있어야 합니다.

아래의 그림과 같이 5 개의 랜드마크가 표시되어 있는 경우, 각 랜드마크 점들을 기준점 기록 프로그램에 OLP 데이터 기반으로 작성합니다.

프로그램을 아래와 같이 Hi5 제어기 프로그램 형식으로 기록합니다. PC 에서 EDIT 가 가능한 메모장 프로그램을 이용하여 편집합니다. 예를 들어 여기서는 300.JOB을 작성합니다.

- 1) 위치(X, Y, Z)는 OLP 데이터로 작성합니다.
- 2) 자세(Rx, Ry, Rz)는 동일하게 적당한 값으로 설정합니다.
- 3) 기록 좌표계는 변환할 유저좌표계 Un 으로 설정합니다.

참고사항

● 기준점 프로그램의 위치는 가능한 작업프로그램 영역을 포함하는 대표 위치 설정해야 합니다.

2.2. OLP 작업 프로그램의 작성

작업 프로그램은 OLP 상(HRSpace, RobCad)에서 교시합니다. 예를 들어 OLP 에서 작성된 프로그램 500 번 (500.JOB)을 생성합니다.

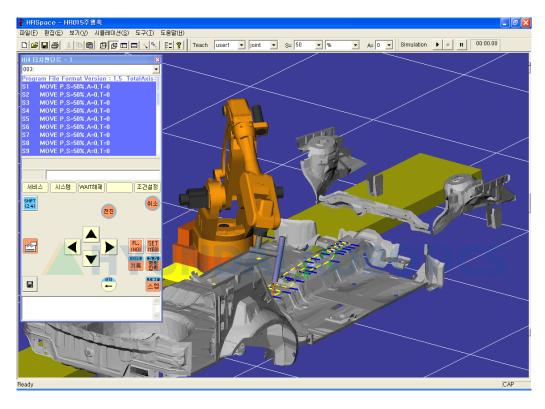


그림 2.1 작업 프로그램 작성 예

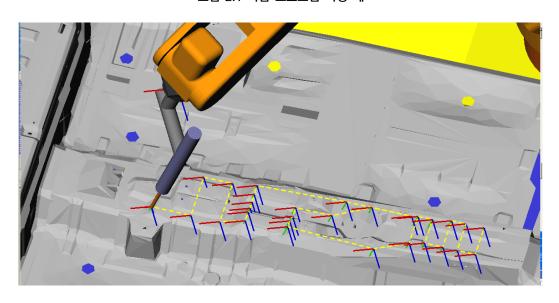
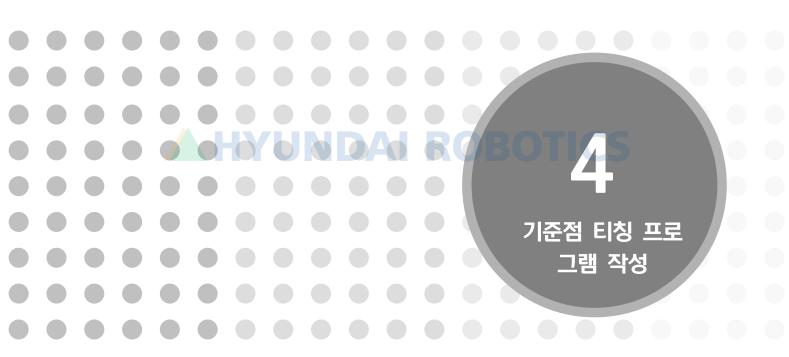


그림 2.2 작업 프로그램 예



3.1. OLP 프로그램의(기준점 기록 프로그램 및 작업프로그램) 제어기 다운로드

HRView 혹은 USB 에 파일을 복사하는 방법으로 OLP '기준점 프로그램' (300.JOB)과 '작업 프로그램'(500.JOB)을 제어기에 복사합니다.

4. 기준점 티칭 프로그램 작성

'기준점 티칭 프로그램' 작성은 OLP 에서 작성한 '기준점 프로그램'과 동일한 위치를 실제 작업물 위에 점으로 교시하는 작업입니다. (OLP 상에서가 아닌 실제 현장에서 작업물에 교시하는 것을 의미합니다.)

