

Function Manual
for Hi6 Controller
Robot Language (HRScript)

Robot Language (HRScript)

2_Overview | Introduction of HRScript

Contents

1. Overview 4

1.1 Introduction of HRScript 4

2. Basic Syntax 5

2.1 Statements 5
2.2 Identifiers 5
2.3 Types of Statements 6

2.3.1 Procedures 6
2.3.2 Assignment Statements 7
2.3.3 Comment Statements 7
2.3.4 Labels 7

2.4 First Program – Hello, World! 8
2.5 Data Type 9

2.5.1 String Data Type 9
2.5.2 Number Data Type 10
2.5.3 Boolean Data Type 10
2.5.4 Array Type and Object Type 11

2.6 Variables 12
2.7 Binary and Hexadecimal 13
2.8 Operators and Expressions 13
2.9 Functions 16

2.9.1 Math Functions 16
2.9.2 String Functions 17
2.9.3 Date and Time Functions 19
2.9.4 Constructor Functions 19
2.9.5 Other Functions 19

3. Control Statements and Subprograms 21

3.1 Address 21
3.2 Stop Statement and Wait Statement 22

3.2.1 Stop Statement 22
3.2.2 End Statement 22
3.2.3 Delay Statement 22
3.2.4 Wait Statement 23

3.3 Goto Statement 23

3.3.1 Goto Statement 23

3.4 Conditional Statements 24

3.4.1 Single-Line if Statement 24
3.4.2 Complex if-endif Statement 24
3.4.3 Complex if-else-endif Statement 25
3.4.4 Complex if-elseif-else-endif Statement26
3.4.5 switch~case~break~end_switch

statement 27

3.5 Nested Control Statements 29
3.6 Repetitive Statements 30

3.6.1 for-next Statement 30

3.7 Call Statement, Jump Statement and

Subprograms 31

3.7.1 Format and Simple Example of Call

Statement 31
3.7.2 Parameters and param Statement &

return Statement 32
3.7.3 Format and simple example of jump

statement 33

3.8 Local Variables and Global Variables 34

4. Arrays and Objects 37

4.1 Arrays 37

4.1.1 Arrays 37
4.1.2 Multidimensional Arrays 39
4.1.3 Array Constructor Function 39

4.2 Object 40
4.3 Copied assignment of arrays and objects 41
4.4 4.4. Call-by-reference and call-by-value 42

5. Moving a Robot with Robot Language 44

5.1 Pose 44
5.2 Shift 46
5.3 Pose Expression 48
5.4 Move Statement 49
5.5 User Coordinate System (UCS) 50

6. Communicating with External Devices 51

6.1 FB Object: Digital I/O 51

6.1.1 Input/Output Variables 51
6.1.2 Examples 53

6.2 ENet Module: Ethernet TCP/UDP

Communication 54

6.2.1 Constructor 55
6.2.2 Member Variables 55
6.2.3 Member Procedures 56
6.2.4 Member Function 57
6.2.5 Examples of TCP and UDP

Communication 58

6.3 Http_Cli Module: HTTP Client 59

6.3.1 Constructor 60
6.3.2 Member Variables 60
6.3.3 Member Procedure 60
6.3.4 Examples of HTTP Client Communication

 62

Robot Language (HRScript)

3_Overview | Introduction of HRScript

Robot Language (HRScript)

4_Overview | Introduction of HRScript

1. Overview

1.1 Introduction of HRScript

Hyundai Robotics’ Hi6 Controller allows the user to program the robot’s tasks in a robot language called HRScript.

Created programs can be saved as several files with the extension .job.

HRScript is a scripting language that will be interpreted and executed line by line by the interpreter without a

compilation procedure. It is similar to the Python or JavaScript languages but has a simpler syntax.

Robot Language (HRScript)

5_Basic Syntax | Statements

2. Basic Syntax

Described in this section are the basic terms of HRScript. The basic concept of the job program could be understood

by following the method for defining a variable, constructing a simple expression using operators, and assigning the

resulting value to a variable.

2.1 Statements

The statement refers to each command string that becomes the execution unit of the job program. HRScript allows

only one statement per line. Take note of how the four examples of statements are written below, particularly their

appearances.

move P,po3,spd=80%,accu=1,tool=3 until do33

10 z_pos = (base_height+offset)*1.05

robot has to wait sensor2 input

*err_handle

For statements other than a step statement (move statements, etc.) that moves the robot, you can optionally add a

line number (1 to 9999) at the beginning of the line. The number 10 in the second line is an example of a line number.

It does not matter if there are any number of spaces or tabs before and after the statement.

Proper indentation in statements is recommended for readability. Both spaces and tabs are allowed for indentation

and do not affect the operation during execution.

2.2 Identifiers

Names must be given to commands, variables, functions, and labels that are described. These names are collectively

referred to as “identifiers.” When deciding an identifier, it must comply with the following rules for the HRScript’s

identifiers.

• It must consist only of uppercase and lowercase letters, numbers, and underscores.

• The first character must only be either a lowercase or uppercase letter or an underscore, not a number.

• It should not contain a space or tab.

• Identifiers already defined in the system, such as “if” and “for,” cannot be used.

• There is no limit to the length.

Robot Language (HRScript)

6_Basic Syntax | Types of Statements

The following shows correct and incorrect examples of identifiers:

myvar (O)

myvar2 (O)

_myvar (O)

MyVar (0)

310a (X) – Started with a number

move (X) – An identifier already defined in the system

v300$ (X) – Used a symbol other than an underscore ($)

my var (X) – Included a space

2.3 Types of Statements

The four types of statements of HRScript are as follows:

• Procedures

• Assignment statements

• Comment statements

• Labels

2.3.1 Procedures

A procedure consists of a command and a 0–N number of parameters.

move P,po3,spd=80%,accu=1,tool=3 until do33

The three types of procedure parameters are as follows:

Type Syntax Example

Position parameter <value> P, po3

Keyword parameter <keyword> = <value> spd=80%, accu=1, tool=3

Robot Language (HRScript)

7_Basic Syntax | Types of Statements

Preposition parameter <preposition> <value> until do33

The position parameter’s role is determined by its position, so it should not be moved and must always be at the front

of the procedure.

Keyword parameters should be placed after position parameters. However, the order between keyword parameters

does not affect the operation.

The preposition parameters are placed last.

2.3.2 Assignment Statements

An assignment statement consists of the left side, the assignment operator (=), and the right side. The left side (lvalue)

must be a variable that can store a value. No constants or expressions are allowed.

On the other hand, constants, variables, and expressions are allowed on the right side (rvalue).

height=(500+margin)/2

2.3.3 Comment Statements

A comment statement is used to describe the contents of the job program in a way that they can be understood

easily. Even if the comment statement is executed, no operation is performed. As shown below, a description is

attached after the hash sign (#). It can be used as a single statement or attached after another statement.

robot has to wait sensor2 input

var work_w,work_h # width and height of a workpiece

2.3.4 Labels

A label is used to mark the target point to move to according to the goto statement. It consists of an asterisk (*) and

an identifier.

Robot Language (HRScript)

8_Basic Syntax | First Program – Hello, World!

2.4 First Program – Hello, World!

Let us create a simple job program that prints a string on the teach pendant screen. After creating a new job, record

the print statement as shown below, and attach the string parameter “Hello, World!”

print “Hello, World!”

The print statement is used to print the value at the bottom of the teach pendant’s job panel. Now, when you run

the program, you can see the text, “Hello, World!” printed at the bottom of the job panel.

Robot Language (HRScript)

9_Basic Syntax | Data Type

2.5 Data Type

2.5.1 String Data Type

The first program in the previous paragraph used the data “Hello, World!” as the print statement’s parameter, a string

data type. The value of the string data type begins and ends with double quotes. There is no limit for the length of

the string.

print "Welcome to the Robot World."

