

Hi4a 功能手册

- 嵌入式 PLC

本手册中所有信息的版权归现代重工业所有。 没有现代重工业的授权,任何人不得复制或擅自更改,不得提供给第三方,或者其他目 的的使用。

现代重工业保留在无任何告示情况下的修改权

2007年1月 第一版. 第1次印刷 copyright@2007 by Hyundai Heavy Industries Co.,Ltd.

地址:北京市丰台区卢沟桥南里2号

电话:010-83212588 传真:010-83212188

电子邮箱:robot_as@yahoo.com.cn 主页: http://www.hyundai-bj.com

目 录

1.	概述	. 1–1
2.	控制器设置	. 2-1
	2.1. 使用/禁用嵌入式 PLC 功能	. 2-3 . 2-4
3.	输入-输出模块图	. 3–1
4.	继电器明细	. 4 –1
	4.1. Relay Points.4.2. 继电器说明.4.3. 特殊继电器.4.4. 备份继电器和内存.4.5. 定时器和计数器.	. 4-3 . 4-4 . 4-5
5.	省令	. 5–1
	5.1. 通用指令 5.2. 应用指令 5.3. 可能使用的操作符 5.4. 梯形图和助记符之间的关系	. 5-3 . 5-4
插	图	
	图 1.1 BD430 现场总线(Slave only) 图 1.2 BD430 总线(Slave/Master) 图 3.1 输入 - 输出模块图	. 1–3

表 格

表 4-	1 Relay Points	4-2
表 4-2	2 特殊 Relay	4-4
表 5-	1 通用指令	5-2
表 5-	2 应用指令	5-3
表 5-3	3 可能使用的操作符	5-4

Hi4a 控制器的嵌入式 PLC 是具体表现在控制器上的商业 PLC 功能。像下图所示,当个人计算机或笔记本对控制器连接的时候,运行 HRLadder 写/编辑梯形图,或通过它给控制器下载梯形图,它也能上传正在控制器运行的梯形图。同时,对控制器运行的情况监听是可能的.请参考 HRLadder 单独的操作手册。

当唯一的使用 BD430/BD431,嵌入式 PLC 能控制硬线装置通过使用硬线输入/输出。如果 BD430/BD431 上配置现场总线卡(UCS),它能控制过程 PLC 使用 现场总线 输入/输出。(硬线输入/输出是可能的)。

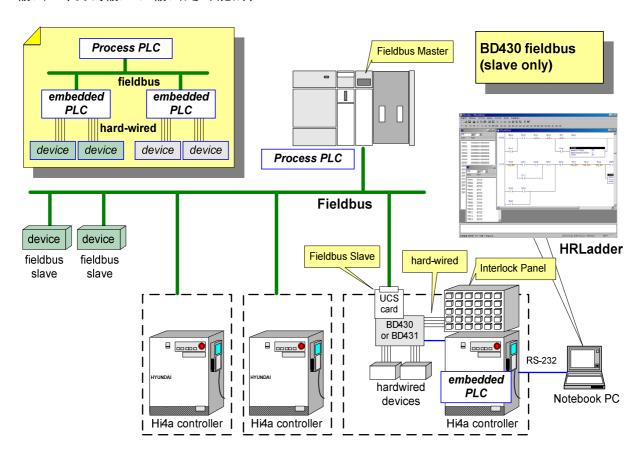


图 1.1 BD430 现场总线(Slave only)

当一起使用 BD430/BD431 和 BD420 的时候,嵌入式 PLC 用硬线输入/输出和现场总线输入/输出 控制整个的装置.也,它控制线过程控制 PLC 上面部份而现场总线输入/输出使用 现场总线 BD420 的功能 。(硬线输入/输出是可能的)。