주의해야 할 점은

- (1) 기준점 티칭 프로그램을 작성하기 이전에 툴 길이는 자동정수 설정으로 정확히 구해져 있어야 합니다.
- (2) OLP에서 생성한 '기준점 프로그램' (300, JOB)의 스텝 순서와 동일해야 하며 실제 작업물위에 랜드마크 (Landmark) 포인트에 정확히 교시하여야 한다는 점입니다. 즉, 기준점 프로그램 1 번 스텝이 기준점 티칭 프로그램의 1 번과 동일한 위치이며 나머지 랜드마크도 '기준점 프로그램' (300, JOB)과 동일한 순서로 티칭합니다. (2~5 step)

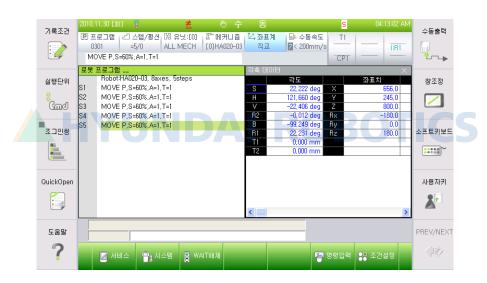
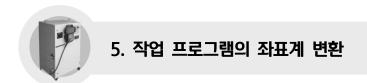



그림 4.1 작업 프로그램 작성 예

예를 들어 기준점 티칭 프로그램을 프로그램 번호 301(301JOB)에 만듭니다. 위의 2, 3 의 과정을 통해 프로그램 300JOB 에는 OLP 에서 작성한 '기준점 프로그램'이, 301JOB 프로그램에는 '기준점 티칭 프로그램'이 있게 됩니다.

작업 프로그램(500.JOB)이 유저 좌표계로(U_Crd) 설정되어 있는지 확인합니다.

캘리브레이션 할 작업 프로그램이 이미 유저 좌표계로 기록되어 있다면 다음 Chapter 6 으로 넘어가십시오. 그렇지 않은 경우 유저 좌표계 생성에서부터 작업 프로그램을 유저 좌표계로 변환하는 과정을 수행합니다.

A HYUNDAI ROBOTICS

5.1. 사용자 좌표계 생성

Hi5 제어기에 사용자 좌표계를 OLP에서 생성한 것과 유사한 위치에 하나 생성합니다.

사용자 좌표계 생성 방법은 아래의 두 가지가 있습니다.

(1) 3점을 교시하여 사용자 좌표계를 작성하는 방법

그림 5.1유저 좌표계 설정 프로그램 작성 예

그림 5.2 사용자 좌표계 설정 예

(2) MKUCRD 명령을 이용하여 사용자 좌표계를 만드는 방법

사용 예) 유저 좌표계 1 번에 원점(P1), X 방향(P2), XY 평면(P3)을 설정하는 경우 MKUCRD 1, P1, P2, P3

자세한 사용자 좌표계 생성 방법에 대한 내용은 Hi5 사용자 설명서를 참고하십시오.

5.2. 일괄 기록 좌표계 변환 기능

작업 프로그램(500.JOB)은 유저좌표계(U_Crd)외에 축 각도, 베이스, 로봇 좌표계 형식으로 기록되어 있을 수 있습니다. 이 경우 사용자 좌표계로 변환이 필요합니다.

기존에 프로그램 기록된 좌표계를 일괄로 다른 좌표계로 변환 할 수 있는 기능이 '일괄 기록 좌표계 변환'기능입니다. 이 기능을 이용하면 간단하게 사용자 좌표계 형식으로 변환할 수 있습니다.

'『[F1]: 서비스』 → 『6: 프로그램 변환』 → 『4: 기록좌표계』'을 선택합니다.

예를 들어 500 번 작업 프로그램이 유저 좌표계로 되어 있지 않은 경우에 아래와 같이 502 번에 유저 좌표계 1 번으로 변환한 프로그램을 복사하여 생성합니다. 실행(PF7)를 누르면 502 번(502.JOB) 프로그램이 사용자 좌표계 1 번 (U1)으로 생성됩니다.

각 메뉴의 의미는 다음과 같습니다.

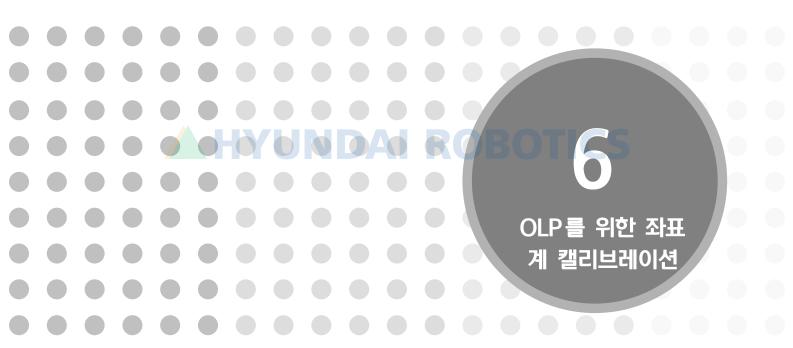
(1) 원본 프로그램

작업 프로그램의 원본 프로그램 번호를 입력합니다.

