
THE INSTALLATION SHALL BE MADE
BY QUALIFIED INSTALLATION

PERSONNEL AND SHOULD CONFORM
TO ALL NATIONAL AND LOCAL CODES

WARNING

Hyundai Robot

On-Line Tracking

Hyundai Robot
Hi5OT120701FMEN1

Hi5 Controller Function Manual

The information presented in the manual is the property of HHI.
Any copy or even partial is not allowed without prior written authorization from HHI.

It may not be provided to the third party, nor used for any other purposes.

HHI reserves the right to modify without prior notification.

Printed in Korea – July. 2012. 1
st

 Edition

Copyright 2012 by Hyundai Heavy Industries Co., Ltd

1. Overview ... 1-1

1.1. Introduction ... 1-2
1.2. Summary on Functions .. 1-2

2. Use Methods ... 2-1

2.1. Structure of Online Tracking Program .. 2-2
2.2. Commands Related to Online Tracking .. 2-3

2.2.1. OnLTrack Command ... 2-3
2.2.2. LIMIT Command ... 2-4

2.3. Communication Data Structure & Methods Between Robot Controller and PC 2-5
2.3.1. Communication Methods and Data Structure ... 2-5
2.3.2. Communication Methods .. 2-8

3. Other Matters .. 3-1

3.1. Robot Motion During the Use of Online Tracking .. 3-2
3.2. Examples of UDP/IP Program for the Use of Online Tracking ... 3-3

Contents

1. Overview

2. Use Methods

3. Other Matters

Contents

ii

Figure 1.1 Example of System Configuration of Online Tracking Function 1-2
Figure 2.1 Send and Received Data Structure of UDP/IP communications 2-5
Figure 2.2 Communication Order between PC and Robot controller 2-8
Figure 3.1 Robot’s Path Change During the Use of Online Tracking 3-2

Table 2.1 Variables of Command During the Communications ... 2-5
Table 2.2 Variables of State During the Communications .. 2-6
Table 2.3 Variable of Count During the Communications .. 2-6
Table 2.4 Variables of dData During the Communications .. 2-7

Tables

Fiugres

1. Overview

1-1

 Overview

1

Overview

Online Tracking

1-2

1.1. Introduction

The online tracking has a function of applying a user’s command to a robot’s controller in real time by
means of the UDP/IP communications so as to enable any robot motions. If a user plans, creates and
transmits an incremental command of a robot position from an external PC directly to a robot controller,
the robot receives and applies the incremental command to a motion plan, and at the same time,
feeds the robot’s current position in the rectangular coordinates back to the external PC.
If using this function, the user may attach any sensors to the external PC if necessary and plan and
apply any motions for a specific job. However, in order to realize the external PC’s sensor interface or
UDP/IP communications, the user shall match it for the use in person. In addition, the robot controller
performs the UDP/IP communications exactly every 5 msec and applies incremental commands of
positions to motions within 5 msec; therefore, the external PC shall plan motions exactly every 5 msec
and perform the UDP/IP communications so as to make the robot move smoothly.
During the UDP/IP communications, the robot serves as a client; the external PC as a server. With
respect to the UDP/IP communication program that is realized on the external PC, Chapter 3.2
provides the example of the program built in the C language on the user’s request. So, please refer to
the example of the program and contact our A/S center to ask relevant questions.

Figure 1.1 Example of System Configuration of Online Tracking Function

1.2. Summary on Functions

 Communication protocol: UDP/IP (64Bytes)
- Robot controller→ PC: robot’s current position
- PC → robot controller: robot’s incremental command

 Application cycle of an incremental command: 5msec (200Hz)
 Support for the incremental command filter application
 Support for the function of setting motion fields and speed limits

1. Overview

2. Use Methods

2-1

 Use Methods

2

Use
Methods

Online Tracking

2-2

2.1. Structure of Online Tracking Program

In order to use the online tracking function, set the communications and the incremental command
filter for positions while activating this function by means of the OnLTrack command on the JOB file.
And set robot’s motion fields and speed limits with the use of the LIMIT command, if necessary. Lastly,
Terminate the function by inactivating the online tracking function with.