A sequence beginning with a backslash (\) represents double quotes or special characters in a string. This sequence is

called the “escape character.”

The supported escape characters are shown in the table below.

\" Double quotes

\ Backslash

\t Ttab)

\n New line character

print "Message: \nPlease, press \"OK\" button."

Result of print

Message:

Please, press "OK" button.

Robot Language (HRScript)

10_Basic Syntax | Data Type

2.5.2 Number Data Type

The number data type stores an integer or real number. Let us print using the print statement. If you list multiple

values separated by commas (,) in the print statement, as shown in the example below, each value will be displayed

separated by a space.

280

3.141592

-99

print 280, -99

Inside the system, integers and real numbers are processed separately. Each data size is as follows:

Data type Data size (byte)

Integer 4

Real number 8

2.5.3 Boolean Data Type

There are only two values, true and false, as the result of the following logic and comparison operations.

var x=true

print false and x

print 10 > 5

print 10 <= 5

result of print

false

true

false

Robot Language (HRScript)

11_Basic Syntax | Data Type

2.5.4 Array Type and Object Type

In addition, there are array types and object types. These will be discussed in further detail in Sections 4.1 and 4.2.

Robot Language (HRScript)

12_Basic Syntax | Variables

2.6 Variables

A variable can store values and has an identifier name. Variables are divided into global and local variables, and the

difference between them will be described later. Examples of local variables are first described here.

Variables can be created with the var command, as shown in the following. This is called defining a variable. Multiple

identifiers can be created at once by enumerating multiple identifiers after the var command.

var myvar

var width, height, depth

Storing a value in a variable is called “assignment.” The assignment may be performed while defining or after defining

a variable. If the assignment is not performed while defining, the variable will have a number value of 0 by default.

var myvar=0

var message, width=200

message="Invalid input value"

In HRScript, (=) does not mean equal. It is used as an assignment operator and means that the value on the operator’s

right side is assigned to the variable on the left side. The value stored in the variable may be printed through the print

statement.

var myvar=0

var message, width=200

message="Invalid input value"

print width, message

A different value may be assigned to a variable to which a value has already been assigned. It is called a variable

because its value can change.

var width=200

width=300

Robot Language (HRScript)

13_Basic Syntax | Binary and Hexadecimal

2.7 Binary and Hexadecimal

All the number type values previously described as examples are interpreted as decimal numbers. It can represent

binary or hexadecimal values just by adding 0b or 0x prefixes, respectively, as shown in the following.

var binary = 0b10010011

var hexadecimal = 0xFF4A38C0

2.8 Operators and Expressions

In the following example, the variable margin is added to the number value 500, and the resulting value is divided by

2. Thus, the calculated value is assigned to a variable called “height.”

var height, margin=10

height=(500+margin)/2

print height

Through the print statement, it is possible to check that 255, which is the result of the expression, is assigned to

“height.”

In this way, an expression can be created by concatenating operands, which are values or variables, using various

operators, and the result can be assigned to a variable or be used as a parameter of a statement.

What operation will be performed first if the addition sign and multiplication sign are used without grouping, as shown

below? Multiplication and division will be performed first before addition and subtraction because there is an operation

order in which operators are applied, which is called “operator precedence.” Because the operator precedence of

multiplication is higher than that of addition, multiplication will be performed first even though the multiplication sign

is located at a later place.

print 10+10*2

Strings will be concatenated when the (+) operator is used for them.

var name="axis1", type="rotational"

print name + ":" + type

Robot Language (HRScript)

14_Basic Syntax | Operators and Expressions

The operators supported by HRScript are as follows. The higher it is, the higher the operator precedence. (In other

words, operators with higher operator precedence will be executed first.)

Operator Meaning Example

() Grouping (10+10)*2 ; 40

[] Accessing array elements arr[3]

** Exponentiation 10**3 ; 1000

+x, -x Sign -300

*, /, mod Multiplication, division, remainder 300/3 ; 100, 8 mod 3 ; 2

+, - Addition, subtraction 300-100 ; 200

~

Bitwise NOT

~0b11010010

; 0b11111111111111111111111100101101

&

^

|

<<

>>

Bitwise AND

Bitwise XOR

Bitwise OR

Shift left

Shift right (sign maintained)

0b11010010 & 0b11110000 ; 0xd0

0b11010010 ^ 0b11110000 ; 0x22

0b11010010 | 0b11110000 ; 0xf2

0b11010010 << 2 ; 0b1101001000

0b11010010 >> 2 ; 0b00110100

<, <=, >, >=,

!=, ==

Comparison operation

(!=) means different, (==) means

equal.

30 <= 29 ; false

response != "ok"

not x Logical operation NOT not error_state

and

or

Logical operation AND

Logical operation OR

height>100 and invert==false

timeout or work_count>3

Robot Language (HRScript)

15_Basic Syntax | Operators and Expressions

When operands are number or Boolean values, the result of comparison and logical operations is a Boolean data

type, and the result type of other operations is a number data type.

In cases where an operand of Boolean type is used without a comparison operator, it means whether its value is

equal to true. For example, the two lines below have the same meaning.

var result= timeout

var result= (timeout==true)

Operators that can be used for strings are addition (+), comparison (!=, ==), and assignment (=). String addition

makes it possible to concatenate operand strings, as previously shown.

A comparison operation determines whether a string is different or equal.

var response="ok"

print response=="ok"

print response=="ng"

Sometimes, the data type of an operand may change automatically during the process of operation.

When a number is used as an operand of a logical operator, the result will be regarded as false if it is 0 and true if it

is not..

var count_a=1, count_b=0, height=100

print count_a and height>99

print count_b and height>99

“bitwise NOT” and “shift left/right” are calculated on a 32-bit length basis.

Robot Language (HRScript)

16_Basic Syntax | Functions

2.9 Functions

What is the process of converting the angle 60 to a radian value or finding the length of the string that the variable

mystr contains?

HRScript provides various functions that receive inputs through parameters, perform some processing, and return the

result values.

Functions can be used as part of an expression, as shown below..

var dg=60, rd

rd=deg2rad(dg)

var limit=40, message="Input your code number"

var validity= len(message) < limit

The list of functions provided in HRScript is as follows. (The tables are sorted in the ascending order of names.)

2.9.1 Math Functions

Function Description Example of usage Result

abs(a) Returns the absolute value of a abs(-300) 300

acos(a)

Returns the arc cosine value of a in radian

format
acos(0.5) 1.0472

asin(a) Returns the arc sine value of a in radian format asin(0.5) 0.5236

atan(a)

Returns the arctangent value of a in radian

format
atan(0.5) 0.4636

atan2(a, b)

Returns the arctangent value of a triangle with

a for the y length and b for the x length in

radian format

atan2(2,1) 1.1071

cos(r) Returns the cosine value of r in radian format cos(3.1415) -1

deg2rad(d) Returns the radian value of d in degree format deg2rad(-90) -1.570796

Robot Language (HRScript)

17_Basic Syntax | Functions

dist(x, y)

Returns the Euclidean distance from the origin

to the (x, y) coordinate
dist(3.5,10) 10.59481

max(a, b) Returns the greater value between a and b max(-1.23, -3) -1.23

min(a, b) Returns the lesser value between a and b max(-1.23, -3) -3

near(a, b [,e])

Returns 1 if the difference between the real

number values a and b is less than or equal to

e and returns 0 if the difference is larger than

e

near(0.005, 0.0058)

near(0.005, 0.006)

near(0.005, 0.006, 0.1)