(2) 대상 프로그램

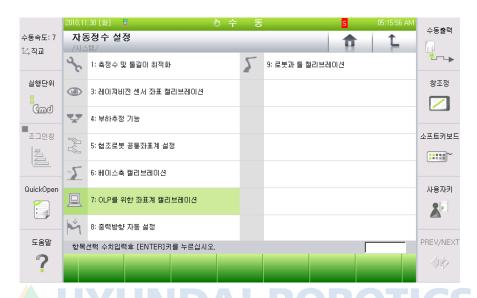
좌표계가 변환된 프로그램이 복사될 프로그램 번호를 입력합니다. 원본 프로그램 번호와 동일하게 입력할 경우, 기존 프로그램에 덮어쓰게 됩니다.

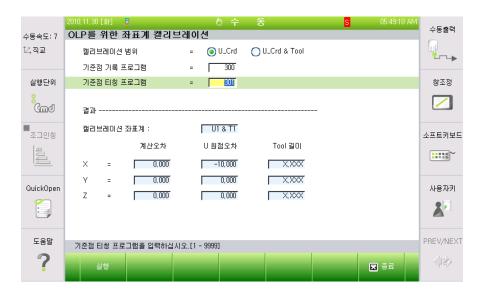
(3) 시작스텝~종료스텝


기록된 좌표계를 변경할 스텝의 범위를 입력합니다.

(4) 좌표계 형식

대상 프로그램의 스텝 범위 부분을 변경할 좌표계를 선택합니다. OLP 좌표계 캘리브레이션을 위해서는 유 저 좌표계(Un)을 선택하고 번호도 선택한 후 실행합니다.





6. OLP 를 위한 좌표계 캘리브레이션

작업 프로그램이 사용자 좌표계로 변경된 후 OLP 를 위한 좌표계 캘리브레이션 기능을 사용할 수 있습니다. 『[F2]: 시스템』 → 『6: 자동정수 설정』 → 『7: OLP 를 위한 좌표계 캘리브레이션』 메뉴를 선택합니다.

예를 들어 기<mark>준</mark>점 기록 프로그램은 OLP 기준점 프로그램 300 번 프로그램을 선택합니다. 기준점 티칭 프로그램은 동일 위치를 티칭한 301 번 프로그램을 선택합니다.

6.1. 메뉴 항목 설명

(1) 캘리브레이션 범위

- U_Crd

유저 좌표계만을 캘리브레이션 합니다.

U_Crd & Tool

유저 좌표계와 툴 길이를 동시에 캘리브레이션 합니다. 이 경우 반드시 기준점 티칭 프로그램의 각 스텝의 자세를 서로 다르게 교시해야 합니다.

(2) 기준점 기록 프로그램

CAD 데이터 기반으로 작성된 프로그램 번호를 입력합니다. OLP에서 생성한 '기준점 프로그램'을 선택합니다.

기준점 기록 프로그램은 모든 스텝이 동일한 유저 좌표계로(U_Crd) 설정되어 있어야 합니다.

(3) 기준점 티칭 프로그램

작업물 상에서 '기준점 기록 프로그램 위치'와 동일한 랜드마크 위치를 교시한 프로그램 번호를 입력합니다

베이스, 로봇, 축 좌표계를 모두 사용할 수 있습니다.

단, 유저 좌표계로 기록된 베이스 좌표계로 자동 변경됩니다.

(4) 결과

캘리브레이션 좌표계 U? & T?

U? & T?는 캘리브레이션 된 유저 좌표계와 툴 번호를 표시합니다. 실행 키를 누르면 U?는 U1과 같이 기준점 기록 프로그램의 유저 좌표계 번호로 변경되고, T?는 T1과 같이 기준점 티칭 프로그램의 툴 번호로 바뀝니다.

(5) 계산오차 (X, Y, Z)

계산 오차는 U_Crd(혹은 U_Crd & Tool)의 캘리브레이션 결과를 반영하였을 때 기준점 기록 프로그램과 기준점 티칭 프로그램의 각 스텝의 위치 오차 X, Y, Z 최대값을 나타냅니다.