Division Description Examples of the program

Start the function
and set the

communications
and filter

While switching on the online tracking
function, set the UDP/IP
communications and the incremental
command filter.

OnLTrack ON,IP=192.168.1.254,
PORT=7127,CRD=1,Bypass,Fn=
10

Set motion fields
and speed limits

When activating the online tracking
function, create fields and speed limits of
robot’s motions. The default of the online
tracking function is applied unless there
are any settings.
(Refer to the following the LIMIT
command.)

LIMIT POS,+X=500,-X=500,
+Y=500,-Y=500,+Z=500,-Z=500

LIMIT VEL,X=100,Y=100,Z=100,
RX=50,RY=50,RZ=50

Terminate the
function

Terminate the online tracking function. OnLTrack OFF

2. Use Methods

2. Use Methods

2-3

2.2. Commands Related to Online Tracking

OnLTrack and LIMIT are the commands used for the online tracking. The OnLTrack is responsible for
activating/inactivating the online tracking and for setting the filter; the LIMIT is responsible for setting
motion fields and speed limits.
Description of each command is as follows.

2.2.1. OnLTrack Command

Description
When an incremental command of a position is input through Ethernet by means of
UDP/IP, apply the command to a robot motion.

Input
methods

[F6]: Input Command → [F1]: Motion, I/O → PREV/NEXT →

PREV/NEXT → [F4]: OnLTrack

Sentence
rule

OnLTrack <ON/OFF>,IP=<IP address>,PORT=<Port No.>,CRD=<Normal
coordinate system>,[<No. of user coordinate system>],[Bypass],[Fn=<Frequency>]

Parameter

ON/OFF ON : valid, OFF : invalid

IP Address PC’s IP address for Ethernet communications

Port No. PC’s port numbers for Ethernet communications

Reference
Coordinate

System

Arithmetic expression. It determines a robot motion by applying the
incremental command.

(0=Base, 1=Robot, 2=Tool, 3=U, 4=Un).

No. of User
coordinate

system

Arithmetic expression. When the reference coordinate system is U
and Un, it means the numbers of the user coordinate system.

Bypass

Determine whether to accept the command filter (On=rejected,
Off=accepted)
When ‘OFF’ is set, the controller’s built-in filter applies. When ‘ON’
is set, the separate filter applies.

Frequency
It is a cut-off frequency of the separate filter applied when the filter
is rejected (Bypass ON).

Examples of
use

OnLTrack ON,IP=192.168.1.254,PORT=7127,CRD=1,Bypass,Fn=10
'Motion by OnLTrack function, Motion by the robot coordinate system, Separate filter
with a cut-off frequency of 10 Hz applied
OnLTrack OFF 'Terminate the OnLTrack function

Note

 The controller may receive incremental commands of positions between OnLTrack
ON and OnLTrack OFF from the PC.
 When the OnLTrack ON is run, the controller receives the incremental command
by means of the filter settings and applies the command to a robot motion. During
the process, a time delay may occur when the incremental command is applied by
filtering.
When the OnLTrack ON is run, 'LIMIT POS, +X=300, -X=300, +Y=300, -Y=300,
+Z=300, -Z=300' and 'LIMIT VEL, X=200, Y=200, Z=200, RX=100, RY=100,
RZ=100'are automatically created.

Online Tracking

2-4

2.2.2. LIMIT Command

Description
It has a function of setting the maximum motion field and speed when a robot
moves based on the application of an incremental command of a position by means
of OnLTrack.