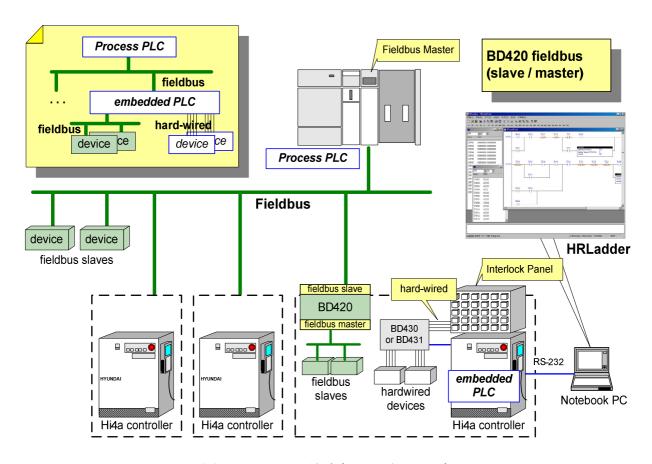
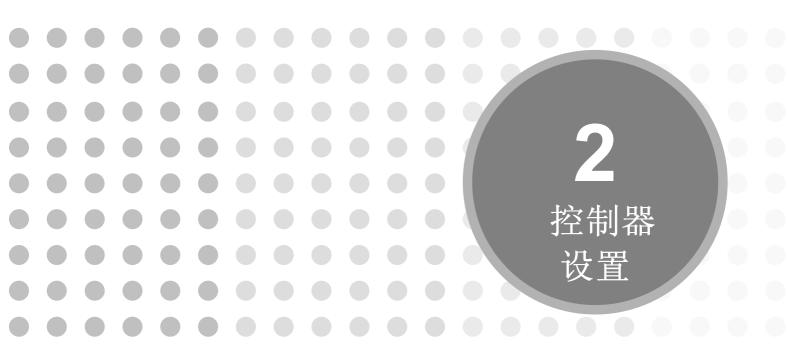



图 1.2 BD430 总线(Slave/Master)

2. 控制器设置

2.1. 使用/禁用嵌入式 PLC 功能

为了能使用嵌入式 PLC 的功能,请设定在主板(BD411/BD412) DIP5 开关为开。 为了禁用嵌入式 PLC 的功能,请设定 DIP5 开关为关。

2.2. 选择嵌入式 PLC 操作模式

(1)操作

如果按『[PF5]: Cond Set』 \rightarrow 『[PF1]: AppliCnd』, 『8: Emb.PLC mode= $\langle Stop, R-Stop, R-Run, Run \rangle$ 』将显示操作模式选择并且能选择操作模式使 [SHIFT]+[\leftarrow][\rightarrow].

(2)停止(Stop)

停止 嵌入式 PLC operation.(停止同时所有 DI,Y,继电器 清空.)

- (3) 远程停止/远程运行(R-Stop/R-Run) 这是远程控制模式,通过计算机上 HRDDER 软件可以 R-停止/R-运行在控制器上 的 PLC 的程序.(远程停止同时所有 DI,Y,继电器 清空)
- (4)运行(Run)

通过计算机上 HRDDER 软件可以监控正在运行的 PLC 程序。

2.3. 在控制器 TP 上监控继电器状态

监控继电器状态当按『[PF1]: Service』 → 『1: Monitoring』 → 『6: PLC Relay Data』 → 『1: PLC X Relay(外部输入)』 ~ 『11: PLC SW Relay(系统内存中)』.