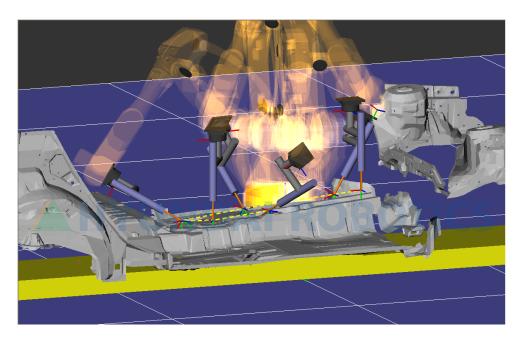
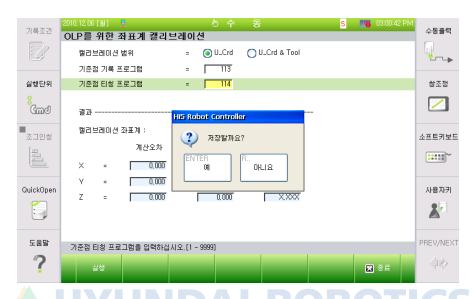
(6) U 원점오차

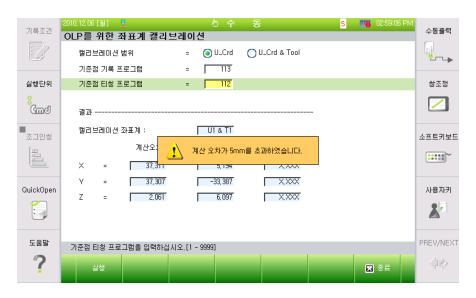
기존에 설정된 유저 좌표계와 캘리브레이션 결과에 의해 생성된 유저 좌표계와의 차이를 나타냅니다. (U원 점오차 = 새로 생성된 유저좌표계 위치 - 기존 유저좌표계 위치)

(7) Tool 길이

캘리브레이션 범위를 'U_Crd & Tool'로 선택했을 때 계산합니다. 이 기능을 선택하면 먼저 툴 길이를 찾고 U_Crd 를 찾습니다. 단, Tool 길이를 찾기 위해서는 '기준점 티칭 프로그램'을 교시할 때 아래의 그림처럼 반드시 툴의 티칭 자세가 스텝 마다 많이 다르도록 교시해야 합니다.

단, 캘리브레이션 범위가 U_Crd 로만 한정된 경우에는 '기준점 티칭 프로그램'의 자세가 동일해도 무방합니다. 그러나 이 경우에는 반드시 툴 길이 데이터가 정확한 상태에서 수행해야 합니다.


그림 6.1 TOOL 파라미터 포함 교시 자세 예

『[F1]: 실행』 키를 누르면 캘리브레이션 결과가 표시되고, "예[ENTER]"키를 누르면 유저좌표계의 데이터가 자동으로 저장됩니다.

단, 계산 오차<mark>가</mark> 5mm 를 초과하는 경우 데이터에 문제가 있다고 판단하기 때문에 다음과 같은 에러가 표시되며 유 저 좌표계에 반영하지 않습니다.

다음과 같은 에러가 발생한 경우에도 계산 결과가 유저 좌표계에 반영되지 않습니다.

에러 메시지

- 해를 찾을 수 없습니다.

해가 수렴하지 않거나, 풀 수 없는 프로그램입니다. 기록 및 티칭 프로그램의 위치 및 자세를 확인 하고 수정하십시오.

- 부가축을 이동하는 스텝이 있습니다.

부가축의 위치가 동일하지 않게 '기준점 티칭 프로그램'이 작성되어 있습니다. 부가축의 위치는 고정한 채 티칭하여 주십시오.

동작영역을 벗어난 스텝이 있습니다.

'기준점 티칭 프로그램'에 작업영역을 벗어난 스텝이 있습니다. 확인 후 수정하십시오.

- 기준점간의 거리가 1cm 이하임.

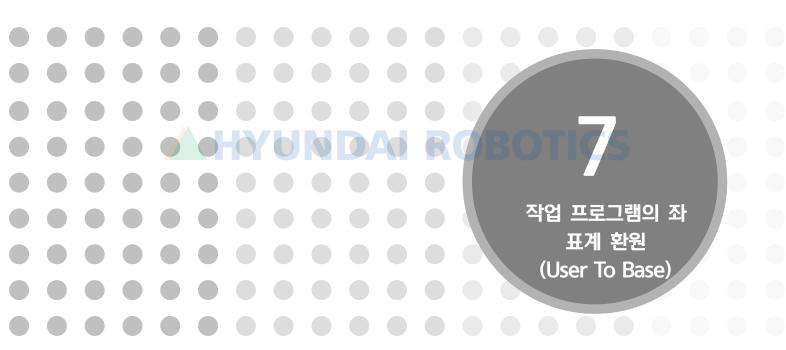
'기준점 기록 프로그램'의 점간의 거리가 1cm 이하로 너무 작게 되어 있습니다. 기준점간의 거리를 두고 프로그램을 작성하십시오.