Input
methods

[F6]: Input Command → [F1]: Motion, I/O → PREV/NEXT →

PREV/NEXT → [F7]: LIMIT

Sentence
rule

LIMIT POS,[+X=<+X Distance>],[-X=<-X Distance>],[+Y=<+Y Distance>],[-Y=<-Y
Distance>],[+Z=<+Z Distance>],[-Z=<-Z Distance>]
LIMIT VEL,[X=<X Speed>],[Y=<Y Speed>],[Z=<Z Speed>],[RX=<RX Speed>],
[RY=<RY Speed>],[RZ=<RZ Speed>]

Parameter

POS/VEL Limit items. POS : Distance, VEL : Speed

Limited
Distance

Arithmetic expression. By applying the incremental commands of
positions, set the maximum field in the robot coordinate system where
a robot may move as a standard of the current position when the robot
operates.

Limited
speed

Arithmetic expression. By applying the incremental commands of
positions, set the maximum speed in the robot coordinate system
where a robot may move when the robot operates.

Examples of
use

OnLTrack ON,IP=192.168.1.254,PORT=7127,CRD=1,Bypass,Fn=10
LIMIT POS,+X=500,-X=200,+Y=100,-Y=100,+Z=300,-Z=300
LIMIT VEL,X=200,Y=200,Z=200,RX=100,RY=100,RZ=100
WAIT DI10
LIMIT POS,+X=100,-X=100,+Y=100,-Y=100,+Z=100,-Z=100
LIMIT VEL,X=100,Y=100,Z=100,RX=50,RY=50,RZ=50
DELAY 10.0
OnLTrack OFF

Note

 LIMIT POS sets up the maximum motion field based on a robot’s current position.
The incremental command of the position that is outside the motion field is ignored.
 Examples) LIMIT POS,+X=500,-X=100,+Y=150,-Y=150,+Z=300,-Z=300

500mm
100mm

150mm

150mm

300mm

300mm

X

Z

Y

 When the OnLTrack ON is run, 'LIMIT POS, +X=300, -X=300, +Y=300, -Y=300,
+Z=300, -Z=300' and 'LIMIT VEL, X=200, Y=200, Z=200, RX=100, RY=100,
RZ=100' are automatically created.
 The LIMIT command is ignored before the OnLTrack ON is run; therefore, if the
user wants separate settings, the settings shall be undertaken after the OnLTrack
ON is executed.
 After the OnLTrack ON, the LIMIT command may be used several times. However,
pay attention to the fact that when the LIMIT POS command is performed, the
motion field is reset based on the robot’s current position.

2. Use Methods

2-5

2.3. Communication Data Structure & Methods Between Robot
Controller and PC

2.3.1. Communication Methods and Data Structure

In the online tracking function, the UDP/IP communications are performed between a PC as a server
and a robots as a client with a communication cycle of 5 msec. Based on the C language, Figure 2.3
shows the structure of data which the PC transmits to and receives from the robot controller through
the UDP/IP communications. The data size is 64 Bytes during the transmission and reception process.
(char type is 1 byte, int type, 4 bytes and double type, 8 bytes.)

struct{
 char Command;
 char char_dummy[3];
 int State;
 int Count;
 int int_dummy;
 double dData[6];
}

Figure 2.1 Send and Received Data Structure of UDP/IP communications

The Command of Figure 2.3 is the variable that shows the start and end of the connection, the
incremental command of the position, and the transmission of the robot position between the PC and
the robot. To correctly connect the PC to the robot controller and succeed in data communications, set
and transmit appropriate command values as shown in the following Table 2.1. Refer to Chapter 2.3.2
with respect to the order of the online tracking communications, please.

Table 2.1 Variables of Command During the Communications

Variable name

Data transmission direction

Robot controller→ PC PC → robot controller

Command

'S'
- Transmit 'S' when running OnLTrack ON.

- Notify the start of online tracking

- Notify the connection check by feeding
 the 'S' back after receiving the 'S'
 command from the controller. (If 'S' is not
 transmitted back to the controller, the
 controller ignores any data afterwards.)

'P'

- Send 'P' when receiving an incremental
 command of a location
 (refer to the variables of State).
- Transmit a robot’s current position together.
 (Refer to the variables of dData.)

