

Faculty of Engineering

Department of

Mechanical and Automobile Engineering

Syllabus for

M.Tech- Machine Design

(Applicable for 2019-20)

CHRIST (Deemed to be University) University, Bengaluru,

Karnataka, India

www.christuniversity.in

Syllabus for M.Tech- Machine Design 2019-20 prepared by the Department of Mechanical and Automobile Engineering, Faculty of Engineering and approved by the Academic Council, CHRIST(Deemed to be University), Bengaluru, India.

Published by the Centre for Publications, CHRIST (Deemed to be University), Hosur Road, Bengaluru 560 029, India. publications@christuniversity.in

2019

TABLE OF CONTENTS

S1	CONTENTS	PAGE NUMBER
1	Introduction	4
2	Courses Offered	8
3	Eligibility Criteria	9
4	Selection Process	10
5	Admission Process	10
6	General Rules	12
7	Grading Scheme for Each Paper: Undergraduate Courses	12
8	Grading Scheme for Each Paper: Post Graduate Courses	13
9	Course Overview	13
10	Course Objective	13
11	Teaching Pedagogy	14
12	Details of CIA (Continuous Internal Assessment)	14
13	Assessment Rules	15
14	Question Paper Pattern	15
15	Course Structure	17-18
16	Detailed Syllabus	19onward

1. INTRODUCTION

CHRIST- Deemed to be University blossomed out of the educational vision of the Carmelites of Mary Immaculate (CMI) congregation founded by St Kuriakose Elias Chavara. He was a visionary, an educationist and a social reformer of the nineteenth century who founded the Congregation in 1831 in South India.

CHRIST- Deemed to be University was established in July 1969 as Christ College. It was the first institution in Karnataka to be accredited by the National Assessment and Accreditation Council (NAAC). University Grants Commission (UGC) conferred Autonomy to the institution in 2004. It became the first College in South India to be reaccredited with A+ by NAAC in 2005. UGC identified it as an Institution with Potential for Excellence in 2006.Under Section 3 of the UGC Act, 1956, Ministry of Human Resources Development of the Union Government of India, vide Notification No. F. 9-34/2007-U.3 (A), declared Christ College as a Deemed to be University, in the name and style of CHRIST- Deemed to be University in July 2008. The University was accredited with 'A' Grade by NAAC in 2016.

CHRIST- Deemed to be University offers 46 Bachelor, 47 Master, 16 MPhil and 17 PhD Programs in Humanities, Social Sciences, Sciences, Commerce and Management, Education, Law and Engineering. The University which celebrates diversity has students from all the states of India and 58 countries across the globe.

CHRIST- Deemed to be University rooted in Gospel values, is committed to provide holistic education through the development of intellectual competence, personal skills, inter-personal skills and societal skills. The University welcomes to its fold students from all over the country and the world in an environment of religious harmony and secularism.

VISION

"EXCELLENCE AND SERVICE"

- CHRIST- Deemed to be University, a premier educational institution, is an academic fraternity of individuals dedicated to the motto of excellence and service. We strive to reach out to the star of perfection through an earnest academic pursuit for excellence and our efforts blossom into 'service' through our creative and empathetic involvement in the society to transform it.
- Education prepares one to face the challenges of life by bringing out the best in him/her. If this is well accepted, education should be relevant to the needs of the time and address the problems of the day. Being inspired by Blessed Kuriakose Elias Chavara, the founder of Carmelites of Mary Immaculate and the pioneer in innovative education, CHRIST-Deemed to be University was proactive to define and redefine its mission and strategies reading the signs of the time.

MISSION STATEMENT

"CHRIST- Deemed to be University is a nurturing ground for an individual's holistic development to make effective contribution to the society in a dynamic environment."

CORE VALUES

The values which guide us at CHRIST- Deemed to be University are: Faith in God Moral Uprightness Love of Fellow Beings Social Responsibility Pursuit of Excellence

VISION OF DEPARTMENT

Develop Mechanical and Automobile engineering graduates to be successful in chosen professional career with innovative academic processes for the overall development

MISSION STATEMENT

- 1. To provide excellent academic ambience in curricular co-curricular and extracurricular initiatives, facilities and teaching-learning experience.
- 2. To nurture holistic development of individuals.
- 3. To imbibe professional ethics driven by a sense of moral responsibility committed to the service to society

PROGRAM EDUCATIONAL OBJECTIVES (PEO'S):

PEO 1: Fundamental Knowledge

Demonstrate fundamental knowledge in basic science and Mechanical Engineering, with critical and solution-oriented thinking for attaining professional excellence.

PEO 2: Industry Integration

Facilitate with industrial exposure within and outside the curriculum to integrate theoretical concepts with the latest industry practices.

PEO 3: Working in Team

Exhibit professional competence towards real-time problem solving by cross-disciplinary understanding and effective team-building skills.

PEO 4: Social Responsibility

Develop professionals with ethics, driven by a sense of social responsibility and service towards their peers, employers.

PROGRAM SPECIFIC OOTCOMES (PSO'S):

PSO 1: Design, Analyze and Evaluate Mechanical components through domain specific knowledge, experimentation and software tools.

PSO 2: Identify, Analyze and demonstrate the attributes of modern machining processes, tools and materials for manufacturing of mechanical systems and components.

PSO 3: Investigate thermal systems by modelling and analysis through modern simulation techniques and tools.

PSO 4: Analyze the problems related to modern industries in the area of process planning, cost estimation and quality assurance

GRADUATE ATTRIBUTES:

- 1. Engineering Knowledge
- 2. Problem analysis
- 3. Design/development of solutions
- 4. Conduct investigations of complex problems
- 5. Modern tool usage
- 6. The Engineer and society
- 7. Environment and sustainability
- 8. Ethics
- 9. Individual and team work
- 10. Communication
- 11. Project management and finance
- 12. Life-long learning

PROGRAM OUTCOMES (PO'S)

At the end of graduation, the graduates of the Mechanical and Automobile Engineering Program are able to

1. Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

2. PROGRAM OFFERED

- Undergraduate Programmes (B.Tech, 8 Semester Program)
 - Bachelor of Technology in Automobile Engineering (AE)
 - Bachelor of Technology in Civil Engineering(CIVIL)
 - Bachelor of Technology in Computer Science and Engineering (CSE)
 - Bachelor of Technology in Electronics and Communication Engineering (ECE)
 - Bachelor of Technology in Electrical and Electronics Engineering (EEE)
 - Bachelor of Technology in Information Technology (IT)

- Bachelor of Technology in Mechanical Engineering (ME)
- Postgraduate Programmes (M. Tech, 4 Semester Program)
 - Master of Technology in Computer Science and Engineering (CSE)
 - Master of Technology in Communication Systems(ECE)
 - Master of Technology in Information Technology(IT)
 - Master of Technology in Machine Design(MD)
 - Master of Technology in Power Systems(PS)
 - Master of Technology in Structural Engineering(SE)

• Doctoral Programmes (Ph.D.) (Doctor of Philosophy)

- Doctor of Philosophy (Ph.D.) in Computer Science and Engineering
- Doctor of Philosophy (Ph.D.) in Electronics and Communication Engineering
- Doctor of Philosophy (Ph.D.) in Civil Engineering
- Doctor of Philosophy (Ph.D.) in Electrical and Electronics Engineering
- Doctor of Philosophy (Ph.D.) in Mechanical Engineering
- Doctor of Philosophy (Ph.D.) in Information Technology

3. ELIGIBLITY CRITERIA

* For Undergraduate Programmes

A pass in PUC (10+2) or equivalent with 50% marks in aggregate with Mathematics, Physics and Chemistry is the minimum eligibility for admission.

Lateral Entry:

Candidates who have successfully completed 3 year diploma in Engineering are eligible to apply for lateral entry into:

- Automobile Engineering (AE)
- B.Tech Civil Engineering (CE)
- B.Tech Mechanical Engineering (ME)
- B.Tech Computer Science and Engineering (CSE)

- B.Tech Electronics & Communication Engineering (ECE)
- B.Tech Electrical and Electronics Engineering (EEE)
- B.Tech Information Technology (IT)

Candidates will be admitted to second year of the programme only after appearing the Christ deemed to be University selection process for engineering programmes.

* For Postgraduate Programmes:

- For Master of Technology in Computer Science and Engineering
 - A Pass in B.Tech/B.E or M.Sc with 55% aggregate.
- o For Master of Technology in Communication Systems
 - A Pass in B.Tech/B.E or M.Sc in Electronics and VLSI Design with 55% aggregate.
- For Master of Technology in Civil Engineering
 - A Pass in BE/B.Tech or M.Sc in Civil and VLSI Design with 55% aggregate.
 - For Master of Technology in Mechanical Engineering
 - A Pass in BE/B.Tech with 55% aggregate.

For Doctoral Programmes (Ph.D.):

- A pass with 55% marks in post graduation and equivalent in the relevant subject from any recognized university.
- A research proposal (Maximum 1500 words) has to be submitted along with the application.

5. SELECTION PROCESS

1) Candidates can process the admission based on the Undergraduate Entrance Test and Ranking by COMEDK.

OR

2) Christ Selection Process as given below:

Process	Particulars	Date	Venue/Centre

Entrance Test	Christ Entrance test for	As per the E-	As per the E- Admit	
	each candidate	Admit Card	Card	
Personal Interview	Personal interview for 15 minutes for each candidate by an expert panel	As per the E- Admit Card	As per the E- Admit Card	
Academic Performance	Assessment of past performance in Class 10, Class 11/12 during the Personal Interview	As per the E- Admit Card	As per the E- Admit Card	

6. ADMISSION PROCESS

Candidates will be intimated about the Selection status (Selected/Wait Listed/Not Selected) through the University Notice Board/on the "Application Status" link on University website. The Selection results will be declared within 24 hours of Personal Interview session.

The selected candidates must process admission at Office of Admissions, Central Block, Christ deemed to be University within 3 working days of declaration of Selection Process results/as per the stipulated date and time mentioned by Office of Admissions.

Selected candidates should collect the Fee Challan from the Office of Admissions and remit the Annual fee at the South Indian Bank, CHRIST- Deemed to be University Branch. The Offer of Admission will stand cancelled, if failing to remit the fee within the stipulated date and time.

Admission will not be processed <u>without the presence of the candidate</u> and the <u>mandatory original documents</u> mentioned below;

1. The Offer of Admission Card (E-Admission Card/Mail)

2. Class 10 Marks Statement

3. Class 11 Marks Statement, if Candidate is pursuing class 12 and appearing for final examination during March-April Month

4. Class 12 Marks Statement, if candidate has appeared and passed the Class 12 examination

The University ID card is a smart card, which is both an ID card as well as a South Indian Bank ATM card with a chip containing the student personal details. All transactions within the University campus after commencement of classes, including fees payment will be processed only through this card. It is also an access card for Library and other restricted places. Candidates are advised to collect the South Indian Bank account opening form along with fees challan and process it at the Bank branch within the University premises. Candidates who fall under International student category (ISC), if selected, should register with the Foreigner Regional Registration Officer (FRRO/FRO) of the Local Police in Bangalore, India within 14 working days from the date of admission or arriving in Bangalore.