1

0

1

rad2deg(r) Returns the degree value of r in radian format rad2deg(1.570796) 90

sin(r) Returns the sine value of r in radian format sin(1.5*3.1415) -1

sqr(a) Returns the square root of a
sqr(16)

sqr(0)

4

0

tan(r) Returns the tangent value of r in radian format tan(3.141592/4) 0.9999

2.9.2 String Functions

Examples with var str="hello, world" executed

Function Description Example of usage Result

bin(a)

Returns the string of number a in binary

representation
bin(0b0010) "10"

chr(a)

Returns the character with a of the ASCII code

in string type
chr(65) "A"

double(s)

Returns the real number type value of the real

number string s (Interpret only up to the

position where interpretation is possible, and

discard the rest.)

double("29.38E-2") 0.2938

Robot Language (HRScript)

18_Basic Syntax | Functions

hex(a)

Returns the string of number a in hexadecimal

representation
hex(0x7A2F) "7A2F"

int(s)

Returns the integer type value of the integer

string s (Interpret only up to the position where

interpretation is possible, and discard the rest.)

int("13.25")

int("29.38E-2")

13

29

left(s, n)
Returns a string of the first n characters of the

string s
left(str, 3) "hel"

len(s)

Returns the length of the string if s is a string

and returns the number of elements in the array

if s is an array

len("HELLO")

len([20, 30, 80])

5

3

mid(s, i, n)

Returns a string of n characters starting from

the i-th character of the string s (The position

of the first character is 0.)

mid(str, 3, 5) "lo, w"

mirror(s) Returns the string inverted from the string s mirror("HELLO") "OLLEH"

right(s, n)

Returns a string of the last n characters of the

string s
right(str, 3) "rld"

str(a)

Returns a string of number a in decimal

representation
str(13.25) 13.250000

strops(s, p)

Returns the first position in the string s that

matches the string p (The first character

position will be 0 or -1 if there is none.)

strpos(str, "llo")

strpos(str, "hi")

2

-1

Robot Language (HRScript)

19_Basic Syntax | Functions

2.9.3 Date and Time Functions

Function Description Example of usage Result

date()
Returns the current date in string type

(YYYY-MM-DD format)
date() "2019-04-17"

time()
Returns the current time in string type

(HH:MM:SS format)
time() "08:48:14"

timer()

Returns the time elapsed in seconds (sec) from

when the power was turned on
timer() 2796.37

2.9.4 Constructor Functions

These functions receive an input of a parameter and then create and return an object.

Function Description Example of usage Result

Array(n)

Array(a, b, c)

Creates and returns an array of “n” elements

The initial value of the element is 0.

A multidimensional array is created if two or

more elements are designated.

See section 4.1.

Array(900)

Array(3,4)

Array [900]

Array [3] [4]

Pose(element)
Creates and returns a pose object

Refer to Section 5.1.

 Pose object

Shift(element)
Creates and returns a shift object

Refer to Section 5.2.

 Shift object

2.9.5 Other Functions

Function Description Example of usage Result

cpo(crd, mode)

Returns the current pose of the robot to the

“crd” coordinate system

For values that can be used as “crd” elements,

see the table under Section 5.1.

cpo("joint", "cmd")

Pose* that stores

the command value

of the robot to the

axis coordinate

Robot Language (HRScript)

20_Basic Syntax | Functions

If the mode is “cmd,” it is the command value,

and if the mode is “cur,” it is the current value.

The “crd” and “mode” parameters may be

omitted, and their default values are “base”

and “cur,” respectively.

system

mkucs(n,po)

mkucs(n,po1,po2

,po3)

Creates and registers the nth user coordinate

system object

Refer to Section 5.5.

0: OK

<0: Error code

result()

For some procedures, it may be necessary to

check the results. If the result() function is

called right after the procedure is executed,

the execution result can be returned.

result()

* Pose is a data type that represents the posture of the robot or the position of the tool tip. Details will be described

later in Section 5.1.

Robot Language (HRScript)

21_Control Statements and Subprograms | Address

3. Control Statements and Subprograms

The statements in the job program are executed line by line in top-to-bottom order. However, depending on certain

conditions, the statements can be skipped without being executed, or certain statements can be executed repeatedly.

Let us look at the control statements that can control the flow of the program in this manner.

3.1 Address

Moving to another position in the program without executing the next line in order is called a “branch.”

The address is the destination of the branch.

There are two ways to define an address: line number and label. In the following example, “10” in the second statement

is the line number, and the last statement “*err_handle” is the label.

move P,po3,spd=80%,accu=1,tool=3 until do33

10 z_pos = (base_height+offset)*1.05

robot has to wait sensor2 input

*err_handle

Robot Language (HRScript)

22_Control Statements and Subprograms | Stop Statement and Wait Statement

3.2 Stop Statement and Wait Statement

This statement can stop the execution of a program or make it wait for a certain period of time or until the conditions

are satisfied.

3.2.1 Stop Statement

Description This will stop the program. When the program is restarted, execution will continue from the next line.

Syntax stop

Example of

usage

if di9

stop

endif

3.2.2 End Statement

Description
This will stop the program. Execution will restart from the beginning of the main program when in

continuous playback mode or in restart mode.

Syntax end

Example of

usage
move p,spd=70%,accu=1,tool=0

3.2.3 Delay Statement

Description Makes it possible to progress to the next command statement after waiting for a designated time.

Syntax delay <time>

Parameter Time Time to wait

Arithmetic

expression

0.1~60.0 sec

Example of

usage
delay 3.5

Robot Language (HRScript)

23_Control Statements and Subprograms | Goto Statement

3.2.4 Wait Statement

Description
Makes it possible to move to the next command statement after waiting until a designated condition

becomes true.

Syntax wait <condition>[,<timeout>,<timeout address>]

Parameter

Condition Conditions in which waiting is required
Conditional

expression

Timeout
Maximum time limit during which waiting will occur when the

condition is false (timeout)

Arithmetic

expression

0.1~60.0 sec

timeout

address

Address to which branching will be made when the timeout is

exceeded.
address

Example of

usage

wait sensor_ok

wait (sensor_ok and pos_ok),10,*timeout

3.3 Goto Statement

Makes it possible to go to a different address, without conditions..

3.3.1 Goto Statement

Description Makes it possible to go to a designated address.

Syntax goto <address>

Parameter address
Address to go to

An arithmetic expression is possible in the case of a line number.

Example of

usage

goto 99

goto addr

goto *err_hdl

Robot Language (HRScript)

24_Control Statements and Subprograms | Conditional Statements

3.4 Conditional Statements

These statements allow a certain operation to be or not to be executed depending on certain conditions.

3.4.1 Single-Line if Statement

The form of a single-line if statement is as follows: If <Boolean expression> is true, branching to <address> will occur.

If false, moving to the next statement will occur.

if <Boolean expression> then <address>

Below is an example of the single-line if statement. If the condition that pressure is greater than the limit is true,

branching to the label address “*err will occur,” making it possible to print a warning that the pressure is too high. If

the condition is false, the next statement will be executed one after the other without branching, so “In normal

operation ” will be printed, ending the program.

var pressure=95, limit=90

if pressure > limit then *err

print " in normal operation."

end

*err

print " warning: pressure is too high."

3.4.2 Complex if-endif Statement

If the single-line if statement is true, only the operation of branching to a specific address will occur. If executing other

operations or multiple statements is necessary, the complex if statement should be used.

The form is as follows: If <Boolean expression> is true, the multiple number of <statement> between if and endif will

be executed in order. If <Boolean expression> is false, skipping to the position after endif will occur without the

<statements> being executed.

if < Boolean expression >

 < statement >

 …

endif

Robot Language (HRScript)

25_Control Statements and Subprograms | Conditional Statements

In the following example, if the pressure is greater than the limit, the following assignment and print statements will

be executed. Otherwise, branching to the end will occur without the statements being executed.

var pressure=95, limit=90, exceed

if pressure > limit

 exceed = pressure - limit

 print " warning: pressure is too high."

endif

end

In the example program, the statements between if and endif are indented by two spaces. These statements are

indented to make it easier to recognize that they are codes for the blocks nested between if and endif.