- 'P' is used when an incremental
 command of a location is transmitted.
 (Refer to the variables of dData.)

'F'
- Transmit 'F' when running OnLTrack OFF.

- Notify the end of online tracking.

- Transmit 'F' when the PC terminates
the online tracking before the
controller’s OnLTrack OFF is run.

- Notify the end of online tracking.

Online Tracking

2-6

The variables of State of Figure 2.3 have meanings only when the robot controller transmits data to the
PC. ‘State=1’ means the start of the connection, and ‘State=3’, the end of the connection. Therefore,
when the Command is 'S', the State is 1; when the Command is 'F', the State is 3. When the
Command is 'P', the State is -1 or 2. ‘2’ means that an incremental command of a position has been
applied to a robot’s motion plan; otherwise, ‘-1’ means no application of the incremental command. (At
the robot’s singular point, the robot’s motion is limited, so the incremental command of the position
may not apply.) The summary on the variables of State is as seen in Table 2.2.

Table 2.2 Variables of State During the Communications

Variable name

Data transmission direction

Robot controller→ PC PC → robot controller

State

1
- Send ‘1’ when running OnLTrack ON.
- Notify the start of online tracking.

- N/A (reserved)

2
- When a incremental command of a position
 is received and applied

-1
-When the incremental command of the
position was received but is not applied

3
- Send ‘3’ when running OnLTrack OFF.
- Notify the end of online tracking.

The Count of Figure 2.3 is the user-set variable that shows how many incremental commands of
positions have been transmitted from the PC to the robot controller. When the controller transmits the
robot’s current position to the PC, it sends the value of Count that has been received shortly before.
Therefore, users increase the Count by one (1) every time they transmit data with use of the variable
of Count; then compare the transmitted value of Count with the received Count from the controller; and
may check easily whether the data has been transmitted shortly before. The summary on the variable
Count is as seen in Table 2.3.

Table 2.3 Variable of Count During the Communications

Variable name

Data transmission direction

Robot controller → PC PC → robot controller

Count
- Retransmit the value that has been

received from the PC along with the
robot’s current position.

- The number of transmitted incremental
 commands of locations
- The user directly increases the value from
 0 by one (1) during every transmission
 and may check whether the controller has
 received the previous data.

2. Use Methods

2-7

The dData of Figure 2.3 has different data depending on the transmission directions. The data from a
PC to a robot controller are the incremental commands of the positions where the robot will move
within 5 msec; the data from the robot controller to the PC are the values of the rectangular
coordinates showing the robot’s current position. It is recommended that the incremental command of
the position should be transmitted in real time every 5 msec so that the robot moves smoothly
considering its variable speed. When the controller runs the OnLTrack ON command, the incremental
commands of the positions applies smoothly because the filter settings filter the incremental
commands of positions, but a time delay may occur. In addition, incremental commands of positions
are limited to the LIMIT POS and LIMIT VEL commands, so please refer to Chapter 2.2.2 of the
command description. The robot’s current position in the rectangular coordinates received from the
robot controller to the PC means the value of the tool position based on the robot coordinate system
that applies the received incremental command of the position. The robot’s current position in the
rectangular coordinates is the same as that of the value of the robot’s rectangular coordinates which
may be monitored on TP. The summary on the variables of dData are as seen in Table 2.4.

Table 2.4 Variables of dData During the Communications

Variable
name

Data transmission direction

PC → robot controller Robot controller → PC

dData[0]~[5]