All International student category (ISC) candidates if studied in India should obtain an NOC from the previous qualifying institution.

7. GENERAL RULES

- There is a grading scheme for each paper and for all the courses.
- All marks will indicate the marks, percentage obtained, grade and grade point average.
- The grade point average will be calculated as follows: for each subject, multiply the grade point with the number of credits; divide the sum of product by the total number of credits.
- The CGPA [Cumulative GPA] is calculated by adding the total number of earned points [GP x Cr] for all semesters and dividing by the total number of credit hours for all semesters.

$$\mathbf{GPA} = \frac{\sum [\mathbf{GPA} \times \mathbf{Cr}]}{\sum \mathbf{Cr}}$$

-			-	
Percentage	Grade	Grade Point	Interpretation	Class
80 and above	А	4.0	Outstanding	First Class with
				Distinction
73-79	A-	3.67	Excellent	
66-72	B+	3.33	Very Good	First Class
60-65	В	3.0	Good	
55-59	В-	2.67	Average	Second Class
50-54	C+	2.33	Satisfactory	
45-49	С	2.00	Pass	Pass Class
40-44	D	1.0	Pass	
39 and below	F	0	Fails	Fail

8. GRADING SCHEME FOR EACH PAPER: Undergraduate Courses

Percentage	Grade	Grade Point	Interpretation	Class
80 and above	A+	4.0	Excellent	First Class with
70-79	А	3.5	Very Good	Distinction
65-69	B+	3.0	Good	First Class
60-64	В	2.5	Above Average	
55-59	C+	2.0	Average	Second Class
50-54	С	1.5	Satisfactory	
40-49	C-	1.0	Exempted if aggregate is more than 50%	Pass Class
39 and below	F	0	Fails	Fail

9. GRADING SCHEME FOR EACH PAPER: Postgraduate Courses

We believe that the student opportunities and experiences should lead to an appreciation of the holistic development of individual. We also try to pass to our students our passion for what we do, and to have the students comprehend that we also desire to continue to learn.

10. COURSE OVERVIEW

The Mechanical Engineering Department has well established facilities for carrying out the activities of basic mechanical engineering. It is equipped to meet the present day technological advances and to meet the industrial requirements matching with the global standards. The department has the state of the art laboratories to meet the demand for practical knowledge by the present day industrial applications.

One of the oldest, largest and diversified of all engineering disciplines is mechanical engineering. Rated as one of the most "evergreen" branches, students of mechanical engineering can look forward to an exciting and robust study in the field of Thermal, Design, Materials and Manufacturing Engineering. A Holistic blend of both theory and practicals ensure that students are ready to face the challenges of the industrial world.

11. COURSE OBJECTIVE

The goal of our program is to prepare our graduates for successful professional practice and advanced studies by providing a broad education in mechanical engineering and by offering

the opportunity to deepen their technical understanding in a particular concentration area of related technical electives. Following are the course objectives.

- 1. Join a technically sophisticated workforce as successful, practicing engineers in a wide range of mechanical engineering fields.
- 2. Continuously improve and expand their technical and professional skills through formal means as well as through informal self-study.
- 3. Pursue advanced degrees in engineering, business, or other professional fields.
- 4. Advance themselves professionally and personally by accepting responsibilities and pursuing leadership roles

12. TEACHING PEDAGOGY

Our teaching methodology ensures that students are being exposed to a holistic education experience in an active and dynamic learning environment, giving them the opportunity to identify and realize their potential, and to achieve excellence. In order to realize the objectives, a methodology based on the combination of the following will be adopted:

- 1. Team/Class room teaching.
- 2. PowerPoint presentations and handouts.
- 3. Simulated situations and role-plays.
- 4. Video films on actual situations.
- 5. Assignments.
- 6. Case Studies.
- 7. Exercises are solved hands on.
- 8. Seminars.
- 9. Industry / Field visits.
- 10. Information and Communication Technology.
- 11. Project work.
- 12. Learning Management System.

13. DETAILS OF CIA (Continuous Internal Assessment):

Assessment is based on the performance of the student throughout the semester. Assessment of each paper

- Continuous Internal Assessment (CIA) for Theory papers: 50% (50 marks out of 100 marks)
- End Semester Examination(ESE) : 50% (50 marks out of 100 marks)

Components of the CIA

CIA I : Assignments/Open book test/Seminar	: 10 marks
CIA II : Mid Semester Examination (Theory)	: 25 marks
CIA III: Quizzes/Seminar/Case Studies/Project Work	: 10 marks
Attendance	: 05 marks
Total	: 50 marks

For subjects having practical as part of the subject

End semester practical examination	: 25 marks
Records	: 05 marks
Mid semester examination	: 10 marks
Class work	: 10 marks
Total	: 50 marks

14. ASSESSMENT RULES

Assessment of Project Work(Phase I)

- Continuous Internal Assessment:100 Marks
 - Presentation assessed by Panel Members
 - Assessment by the Guide
 - Project Progress Reports

✤ Assessment of Project Work(Phase II) and Dissertation

- Continuous Internal Assessment:200 Marks
 - Presentation assessed by Panel Members
 - Assessment by the Guide
 - Project Progress Reports
 - Paper presentation in National/International conference or in Journal publications or at least acceptance letter is mandatory
 - End Semester Examination:100 Marks
 - ♦ Viva Voce
 - Demonstration
 - Project Report
- Dissertation (Exclusive assessment of Project Report): 100 Marks
 - Internal Review : 50 Marks
 - External Review : 50 Marks

✤ Assessment of Internship

30 Internship days at Industry/Research Laboratories is mandatory and a report should be submitted with certificate before IV semester.

15. QUESTION PAPER PATTERN:

End Semester Examination (ESE):

Theory Papers:

The ESE is conducted for 100 marks of 3 hours duration.

The syllabus for the theory papers is divided into FIVE units and each unit carries equal weightage in terms of marks distribution.

Question paper pattern is as follows.

Two full questions with either or choice, will be drawn from each unit. Each question carries 20 marks. There could be a maximum of three sub divisions in a question. The emphasis on the questions is broadly based on the following criteria:

50~% - To test the objectiveness of the concept

30 % - To test the analytical skill of the concept

20 % - To test the application skill of the concept

Laboratory / Practical Papers:

The ESE is conducted for 50 marks of 3 hours duration. Writing, Execution and Viva – voce will carry weightage of 20, 20 and 10 respectively.

Mid Semester Examination (MSE):

Theory Papers:

- The MSE is conducted for 50 marks of 2 hours duration.
- Question paper pattern; Five out of Six questions have to be answered. Each question carries 10 marks.

Laboratory / Practical Papers:

The MSE is conducted for 50 marks of 2 hours duration. Writing, Execution and Viva – voce will carry weightage of 20, 20 and 10 respectively.

Holistic Education:

Total	50 Marks
Participation	25 Marks
End Semester Examination	25 Marks

16. COURSE STRUCTURE:

I Semester									
Sl.No	Course	Course	Course Name	L	Т	Р	Hrs/	Credits	
	Type	Code					Wee		
							k		
1	Core 1	MTME131	Experimental Stress Analysis	3	0	0	3	3	
2	Core 2	MTME132	Theory of Applied Stress	3	0	0	3	3	
3		MTME133E	1. Advanced Engineering	3	0	0	3	3	
	Program		Material						
	Elective 1		2. Mathematical Methods in						
			Engineering						
			3. Computer Aided Design						
4		MTME134E	1. Advanced Design of	3	0	0	3	3	
	Program		Mechanical System						
	Elective 2		2.Robotics						
			3.Optimization Techniques in						
			Design						
5	Core Lab 1	MTME151	Advanced CAD Laboratory	0	0	4	4	2	
6	Core Lab 2	MTME152	Simulation Laboratory	0	0	4	4	2	
7	MLC	MTME135	Research Methodology and	2	0	0	2	2	
			IPR						
8	Audit 1	Audit	Audit-I	2	0	0	2	0	
9		HE171	Holistic Education - I	1	0	0	1	1	
			Total	17	0	8	19	19	

II Semester									
Sl.No	Course Type	Course Code	Course Name	L	Т	Р	Hrs/ Week	Credits	
1	Core 3	MTME231	Advanced Finite Element method	3	0	0	3	3	
2	Core 4	MTME232	Advanced Theory of Vibrations	3	0	0	3	3	
4	Program Elective 3	MTME233E	1.Tribology in Bearing Design2.Condition BasedMonitoring3.Theory of Plates and shells	3	0	0	3	3	
5	Program Elective 4	MTME234E	1.Design for Manufacturing2.Analysis and Synthesis ofMechanism3.Multi body Dynamics	3	0	0	3	3	
6	Core Lab 3	MTME251	Advanced Design Laboratory	0	0	4	4	2	
7	Core Lab 4	MTME252	Analysis Laboratory	0	0	4	4	2	
8	Core	MTME271	Mini Project	0	0	4	4	2	
9	Audit 2	Audit	Audit-II	2	0	0	2	0	
10		HE271	Holistic Education - II	1	0	0	1	1	
			Total	15	0	12	27	19	

	III Semester								
Sl.No	Course Type	Course Code	Course Name	L	Т	Р	Hrs/ Week	Credits	
1	Program Elective-3	MTME331E	 Design for Manufacture Rotor Dynamics Robust Design Research Methodology 	3	0	0	3	3	
2	Program Elective-4	MTME332E	1.Advanced Theory of2.Vibration3.Optimum DesignVehicle Dynamics	3	0	0	3	3	
3	Program Elective-5	MTME333E	 Tribology and Bearing Design Theory of Plates and Shells Advanced Mechanisms Design and Simulation 	3	0	0	3	3	
4	Project	MTME371	Project Work (Phase-I)	0	0	3	18	3	
5		MTME373	Internship (Industry/Research Lab)	0	0	4	-	2	
6		MTCY01	Cyber Security	2	0	0	2	2	
			Total	09	0	11	29	16	

IV Semester										
Sl.No	Course Type	Course	Course Name	L	Т	Р	Hrs/	Credits		
		Code					Week			
1	Dissertation	MTME471	Dissertation Phase-II	0	0	32	32	9		
			Total	0	0	32	32	9		

Audit Course 1 and 2

- 1. English for Research Paper writing
- 2. Disaster Management
- 3. Sanskrit for Technical Knowledge
- 4. Value Education
- 5. Constitution of India
- 6. Pedagogy Studies
- 7. Stress Management by Yoga
- 8. Personality development through Life Enlightenment Skills