티칭 Prg 자세 변화가 10deg 이하임.

캘리<mark>브</mark>레이션 범위를 U_Crd & Tool을 선택했을 경우에 발생할 수 있습니다. 이 경우 티칭 프로그램의 자세는 동일하지 않게 하여야 합니다. 모든 티칭 프로그램의 자세가 10deg 미만의 변동으로 교시되었을 때이 에러가 발생합니다. 확인 후 수정하십시오.

- E1350 사용자 좌표계가 지정되지 않았습니다.

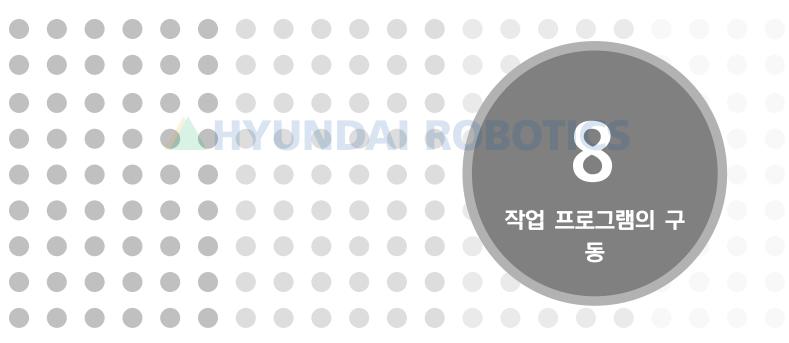
'기준점 기록 프로그램'에서 좌표계 형식을 Un이 아닌 U로 선택한 경우에는 '조건설정'에서 해당 사용자 좌표계를 맞추어줘야 합니다. 이 에러는 사용자 좌표계 설정 없이 사용한 경우에 발생합니다.


주의사항

- 계산 오차가 큰 경우 '기준점 기록 프로그램', '기준점 티칭 프로그램'의 작성이 잘못되었을 수 있으니 확인 하십시오.
- 캘리브레이션 범위를 U_Crd로 선택한 경우에는 '기준점 티칭 프로그램'을 교시할 때 툴 길이가 정확한 상 태에서 수행해야 합니다.

● U 원점오차

- ① 제어기에 해당 좌표계가 등록되어 있지 않을 경우 'U 원점오차'는 베이스 좌표계의 원점에서의 오차를 표시합니다.
- ② 상기의 경우 U 원점오차가 {0.597,0.200,0}이고 유저 좌표계 1 번이 등록되어 있지 않은 경우 새로운 유저 좌표계의 원점이 {0.597,0.200,0}로 등록됩니다.
- ③ 유저 좌표계 1 번이 {100,100,100}으로 설정된 상태에서 동일한 결과를 얻었다면 {100.597,100.2,100.0}로 유저 좌표계 1 번이 재등록 됩니다.



7. 작업 프로그램의 좌표계 환원(User To Base)

캘리브레이션을 위해 유저 좌표계로 변환했던 프로그램(500.JOB)을 원래의(Base) 좌표계로 환원하고자 할 때에는 '일괄 기록 좌표계 변환'기능을 다시 사용하여 변환합니다.

『[F7]: 실행』을 하면 프로그램 502 번이 베이스 좌표계로 다시 변환되어 510 번 프로그램이 생성 됩니다.

캘리브레이션

유저 좌표계의 보정으로 OLP 와의 설치오차가 보정되었으므로 제어기에서 510.JOB 프로그램을 선택하여 구동합니다.

- (1) 스텝 전후진 기능을 이용하여 작업프로그램의 위치가 올바른지 확인합니다.
- (2) 작업에 지장이 있는 스텝은, 통상적인 스텝 위치 수정 방법으로 동일하게 수정할 수 있습니다.

결과적으로 OLP 좌표계 캘리브레이션 전에 오차가 발생했던 위치가 보정된 것을 확인할 수 있습니다.

- Daegu Office (Head Office)
- 50, Techno sunhwan-ro 3-gil, yuga, Dalseong-gun, Daegu, 43022, Korea
- Bundang Office
- 42, Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13630, Korea
- 대구 사무소

(43022) 대구광역시 달성군 유가읍 테크노순환로 3 길 50

● 분당 사무소

(13630) 경기도 성남시 분당구 돌마로 42 한국과학기술한림원 2층, 4층

- ARS: +82-1588-9997 (A/S center)
- E-mail: robotics@hyundai-robotics.com
 ROBOTICS