- Incremental commands of positions where a
 robot moves for 5 msec (the coordinate
 system of the incremental command follows
 the settings of the OnLTrack ON command)

dData[0] : X-direction incremental
command, m unit

dData[1] : Y-direction incremental
command, m unit

dData[2] : Z-direction incremental
command, m unit

dData[3] : Rx-direction incremental
command, rad unit

dData[4] : Ry-direction incremental
command, rad unit

dData[5] : Rz-direction incremental
command, rad Unit

- Values of the current tool positions of the
 robot coordinate system that applies the
 incremental commands of positions

dData[0] : X-direction current position, m
unit

dData[1] : Y-direction current position, m
unit

dData[2] : Z-direction current position, m
unit

dData[3] : Rx-direction current position,
rad unit

dData[4] : Ry-direction current position,
rad unit

dData[5] : Rz-direction current position,
rad unit

Online Tracking

2-8

2.3.2. Communication Methods

A PC serves as a server and a robot controller serves as a client with the use of the UDP/IP
communications and the communication cycle of 5 msec. The controller ’s main board provides 3
network ports (EN0, EN1, and EN2) but shall communicate with the EN2-set IP address and the port
No. 6001 on the PC. (Refer to the network of the ‘Hi5 Controller Instruction Manual with respect to the
settings of the EN2 IP address.) The PC’s IP address and the port number shall be the same as the
values set by the OnLTrack ON command, and the PC and the controller shall be connected through
the cross Ethernet cable. The Command variables shall be transmitted and received in accordance
with the communication order for the communications between the PC and the controller. Figure 3.1
shows the communication order between the PC and the controller and the Command variables that
are transmitted and received.

Command= S

Command= S

Command= P

Command= P

Command= F

① Initialized communication

 and connected standby

② Received start notification

③ Transmitted connection check

④ Transmitted incremental

 commands

⑤ Received current position

⑥ Received end notification

PC Robot controller

 The PC initializes the UDP/IP communications and stands by for connection.

 When the controller runs the OnLTrack ON command, it transmits the data to the PC so as to
notify the start (Command='S').

 After the PC receives the notification, it transmits the data of connection check to the
controller (Command='S').

 The PC transmits the incremental command of the calculated position to the controller
(Command='P').

 The controller receives and applies the incremental command, then transmits the robot’s
current position (Command='P').

 After repeating above and , the controller transmits the data to the PC to notify the end

of the function during the operation of the OnLTrack OFF command (Command='F').

Figure 2.2 Communication Order between PC and Robot controller

A PC shall serve as a server and a robot controller as a client through the UDP/IP communications.
When the robot program operates as seen in Figure 3.1, the robot controller, as a client automatically
starts and terminates the communications with the server PC in accordance with the OnLTrack ON
and OFF commands, which enable the online tracking to function. Furthermore, the communication
cycle between the PC and the controller is 5 msec. If 2 and more data are received within 5 msec, the
latest received data apply and the previous data are ignored; therefore, be careful when transmitting
data from the PC, please.

3. Other Matters

3-1

 Other Matters

3

Other
Matters

Online Tracking

3-2

3.1. Robot Motion During the Use of Online Tracking

티칭경로
증분지령

티칭경로

S1

S2

S3

S2’

변경된 경로

변경된 경로

Teaching path

Changed path

Incremental

command
Teaching path

Changed path

Figure 3.1 Robot’s Path Change During the Use of Online Tracking

Figure 3.1 shows how the robot paths change in accordance with the online tracking. With the use of
the online tracking, the robot gets to an S2' point, not reaching the step S2 between the OnLTrack ON
and OnLTrack OFF commands that activate this function because the incremental command of the
position is applied to the robot motion, which makes the robot out of the planned teaching path.
However, after the OnLTrack OFF, it starts from the S2' and gets to the step S3 as seen in Figure 3.1.
Like this, the use of the online tracking may cause teaching paths to be changed by the incremental
command; therefore, be careful, please.

3. Other Matters

3. Other Matters

3-3

3.2. Examples of UDP/IP Program for the Use of Online Tracking

The following examples are the examples of the UDP/IP communication program which is driven on
the PC for the use of the online tracking function. This program is built in the C language and may
operate a robot by means of keyboard input. Please contact our A/S center with respect to relevant
questions.