17.DETAILED SYLLABUS

Course Name: EXPERIMENTAL STRESS ANALYSIS						
Course Code : MTME131						
	L	Т	P	Categ	ory PCC	
Contact Hrs./Week	3	0	0	CIA Ma	arks 50	
Contact Hrs./Sem.	45	0	0	ESE Ma	arks 50	
Credits.	3	0	0	Exam Ho	ours 3	
 Course objectives: Describe variety of strain gauges, mounting techniques and strain gauge circuits. Understand the fundamental concepts of photo elasticity and experimental techniques. Explain the two and three dimensional photo elasticity concept on the practical problems. Explain different types of coatings, test strain data using brittle coating and Birefringent coating. Understand the Moire fringe method, analysis and its applications. Prerequisites: Strength of Materials , Mechanics of Materials and Mechatronics 						
					Hours	
Unit-1						
 ELECTRICAL RESISTANCE STRAIN GAUGES: Strain sensitivity of gage metals, Gage construction, Gage sensitivity and gage factor, Performance characteristics, Environmental effects Strain, gage circuits, Potentiometer, Wheat Stone's bridges, Constant current circuits. STRAIN ANALYSIS METHODS: Two element and three element, rectangular and delta rosettes, Correction for transverse strains effects, stress gage - plane shear gage, Stress intensity factor gage. 						
Unit-2						
 PHOTOELASTICITY: Nature of light, - wave theory of light,- optical interference - Polariscopes stress optic law - effect of stressed model in plane and circuclar Polariscopes, Isoclinics Isochromatics fringe order determination - Fringe multiplication techniques - Calibration Photoelastic model materials. TWO DIMENSIONAL PHOTOELASTICITY STRESS ANALYSIS: Separation methods shear difference method, Analytical separation methods, Model to prototype scaling. 						
Unit-3					1	
THREE DIMENSIONA General slice, Effective st Oblique incidence meth photoelasticity, Principal	L PHC tresses, 10d Se s, Pola1)TOE Stress conda	LAST ses sep ry pri e and s	ICITY : Stress freezing method, baration, Shear deference method, incipals stresses, Scattered light stress data analyses.	09	

Unit-4						
COATING METHODS a) Photoelastic Coating Method: Birefringence coating						
techniques Sensitivity Reinforcing and thickness effects - data reduction - Stress						
separation techniques Photoelastic strain gauges b) Brittle Coatings Method:	09					
Brittle coating technique Principles data analysis - coating materials Coating	07					
tochniques						
Unit-5						
MOIDE TECHNIQUE: Compatrical contracts Displacement contracts						
MOIRE TECHNIQUE: Geometrical approach, Displacement approach-						
sensitivity of Moire data data reduction, in plane and out plane Moire methods,						
Moire photography, Moire grid production.	00					
HOLOGKAPHY: Introduction, Equation for plane waves and spherical waves,	09					
Intensity, Coherence, Spherical radiator as an object (record process), Hurter,						
Driffeld curves, Reconstruction process, Holograpic interferometry, Real-time.						
and double exposure methods, Displacement measurement, Isopachics.						
Self Study : N11						
Site/Industrial Visits : Nil						
Course outcomes:						
CO1: To be able to describe the Sensitivity & the construction of strain gauges.						
{L1,L2,L3}{PO1,2,3,4,7}						
CO2: To elucidate the isoclinics & Fringe multiplication techniques.						
{L1,L2,L3}{PO1,2,3,4,5}						
CO3: To be able to explain the stress separation methods of 3D Photoelasticity.						
{L1,L2,L3}{PO1,2,3,4,5}						
CO4: To describe the Birefringence coating techniques. {L1,L2,L3,L4}{PO1,2,3,7,9}						
CO5: To be able to describe the Moire's Techniques. {L1,L2,L3}{PO1,2,3,4,5,6,7}						
Text Books:						
T1.Dally and Riley, "Experimental Stress Analysis", McGraw Hill, 3rd revised Edit	tion,					
1991.						
T2.Sadhu Singh, "Experimental Stress Analysis", Khanna publisher, 4th revised Ed	dition,					
2009.						
T3.Srinath L.S, "Experimental stress Analysis", Tata Mc Graw Hill, 1984.						
Reference Books:						
R1. M.M.Frocht, "Photoelasticity, Vol I and Vol II", John Wiley & sons, 4th Revised	t					
Edition, 2003.						
R2. Perry and Lissner, "Strain Gauge Primer", Mc Graw Hill, 2nd Revised Edition,	1962.					
R3.Kuske, Albrecht & Robertson, "Photo Elastic Stress Analysis", John Wiley & So:	ns, 4th					
Revised Edition, 2003.						
R4.Dave and Adam, "Motion Measurement and Stress Analysis", Merrill; First Edit	ition,					
1964						
Online Resources:						
W1. https://apm.iitm.ac.in/smlab/kramesh/book_5.htm						
W2.http://www.ifsc.usp.br/~lavfis/images/BDApostilas/ApEfFotoelastico/pho	otoelasti					
<u>city.pdf.</u>						
W3. http://textofvideo.nptel.ac.in/112106068/lec24.pdf.						
W4. http://textofvideo.nptel.ac.in/112106247/lec23.pdf						
W5. https://apps.dtic.mil/dtic/tr/fulltext/u2/a255686.pdf						
W6. https://depts.washington.edu/mictech/optics/me557/moire_a.pdf						

Course Name: THEORY OF APPLIED STRESS							
Course Code : MTME132							
	L	Т	Р	Category	PCC		
Contact Hrs./Week	3	0	0	CIA Marks	50		
Contact Hrs./Sem.	45	0	0	ESE Marks	50		
Credits.	3	0	0	Exam Hours	3		

Course objectives:

- To obtain the stress strain relation for engineering materials.
- To know Yield criteria for ductile metal.
- To understand the plastic stress-strain relations.
- To learn Upper and lower bound theorems and corollaries.
- To solve problems of tension compression, torsion and combined loading.

Prerequisites: Mechanics of Materials, Design of Machine Elements, Finite Element Methods

	Taachin					
oms	σ Hours					
	5 110 113					
Unit-1						
INTRODUCTION STRESS: Definition and Notation for forces and stresses.						
Components of stresses, equations of Equilibrium, Specification of stress at a						
point. Principal stresses and Mohr's diagram in three dimensions. Boundary	09					
conditions.						
INTRODUCTION TO STRAIN: Deformation, Strain Displacement relations,						
Strain components, The state of strain at a point, Principal strain, Strain						
transformation, Compatibility equations, Cubical dilatation.						
Unit-2						
STRESS-STRAIN RELATIONS AND THE GENERAL EQUATIONS OF						
ELASTICITY: Generalized Hooke's law in terms of engineering constants.						
Formulation of. elasticity Problems. Existence and uniqueness of solution, Saint						
-Venant's principle, Principle of super position and reciprocal theorem.						
Idealised stress-strain diagrams for different material models, Engineering and						
natural strains, Mathematical relationships between true stress and true strains,						
Unit-3						
TWO DIMENSIONAL PROBLEMS IN CARTESIAN CO-ORDINATES: Airy's						
stress function, investigation for simple beam problems. Bending of a narrow						
cantilever beam under end load, simply supported beam with uniform load, Use						
of Fourier series to solve two dimensional problems.						
TWO DIMENSIONAL PROBLEMS IN POLAR CO-ORDINATES: General	09					
equations, stress distribution symmetrical about an axis, Pure bending of curved						
bar, Strain components in polar co-ordinates, Rotating disk and cylinder,						
Concentrated force on semi-infinite plane, Stress concentration around a circular						
hole in an infinite plate						

Unit-4							
Yield criteria for ductile metal, Von Mises, Tresca, Yield surface for Isotropic							
Plastic materials, Stress space, Experimental verification of Yield criteria,							
Yield criteria for an anisotropic material.							
Stress - Strain Relations, Plastic stress-strain relations, PrandtlRoeuss Saint	09						
Venant, Levy - Von Mises, Experimental verification of the Prandtl-Rouss							
equation, Yield locus, Symmetry convexity, Normality rule.,							
Upper and lower bound theorems and corollaries.							
Unit-5							
Application to problems: Uniaxial tension and compression, bending of beams,							
Torsion of rods and tubes, Simple forms of indentation problems using upper							
bounds. Problems of metal forming I: Extrusion, and Drawing.							
Problems of metal forming II: Rolling and Forging. Slip line theory, Introduction,	09						
Basic equations for incompressible two-dimensional flows, continuity							
equations, Stresses in conditions of plain strain convention for slip-lines,							
Geometry of slip lines, Properties of slip lines.							
Self-study : Nil							
Site/Industrial Visits : Nil							
Course outcomes:							
CO1: To Understand the concepts of stress and strain. {L1, L2} {PO1, PO2}							
CO2: To demonstrate Idealized stress-strain diagrams for different material mod	els. {L1,						
L2} {PO1, PO2, PO3}							
CO3: To be able to formulate general stress-strain equations in cartesian and pola	r						
coordinate system. {L2, L3, L4} {PO1, PO2, PO3, PO4}							
CO4: To understand the concept of yield criterion. {L1, L2} {PO1, PO2, PO3}							
CO5: To be able to solve Problems of uniaxial tension, compression, bending of beams and							
torsion. {L2, L3, L5} {PO1, PO2 PO3, PO4}							
11. Timoshenko and Goodier, "Theory of Elasticity", McGraw Hill, 1982.	a Dragooo"						
McMillan Press Ltd 2016	g riocess,						
T3. Sadhu Singh," Theory of Elasticity", Khanna publishers, Delhi, 2003.							
T4. Sadhu Singh, "Theory of Plasticity and Metal forming Process", 8th Edition, Khanna	a						
Publishers, Delhi, 2015.							
Reference Books:							
R1. L S Srinath, "Advanced Mechanics of Solids ", Tata Mcgraw-Hill, 2008.							
R2. Phillips, Durelli and Tsao, "Introduction to the Theoretical and Experimental Analy and Strain", McGraw-Hill, 1st Edition, 1958	sis of Stress						
R3. W. & Mellor and P.B. Johnson, "Plasticity for Mechanical Engineers", 1st Edit	ion, D.Van						
Nostrand Company Inc., 1962.	,						
R4. Oscar Hoffman and George Sachs, "Introduction to the Theory of Plasticity for Eng	gineers", 1st						
Edition, Literary Licensing, LLC., 2012.							
R5. Chakraborty,"Theory of plasticity" 3rd Edition, Oxford: Elsevier Butterworth-Heine	emann,						
2007.							
Online Resources:							
W1. https://nptel.ac.in/downloads/112105125/							
W2. https://nptel.ac.in/syllabus/112106137/							
W3. <u>https://onlinecourses.nptel.ac.in/noc18_ce18/preview</u>							