3.4.3 Complex if-else-endif Statement

If the expression is false and if there are statements to be executed, the following form is used:

If the expression is true, statement A will be executed. If false, statement B will be executed.

if < Boolean expression >

 <statement A>

 …

else

 <statement B>

 …

endif

An example of its usage is as follows

var pressure=95, limit=90, exceed

if pressure > limit

 exceed = pressure - limit

 print " warning: pressure is too high."

Robot Language (HRScript)

26_Control Statements and Subprograms | Conditional Statements

else

 print " in normal operation."

endif

end

3.4.4 Complex if-elseif-else-endif Statement

In the case of multiple conditions, the elseif statement can be used in the following form.

if <Boolean expression>

 <statement A>

 …

elseif < Boolean expression>

 <statement B>

 …

elseif <Boolean expression>

 <statement C>

 …

else

 <statement N>

 …

endif

An example of its usage is as follows.

var pressure=95, limit_h=90, limit_m=80

if pressure > limit_h

 print " warning : pressure is too high."

elseif pressure > limit_m

Robot Language (HRScript)

27_Control Statements and Subprograms | Conditional Statements

 print " notification: pressure is high."

else

 print " in normal operation."

endif

end

3.4.5 switch~case~break~end_switch statement

A switch statement evaluates a numeric expression and compares it with the resulting value of the numeric expression

designated by a case statement. It is executed from the case statement of equal value until a break statement is

encountered.

In the following example, if the resulting value of Expression X is equal to the resulting value of Expression B1 or B2,

(1) through (3) will be executed, and it will move to the point of the end_switch statement (note that there is no

break below the command statement B). Meanwhile, if the resulting value of Expression X is equal to that of Expression

C, (2) through (3) will be executed.

If the resulting value of Expression X is not equal to that of any case statement, it will be moved to the default, and

(4) through (5) will be executed. Then, the default section may be omitted.

switch <expression X>

case <expression A>

 <statement A>

 …

 break

case <expression B1>

case <expression B2>

 <statement B> … (1)

case <expression C>

 <statement C> … (2)

 …

 break … (3)

default

 <statement N> … (4)

Robot Language (HRScript)

28_Control Statements and Subprograms | Conditional Statements

 …

 break … (5)

end_switch

Any expressions such as Boolean, numeric, string constant, parameter, and numeric, are permissible.

An example is given below:

 var state="timeout"

 var res=0

 switch state

 case "ok"

 res=11

 break

 case "timeout"

 case "timeover"

 res=33

 break

 case "invalid"

 res=55

 break

 case "fault"

 res=77

 break

 default

 res=99

Robot Language (HRScript)

29_Control Statements and Subprograms | Nested Control Statements

 break

 end_switch

99 end

3.5 Nested Control Statements

In the control statement block, another control statement block can be placed, as shown in the following example. In

the following form, two nesting levels are shown, but multiple nesting levels can be made as much as necessary.

if <Boolean expression>

 if <Boolean expression>

 <statement A>

 …

 else

 <statement B>

 …

 endif

endif

An example of a nested if statement is as follows.

var pressure=95, limit=90, inject_on=true

if inject_on

 if pressure > limit

 print " warning: pressure is high."

 else

 print " in normal operation."

 endif

Robot Language (HRScript)

30_Control Statements and Subprograms | Repetitive Statements

endif

end

3.6 Repetitive Statements

Repetitive statements can be used when the same operation needs to be repeated multiple times.

3.6.1 for-next Statement

The format of the for-next statement, which repeats the same operation, is as follows.

First, the initial value will be assigned to the index variable. When the next statement is encountered while the

statements under the for statement are executed, the index variable will add increment/decrement values and perform

repetition from the point of the for statement. When the index variable passes the end value, the repetition will end.

If a step is not specified, 1 will be applied.

for <index variable>=<initial value> to <end value> [step <increment/decrement value>]

 <statement>

 …

next

The following shows an example of a routine that accumulates 1 to 10 in the sum using the for-next statement. When

the repetition is over, 11 and 55 will be printed on the screen.

var idx

var sum=0

for idx=1 to 10

 sum=sum+idx

next

print idx, sum

end

Robot Language (HRScript)

31_Control Statements and Subprograms | Call Statement, Jump Statement and Subprograms

3.7 Call Statement, Jump Statement and Subprograms

If an entire large-scale robot operation is created as one job program, the program becomes large and complex,

making it difficult to add functions or find and solve problems.

For the program’s maintainability, it is preferable to divide the unit operations that make up the entire program into

subprograms. For example, when routines, such as a routine performs communication with a sensor, a routine that

calculates the target position of the tool tip with the received data, and a routine that generates an appropriate

message when an error occurs, are turned into individual subprograms and allow the main program to call them, it

will be easier to grasp the overall structure of the program. It will also be useful to reuse divided subprograms in other

projects.

3.7.1 Format and Simple Example of Call Statement

There is no significant difference in format between the main program and the subprogram in HRScript. The first job

executed by the start button or by a signal is the main program, and all other jobs called by the call statement are

subprograms.

The format of the call statement is as follows.

call <job number or file name> [,parameter 1, parameter 2…]

Specify the job number of the job file name (excluding the extension) after the call statement. Then, while program

A is being executed, if call B is encountered, A’s execution will be stopped, and the first statement of program B, a

subprogram, will continue to be executed. If the end statement is encountered while B is being executed, program

A’s execution will continue upon returning to the position of the next statement of program A’s call statement that

was previously called.

The following shows an example and the result of a subprogram called by a call statement. It seems meaningless to

divide the program into two because the subprogram must handle only one print statement. However, a more practical

example will be shown later.

0001.job

print "main job start"

call 102_err

print "main job end"

end

0102_err.job
print "sub-program"

end

Result

main job start

sub-program

main job end

Robot Language (HRScript)

32_Control Statements and Subprograms | Call Statement, Jump Statement and Subprograms

3.7.2 Parameters and param Statement & return Statement

In a job program, formal parameters are used as channels through which input and output are passed. The param

statement will define formal parameters at the beginning of the job program.

In the following example, job no. 105 is named as "dist2d,” as it is a subjob that acquires the Euclidean distance from

the origin to the coordinate value (x, y) and returns it to len.

0001.job

var x,y

x=5

y=12.8

call 105_dist2d,x,y

var res=result()

print res

end

0105_dist2d.job

Calc. Euclide distance 2D

param x,y

var tmp

tmp=x*x+y*y

var len=sqr(tmp) # distance from origin

return len

Result 13.742

In job no. 1, the dist2d subprogram is called with the call statement, and “x, y,” which are local variables, are passed.

In the dist2d subprogram, “ldX,” and “ldY” defined with the param statement are called “formal parameters,” and “x,

y” passed to the call statement are called “actual parameters.”

The dist2d program transports resulting values to external destinations through return statements. Returned values

can be obtained by calling a result() function in the called program.

(A return statement and an end statement have the same action as they end a called program and return to the

main program. However, a return statement is different from an end statement as the former can designate a

resulting value as an element).

Robot Language (HRScript)

33_Control Statements and Subprograms | Call Statement, Jump Statement and Subprograms

3.7.3 Format and simple example of jump statement

The format of jump statements is as follows:

jump <job number or file name> [,parameter 1, parameter 2, …]

This format is completely identical to that of call statements, and its action is also similar to that of call statements.

The only difference is that, while a call statement returns to the main program using an end program, a jump statement

does not.