2.4. 嵌入式 PLC 扫描时间

"扫描时间"位于 HRLadder 地址栏较低的位置,并且自动增加(10 msec 单位)如果随着步骤的数的增加,扫描时间不够时。

3. 输入-输出模块图

● 阴影部分是为他预留的

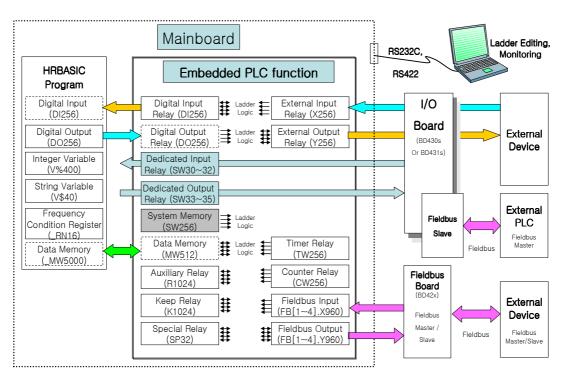


图 3.1 输入 - 输出模块图

4. 继电器明细

4.1. Relay Points

表 4-1 Relay Points

		Points	Relay No.(1bit)	Type	Channel (16/8bit)	Type
		Locate 00	V04 V00	1	XW01~XW02	2
	0 ()	Input 32	X01~X32		XB01~XB04	3
	Default	Output 32	Y01~Y32	4	YW01~YW02	5
External					YB01~YB04	6
Input-Output Relay	Extension of	Input 192	X33~X224	1 -	XW03~XW14	2
(BD430, BD432)	each piece	1	(FieldBus:until256)		XB05~XB28	3
	(64/64)	Output 192	Y33~Y224		YW03~YW14	5
	Max.3	FieldBus:224) (FieldBus:until256)		4	YB05~YB28	6
			D1001~D1256	7	DIW01~DIW16	8
Digital		Input 256			GI01~GI32	9
Input-Output Relay	General				DOW01~DOW16	11
(Teach/Playback)		Output 256	D0001~D0256	10	G001~G032	12
					RW01~RW64	32
Auxiliary	Relay	1024	R0001~R1024	31	RB01~RB128	33
		1004	1/0004 1/4004	0.4	KW01~KW64	35
Keep Re	elay	1024	K0001~K1024	34	KB01~KB128	36
Consider	2-1	20	0001 0000	07	SPW01~SPW02	38
Special f	Relay	32	SP01~SP32	37	SPB01~SPB04	39
Timer D	a lau	256	TO1. TOEG	40	TW01~TW256	41
Timer Re	етау	200	T01~T256	40	TB01~TB512	42
Counter (Rolay	256	C001~C256	43	CW001~CW256	44
Counter	leray	230	0001 0230	40	CB001~CB512	45
Data Memory(16bit)		512	reserved	46	MW001~MW512	47
			16361 V64	70	MB001~MB1024	48
System Me	emory	256	reserved	49	SMW001~SMW256	50
		Input 960	FB1.X001~X960	55	FB1.XW01~XW60	56
		mpar ooo	TETTAGET NEGO	55	FB1.XB01~XB120	57
		Output 960	FB1.Y001~Y960	67	FB1.YW01~YW60	68
					FB1.YB01~YB120	69
		Input 960	FB2.X001~X960	58	FB2.XW01~XW60	59
					FB2.XB01~XB120	60
5	0.1	Output 960	FB2.Y001~Y960	70	FB2.YW01~YW60	71
Fieldbus Relay					FB2.YB01~YB120	72
(DeviceNet/Pro	ofibus-DP)	Input 960	FB3.X001~X960	61	FB3.XW01~XW60	62
					FB3. XB01~ XB120	63
		Output 960	FB3.Y001~Y960	73	FB3.YW01~YW60	74
					FB3.YB01~YB120 FB4.XW01~XW60	75 65
		Input 960	FB4.X001~X960	64	FB4. XB01~XB120	66
					FB4.YW01~YW60	77
		Output 960	FB4.Y001~Y960	76	FB4.YB01~YB120	78
Shada control porti	on is recorved	<u> </u>		<u> </u>	107.1001 10120	: 10
Shade control portion is reserved.						

4.2. 继电器说明

对指定的继电器可以选择3种数据类型。

- (1) 外部输入-输出继电器: 使用外部输入-输出信号通过 BD430 和 BD432.
- (2) 数字输入-输出继电器 在示教程序中使用的输入-输出信号
- (3) 现场总线继电器: 现场总线输入输出信号通过 the BD42X 板

主板版本	MV10.07~25 以下	X001~X256, XW01~16, XB01~XB32
土奴似平	MV10.07~26 以上	X001~X960, XW01~60, XB01~XB120

- (4) 辅助继电器:在 PLC 程序中辅助使用的继电器
- (5) 保持继电器:保持 ON/OFF 状态当电源关闭时.
- (6) 特殊继电器: 为特殊目的使用定义的继电器(以后说明)
- (7) 定时器:

他是一个定时动作的继电器, 当数值为"0"时, 触电导通。 (当电源失败时保持)

(8) 计数器:

他是一个计数动作的继电器, 当数值为"0"时, 触电导通。 (当电源失败时保持)

(9) 数据存储器:

在实际指令中可任意读写数据.(当电源失败时保持)

(10)系统存储器:特殊目的使用.

4.3. 特殊继电器

表 4-2 特殊 Relay

继电器号	描述	其他		
SP01	一直导通	#** #** I BB J N -#*		
SP02	一直关闭	控制器状态		
SP03	当启动时,继电器导通为了做一次扫描			
SP04	0.1 秒(0.05 秒导通 → 0.05 秒关闭)	内部定时器		
SP05	0.2 秒(0.1 秒导通 → 0.1 秒关闭)	內印处刊葡		
SP06	1 秒(0.5 秒导通 → 0.5 秒关闭)			
SP07	操作结果不能变成 BCD.码时导通	当执行 TOD		
SP08	运送操作结果时导通、	当执行算术运算时		
SP09 2 秒(1 秒 导通 → 1 秒 关闭)		计如今时 规		
SP10	4 秒(2 秒导通 → 2 秒 关闭)	内部定时器		
SP09~SP32	保留的			