Course Name: Advanced Engineering Materials					
	(Course	Code	e : MTME133E1	
	L	Т	Р	Catego	ry PEC
Contact Hrs./Week	3	0	0	CIA Mar	ks 50
Contact Hrs./Sem.	45	0	0	ESE Mar	ks 50
Credits.	3	0	0	Exam Hou	ırs 3
 Creatis: Course objectives: Enable Students to recognize the conventional methods for processing of advance composite materials Enable Students to distinguish between the available reinforcing fibre performance Enable Students to recognize the conventional thermo set and thermoplastic polymers Enable Students to describe the mechanical properties of a collimated fiber, polymer composite as an anisotropic medium Introduce test methods required to characterize anisotropic medium Units 					
	<u>.</u>				0
Historical perspective of Materials Science. Why study properties of materials? Classification of materials. Advanced Materials, Future materials and modern materials, Atomicstructure. Atomic bonding in solids, Crystal structures, Crystalline and noncrystalline materials. Miller indices. Anisotropic elasticity. Elastic behaviour of composites. Structure and properties of polymers. Structure and properties of ceramics.					
Imperfections in Solids and Mechanical Properties of Metals, Diffusion, Dislocations and Strengthening Mechanisms: Point defects. Theoretical yield point. Line defects and dislocations. Interfacial defects. Bulk or volume defects. Atomic vibrations; Elastic deformation. Plastic deformation. Interpretation of tensile stress-strain curves Yielding under multiaxial stress. Yield criteria and macroscopic aspects of plastic deformation. Property variability and design factors, Diffusion mechanisms. Steady and non-steady state diffusion. Factors that influence diffusion. Non-equilibrium transformation and microstructure, Dislocation and plastic deformation. Mechanisms of strengthening in metals. Recovery, recrystallization and grain growth. Strengthening by second phase particles. Optimum distribution of particles. Lattice resistance to dislocation motion.9Unit-3Phase Diagrams0					
Fnase Diagrams Equilibrium phase dia Precipitation reactions. system. Phase transfo diagrams. Microstructur	agrams Kinetics rmatior re and 1	. Part s of na ns. Ti propei	ticle s ucleati cansfo rty cha	strengthening by precipitation. ion and growth. The iron-carbon rmation rate effects and TTT anges in ironT carbon system	9

Unit_1						
	2					
Failure:	9					
Fracture. Ductile and brittle fracture. Fracture mechanics. Impact fracture.						
Ductile brittle transition. Fatigue. Crack initiation and propagation. Crack						
propagation rate. Creep. Generalized creep behaviour. Stress and temperature						
effects						
Unit-5						
	9					
Applications and Processing of Metals and Alloys, Polymers, Ceramics,						
and composites:						
Types of metals and alloys. Fabrication of metals. Thermal processing of						
metals. Heat treatment. Precipitation hardening. Types and applications of						
ceramics. Fabrication and processing of ceramics, Mechanical behaviour of						
polymers. Mechanisms of deformation and strengthening of polymers.						
Crystallization, melting and glass transition. Polymer types. Polymer						
synthesis and processing, Particle reinforced composites. Fibre reinforced						
composites. Structural composites						
1 1						
Self-study : Nil						
Site/Industrial Visits : Nil						
Course outcomes:						
CO1. Demonstarte an understanding of mechanics, physical and chemical pr	coperties of					
materials including metals, ceramics, polymers and composites(L1,3,4) (PO1,2)						
CO2. Understand existence of imperfections and their effects on mechanical p	roperties of					
materials and cause of failure (I.1.3.4) (PO1.2)	1					
CO3 Demonstrate understanding of phase diagrams and their use in predic	rting nhase					
transformation and microstructure (I 1 2 4) (DO1 2 2)	ering price					
CO1 Up dereter d and predict various types of failures using concent of fracture	machanica					
CO4. Onderstand and predict various types of failures using concept of fracture	mechanics,					
Creep and effect of impact (L1,5,4) (FO1,2)						
CO5. Know Electrical, Thermal, Optical and Magnetic Properties of metals	s, ceramics,					
polymers and composites (L1,2,3) (PO1,2,4)						
	07					
11. Materials Science and Engineering, William D. Callister, Jr, John Wiley & s	sons, 07					
Reference Books:						
R1. Modern Physical Metallurgy and Material Engineering, Science, Process, at	oplication,					
Smallman R.E., Bishop R J, Butterworth Heinemann, Sixth Ed., 1999.	- '					

Course Name: Mathematical Methods in Engineering							
Course Code : MTME133E2							
	L	Т	Р	Catego	ry PEC	7	
Contact Hrs./Week	3	0	0	CIA Mar	ks 50		
Contact Hrs./Sem.	45	0	0	ESE Mar	ks 50		
Credits.	3	0	0	Exam Hou	rs 3		
Course objectives: This c	course i	s outli	ned to	those who intend to apply the sub	ject at the	ý	
proper place and time, w	hile kee	eping	him/ł	ner aware to the needs of the society	, where		
he/she can lend his/her	expert s	service	e, and	also to those who can be useful to t	he		
community without ever	going	throug	gh the	formal process of drilling through	rigorous		
treatment of Mathematic	5.				Teaching	σ	
Cints					Hours	8	
Unit-1							
Introduction to Proba	nility '	Theor	v Pr	abability Theory and Sampling	9		
Distributions. Basic proba	ability t	heorv	along	with examples. Standard discrete)		
and continuous distribut	ions lik	e Binc	mial,	Poisson, Normal, Exponential etc.			
Central Limit Theorem a	nd its S	Signifi	cance.	Some sampling distributions like			
□2, t, F							
Unit-2							
Testing of Statistical H	ypothe	sis: T	esting	a statistical hypothesis, tests on	9		
single sample and two s	samples	s conc	erning	g means and variances. ANOVA:			
Une – way, 1wo – way w	ritn/ wi	thout	intera	ctions.			
Ordinary Differential E	mation		linow	linear differential equations	0		
solvable by direct solution	n meth	ods: s	olvabl	e nonlinear ODE's	9		
Unit-4							
Partial Differential Equa	tions a	nd Co	ncept	s in Solution to Boundary Value:	9		
First and second order partial differential equations; canonical forms							
Unit-5							
Major Equation Types E	ncount	ered i	n Eng	ineering and Physical Sciences:	9	-	
Solution methods for way	ve equa	tion, l	D'Aleı	mbert solution, potential			
equation, properties of ha	armoni	c func	tions,	maximum principle, solution by			
Solf study Nil	od						
Sen-study . INI	•1						
Site/Industrial Visits : N	11						
Coll. Apply statistical tee	hniaue	es to a	nalvze	multivariate functions(L134) (PO	1 2)		
CO2. Identify and solve e	enginee	ring p	robler	ns by applying the knowledge of or	dinary an	nd	
partial differential equati	ons (L1	.,3,4) (PO1,2)	5		
CO3. Identify nature of a	given v	vave e	quatio	on and solve by applying D'Alembe	rt solutio	on	
and/or method of solution	on of m	ethod	of sep	paration of variables (L1,3,4) (PO1,2	,3)		
CO4 . Apply mathematic	al and (\mathbf{PO}_1)	compi	utation	nal methods to a range of problem	s in sciend	ce	
and engineering $(L1,3,4)$	(FUI,2) operati	ione i	n Foi	trier series and Lanlace transform	ms (I 1 2)	3)	
(PO1,2,4)	operati	10115 1	11 1 00	and series and Laplace Hallston	113 (L1,2,	5)	
CO6 . Evaluate partial de	rivative	es of m	ultiva	vriate functions (L1,3,4) (PO1,2,3)			

Text Books:

T1. Ronald E, Walpole, Sharon L. Myers, Keying Ye, Probability and Statistics for Engineers and Scientists (8th Edition), Pearson Prentice Hall, 07 (for Units I & II)

T2. J. B. Doshi, Differential Equations for Scientists and Engineers, Narosa, New Delhi, 10 (for Units III & IV)

Reference Books:

R1. Douglas C. Montgomery, *Design and Analysis of Experiments* (7th Edition), Wiley Student Edition, 09.

R2. S. P. Gupta, *Statistical Methods*, S. Chand & Sons, 37th revised edition, 08
R3. William W. Hines, Douglas C. Montgomery, David M. Goldsman, *Probability and Statistics for Engineering*, (4th Edition), Willey Student edition, 06.
R4. Advanced Engineering Mathematics (9th Edition), Erwin Kreyszig, Wiley India (13)

Co	ourse Name: Computer Aided Design	
	Course Code : MTME133E3	

	L	Т	Р	Category	PEC
Contact Hrs./Week	3	0	0	CIA Marks	50
Contact Hrs./Sem.	45	0	0	ESE Marks	50
Credits.	3	0	0	Exam Hours	3

Course objectives: At the end of this course, the students will be able to:

- Have a conceptual understanding of the principles of CAD systems, the implementation of these principles, and its connections to CAM and CAE systems.
- Understand 2D, 3D transformations and projection transformations
- Get knowledge of various approaches of geometric modeling
- Understand mathematical representation of 2D and 3D entities
- Understand basic fundamentals of FEM
- Integrate principles of related fields into the use of CAD software.

Units	Teaching						
11.4.4	nours						
Unit-1							
Introduction: CAD Hardware and Software, Types of systems and system	9						
considerations, input and output devices, hardware integration and							
networking, hardware trends, Software modules							
Unit-2							
Networks: Computer Communications, Principle of networking,	9						
classification networks, network wring, methods, transmission media and							
interfaces, network operating systems.							
Unit-3							
Computer Graphics Introduction: Computer Graphics Introduction,	9						
transformation of geometric models: translation, scaling, reflection, rotation,							
homogeneous representation, concatenated transformations; mappings of							
geometric models, translational mapping rotational mapping, general							
mapping, n mappings as changes of coordinate system; inverse							
transformations and mapping							
Unit-4							
Geometric Modeling: Projections of geometric models, orthographic	9						
projections, Geometric Modeling, curve representation: Parametric							
representation of analytic curves, parametric representation of synthetic							
curves, curve manipulations. Surface representation,							
Unit-5							
Fundamentals of solid modeling: Fundamentals of solid modeling,	9						
boundary representation (B-rep), Constructive Solid Geometry (CSF), sweep							
representation, Analytic Solid Modeling (ASM), other representations; solid							
manipulations, solid modeling based applications: mass properties							
calculations, mechanical							
Self-study : Nil							
Site/Industrial Visits : Nil							

Course outcomes:

CO1. Have a conceptual understanding of the principles of CAD systems, the implementation of these principles, and its connections to CAM and CAE systems. {L1,2}{CO1,2,3}

CO2. Understand 2D, 3D transformations and projection transformations {L2,3}{CO1,2,3,4}

CO3. Get knowledge of various approaches of geometric modeling {L2,3}{CO1,2,3,4}

CO4. Understand mathematical representation of 2D and 3D entities. {L3,4}{CO1,2,3,4}

CO5. Understand basic fundamentals of FEM. {L3,5}{CO2,3,4}

CO6. Integrate principles of related fields into the use of CAD software. {L4}{CO2,4}

Text Books:

T1. Ibrahbim Zeid, "CAD / CAM Theory and Practice".

