A. GENERAL
1. Course: Architecture 213a, 3 units, Harris 101
2. Title: Building structures and seismic design
3. Class meetings: Two 1-1/2 hour lectures/workshop plus one 1-hour lab per week
4. Examinations: Midterm, Quizzes, and Final
5. Time required: 9 hours per week, including class time

B. OBJECTIVES
To develop informed intuition for structures by emphasizing underlying concepts and synergy of form and structure to encourage creative design integration. To convey material sufficiently rigorous for effective communication with engineers, and analyzing of basic structures

C. SUBJECT MATTER
Historic evolution of structures, the influence of cultural, economic, and resource factors
The four S’s for required for architectural structures: Synergy, Strength, Stiffness and Stability. Study of existing structures: synergy and load paths. Load on buildings: dead- and live load; static, dynamic and thermal loads; structural responses to loads. Static equilibrium as basis of analysis; strength of materials and mechanics; stress, strain, and stress-strain relations. Numeric and graphic analysis of statically determinate beams and columns, and computer analysis of statically indeterminate beams and frames. Lateral force design.

D. STUDENT ASSIGNMENTS
Students are expected to parallel lectures with related readings, experiments, homework assignments, lab sessions, and term projects.
Handouts and homework are posted on the web http://uscarch.com/structures/ bring handouts to class

E. TEACHING METHODS
Lectures are augmented by lab sessions and reinforced by visual presentations and demonstration models. The material is consecutive; thus no lectures should be missed

F. BASIS FOR COURSE GRADE
<table>
<thead>
<tr>
<th>Subject</th>
<th>Points</th>
<th>Percentage of grade</th>
<th>Grade scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>80</td>
<td>20%</td>
<td>A = 90 -100%</td>
</tr>
<tr>
<td>Term Project</td>
<td>80</td>
<td>20%</td>
<td>B = 80 - 89%</td>
</tr>
<tr>
<td>Quizzes & Exercises</td>
<td>40</td>
<td>10%</td>
<td>C = 70 - 79%</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>100</td>
<td>25%</td>
<td>D = 60 - 69%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>100</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>400</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

A passing grade requires to miss not more than two classes without valid written excuse.

Academic Conduct
Plagiarism – presenting someone else’s ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in SCampus Section 11, Behavior Violating University Standards. Other forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university policies on scientific misconduct, http://policy.usc.edu/scientific-misconduct/. Discrimination, sexual assault, and harassment are not tolerated by the university. You are encouraged to report incident to the Office of Equity and Diversity http://equity.usc.edu/ or the Department of Public Safety. This is important for the safety whole USC community. Another member of the university community – such as a friend, classmate, advisor, or faculty member – can help initiate the report, or can initiate the report on behalf of another person. The Center for Women and Men https://engemannshc.usc.edu/rsvp/ provides 24/7 confidential support, and the sexual assault resource center webpage https://sarc.usc.edu/ describes reporting options and other resources.

Support Systems
A number of USC’s schools provide support for students who need help with scholarly writing. Check with your advisor or program staff to find out more. Students whose primary language is not English should check with the American Language Institute http://dornsife.usc.edu/ali, which sponsors courses and workshops specifically for international graduate students. The Office of Disability Services and Programs (306 Watt Way, 213-740-0776) provides certification for students with disabilities and helps to arrange relevant accommodations. If an officially declared emergency makes travel to campus infeasible, USC Emergency
Information http://emergency.usc.edu/ will provide safety updates, including means how to provide information by means of blackboard, teleconferencing, or any other technology.

G. READING LIST
Recommended reading
ASCE 7 https://www.asce.org/asce-7/

H. COURSE OUTLINE
August
Tu 27 Evolution of Structures and introduction to course objectives Read chapter 1
Th 29 Loads: dead load (DL), live load (LL), static, dynamic, impact, and thermal loads Read chapter 2

September
Tu 03 Structure material: wood, steel, concrete, masonry, fabric; energy use and rupture length Review chapters 20-24
Th 05 Structure system overview: vertical/lateral systems: wall, cantilever, moment frame, braced frame; horizontal one-way and two-way systems: truss, arch, vault, dome, shell, cable stayed, suspended, membrane Read pages 187-188
Tu 10 Tributary load and load path (slab, beam, girder) and vertical members (post, wall, footing); load path; Design for 4 S: Synergy, Strength, Stiffness, and Stability Read pages 35-40
Th 12 Forces vs. stress: tension, compression, shear, bending, torsion; symbols and notations; force and stress Read page 42
Tu 17 Stress/strain relations (Hooke's Law): Modulus of Elasticity, linear and non-linear materials, elastic, plastic, and elastic-plastic materials; Poisson's Ratio Read pages 85-88
Th 19 Thermal stress and strain: effect on building structures and architectural systems and elements; expansion joints to prevent thermal stress Read pages 89-92
Tu 24 Graphic vector analysis: parallelogram, force polygon, resultant, equilibrant, components; numeric method Read pages 67-75
Th 26 Graphic truss analysis by graphic vector method: Maxwell diagrams (Bow's Notation) Read pages 69-70

October
Tu 01 Force and moment: static equilibrium; external reactions to load; free-body diagrams Read pages 56-63
Th 03 Geometric properties: Centroid; Moment of Inertia for irregular sections by Parallel Axis Theorem Read Appendix B
Tu 08 Determinacy for beams, trusses, and frames; implications for computation and structural performance Read pages 64-66
Th 10 Bending and shear: method of balancing moments and free-body diagrams Read pages 99-107
Tu 15 Area method for shear and bending Read pages 106-107
Th 17 Fall Recess
Tu 22 Flexure formula: Moment of Inertia, Section Modulus Read page 109-116
Th 24 Review for midterm
Tu 29 Shear stress in beams, general formula; shear stress an wood and steel beams Read pages 111-116
Th 31 Midterm Exam

November
Tu 05 Deflection: area-moment method and standard formulas Read pages 117-122
Th 07 Indeterminate beams: fixed-end and continuous beams Read page 108
Tu 12 Buckling: Euler formula; "Kern" and rule of inner third; design and analysis of wood columns Read pages 123-133
Th 14 Steel Buckling: axial stress and combined axial and bending stress Read pages 134-140
Tu 19 Beam review Read pages 99-107
Th 21 Term project review, 2 - 4:30 pm
Tu 26 Seismic failure, LDG: Lateral Design Graph Read page 367, LDG
Th 28 Thanksgiving recess

December
Tu 03 Review for Final Exam
Th 12 Final Exam 2:00 to 4:00 pm in Harris 101