#include <tchar.h>
#include <winsock2.h>
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <math.h>

#pragma comment(lib, "ws2_32.lib")

#define _PI 3.141592
#define Hi5_Ts 0.005

typedef struct{

 char Command;
 char char_dummy[3];
 int State;
 int Count;
 int int_dummy;
 double dData[6];

} RECEIVE_INTERFACE;

typedef struct{

 char Command;
 char char_dummy[3];
 int State;
 int Count;
 int int_dummy;
 double dData[6];

} SEND_INTERFACE;

unsigned long __stdcall Thread1(LPVOID lpParam);
void Init_Command_Data();
void Init_UDP(const char *PC_IP, unsigned short PC_Port, const char *ROBOT_IP, unsigned short
ROBOT_Port);

WSADATA wsaData;
SOCKET PC_Socket;
SOCKADDR_IN PC_Address, Hi5_Address;
int PC_AddressSize = sizeof(PC_Address);
char *IP_Hi5 = new char [16];
char *IP_PC = new char [16];
unsigned short Port_Hi5;

Online Tracking

3-4

unsigned short Port_PC;

RECEIVE_INTERFACE *pRECEIVE = new RECEIVE_INTERFACE;
SEND_INTERFACE *pSEND = new SEND_INTERFACE;

int _tmain(int argc, _TCHAR* argv[])
{
 int i, ReturnVal, ch;
 double DeltaPosCmd[6];

 IP_Hi5="127.0.0.1"; // IP address of robot controller (Hi5 controller)
 Port_Hi5 = 6001; // port number of robot controller (Hi5 controller)
 IP_PC="127.0.0.1"; // IP address of PC
 Port_PC = 7127; // port number of PC

 Init_UDP(IP_PC, Port_PC, IP_Hi5, Port_Hi5); // UDP/IP is initialized

 HANDLE hThread1;
 DWORD dwThreadID1;
 hThread1 = CreateThread(NULL, 0, Thread1, 0, 0, &dwThreadID1);

 do
 {
 for(i=0; i<6; i++)
 {
 DeltaPosCmd[i] = 0.0;
 }
 ch = _getch();

 switch(ch)
 {
 // calculate incremental position command (DeltaPosCmd)
 case 'u':
 case 'U':
 DeltaPosCmd[0] = 150.0*Hi5_Ts; // 150mm/sec * 0.005sec
 break;
 case 'j':
 case 'J':
 DeltaPosCmd[0] = -150.0*Hi5_Ts;
 break;
 case 'i':
 case 'I':
 DeltaPosCmd[1] = 150.0*Hi5_Ts;
 break;
 case 'k':
 case 'K':
 DeltaPosCmd[1] = -150.0*Hi5_Ts;
 break;
 case 'o':
 case 'O':
 DeltaPosCmd[2] = 150.0*Hi5_Ts;
 break;
 case 'l':
 case 'L':
 DeltaPosCmd[2] = -150.0*Hi5_Ts;

3. Other Matters

3-5

 break;
 case 'q':
 case 'Q':
 DeltaPosCmd[3] = 100.0*Hi5_Ts; // 100deg/sec * 0.005sec
 break;
 case 'a':
 case 'A':
 DeltaPosCmd[3] = -100.0*Hi5_Ts;
 break;
 case 'W':
 case 'w':
 DeltaPosCmd[4] = 100.0*Hi5_Ts;
 break;
 case 's':
 case 'S':
 DeltaPosCmd[4] = -100.0*Hi5_Ts;
 break;
 case 'e':
 case 'E':
 DeltaPosCmd[5] = 100.0*Hi5_Ts;
 break;
 case 'd':
 case 'D':
 DeltaPosCmd[5] = -100.0*Hi5_Ts;
 break;
 default:
 break;
 }

 pSEND->Count++;
 pSEND->State = 2;
 pSEND->Command = 'P';
 // incremental position command must be expressed in terms of meter & radian
 for(i=0; i<3; i++)
 {
 pSEND->dData[i] = DeltaPosCmd[i] * 0.001; // mm -> m
 pSEND->dData[i+3] = DeltaPosCmd[i+3] * _PI/180.0; // deg -> rad
 }