T2. Jim Browne, "Computer Aided Engineering and Design".

T3. P. Radhakrishnan / V. Raju / S. Subramanyam, "CAD / CAM / CIM"

T4: P.N. Rao, "CAD / CAM principles and applications", Tata Mcraw-Hill, 02

Reference Books:

R1. Rogers / Adams, "Mathematical Elements for Computer Graphics".

R2. Rooney and Steadman, "Principles of Computer Aided Design", Aug. 1993.

R3. Jerry Banks / John Carson / Barry Nelson / David Nicol, "Discrete-Event System Simulation"

Course Name: Advanced Design of Mechanical System						
	Course Code : MTME134E1					
	L	Т	Р	Category	PEC	
Contact Hrs./Week	3	0	0	CIA Marks	50	
Contact Hrs./Sem.	45	0	0	ESE Marks	50	
Credits.	3	0	0	Exam Hours	3	

Course objectives:

- To facilitate the students to appreciate the design function in machine elements and understand the role of failure prevention analysis in mechanical design.
- To be able to estimate the fatigue life estimation using stress-life approach and strain life approach.
- To understand the significance of statistical aspects in fatigue, LEFM, fatigue from variable amplitude loading etc.
- To impart the knowledge on various aspects of surface failure and dynamic contact stresses.
- The course aims at enumerating the theoretical and practical aspects of design process.

Prerequisites: Strength of Materials, Design of Machine Elements					
Units	Teaching Hours				
Unit-1					
INTRODUCTION: Role of failure prevention analysis in mechanical design, Modes of mechanical failure, Review of failure theories for ductile and brittle materials including Mohr's theory and modified Mohr's theory, Numerical examples. FATIGUE OF MATERIALS : Introductory concepts, High cycle and low cycle fatigue, Fatigue design models, Fatigue design methods, Fatigue design criteria, Fatigue testing, Test methods and standard test specimens, Fatigue fracture surfaces and macroscopic features, Fatigue mechanisms and microscopic features	9				
Unit-2					
STRESS-LIFE (S-N) APPROACH : S-N curves, Statistical nature of fatigue test data, General S-N behavior, Mean stress effects, Different factors influencing S-N behavior, S-N curve representation and approximations, Constant life diagrams, Fatigue life estimation using S-N approach. STRAIN-LIFE(E-N)APPROACH: Monotonic stress-strain behavior ,Strain controlled test methods ,Cyclic stress-strain behavior ,Strain behavior , Determination of strain life fatigue properties, Mean stress effects, Effect of surface finish, Life estimation by ε-N approach.	9				
Unit-3					
LEFM APPROACH: LEFM concepts, Crack tip plastic zone, Fracture toughness, Fatigue crack growth, Mean stress effects, Crack growth life estimation. STATISTICAL ASPECTS OF FATIGUE: Definitions and quantification of data scatter, Probability distributions, Tolerance limits, Regression analysis of fatigue data, Reliability analysis, Problems using the Weibull distribution.	9				

Unit-4	
FATIGUE FROM VARIABLE AMPLITUDE LOADING: Spectrum loads and	9
cumulative damage, Damage quantification and the concepts of damage	
fraction and accumulation, Cumulative damage theories, Load interaction and	
sequence effects, Cycle counting methods, Life estimation using stress life	
approach.	
Unit-5	
SURFACE FAILURE: Introduction, Surface geometry, Mating surface,	9
Friction, Adhesive wear, Abrasive wear, Corrosion wear, Surface fatigue	
spherical contact, Cylindrical contact, General contact, Dynamic contact	
stresses, Surface fatigue strength.	
Self-study : Nil	
Site/Industrial Visits : Nil	
Course outcomes:	
CO1: {Analyse the different types of failure modes and be able to judge which	criterion is
to be applied in which situation.} {L1, L2} {PO1, PO2}	
CO2: {Discuss the overview of stress-life and strain life approach to understand	the fatigue
behaviour of materials.} {L1, L2 }{PO1, PO2}	C
CO3: {Explain the linear elastic behaviour in fracture of materials and under	erstand the
statistical aspects of fatigue.} { L1, L2, L3} {PO1, PO2}	
CO4: {Describe the various counting methods, damage theories used in the fat	igue design
from variable amplitude loading.} { L1, L2, L3} {PO1, PO2, PO3}	0 0
CO5: {Classify different types of wear and illustrate the various surface failures	.}{ L1, L2,
L3} {PO1, PO2, PO3}	
Text Books:	
T1, Ralph I, Stephens, Ali Fatemi, Robert R. Stephens, Henry o, Fuchs, "Metal F	Fatione in
engineering" Second edition John wiley Newyork 2001	ungue m
T2 Jack A Collins, "Failure of Materials in Mechanical Design". John Wiley, N	ewvork
1997	enyem
T3. Robert L. Norton, Machine Design, Pearson, 2005.	
Reference Books:	
R1. S.Suresh, "Fatigue of Materials", Cambridge university press, Cambridge, U	J.K., 1998.
R2. Julie.A. Benantine, "Fundamentals of Metal Fatigue Analysis", Prentice Hal	1, 1990.
R3. "Fatigue and Fracture", ASM Hand Book, Vol 19, 2002.	

Online Resources:

W1. https://nptel.ac.in/courses/112106137/

Course Name: Robotics							
Course Code : MTME134E2							
	L	Т	Р	Category	PEC		
Contact Hrs./Week	3	0	0	CIA Marks	50		
Contact Hrs./Sem.	45	0	0	ESE Marks	50		
Credits.	3	0	0	Exam Hours	3		

Course objectives: At the end of the course:

- Describe and explain 3D translation and orientation representation & Illustrate the robot arm kinematics and use of Robot Operating System usage.
- Design / Simulate a robot which meets kinematic requirements.
- Apply localization and mapping aspects of mobile robotics.
- Demonstrate self-learning capability
- To provide the student with some knowledge and analysis skills associated with trajectory planning.
- To develop the student's knowledge in various robot structures and their workspace

Units	Teaching Hours
Unit-1	
Introduction: Basic Concepts such as Definition, three laws, DOF,	9
Misunderstood devices etc., Elements of Robotic Systems i.e. Robot anatomy,	
Classification, Associated parameters i.e. resolution, accuracy, repeatability,	
dexterity, compliance, RCC device, etc. Automation - Concept, Need,	
Automation in Production System, Principles and Strategies of Automation,	
Basic Elements of an Automated System, Advanced Automation Functions,	
Levels of Automations, introduction to automation productivity.	
Unit-2	
Robot Grippers: Types of Grippers, Design aspect for gripper, Force analysis	9
for various basic gripper system. Sensors for Robots:- Characteristics of sensing	
devices, Selections of sensors, Classification and applications of sensors. Types	
of Sensors, Need for sensors and vision system in the working and control of a	
robot.	
Unit-3	
Drives and control systems: Types of Drives, Actuators and its selection while	9
designing a robot system. Types of transmission systems, Control Systems -	
Types of Controllers, Introduction to closed loop control Control Technologies	
in Automation:- Industrial Control Systems, Process Industries Verses	
Discrete-Manufacturing Industries, Continuous Verses Discrete Control,	
Computer Process and its	
Forms. Control System Components such as Sensors, Actuators and others.	
Unit-4	
Kinematics: Transformation matrices and their arithmetic, link and joint	9
description, Denavit - Hartenberg parameters, frame assignment to links,	
direct kinematics, kinematics redundancy, kinematics calibration, inverse	
kinematics, solvability, algebraic and geometrical methods. Velocities and	
Static forces in manipulators: - Jacobians, singularities, static forces, Jacobian	
in force domain. Dynamics:- Introduction to Dynamics , Trajectory	
generations.	1

Unit-5	
Machine Vision System:Vision System Devices, Image acquisition, Masking, Sampling and quantisation, Image Processing Techniques, Noise reduction methods, Edge detection, Segmentation. Robot Programming :- Methods of robot programming, lead through programming, motion interpolation, branching capabilities, WAIT, SIGNAL and DELAY commands, subroutines, Programming Languages: Introduction to various types such as RAIL and VAL II etc, Features of type and development of languages for recent robot systems	9
Self-study : Nil	
Site/Industrial Visits : Nil	
Course outcomes: CO 1. Understand basic terminologies and concepts associated with Ro automation (L1,2)(PO1,2,3) CO 2.Demonstrate comprehension of various Robotic sub-systems (L2,2)(PO1,3 CO 3.Understand kinematics and dynamics to explain exact working pattern of (L3,2)(PO1,3,4) CO 4. Aware of the associated recent updates in Robotics (L1,2)(PO1,2,4) CO5: To provide the student with some knowledge and analysis skills associated trajectory planning. (L1,2)(PO1,2,3) CO6: To develop the student's knowledge in various robot structures and their (L1,2,3)(PO1,2,4,5)	obotics and 6,4) Frobots ed with workspace
 Text Books: T1. John J. Craig, Introduction to Robotics (Mechanics and Control), Addison-V Edition, 04 T2. Mikell P. Groover et. Al., Industrial Robotics: Technology, Programming an Applications, McGraw – Hill International, 1986 T3. Shimon Y. Nof , Handbook of Industrial Robotics , John Wiley Co, 01 T4. Automation, Production Systems and Computer Integrated Manufacturing, Groover, Pearson Education. T5. Industrial Automation: W.P. David, John Wiley and Sons. 	Vesley, 2nd Id , M.P.
Reference Books: R1. Richard D. Klafter , Thomas A. Chemielewski, Michael Negin, Robotic Engi An Integrated Approach , Prentice Hall India, 02. R2. Handbook of design, manufacturing & Automation: R.C. Dorf, John Wiley a	ineering : and Sons.