Therefore, if the jump statement of this example program is replaced with a call statement, the result of the replaced

program will be as follows. When the end of the sub-program (0102_err) is encountered, the action cycle will end. If

the next action cycle is executed, the main program (0001) will be executed from the start.

0001.job

print "main job start"

jump 102_err

print "main job end"

end

0102_err.job
print "sub-program"

end

Result
main job start

sub-program

Robot Language (HRScript)

34_Control Statements and Subprograms | Local Variables and Global Variables

3.8 Local Variables and Global Variables

Examples have been described only using the examples of local variables defined with the var statement. Local variables

are created by a var statement in one job program and are automatically destroyed when the program ends after the

encounter with the end statement. Moreover, their values cannot be read or written by other programs.

In the following example, “main_v” is a local variable accessible only within 0001.job, and “sub_v” is a local variable

accessible only within 0107.job. Attempting to access it from another program will cause an error.

The local variable “x” is defined in both 0001.job and 0107.job. The local variable “x” respectively defined in both

programs has the same name but are different. So the value 5 for the variable “x” is set in subprogram 0107, 3 will

be printed instead of 5 after the return to main program 0001.

0001.job

var main_v=10

var x=3

call 107

print main_v # ok

print sub_v # error

print x # 3 is printed

end

0107.job

var sub_v=20

var x

print sub_v # ok

print main_v # error

x=5

end

On the other hand, global variables defined as global can always be accessed from all job programs. If a global variable

is once defined, it will not be cleared even when the program cycle is reset by an end statement or an R0 [Enter]

operation of the main program.

In the following example, if a global x is executed first, a variable x will be created, and the value will be initialized to

the default value of 0. Then, it will increase to 1 in the next row. If the global x is executed again in the next program

cycle, it will not be defined again, and the value of 1 will be retained because the x has been defined. On the other

hand, global y=10 will carry out defining and assignment so that the value of variable y will be reset to 10 when it is

executed in the next program cycle.

0001.job

global x

x=x+1

call 107

Robot Language (HRScript)

35_Control Statements and Subprograms | Local Variables and Global Variables

print x, y # 4, 10

end

0107.job

global y=10

print x, y # 3, 10

x=x+1

end

Therefore, if a global variable is to be utilized as a counter for the number of program cycles, no value should be

assigned along with a definition.

Wrong

Teaching

global count=0

count=count+1

…

end

Correct

Teaching

global count

count=count+1

…

end

When there are local variables and global variables with an identical name, the local variable will be accessed

preferentially. For example, while 0005.job is executed, as shown below, the global variable x and the local variable x

will exist concurrently. At this time, if you read the x value, the local variable will also be read. After 0005.job returns

to 0001.job, if you read the x value, the global variable will be read because only the global variable is present.

0001.job

global x=100

call 5

print x # 100

end

0005.job
var x="hello"

print x # hello

Robot Language (HRScript)

36_Control Statements and Subprograms | Local Variables and Global Variables

end

Robot Language (HRScript)

37_Arrays and Objects | Arrays

4. Arrays and Objects

4.1 Arrays

4.1.1 Arrays

An array is a variable type that collects and stores several values under a single name and allows access through an

index number.

Arrays are defined as var or global, like any other variable. Array definitions and access formats are as follows.

Definition var array name = [Value, Value, …]

Access Array name [Index]

The values that make up an array are called “elements.” Distances, an array shown in the following example, has a

total of five elements. The index starts from 0. Element 0 and e lement 1 of “distances” are 10 and 10.5, respectively.

The [] operator is used as follows to read or write the value of an array’s specific element value. The following shows

an example of an object that is defined and accessed.

0001.job

var distances = [10, 10.5, 12.7, 11.92, 9.5]

distances[1]=20.5

print distances[0], distances[1]

end

Result
10

20.5

The number of elements in an array can be acquired by using the len() function. Previously, the len() function was

introduced as a function to acquire the length of a string. If an array is put as a parameter of len(), it will return the

number of elements in the array.

Function name Description Example of usage Result

len(a)

Returns the length of the string if a is a string.

Returns the number of elements in the array

if a is an array

len("HELLO")

len([20, 30, 80])

5

3

Robot Language (HRScript)

38_Arrays and Objects | Arrays

The for-next statement is mainly used to perform some processing on all elements of an array.

0001.job

var i

var distances = [10, 10.5, 12.7, 11.92, 9.5]

for i=0 to len(distances)-1

distances[i] = distances[i]+10

print distances[i]

next

end

Result

20

20.5

22.7

21.92

19.5

It does not matter if the values stored in the array are of different types..

0001.job

var i

var arr = [10, "abc", true]

for i=0 to 2

print arr[i]

next

end

Result

10

abc

true

Robot Language (HRScript)

39_Arrays and Objects | Arrays

4.1.2 Multidimensional Arrays

An array can also be nested as an element of an array. When accessing the elements of a multidimensional array, you

can use the [] operator consecutively. In the following example, “arr_y” is a two-dimensional array. (1)

arr_y[1] is an array of elements of index 1, namely ["abc", "jqk", "xyz"], and it is assigned to the new variable “arr_x.”

(2)

So, arr_x[1] is "jqk", and arr_y[1][2] is "xyz" because it points to [2] of arr_y[1].

0001.job

var arr_y = [[10,20], ["abc","jqk", "xyz"]] # (1)

var arr_x=arr_y[1] # (2)

print arr_x[1]

print arr_y[1][2]

Result
jqk

xyz

4.1.3 Array Constructor Function

It is difficult to create an array with hundreds of elements with the notation [] alone. Any number of arrays may be

created by calling the constructor function. Each element will be initialized to 0.

var name = Array(900) # creates an array of 900 elements

If two or more elements are designated, a multidimensional array can be created. In the following example of a 3-

dimensional array, [4] is the lowest dimension.

var name = Array(3,2,4) # [3] [2] [4] numbers of 3-dimensional arrays are created

[[[0,0,0,0], [0,0,0,0]], [[0,0,0,0], [0,0,0,0]], [[0,0,0,0], [0,0,0,0]]]

Robot Language (HRScript)

40_Arrays and Objects | Object

4.2 Object

As previously seen, it was found that an array could store multiple element values and are accessed by index.

Objects are like arrays in that they store multiple element values. The difference is that an object is accessed by a key,

not with an index. Moreover, the key is a string, not a number.

Objects are defined as var or global, like any other variables. The definition of an object and format of its access are

as follows.

Definition var object name = { key : value, key : value, …}

Access Object name key

The following shows an example of defining and accessing an object.

0001.job

var gap = { x:200, y:152.6 }

gap.x = gap.x + 10

print gap.x, gap.y

Result 210 152.6

The object’s key must be in the format of an identifier, but the element’s value can be of any type and can also be

of different types.

An object can contain other objects or arrays as its elements. Likewise, an array can also contain other arrays or

objects as its elements. In the following example, “work,” which is an object, contains “size,” which is an object, and

“heights,” which is an array.

0001.job

var work = { part_no:3, name: "gear", tested : false

, size : { x : 150, y : 80 }

, heights : [72.89, 74.91, 81.03, 87.60, 87.11] }

print work.tested, work.size.y, work.heights[3]

Result false, 80, 87.600000

Robot Language (HRScript)

41_Arrays and Objects | Copied assignment of arrays and objects

4.3 Copied assignment of arrays and objects

If the right side of an assignment statement has object variables, the entire values of the variables will be copied to

the variables of the left side. When an array or an object includes sub-arrays and sub-objects in a complex manner

as element values, such inclusion structures will be copied, which is called a deep copy.