 // send the data to Hi5 controller
 ReturnVal = sendto(PC_Socket,
 (char *)pSEND,
 sizeof(SEND_INTERFACE),
 0,
 (struct sockaddr *)&Hi5_Address,
 sizeof(Hi5_Address));

 } while(ch!='x' && ch!='X');

 Sleep(500);
 closesocket(PC_Socket); // Close the socket..
 WSACleanup();

 printf("Program is terminated.\n");

Online Tracking

3-6

 return 0;
}

unsigned long __stdcall Thread1(LPVOID lpParam)
{
 int ReturnVal;
 bool Start_flag=false;
 WSANETWORKEVENTS event;

 WSAEVENT SockEvent = WSACreateEvent();
 printf("Waiting for the beginning of On-line tracking by Hi5 controller...\n");
 WSAEventSelect(PC_Socket, SockEvent, FD_READ);

 while(1)
 {
 WSAEnumNetworkEvents(PC_Socket, SockEvent, &event);
 if((event.lNetworkEvents & FD_READ)==FD_READ)
 {
 // receive the data from Hi5 controller
 ReturnVal = recvfrom(PC_Socket,
 (char *)pRECEIVE,
 sizeof(RECEIVE_INTERFACE),
 0, (struct sockaddr *)&PC_Address,
 &PC_AddressSize);

 if(Start_flag==false)
 {
 if(pRECEIVE->Command == 'S') // Start
 {
 system("cls");
 printf("recv>> Command: %c, Count: %d, [X: %.3f, Y: %.3f, Z: %.3f, Rx: %.3f,
Ry: %.3f, Rz: %.3f] \n",
 pRECEIVE->Command,
 pRECEIVE->Count,
 pRECEIVE->dData[0]*1000, // m -> mm
 pRECEIVE->dData[1]*1000,
 pRECEIVE->dData[2]*1000,
 pRECEIVE->dData[3]*180.0/_PI, // rad -> deg
 pRECEIVE->dData[4]*180.0/_PI,
 pRECEIVE->dData[5]*180.0/_PI);

 Start_flag = true;
 Init_Command_Data();
 pSEND->Command = 'S';
 pSEND->Count = 0;
 pSEND->State = 1;
 ReturnVal = sendto(PC_Socket,
 (char *)pSEND,
 sizeof(SEND_INTERFACE),
 0,
 (struct sockaddr *)&Hi5_Address,
 sizeof(Hi5_Address));
 printf("On-line tracking is started by Hi5 controller.\n");

 }

3. Other Matters

3-7

 }
 else
 {
 switch(pRECEIVE->Command)
 {
 case 'P': // Play
 system("cls");
 printf("recv>> Command: %c, Count: %d, [X: %.3f, Y: %.3f, Z: %.3f, Rx: %.3f,
Ry: %.3f, Rz: %.3f] \n",
 pRECEIVE->Command,
 pRECEIVE->Count,
 pRECEIVE->dData[0]*1000, // m -> mm
 pRECEIVE->dData[1]*1000,
 pRECEIVE->dData[2]*1000,
 pRECEIVE->dData[3]*180.0/_PI, // rad -> deg
 pRECEIVE->dData[4]*180.0/_PI,
 pRECEIVE->dData[5]*180.0/_PI);
 break;
 case 'F': // Finish
 printf("On-line tracking is finished by Hi5 controller.\n");
 Start_flag = false;
 break;
 default:
 break;
 }
 }
 }
 }