Course Name: Optimization Techniques in Design					
Course Code : MTME134E3					
	L	Т	Р	Catego	ory PEC
Contact Hrs./Week	3	0	0	CIA Mar	ks 50
Contact Hrs./Sem.	45	0	0	ESE Mai	ks 50
Credits.	3	0	0	Exam Hou	irs 3
Course objectives: At th	e end o	f the c	ourse		
 Students will kno 	w the p	rincip	les of	optimization.	
• Students will have	e know	ledge	of alg	orithms for design optimization	
• Students will be a	ble to f	ormul	ate an	optimization problem.	
• Students should	be able	e to fi	nd th	e optimum solution of their prob	olems using
optimization tech	niques.			1 1	0
Units	•				Teaching
					Hours
Unit-1					
Introduction to optimizat	tion, cla	ssifica	ation c	of optimisation problems, classical	09
optimization techniques.					
Unit-2					
Linear programming, sin	mplex 1	netho	d and	Duality in linear programming,	09
sensitivity or post-optima	ality and	alysis,	Karm	arkar's methods.	
Unit-3					
Non-Linear Programmin	ng: - Or	ne din	nensic	onal minimization, unconstrained	09
and constrained minimiz	ation, d	lirect a	and in	direct methods.	
Unit-4					
Geometric programming, Optimum design of mechanical elements like beams, 09					
columns, gears, shafts, etc					
Unit-5					
Introduction to Genetic Algorithms, Operators, applications to engineering 09					
optimization problems.					
Self-study : N1	•1				
Site/Industrial Visits : Nil					
Course outcomes:	the pri	nainla	a of or	timization (I 1 2)(PO1 2)	
CO1. Students will know the principles of optimization. $\{L1,2\}$ {PO1,2}					
CO_2 . Students will have	lo to fo	rmula	1 aigu. to an c	11111115101000000000000000000000000000	,2){I (1,2,3) }
CO 4 Students should be	able to	find	te an t	timum solution of their problems i	f Ising
optimization techniques	{L3}{P()1 2 3	lic op	untain solution of their problems e	lonig
Text Books:		, ,			
T1. S. S. Stricker, "Optimi	ising pe	erform	ance o	of energy systems" Battelle Press, N	JY, 1983.
T2. R.C. Johnson, "Optimum Design of Mechanical Elements", Willey, New York, 1980.					
T3. J. S. Arora, "Introduction to Optimum Design", McGraw Hill, New York, 1989.					
T4. Kalyanmoy Deb, "Optimization for Engineering Design", Prentice Hall of India, 2005.					
Reference Books:					
R1. L.C.W. Dixon, "Non-Linear Optimisation – Theory & Algorithms", Birkhauser, Boston,					
1980.					
R2. R.J. Duffin, E.L. Peterson and C.Zener "Geometric Programming-Theory and					
Applications", Willey, New York, 1967.					
R3. G.B. Dantzig "Linear Programming and Extensions Princeton University Press",					
Princeton, N. J., 1963.					
R4. R. Bellman "Dynamic Programming-Princeton" University Press, Princeton, N.J. 1957.					

Course Name: Advanced CAD Laboratory					
Course Code : MTME151					
	L	Т	Р	Catego	ry PCC
Contact Hrs./Week004CIA Mark				ks 50	
Contact Hrs./Sem.	0	0	60	ESE Mar	ks 50
Credits.	0	0	2	Exam Hou	irs 3
 The students wi Engineering Mech Students will be a Students will be a 	ll be a nanics r ble to f ble to v	able u elatec unctic vrite t	use C l prob on as a echnic	ommercial CAD tools for solvir lems. design engineering team member. cal reports.	ng real life
List of Experiments:					Practical
1. Introduction to CAD	Comm	ercial	Tool.		4
2 Type of Modules and	comm	ands			4
		unds.			1
3. Introduction to Sketch	hing				6
4. Introduction to Part Modelling.					
5. Introduction to Assembly drawing					
6. Introduction to drafting 3D model.					6
7. Exercises on Part Modelling.					6
8. Exercises on Assembly Drawing.				6	
9. Generation of Bill of Materials (BOM).				6	
10. Surface Modelling.				6	
Course outcomes: CO1: The students will be able use Commercial CAD tools for solving real life Engineering Mechanics related problems. {PO1,2 & L1,2,3} CO2: Students will be able to function as a design engineering team member. {PO1,2,3,4 & L4,5} CO3: Students will be able to write technical reports. {PO3,4 & L4,5}					
Text Books: T1: 'A Primer on Computer Aided Machine Drawing-2007', Published by VTU, Belgaum. T2: 'Machine Drawing', N.D.Bhat & V.M.Panchal, 2012.					
Reference Books:R1: 'A Text Book of Computer Aided Machine Drawing', S. Trymbaka Murthy, CBSPublishers, New Delhi, 2007R2: 'Machine Drawing', K.R. Gopala Krishna, Subhash Publication,2012.R3: 'Machine Drawing with Auto CAD', Goutam Pohit & Goutham Ghosh, 1st Indian printPearson Education, 2007R4: 'Auto CAD 2015, for engineers and designers', Sham Tickoo. Dream tech 2015					

Course Name: Simulation Laboratory					
Course Code : MTME152					
	L	Т	Р	Catego	ry PCC
Contact Hrs./Week	0	0	4	CIA Mar	ks 50
Contact Hrs./Sem.	0	0	60	ESE Mar	ks 50
Credits.	0	0	2	Exam Hou	irs 3
 Course objectives: The students will be able use Commercial FEM tools for solving real life Engineering Mechanics related problems. Students will be able to function as a design engineering team member. Students will be able to write technical reports. 					
List of Experiments:					Practical
11 Introduction to FFM	Comm	ercial	Tool		A Hours
			<u> </u>		- I
12. Types of Elements an	d their	usage	s (1-D), 2-D and 3-D)	4
13. Selection and Simplification of the geometry and Meshing Techniques.					6
14. Beam and Frame Problems solving using FEM 3D tool.					10
15. Static loading problem solution using FEM tool.					6
16. Dynamic Loading problem solution using FEM tool.					6
17. Mesh convergence study using above two problems.					6
18. Effects of different types of friction on contact mechanisms.				6	
19. Three dimensional truss problems				6	
20. Study on natural frequency and influence of materials and boundary condition on it.				6	
Course outcomes: CO1: The students will be able use Commercial FEM tools for solving real life Engineering Mechanics related problems. {PO1,2 & L1,2,3} CO2: Students will be able to function as a design engineering team member. {PO1,2,3,4 & L4,5} CO3: Students will be able to write technical reports. {PO3,4 & L4,5}					
Text Books:					
 T1. Hughes, T. J. R. (2007). Finite Element Method: Linear Static and Dynamic Finite Element Anlaysis. New York: Dover Publications. T2. Babuška, I., Whiteman, J. R., & Strouboulis, T. (2011). Finite Elements: An introduction to the method and error estimation. Oxford ; New York: Oxford University Press. T3. Gokhale, N. S. (2008). Practical finite element analysis. Maharashtra: Finte to Infinite. 					
Reference Books: R1. Thompson, E. G. (2005). An introduction to the finite element method: Theory, programming, applications. New Delhi: Wiley.					

programming, applications. New Delhi: Wiley.
Course Name: Research Methodology And Intellectual Property Rights						
	Course Code : MTME135					
	L	Т	Р	Catego	ry	MLC
Contact Hrs./Week	4	0	0	CIA Mar	ks	40
Contact Hrs./Sem.	45	0	0	ESE Mar	ks	50
Credits.	3	0	0	Exam Hou	ırs	3
 Course objectives: To understand some basic concepts of research and its methodologies. To identify appropriate research topics and developing hypothesis. To select and define appropriate research problem and parameters. To organize and conduct research/project in a more appropriate manner. To enable the students to imbibe and internalize the Values and Ethical Behaviour in the personal and Professional lives. To discuss the importance of intellectual property rights and IPR law. 					her. Ethical	
Units					Теа Но1	ching ırs
Unit-1						
Research methodology exploratory research, co research, casual research and time series resear objectives, characteristic perspective Research design- definitie reliability of instrument, Variables in Research, typ a data collection for scien and validation of questio	- defin inclusiv a, theor ch. Re cs, hyp on, type Validit pes of d tific and <u>nnaire,</u>	e rese etical search oothes es – de y of f ata – p l busin measu	and search, and en pro is an scripti finding primai ness re ureme	ive and experimental, validity, ry and secondary data, methods of esearch, experiments, construction ive and experimental, validity and gs- internal and external validity, ry and secondary data, methods of esearch, experiments, construction ent and scaling.		09
Unit-2						
Sampling methods – Probability sampling methods – simple random sampling with replacement and without replacement, stratified sampling, cluster sampling. Non-probability sampling method – convenience sampling, judgment sampling, quota sampling Hypothesis testing – Testing of hypotheses concerning means (one mean and difference between two means – one tailed and two tailed tests), concerning						09
variance _ one tailed Chi	-square	test.		······································		
Unit-3						
Report writing – types of need of summary, impore report, oral presentation contents to meet the jour index, policy on academ	report, ortance . Recor mals sta uc hone	guide of lau ding andare esty a	elines nguag the fii d – im nd in	to write report, typing instruction, e in the preparation of research ndings of research – publication- pact factor – citation and citation tegrity – academics cheating and		09

plagiarism. Opportunities to carry out research projects with funding/assistance from various Government agencies.	
Unit-4	
INTRODUCTION TO INTELLECTUAL PROPERTY	
Multinational corporations- Environmental ethics- Computer ethics and Weapons developments. Meaning and Types of Intellectual Property, Intellectual Property. Law Basics, Agencies responsible for intellectual property registration, International Organizations, Agencies and Treaties, Importance of Intellectual Property Rights.	09
Introduction, Meaning of Patent Law, Rights under Federal Law, United States patent and Trademark Office, Patentability, Design Patents, Plants patents, Double Patenting.	
Unit-5	
FOUNDATIONS OF TRADEMARKS Meaning of Trademarks, Purpose and Functions of Trademarks, types of Marks, Acquisition of Trademark rights, Common Law rights, Categories of Marks, Trade names and Business Name, Protectable Matter, Exclusions from	
Trademark Protection.	09
FOUNDATIONS OF COPYRIGHTS LAW AND PATENT LAW	0,7
Meaning of Copyrights, Common Law rights and Rights under the 1976	
copyright Act, Recent developments of the Copyright Act, The United States Copyright Office.	
Self-study · Nil	
Site/Industrial Visits : Nil.	
Course outcomes:	
CO1: To develop understanding of the basic framework of research process and techniques. {L1, L2} {PO1, PO2, PO4}	ł
CO2: To identify various sources of information for literature review and data of {L1, L2, L4} {PO1, PO2, PO3, PO4}	collection.
CO3: To appreciate the components of scholarly writing and evaluate its quality L6} {PO8, PO10}	y {L1, L2,
CO4: To develop an ethical behaviour under all situations. {L1, L2} {PO8, PO12	}
CO5: To understand Trademark, Copy right and Patent Laws. {L1, L2} {PO8, PO	, D12}
Text Books:	
T1. Garg, B.L, Karadia R, Agarwal F, and Agarwal, "An introduction to Res Methodology", RBSA Publishers, 2002.	earch
T2. Kothari C.R, "Research Methodology: Methods and Techniques", New J International, 1990.	Age
T3. Mike Martin and Roland Schinzinger "Ethics in Engineering", TMH, 200	09.
T4. Deborah E. Bouchoux, "Intellectual Property Rights", Cengage 2005.	