0001.job

var my_obj = [x:5, y:0, z:0]

my_obj.y=[[10, 20], ["abc", true]]

my_obj.z={ a:7, b:8 }

var your_obj=my_obj # deep copy

print your_obj.y[0]

Result [10, 20]

Robot Language (HRScript)

42_Arrays and Objects | 4.4. Call-by-reference and call-by-value

4.4 4.4. Call-by-reference and call-by-value

In the description of call statements and jump statements given in Section 3.4, the concepts of formal parameters and

actual parameters were explained. When an actual parameter has been transported to a sub-program, if the sub-

program ends after changing the value of the parameter, will it be reflected to the main program?

For example, let’s assume that a sub-program 0005_pow3.job raises a value to the third power as follows:

0001.job

var x=2

call 0005_pow3,x

print x

end

0005_pow3.job

param p

var t=p

p=t*t*t # (1)

end

Result 2

Although we expected that 8 is output because 2×2×2 is 8, the result is 2. It is because, when a numeric-type actual

parameter is transported to a sub-program, the value is copied as a parameter. In other words, in (1), because the

value raised to the third power was assigned to the copied version, it did not affect the value of the original parameter,

x.

Therefore, the teaching program should be corrected so that the resulting value is transported by a return statement.

0001.job

var x=2

call 0005_pow3,x

x=result()

print x

end

0005_pow3.job

param p

var t=p

p=t*t*t

return p

Result 8

Robot Language (HRScript)

43_Arrays and Objects | 4.4. Call-by-reference and call-by-value

On the other hand, in the case of arrays or objects, the reference of actual parameters, not the copied versions, will

be transported. A reference refers to the position of a parameter.

In the following example, where the sub-program 0006_pow3.job raises each element of an array to the third power,

the values of the elements of the actual parameter array are changed.

0001.job

var x=[3, 2, 4]

call 0006_pow3,x

print x

end

0006_pow3.job

param p

var i,t

for i=0 to len(arr)-1

t=p[i]

p[i] = t*t*t

next

end

Result [27, 8, 64]

When a sub-program is called, if the copied version of the value of an actual parameter is transported, it is referred

to as call-by-value; and if a reference is transported, it is referred to as call-by-reference. Whether it will be call-by-

value or call-by-reference is determined by the type of values as follows:

call-by-value Boolean, numeric, and string types

call-by-reference Array and object types

Robot Language (HRScript)

44_Moving a Robot with Robot Language | Pose

5. Moving a Robot with Robot Language

After understanding the pose that expresses the target position of the robot, let us learn about the commands to

move the robot.

5.1 Pose

Pose is an object type embedded in the Hi6 Controller and represents each axis of the robot or the Cartesian

coordinates and direction of the tool tip.

Poses are created by calling the constructor function Pose(). All function parameters are position parameters.

Meanwhile, crd and cfg are string types, and the rest are number types.

var pose variable name = Pose(j1, j2, j3, …) # axis coordinate

var pose variable name = Pose(x, y, z, rx, ry, rz, j7, j8,…, crd, cfg) # base coordinate

Refer to the following examples of creating the poses for 6 axes + 1 additional axis and for Cartesian + 1 additional

axis.

var po1 = Pose(10, 90, 0, 0, -30, 0, -1240.8) # axis coordinate

var po2 = Pose(1850, 0, 2010.5, 0, -90, 0, -1240.8, "base", "nf;r2") # base coordinate

Alternatively, the pose constructor function may be called using a single array or string parameter. With this, files or

data may be converted into poses, acquired through remote communication, and used.

var pose variable name = Pose(array)

var pose variable name = Pose(string)

Refer to the following example.

var arr = [10, 90, 0, 0, -30, 0, -1240.8]

var str = "[1850, 0, 2010.5, 0, -90, 0, -1240.8, \"base\", \"nf;r2\"]"

var po3 = Pose(arr)

var po4 = Pose(str)

Robot Language (HRScript)

45_Moving a Robot with Robot Language | Pose

Elements of the pose object can be accessed with the following keys.

Key Type Value range Description Unit, Remarks

nj Integer type 1~16 Axis count

j1 ~ j16
Real number

type

8-byte real number

range
Axis value mm, deg

x, y, z
Real number

type

8-byte real number

range
Cartesian coordinate value mm

rx, ry, rz
Real number

type

8-byte real number

range
Cartesian direction value deg

crd
String type

joint
Joint coordinate system

(default)

base Base coordinate system

robot Robot coordinate system

u1 ~ u10 User coordinate system

cfg String type

s |S|>=180

Possible to perform

combination by

dividing with “;”

The default is all flags

turned off.

r1 |R1|>=180

r2 |R2|>=180

b |B|>=180

re rear

dn down

nf (old version1:fl) non-flip

auto auto (automatic decision)

The pose element values can be accessed as shown in the following example.

po1.j2 = po1.j2 + 5

print po2.z, po2.cfg

1 For V60.06-06 or older versions, fl is non-fl.

Robot Language (HRScript)

46_Moving a Robot with Robot Language | Shift

5.2 Shift

Shift is an object type embedded in the Hi6 Controller and represents the pose’s change value.

Shifts are created by calling the constructor function Shift(). All function parameters are position parameters.

Meanwhile, crd and cfg are string types, and the rest are number types.

Var shift variable name = Shift(j1, j2, j3, …) # axis coordinate

var shift variable name = Shift(x, y, z, rx, ry, rz, j7, j8,…, crd) # base coordinate

Refer to the following examples of creating the shifts for 6 axes + 1 additional axis and for Cartesian + 1 additional

axis.

var sft1 = Shift(30, 0, 0, 0, -5.8, 0, -120) # axis coordinate

var sft2 = Shift(0, 0, 55.2, 0, -5, 0, -120, "base") # base coordinate

Alternatively, the constructor function shift may be called using a single array or string parameter. With this, files or

data may be converted into shifts, acquired through remote communication, and used.

var shift variable name = Shift(array)

var shift variable name = Shift(string)

Refer to the following example.

var arr = [30, 0, 0, 0, -5.8, 0, -120]

var str = "[0, 0, 55.2, 0, -5, 0, -120, \"base\"]"

var sft3 = Shift(arr)

var sft4 = Shift(str)

Elements of the shift object can be accessed with the following keys

Key Type Value range Description Unit, Remarks

nj Integer type 1–16 Axis count

Robot Language (HRScript)

47_Moving a Robot with Robot Language | Shift

j1–j16
Real number

type

8-byte real number

range
Axis value mm, deg

x, y, z
Real number

type

8-byte real number

range
Cartesian coordinate value mm

rx, ry, rz
Real number

type

8-byte real number

range
Cartesian direction value deg

crd

String type

joint
Joint coordinate system

(default)

base Base coordinate system

robot Robot coordinate system

tool Tool coordinate system

u1–u10 User coordinate system

Robot Language (HRScript)

48_Moving a Robot with Robot Language | Pose Expression

5.3 Pose Expression

The expression in which the result value becomes a pose is called a “pose expression.”

All the following forms are recognized as poses.

Pose

Pose+Shift

Pose-Shift

Pose+Shift+Shift+…

Refer to the following example of assigning the result of a pose expression to another pose variable.

var po1 = Pose(10, 90, 0, 0, -30, 0)

var po2 = Pose(1850, 0, 2010.5, 0, -90, 0, "base", "nf;r2")

var po3 = cpo("robot")

var sft1 = Shift(30, 0, 0, 0, -5.8, 0)

var po4 = po1-sft1

var po5 = po2+sft1+Shift(0, 0, 55.2, 0, -5, 0, "base")

Robot Language (HRScript)

49_Moving a Robot with Robot Language | Move Statement

5.4 Move Statement

The move statement is a procedure for moving the robot. The format is as follows.

Description The robot’s tool tip moves to the pose position.