4.4. 备份继电器和内存

- (1)保持继电器
- (2)输出继电器
- (3) 定时器
- (4) 计数器
- (5)数据存储器

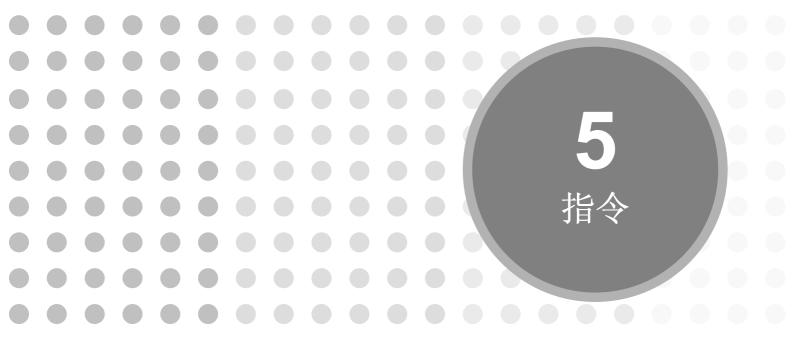
4.5. 定时器和计数器

- (1) 定时器和继电器只支持下降沿
 - 用户能设定定时器以 0.01. 秒为基本单位
 - 16 位内部计数器,可计数到 32767x10=327.67 秒
- (2) 定时器/ 计数器值的含义如下

定时器和计数器	说明
0	触点导通 (=计数结束)
-1	触点关闭
other	触点关闭,计数和定时在进行中

(3) 当定时器/计数器不激活时,

■ TON: 设定 TW 值为-1. ■ CTD: 连续保持 CW 值.


(4) 当定时器/计数器激活时,

TON

如果 TW 值小于零,它存储 TW 初始值:""定时器单位×设定值)如果 TW 值大于零,TW 值减 1 每 10[msec]

CTD

如果 CW 值小于零,它存储 CW 初始值 | 果 TW 值 大于零,CW 值减 1 当上升 延时

5.1. 通用指令

表 5-1 通用指令

表 5-1 通用指令				
指令			描述	
助计符	命名	符号	抽 处	
RUNG	Rung	<u> </u>	当启动时第一次输入梯形图程序显示	
BST	分支启动		表示分支启动	
BND	分支结束		表示分支结束.	
NXB	分支嵌套	└, ├	表示分支重复	
XIC	关闭时 检查	- -	表示常开触点(A-type)(激活=0N).	
XIO	打开时 检查	- / -	表示常闭触点 (B-type) (激活=OFF).	
INV	转化	-//-	起转化作用 (转化分支(OR)逻辑变为非分支(AND)逻辑)	
OTE	输出	-()-	表示输出继电器.	
OTL	输出锁存	-(L)-	输出高电平锁存	
OTU	输出释放	-(U)-	使输出继电器变为低电平	
0SR	One Shot Rising	-(OSR)-	表示在一个扫描周期内显示为高电平	
RES	复位	-(RES)-	表示定时器或计数器复位	
TON	定时器	-=-	下降沿定时器(如果为低电平时,那么继电器导通)	
CTD	计数器	-=-	下降沿计数器(如果为低电平时,那么继电器导通)	