Reference Books:

- R1. Sinha, S.C and Dhiman A.K, "Research Methodology", 2nd volume, Ess Publications, 2002.
- R2. Trochim W.M.K, "Research Methods: the concise knowledge base", Atomic Dog Publishing, 2005.
- R3. Donald R. Cooper and Pamela S. Schindler, business Research Methods, 9th edition, Tata Mcgraw Hill, 2006
- R4. Jayashree Suresh & B.S.Raghavan "Human values and Professional Ethics", S. Chand, 2009.
- R5. Govindarajan, Natarajan and Senthilkumar "Engineering Ethics", PHI:009.
- R6. Nagarajan "A Text Book on Professional ethics and Human values", New Age International, 2009.
- R7. Charles & Fleddermann "Engineering Ethics", Pearson, 2009.
- R8. Rachana Singh Puri and Arvind Viswanathan, I.K."Practical Approach to Intellectual Property rights", International Publishing House, New Delhi. 2010.
- R9. A.B.Rao "Business Ethics and Professional Values", Excel, 2009.

Online Resources:

- W1. https://www.coursera.org/learn/research-methods
- W2. https://nptel.ac.in/downloads/121106007/
- W3. https://swayam.gov.in/courses/5146-intellectual-property

Course Name: Advanced Finite Element Method						
Course Code : MTME231						
	L	Τ	Р	Category	PCC	
Contact Hrs./Week	3	0	0	CIA Marks	50	
Contact Hrs./Sem.	45	0	0	ESE Marks	50	
Credits.	3	0	0	Exam Hours	3	

This course provides an introduction to finite elements method with a focus on one and two dimensional problems in structures, heat transfer, static and dynamics.

Prerequisites:

- 1. Solid Mechanics
- 2. Theory Of Elasticity
- 3. Theory Of Plasticity

Units	Teaching
	Hours
Unit-1 Introduction To Finite Element Method	
INTRODUCTION : Engineering Analysis, History, Advantages, Classification, Basic steps, Convergence criteria, Role of finite element analysis in computer-aided design. Mathematical Preliminaries, Differential equations formulations, Variational formulations, weighted residual methods	
ONE-DIMENSIONAL ELEMENTS-ANALYSIS OF BARS AND TRUSSES: Basic Equations and Potential Energy Functional, 1-0 Bar Element, Admissible displacement function, Strain matrix, Stress recovery, Element equations, Stiffness matrix, Consistent nodal force vector: Body force, Initial strain, Assembly Procedure, Boundary and Constraint Conditions, Single point constraint, Multi-point constraint, 2-D Bar Element, Shape functions for Higher Order Elements.	11
Unit-2 Two-Dimensional Elements-Analysis Of Plane Elasticity Proble	ems
Three-Noded Triangular Element (TRIA 3), Four-Noded Quadrilateral Element (QUAD 4), Shape functions for Higher Order Elements (TRIA 6, QUAD 8) AXI-SYMMETRIC SOLID ELEMENTS-ANALYSIS OF BODIES OF REVOLUTION UNDER AXI-SYMMETRIC LOADING: Axisymmetric Triangular and Quadrilateral Ring Elements. Shape functions for Higher Order	08
Elements.	
Unit-3 Three-Dimensional Elements-Applications To Solid Mechanics P System	roblems
Basic Equations and Potential Energy Functional, Four-Noded Tetrahedral Element (TET 4), Eight-Noded Hexahedral Element (HEXA 8), Tetrahedral elements, Hexahedral elements: Serendipity family, Hexahedral elements: Lagrange family. Shape functions for Higher Order Elements.	08

Unit-4 Beam Elements-Analysis Of Beams And Frames	
1-D Beam Element, 2-D Beam Element, Problems.	
HEAT TRANSFER / FLUID FLOW: Steady state heat transfer, 1 D heat conduction governing equation, boundary conditions, One dimensional element, Functional approach for heat conduction, Galerkin approach for heat conduction, heat flux boundary condition, 1 D heat transfer in thin fins. Basic differential equation for fluid flow in pipes, around solid bodies, porous media.	10
Unit-5 Dynamic Considerations	
Formulation for point mass and distributed masses, Consistent element mass matrix of one dimensional bar element, truss element, axisymmetric triangular element, quadrilatateral element, beam element. Lumped mass matrix, Evaluation of eigen values and eigen vectors, Applications to bars, stepped bars, and beams.	08
Self-study :	
Unit-1: Shape functions for Higher Order Elements (1-D). Unit-2: Shape functions for Higher Order Elements (2-D). Unit-3: Shape functions for Higher Order Elements (3-D). Unit-4: Basic differential equation for fluid flow in pipes Unit-5: Applications to bars, stepped bars, and beams.	
Site/Industrial Visits : Nil.	
Course outcomes: The students will be able	
 CO1: To emonstrate understanding of FE formulation for linear problems in solt CO2: To classify a given problem on the basis of its dimensionality as 1-D, 2 time-dependence as Static or Dynamic, Linear or Non-linear. CO3: To develop mathematical model of a problem following the Rayle Galerkin weighted residual method. CO4: To Find the shape function for different elements including higher order of CO5: To derive Stiffness matrices, load vectors for bar, truss, beam and heat tran CO6: To obtain consistent and lumped mass matrices for axial vibration transverse vibration of beams and obtain fundamental frequency of natu using the methods mentioned in the curricula. CO7: To use commercial software like ANSYS or ABAQUS for implement to obtain stress concentration due to a small hole in a rectangular plate traction on edges and concentrated loads at points on the edges and 	id mechanics. 2-D, or 3-D, eigh Ritz and elements. sfer problems of bars and ral vibration tation of FEM e subjected to
boundary conditions.	a prescribed
Text Books:	
 T1. Chandrupatla T. R., "Finite Elements in engineering" - 2nd Edition, PHI, 200 T2. Lakshminarayana H. V., "Finite Elements Analysis" - Procedures in Universities Press, 2004. 	07. Engineering,

Reference Books:

- R1. Rao S. S. "Finite Elements Method in Engineering" 4th Edition, Elsevier, 2006
- R2. P.Seshu, "Textbook of Finite Element Analysis"-PHI, 2004.
- R3. J.N.Reddy, "Finite Element Method"- McGraw -Hill International Edition. Bathe K. J. Finite Elements Procedures, PHI.
- R4. Cook R. D., et al. "Concepts and Application of Finite Elements Analysis"- 4th Edition, Wiley & Sons, 2003.

Online Resources:

W1. https://nptel.ac.in/courses/112104116/

Course Name: ADVANCED THEORY OF VIBRATION						
		Cou	rse Coc	le : MTME232		
	L	Т	Р	Catego	ry PCC	
Contact Hrs./Week	3	0	0	CIA Mar	ks 50	
Contact Hrs./Sem.	45	0	0	ESE Mar	ks 50	
Credits.	3	0	0	Exam Hou	irs 3	
Course objectives: To obtain the To acquire the To know the To understa	 Course objectives: To obtain the idea of classification of vibration, modal analysis. To acquire the knowledge of damping factor and measuring instruments. To know the DOF and the damping factors To understand the measuring instruments. 					
Prerequisites: Finite E	lement	Metho	d, Kinei	matics of Machinery.		
Unit					Teaching Hours	
Unit-1						
REVIEW OF MECHA Basic concepts; free v without damping, For isolation, Two DOF-sy	NICAL ibration ced vib zstems,	J VIBR	ATION gle deg of single freque	S: ree of freedom systems with and e DOF-systems, Force and motion ncy.	09	
Unit-2						
TRANSIENT VIBRATION OF SINGLE DEGREE-OF FREEDOM SYSTEMS: Impulse excitation, Arbitrary excitation, Laplace transform formulation, Pulse excitation and rise time, Shock response spectrum, Shock isolation, Finite difference numerical computation.				08		
Unit-3						
VIBRATION CONTE Introduction, Vibration harmonic excitation, J Dynamic vibration abs VIBRATION MEASU Introduction, Transo instruments, Vibration	tOL: on isol practica sorbers, J REME lucers, n exciter	ation 1 1 aspec and Vi NT AN Vibra cs, Signa	theory, ts of vi bration (D APP tion p al analy	Vibration isolation theory for ibration analysis, shock isolation, dampers. LICATIONS: pickups, Frequency measuring rsis.	10	
Unit-4						
MODAL ANALYSIS Dynamic Testing of n Machine Condition m NON LINEAR VIBRA Introduction, Source systems. Phase plane, of isoclines, Perturbati	& CON nachines onitorin ATIONS s of no Conser on meth	IDITIO s and S ig and c S: onlinea vative s nod, Me	DN MO Structur diagnos rity, Q systems ethod of	NITORING: res, Experimental Modal analysis, is. qualitative analysis of nonlinear s, Stability of equilibrium, Method f iteration, Self-excited oscillations.	09	

Unit-5					
RANDOM VIBRATIONS :					
Random phenomena, Time averaging and expected value, Frequency					
response function, Probability distribution, Correlation, Power spectrum and					
power spectral density, Fourier transforms, FTs and response.	09				
CONTINUOUS SYSTEMS:	07				
Vibrating string, Longitudinal vibration of rods, Torsional vibration of rods,					
Suspension bridge as continuous system, Euler equation for beams, vibration					
or memoranes.					
Self-study : Nil					
Site/Industrial Visits : Nil					
Course outcomes:					
CO1: To learn the classification of mechanical vibration {L1, L2} {PO1, PO2, PO	4}				
CO2: To acquire the knowledge of damping factor and transient vibration.					
{L1, L2, L4} {PO1, PO2, PO3, PO4}					
CO3: To learn about vibration control and the damping factors. {L1, L2, L6} {PO8, PO10}					
CO4: To understand the working of measuring instruments and condition monitoring					
systems. {L1, L2} {PO8, PO12}	(10)				
CO5: To learn random vibration and continuous systems. {L1, L2} {PO8, P	012}				
Text Books:					
11. William I. Thomson, Marie Dillon Dahleh, Chandramouli Padmanabhan,	Theory of				
Vibration with Application, 5th edition Pearson Education, 2008.	Crease I I:11				
12. S. Granam Kelly, Fundamentals of Mechanical Vibration 2nd edition, M	cGraw Hill,				
T3 S S Rao "Mechanical Vibrations" 4th edition Pearson Education 2003					
T4. W.T. Thomson and Marie Dillon Dahleh. "Theory of Vibration with An	plications".				
Pearson Education 5th edition, 2007.	pileutione ,				
T5. V.P. Singh, "Mechanical Vibrations", Dhanpat Rai & Company Pvt. Ltd.,	3rd edition,				
2006.					
Reference Books:					
R1. S. Graham Kelly, Schaum's Outlines, "Mechanical Vibrations", Tata McGray	w Hill, 2007.				
R2. J.S. Rao & K. Gupta, "Theory & Practice of Mechanical vibrations"	New Age				
International Publications, New Delhi, 2001.					
KS. Leonand Melrovitch, Elements of Vibrations Analysis, Tata McGraw I Indian adition 2007	nii, speciai				
W1 https:// pptol.ac.in/courses/112102111/					
W1. https:// nptel.ac.in/ courses/112103111/18 W2 https://nptel.ac.in/courses/112103111/18					