Syntax
move <interpolation>, [tg=<pose/shift>], spd=<speed>, accu=<accuracy>

, tool=<tool number> [until <conditional expression>]

Parameter

Interpolation

P: Axis interpolation; L: Linear interpolation; C: Circular

interpolation,

SP: Stationary axis interpolation,

SL: Stationary tool linear interpolation,

SC: Stationary tool circular interpolation

Pose/Shift

Target posture (pose) to move to

It will be omitted if there is a hidden pose.

If a shift expression is specified with a + or - sign, (hidden pose

+ shift expression) will be applied as the target posture.

Pose expression

or a signed shift

expression

Speed
Moving speed of the tool tip

A unit (mm/sec, cm/min, sec, %) should be added.

Arithmetic

expression

Accuracy

Arithmetic expression

The lower the value, the more accurate. If it is 0, the operation

will occur discontinuously.

0~7

Tool number The number of the tool to be used when the robot is operating 0~31

Conditional

expression

As soon as the conditional expression is true, the robot operation

will end, and the designated pose is considered to have been

reached.

The result of the conditional expression can be acquired with

the result() function.

True if not 0 False

if 0

Example of

usage

move L,tg=po[0]+sft[1],spd=800mm/sec,accu=0,tool=1

move P,tg=+Shift(0,0,0,0,-10,0),spd=80%,accu=1,tool=3 until di2 (hidden pose)

if result() then *sensor_on

If the [Record] button of the teach pendant is pressed, a move statement in hidden pose type will be recorded as the

current robot position. The hidden pose value can be checked or edited by placing the cursor on the move statement

and pressing the [Property] button.

When the [Command] button is pressed and the [Motion] group is opened, select the move menu. As a result, a

pose-type move statement is recorded.

Robot Language (HRScript)

50_Moving a Robot with Robot Language | User Coordinate System (UCS)

5.5 User Coordinate System (UCS)

The user coordinate system is a coordinate system in which the user can set the position and direction.

It is created by calling the constructor function Ucs().

Function parameters are one pose or three poses. When calling is performed with one pose, the pose’s position and

direction will be set as the origin and direction of the coordinate system. When calling is performed with three poses,

the coordinate system will be created so that pose1 is positioned on the coordinate system’s origin, pose2 is on the x

axis of the coordinate system, and pose3 is positioned on the XY plane of the coordinate system.

var UCS variable name = Ucs(pose1)

var UCS variable name = Ucs(pose1, pose2, pose3)

The mkucs function should be used to register a user coordinate system in the system. The argument is similar to the

Ucs constructor, but the user coordinate system number (one or more) will be inputted as the first argument.

var res = mkucs(num, pose1)

var res = mkucs(num, pose1, pose2, pose3)

0 will be returned if successful. An error code of a negative number will be returned if failed.

Robot Language (HRScript)

51_Communicating with External Devices | FB Object: Digital I/O

6. Communicating with External Devices

6.1 FB Object: Digital I/O

Digital input/output (I/O) can be performed through 10 FB objects that can be accessed from HRScript. “FB” refers to

fieldbus block, and each FB object is set to be mapped to the I/O hardware installed in the robot controller and

contains input and output variables as elements.

6.1.1 Input/Output Variables

 Type Value range

fb0

~

fb9

Digital

output

do[0~959]
bit

0, 1

dox[0~119].b[0~7]
bit (byte unit group)

0, 1

dob[0~119]
signed 1-byte integer

-128 ~ +127

dow[0~118]
signed 2-byte integer

–32,768 ~ +32,767

dol[0~116]
signed 4-byte integer

–2,147,483,648 ~ +2,147,483,647

dof[0~116]
signed 4-byte real

number
3.4E+/-38 (7 significant figures)

Digital

input

di[0~959]
bit

0, 1

dix[0~119].b[0~7]
bit (byte unit group)

0, 1

dib[0~119]
signed 1-byte integer

-128 ~ +127

diw[0~118]
signed 2-byte integer

–32,768 ~ +32,767

dil[0~116]
signed 4-byte integer

–2,147,483,648 ~ +2,147,483,647

dif[0~116]
signed 4-byte real

number
3.4E+/-38 (7 significant figures)

Robot Language (HRScript)

52_Communicating with External Devices | FB Object: Digital I/O

In do, dob, dow, dol, and dof, the suffixes b, w, l, and f mean “byte,” “word,” “long,” and “float,” respectively, and all

are signed values. These are not separate memory spaces and represent the same 960-byte space just with different

data types. For example, do[1~16], dob[1~2], and dow[1] are all the same output signals.

bit do0 ~ do7 do8~do15 do16~do23 do24~do31 …

byte dob0 dob1 dob2 dob3 …

word dow0 dow2 …

long dol0 …

float dof0 …

If a value is assigned to an output variable that starts with “do,” I/O signal output will be performed. The I/O signal

currently being inputted can be acquired by reading the input variable value that starts with “di.” The do variable can

be read and written, but the di variable can only be read.

The FB object name can be omitted as follows.

 do notation fb.do notation

fb0 do0 ~ do959 fb0.do0 ~ fb0.do959

fb1 do960 ~ do1919 fb1.do0 ~ fb1.do959

fb2 do1920 ~ do2879 fb2.do0 ~ fb2.do959

fb3 do2880 ~ do3839 fb3.do0 ~ fb3.do959

fb4 do3840 ~ do4799 fb4.do0 ~ fb4.do959

fb5 do4800 ~ do5759 fb5.do0 ~ fb5.do959

fb6 do5760 ~ do6719 fb6.do0 ~ fb6.do959

fb7 do6720 ~ do7679 fb7.do0 ~ fb7.do959

fb8 do7680 ~ do8639 fb8.do0 ~ fb8.do959

fb9 do8640 ~ do9599 fb9.do0 ~ fb9.do959

Robot Language (HRScript)

53_Communicating with External Devices | FB Object: Digital I/O

6.1.2 Examples

Refer to the following examples of usage.

do2=1 # Turns on the bit output value of number 0 of fb0

fb2.dob3=0b00001111 # Designates the 3rd byte output value of fb2 as a binary bit string

fb[4].dob1=0x0F # Turns on the lower 4 bits of the 1st byte output value of fb4, and turns off the

upper 4 bits

var work_no=fb9.dib3 # Assigns the 3rd byte input value of fb9 to the work_no variable

if fb5.di43 then *err # Branches to the *err label when fb5.di42 is turned on

for idx=21 to 29

fb3.do[idx]=1 # Turns on all output signals do21 ~ do29 of fb3

next

fb2.do3=fb2.do7=fb2.do11=1 # Turns on 3rd, 7th, and 11th output signals of fb2 at once

Robot Language (HRScript)

54_Communicating with External Devices | ENet Module: Ethernet TCP/UDP Communication

6.2 ENet Module: Ethernet TCP/UDP Communication

Using the general-purpose Ethernet port of the Hi6 Controller makes it possible to transmit or receive a string with

an external device through Ethernet TCP or UDP communication. It is required to create an ENet object after importing

the ENet module to use this function, as shown below.

import enet

var udp=enet.ENet("udp")

In the following example, the selection of protocol is needed by passing "udp" or "tcp" as a parameter of the ENet

constructor. The default is "udp," so like in the example, it can be omitted when UDP communication is performed.

var udp=enet.ENet()

Communication must be performed in the following order:

1. Create an ENet object with the constructor.

2. Set an IP address and port number with the member variable.

3. Open the communication connection with the open member procedure, and check the state with the state()

member variable.

(In the case of TCP communication, the connect procedure should also be performed after opening).