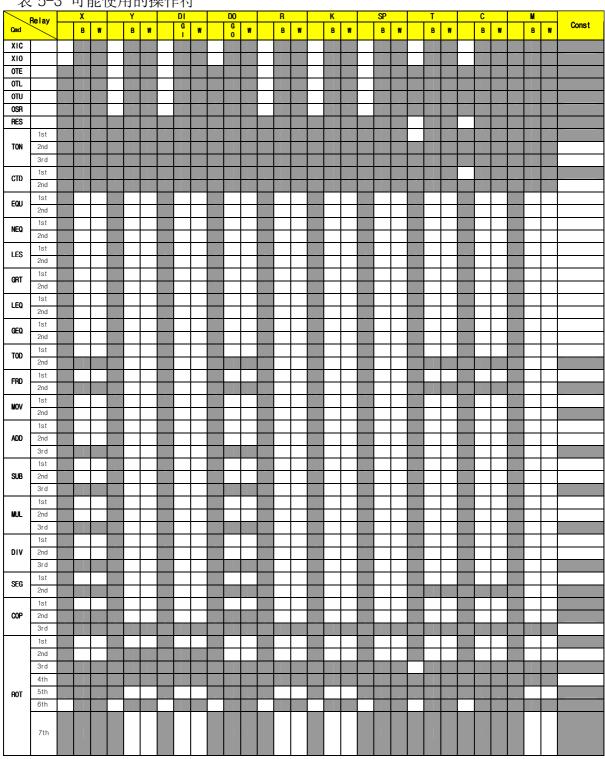

5.2. 应用指令

表 5-2 应用指令

表 5-2 <u>四</u> 月指令					
指令			描述		
助计符	命名	符号	抽起		
EQU	等于	- 🗏 -	当两个继电器值相等(=)时导通		
NEQ	不等于	- 🗏 -	当两个继电器值不相等(◇)时导通		
LES	小于	-=-	当第一个继电器值小于(<) 第二个继电器值时导通		
GRT	大于	-=-	当第一个继电器值大于(>) 第二个继电器值时导通		
LEQ	小于等于		当第一个继电器值小于或等于(<=)第二个继电器值时 导通		
GEQ	大于等于	-=-	当第一个继电器值大于或等于(>=)第二个继电器值时 导通		
TOD	转化为 BCD 码	-=-	当导通时,转换第一个整型继电器值为 BCD 码然后保存 在第二个继电器内		
FRD	转化 BCD 码 为整形	-	当导通时转换第一个 BCD 码继电器值为整型然后保存在 第二个继电器内		
MOV	移动	- 🗏 -	当导通时,移动第一个继电器值到第二个继电器内		
ADD	加		当导通时,第一个继电器值和第二个继电器值相加后保 存在第三个继电器内		
SUB	减		当导通时,第一个继电器值和第二个继电器值相减后保 存在第三个继电器内		
MUL	乘	-=-	当导通时,第一个继电器值和第二个继电器值相乘后保 存在第三个继电器内		
DIV	除		当导通时,第一个继电器值和第二个继电器值相除后保 存在第三个继电器内		
SEG	7'段	-=-	当导通时,7'段相对应的第一个继电器(4位)保存在第三个继电器内		
COP	复制数据	-=-	当导通时,从第一个继电器复制到第二个继电器作为第 三个操作符		
ROT	旋转输出		当导通时,在计数继电器不是0的这段时间内连续输出, 当接到复位继电器输入信号,初始化和清除输出值		

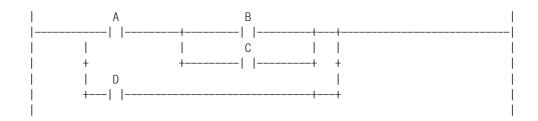
5.3. 可能使用的操作符

表 5-3 可能使用的操作符

- (1)标记显示不能使用
- (2) 常量:由二进制、十进制、和十六进制数据,如果以 &B 开始,表示二进制,如果以 &H 开始,表示十六进制,如果没有前缀,表示十进制
- (3) W 表示 16 位, B(GI, GO)表示 8 位。
- (4)继电器可以选择数据类型
- (5) 所有的 W和B(GI,GO) 继电器的贝当作符号数处理
 - → 使用 MOV 指令移动 B(8 位)到 W(16 位) 时一定要注意,因为有符号位 (例如(-1=0xFFF) 当移动 RB(-1=0xFF) 到 RW 时.)
- (6) 在使用 COP 指令时,第一和第二继电器大小要一致

5.4. 梯形图和助记符之间的关系

■ 用户只需要了解梯形图


(1) 梯形图举例 1:

点击编辑器符号(增加支路空隙),显示如下。

助计符:

SOR XIC X1 BST XIC X2 XIO X3 NXB BST XIO X4 XIC X5 NXB XIO X6 BND BND XIC X7 BST XIO X8 BST XIC X9 OTE Y1 NXB XIC X10 OTE Y2 BND NXB XIC X11 XIO X12 OTE Y3 BND

(2) 梯形图举例 2:

助计符:

BST XIC A BST XIC B NXB XIC C BND NXB XIC D BND

■ Head Office

1, Jeonha-dong, Dong-gu, Ulsan, Korea

TEL: 82-52-230-7901 / FAX: 82-52-230-7900

■ BEIJING HYUNDAI

JINGCHENG MACHINERY CO., LTD.

NO.2NANLI,LUGOUQIAO, FENGTAI DISTRICT,BEIJING TEL: 86-010-8321-2588 / FAX: 86-010-8321-2188

E-Mail: robot_as@yahoo.com.cn

POST CODE: 100072

■ 韩国现代重工业本部

蔚山市东区田下洞 1 番地

TEL: 82-52-230-7901 / FAX: 82-52-230-7900

■ 北京现代京城工程机械有限公司

北京市丰台区卢沟桥南里2号

电话 : 86-010-8321-2588 / 传真 : 86-010-8321-2188

电子邮箱 : <u>robot_as@yahoo.com.cn</u>

邮编: 100072