 WSACloseEvent(SockEvent);
 closesocket(PC_Socket);
 WSACleanup();
 exit(0);

 return 0;
}

void Init_Command_Data()
{
 int i, ReturnVal=0;;

 pSEND->Command = NULL; pSEND->State = 0; pSEND->Count = 0;
 pRECEIVE->Command = NULL; pRECEIVE->State = 0; pRECEIVE->Count = 0;
 for(i=0; i<6; i++)
 {
 pSEND->dData[i] = 0.0;
 pRECEIVE->dData[i] = 0.0;
 }

 return;
}

void Init_UDP(const char *PC_IP, unsigned short PC_Port, const char *ROBOT_IP, unsigned short
ROBOT_Port)
{

Online Tracking

3-8

 PC_Address.sin_family = AF_INET;
 PC_Address.sin_addr.s_addr = inet_addr(PC_IP);
 PC_Address.sin_port = htons(PC_Port);
 Hi5_Address.sin_family = AF_INET;
 Hi5_Address.sin_addr.s_addr = inet_addr(ROBOT_IP);
 Hi5_Address.sin_port = htons(ROBOT_Port);

 // initiate use of WS2_32.DLL by a process
 if (WSAStartup(0x202,&wsaData) == SOCKET_ERROR)
 {
 printf("Trouble occurs in WSAStartup setting.\n");
 WSACleanup();
 exit(0);
 }
 // create PC socket for UDP
 PC_Socket = socket(AF_INET, SOCK_DGRAM,0); //

 if(PC_Socket == INVALID_SOCKET)
 {
 printf("PC_Socket can't be created.\n");
 WSACleanup();
 exit(0);
 }

 // associate PC address with PC socket
 if(bind(PC_Socket,(struct sockaddr*)&PC_Address,sizeof(PC_Address)) ==
SOCKET_ERROR)
 {
 printf("Socket can't be binded.");
 closesocket(PC_Socket);
 WSACleanup();
 exit(0);
 }

 return;
}

● Head Office ● A/S Center

 Tel. 82-52-202-7901 / Fax. 82-52-202-7900 Tel. 82-52-202-5041 / Fax. 82-52-202-7960

1, Jeonha-dong, Dong-gu, Ulsan, Korea

● Seoul Office

 Tel.82-2-746-4711 / Fax. 82-2-746-4720

140-2, Gye-dong, Jongno-gu, Seoul, Korea

● Ansan Office

 Tel.82-31-409-4945 / Fax.82-31-409-4946

 1431-2, Sa-dong, Sangnok-gu, Ansan-si, Gyeonggi-do, Korea

● Cheonan Office

 Tel.82-41-576-4294 / Fax.82-41-576-4296

 355-15, Daga-dong, Cheonan-si, Chungcheongnam-do, Korea

● Daegu Office

 Tel.82-53-746-6232 / Fax.82-53-746-6231

 223-5, Beomeo 2-dong, Suseong-gu, Daegu, Korea

● Gwangju Office

 Tel. 82-62-363-5272 / Fax. 82-62-363-5273

 415-2, Nongseong-dong, Seo-gu, Gwangju, Korea

● ●

 Tel. 052-202-7901 / Fax. 052-202-7900 Tel. 82-52-202-5041 / Fax. 82-52-202-7960

 1

●

 Tel. 02-746-4711 / Fax. 02-746-4720

 140-2

●

 Tel. 031-409-4959 / Fax. 031-409-4946

 1431-2

●

 Tel. 041-576-4294 / Fax. 041-576-4296

 355-15

●

 Tel. 053-746-6232 / Fax. 053-746-6231

 2 223-5

●

 Tel. 062-363-5272 / Fax. 062-363-5273

 415-2

	1. Overview
	1.1. Introduction
	1.2. Summary on Functions

	2. Use Methods
	2.1. Structure of Online Tracking Program
	2.2. Commands Related to Online Tracking
	2.2.1. OnLTrack Command
	2.2.2. LIMIT Command

	2.3. Communication Data Structure & Methods Between Robot Controller and PC
	2.3.1. Communication Methods and Data Structure
	2.3.2. Communication Methods

	3. Other Matters
	3.1. Robot Motion During the Use of Online Tracking
	3.2. Examples of UDP/IP Program for the Use of Online Tracking