4. Perform transmission/reception with the send and receive member procedures.

5. Close the communication connection with the close member procedure.

Robot Language (HRScript)

55_Communicating with External Devices | ENet Module: Ethernet TCP/UDP Communication

6.2.1 Constructor

Description It creates an Ethernet object and returns the reference.

Syntax ENet(<protocol>)

Parameter protocol
"tcp" : TCP communication

"udp" : UDP communication

If omitted, it will be recognized as

"udp."

Return

value
Reference of the created object

Exampleof

usage

enet0 = ENet()

var tcp = ENet("tcp")

6.2.2 Member Variables

Variable name Data type Description

ip_addr String

Allows reading/writing

Designates or acquires the IP address of the communication counterpart

Applicable only when calling the open statement

rport Number

Allows reading/writing

Designates or acquires the port number of the communication counterpart

(Remote)

Applicable only when calling the open statement

lport Number

Allows reading/writing

Used in UDP communication and ignored in TCP communication

Designates or acquires the port number of the controller itself (Local)

The default value is 0 (if not designated), in which case the controller’s port

number will be automatically created.

Applicable only when calling the open statement

Robot Language (HRScript)

56_Communicating with External Devices | ENet Module: Ethernet TCP/UDP Communication

6.2.3 Member Procedures

Description Opens a connection for Ethernet TCP or UDP communication

Syntax <ENet object>.open

Example of

usage
enet_to_sensor.open

Description Performs a connection for Ethernet TCP communication

Syntax <ENet object>.connect

Example of

usage
enet_to_sensor.connect

Description Close the connection for Ethernet UDP communication

Syntax <ENet object>.close

Example of

usage
enet_to_sensor.close

Description Transmits the values to the set Ethernet object

Syntax <ENet object>.send <value>, <value>, …

Parameter Value

Dadta balue to be output.

Arguments separated by commas will be printed separated by

spaces.

All data types

Example of

usage
enet_to_sensor.send "rob:", 10, ", command:"+cmd, "＼n"

Description Receives the values to the set Ethernet object

Syntax <ENet object>.recv <variable>[, <waiting time>]

Robot Language (HRScript)

57_Communicating with External Devices | ENet Module: Ethernet TCP/UDP Communication

Parameter

Variable A variable to which the received string is to be passed

Waiting

time
Time of time-out msec

Example of

usage
enet_to_sensor.recv msg, 5000

6.2.4 Member Function

Description Returns the state of the Ethernet object

Syntax <ENet object>.state()

Return value

1

Connected

(In the case of UDP, just opening it will be considered a connection. In the case of

TCP, connecting after opening will be considered a connection.)

0 Not connected

-1 Failed to create the Ethernet socket

-2 Failed to bind the Ethernet device

Example of

usage
ret = enet_to_sensor.state()

Robot Language (HRScript)

58_Communicating with External Devices | ENet Module: Ethernet TCP/UDP Communication

6.2.5 Examples of TCP and UDP Communication

import enet

global msg

 global enet0=enet.ENet() # ENet("tcp") in case of TCP communication

 # port no. 49152–65535 contains dynamic or private ports

 enet0.ip_addr="192.168.1.172"

 enet0.lport=51001 # necessary only in case of UDP communication

 enet0.rport=51002

 enet0.open

 enet0.connect # necessary only in case of TCP communication

 print enet0.state() # normal if it is 1

 enet0.send "hello, "+"udp", 300, "\n"

enet0.recv msg, 8000 # wait for 8 seconds

 print msg

 delay 1.5

 enet0.close

print enet0.state() # normal if it is 0

delay 1.5

 end

Robot Language (HRScript)

59_Communicating with External Devices | Http_Cli Module: HTTP Client

6.3 Http_Cli Module: HTTP Client

Using the general-purpose Ethernet port of the Hi6 Controller makes it possible to access remote web services to

receive HTTP services.

To use this function, it is required to create an HttpCli object after importing the http_cli module, as shown in the

following example.

import http_cli

var cli=http_cli.HttpCli()

After the HttpCli object is created, it must request a service by calling the get, put, post, and delete member procedures.

The HttpCli object has a property named “body.”

When a get service is requested and a response is received successfully, the remote server’s data will have the body

property. The body property value can be a string, number, array, or object. When requesting the put service, it is

required to assign the data to be transmitted to the body property in advance.

When requesting the post service, it is required to assign the data to be transmitted to the body property in advance,

and the data sent as a response from the remote server is to be stored in the body property.

The delete service does not use the body property.

Robot Language (HRScript)

60_Communicating with External Devices | Http_Cli Module: HTTP Client

6.3.1 Constructor

Description It creates an HttpCli object and returns the reference.

Syntax HttpCli()

Return value Reference of the created object

Example of

usage
var cli = HttpCli()

6.3.2 Member Variables

Variable Data type Description

body
All types are

possible

It is required to put the data, which is to be loaded on the put and post requests,

in advance.

Responses for the get and post requests will be stored.

6.3.3 Member Procedure

Description

Requests the HTTP get service

The response data is to be received to the body property.

Syntax <HttpCli object>.get <URL string>

Example of

usage

var domain="http://192.168.1.200:8888"

cli.get domain+"/setting/max_torque"

Description

Requests the HTTP put service

It is required to assign the data, which is to be transmitted, to the body property in advance.

Syntax <HttpCli object>.put <URL string>

Example of

usage

var domain="http://192.168.1.200:8888"

cli.body=500

cli.put domain+"/setting/max_torque"

Robot Language (HRScript)

61_Communicating with External Devices | Http_Cli Module: HTTP Client

Description

Requests the HTTP post service.

It is required to assign the data, which is to be transmitted, to the body property in advance.

The response data is to be received to the body property.

Syntax <HttpCli object>.post <URL string>

Example of

usage

var domain="http://192.168.1.200:8888"

cli.body={ name: "WORK #32", color: "green", state: "OK" }

cli.post domain+"/display/update"

Description
Request the HTTP delete service.

The body property is not be used.

Syntax <HttpCli object>.delete <URL string>

Example of

usage

var domain="http://192.168.1.200:8888"

cli.delete domain+"/items/3"

Robot Language (HRScript)

62_Communicating with External Devices | Http_Cli Module: HTTP Client

6.3.4 Examples of HTTP Client Communication

import http_client

var cli=http_client.HttpClient()

var domain="http://192.168.1.200:8888"

get

cli.get domain+"/device/direction"

print cli.body.ry

put

cli.body.ry=90

cli.put domain+"/device/direction"

post

cli.body=={ name: "WORK #32", color: "green", state: "OK" }

cli.post domain+"/display/update"

delete

cli.delete domain+"/items/3"

end

Robot Language (HRScript)

63_Communicating with External Devices | Http_Cli Module: HTTP Client

Customer support

Contact: 1670-5041 | Email: robotics@hyundai-robotics.com

Operating hours: Weekdays (Monday–Friday) 09:00–18:00 | Closed on weekends and holidays

For any inquiries about our products or services, please contact our customer support team.

GRC: 477, Bundangsuseo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13553, Korea

Daegu: 50, Techno sunhwan-ro 3-gil, Yuga-eup, Dalseong-gun, Daegu, Republic of Korea

Ulsan: Room 201-5, Automobile & Shipping Technology Hall, 21, Maegoksaneop-ro, Buk-gu, Ulsan, Republic of

Korea

Joongbu: 161, Songgok-gil, Yeomchi-eup, Asan-si, Chungcheongnam-do, Republic of Korea

Gwangju: Room 101, Building B, 170-3, Pyeongdongsandan-ro, Gwangsan-gu, Gwangju, Republic of Korea

ARS 1588-9997 | 1 Robot Sales 2 Service Sales 3 Consultation for Purchase 4 Customer Support 5 Inquiry for

Investment 6 Inquiries for Recruitment and General Matters

www.hyundai-robotics.com