W3. https://web.itu.edu.tr/~gundes/sdof.pdf

W4. http://www.emtengineering.com/wp-content/uploads/2013/04/RANDVIB.pdf W5.http://www1.aucegypt.edu/faculty/mharafa/MENG%20475/Continuous%20Syste ms%20Fall%202010.pdf

Course Name: TRIBOLOGY AND BEARING DESIGN						
Course Code : MTME233E1						
	L	Т	Р	Catego	ry PEC	
Contact Hrs./Week	3	0	0	CIA Mar	ks 50	
Contact Hrs./Sem.	45	0	0	ESE Mar	ks 50	
Credits.	3	0	0	Exam Hou	irs 3	
Course objectives: To study the t Design a bear To know the r	 Course objectives: To study the types of contacts, types of bearing. Design a bearing based on their application and types of load. To know the response of idealized bearing systems. 					
Prerequisites: Design of	Machin	e Eler	nents.			
Units					Teaching Hours	
Unit-1						
Introduction, Friction, Wear, Wear Characterization, Regimes of lubrication, Classification of contacts, lubrication theories. Newton's Law of viscous forces, Effect of pressure and temperature on viscosity. HYDRODYNAMIC LUBRICATION: Newton's Law of viscous forces, Flow through stationary parallel plates. Hagen's poiseuille's theory, viscometers. Numerical problems, Concept of lightly loaded bearings, Petroff's equation, Numerical problems.					10	
Unit-2						
HYDRODYNAMIC BEA Pressure development in pressure induced flow Introduction to idealized Expression for load ca Numerical problems. JOURNAL BEARINGS: Introduction to idealized idealized full journal b Comparison between lig problems.	ARING mechan v. Rey d slide urrying d full j earings htly loa	S: ism. nolds bearin capae ourna , Sorr aded a	Conve 's 2D ng wit city. 1 I bean umerfe und he	erging and diverging films and O equation with assumptions. th fixed shoe and Pivoted shoes. Location of centre of pressure, rings. Load carrying capacity of eld number and its significance. ravily loaded bearings, Numerical	10	
Unit-3						
EHL CONTACTS: Introduction to Elasto - 'EHL' constant. Grubin ty Governing differential ec	hydroc ype solu juation	lynam 1tion. for ga	nic luk Introc Is lubr	pricated bearings. Introduction to luction to gas lubricated bearings. icated bearings.	08	

Unit-4	
HYDROSTATIC BEARINGS:	
Types of hydrostatic Lubrication systems Expression for discharge, load	
carrying capacity, Flow rate, Condition for minimum power loss. Torque	
calculations. Numerical problems.	09
POROUS & GAS BEARINGS:	
Introduction to porous bearings. Equations for porous bearings and working	
principal, Fretting phenomenon and it's stages	
Unit-5	
MAGNETIC BEARINGS:	
Introduction to magnetic bearings, Active magnetic bearings. Different	
equations used in magnetic bearings and working principal. Advantages and	08
disadvantages of magnetic bearings, Electrical analogy, Magneto-	
hydrodynamic bearings.	
Self-study: Nil.	
Site/Industrial Visits: Nil.	
Course outcomes:	
CO1: To understand the principles of tribology for selecting compatible m	aterials for
minimizing friction and wear in machinery. {L1, L2} {PO1, PO2}	
CO2: To understand the principles of bearing selection based on the application	n. {L1, L2}
{PO1, PO2, PO3}	
CO3: To learn the computations required for selecting and designing bearings i	n
machines. {L2, L3, L4} {PO1, PO2, PO3, PO4}	
CO4: To understand the fundamental principles of gas lubricated bearings. {L1,	, L2} {PO1,
PO2, PO3}	
CO5: To understand the fundamental principles of magnetic bearings .{L2, L3, PO2 PO3, PO4}	L5} {PO1,
Text Books:	
T1. B.C. Majumdar "Introduction to Tribology of Bearing", Wheeler Publishing, 2001	New Delhi,
T2 Susheel Kumar Srivasthava "Tribology in industry" S Chand and Co. 2000	
T3 D Berthe D Dowson M Godet, CM Taylor, "Tribological Design of	of Machine
Elements", Elsevier Science, 1989.	or muchane
T4. E. Richard Booser, Michael M. Khonsari, "Applied Tribology Bearing I	Design and
Lubrication" Wiley, 2017.	
Reference Books:	
R1. Dudley D. Fulier, "Theory and practice of Lubrication for Engineers",	New York
Company, 1998.	
R2. Moore "Principles and applications of Tribology" Pergamon press, 1 st Editio	n, 1975.
R3. Pinkus .O. Stemitch. "Theory of Hydrodynamic Lubrication", Mc-Graw	Hill Book
Company Inc., New York, 1961.	
R4. Gerhandschwetizer, Hannes Bleuler & Alfons Traxler, "Active Magnetic	bearings",
Authors working group, www.mcgs.ch., 2003.	0,
R5 Radixmovsky, "Lubrication of Bearings - Theoretical principles and design".	The Oxford
press Company, 2000.	ine oviera
Online Resources:	
W1. https://nptel.ac.in/downloads/112105125/	
W2. https://nptel.ac.in/syllabus/112106137/	
W3. https://onlinecourses.nptel.ac.in/noc18_ce18/preview	

Course Name: CONDITION BASED MONITORING							
Course Code : MTME233E2							
	L	Т	Р	Category	PEC		
Contact Hrs./Week	3	0	0	CIA Marks	50		
Contact Hrs./Sem.	45	0	0	ESE Marks	50		
Credits.	3	0	0	Exam Hours	3		

The aim of this module is to provide the learner with the knowledge of a variety of concepts and the skill to apply a variety of techniques associated with fault finding and condition monitoring in engineering systems.

Prerequisites: Instrumentation & Control, Design of Machine Elements and Tr				
Units	Teaching			
	Hours			
Unit-1				
INTRODUCTION:	09			
Introduction to Condition Monitoring Basic concept, visual monitoring,				
temperature monitoring, vibration monitoring, lubricant monitoring, crack				
monitoring, thickness monitoring, noise and sound monitoring.				
Economics of Condition Monitoring, Setting up a Condition Monitoring				
Activity, Implementation of Condition Based Maintenance, Consequences of				
implementation of Condition Based Maintenance. Information System,				
Selection of Monitoring Methods, Assessment of monitoring techniques, Case				
studies.				
Unit-2				
VIBRATION MONITORING AND ANALYSIS:	09			
Introduction, Machinery signatures, Selection of Transducers. Analysis				
Techniques, Machine failure modes, Measurement location, Vibration severity				
criteria, Vibration frequency analysis. Permanent Monitoring, Case studies.				
VIBRATION MONITORING OF BALL AND ROLLER BEARINGS:				
Introduction, Shock pulse method, SPM for testing Antifriction bearings,				
Manual Monitoring Continuous monitoring, The Kurtosis method, Fiber optics				
system, Vibration signature analysis, Contact resistance method, Case studies.				
SPM and its Applications.				
Unit-3				
SPECIALIZED TECHNIQUES OF CONDITION MONITORING:	09			
Acoustic imaging, Ultra sonic triangulation fault location Acoustic emission				
technique (AET)- Instrumentation, Transducers, Preamplifier and filter, Main				
amplifier and Signal processing/ Display unit, Signals and processing,				
Magnetic testing Methods, Current flow Magnetisation, Induction Magnetic				
Flow Method, Induction Threading bar method, Induction Magnetising Coil				
method, Induced Current flow method, Magnetic particle Inspection Inks,				
Strippable Magnetic film, Eddy Current apparatus, Thermography-Thermo				
graphic Equipment, Application of Thermography.				
Unit-4				

MECHANICAL FAULT DIAGNOSIS: Wear monitoring and lubricant	09
analysis - sources of contamination, techniques, Spectrometric Oil Analysis	
Procedure (SOAP) and ferrography.	
NON-DESTRUCTIVE TESTING TECHNIQUES	
Measurement of surface and subsurface flaws – liquid penetrant inspection,	
eddy current inspection, radiographic inspection, ultrasonic inspection	
Unit-5	
CONDITION MONITORING CASE STUDIES & APPLICATIONS:	09
Failure of fan bearings Analysis of the failures Solution High frequency	0,
vibration of gas compressor. History of trouble Analysis of trouble Solution	
Monitoring of cracks in rotors- Turbo compressor misalignment Detection of	
faulty electrical components. Turbing shall distortion Symptoms and	
Detections Tool wear monitoring Introduction techniques and case studies	
Solf study Nil	
Self-Study: Mil.	
Course outcomes:	
CO1: To understand the role of condition based monitoring and its significance	{L1, L2}
{PO1, PO2}	
CO2: Understand the role of vibration monitoring and analysis, its methodolog	y and its
use in monitoring of ball and roller bearings.{L1, L2} {PO1, PO2, PO3}	
CO3: To learn various specialized condition monitoring techniques. {L2, L3, L4	} {PO1,
PO2, PO3, PO4}	
CO4: Understand the significance of mechanical fault diagnosis and non-destru	ıctive
testing techniques in monitoring and maintenance {L1, L2} {PO1, PO2, PO3}	
CO5: To do analysis of failure based on condition monitoring to various indust	rial
applications. {L2, L3, L5} {PO1, PO2 PO3, PO4}	
Text Books:	
T1. R.A., Caollacatt Chapman "Mechanical Fault Diagnosis and Condition Mor	itoring",
Chapman and hall, 2nd edition, 1977.	0,
T2. John S. Mitchell, "Introduction to Machinery Analysis and Monitoring", Per	nn Well
Books, 1993.	
T3. R.C.Mishra, K.Pathak - Maintenance Engineering and Management, Prentic	re Hall of
India Pvt. Ltd., 2002.	
Reference Books:	
R1. R.A. Collacot – "Mechanical Fault Diagnosis", Chapman and Hall Ltd., 197	7.
R2. Robert Bond Randall - "Vibration-Based Condition Monitoring - Industrial	
Aerospace and Automotive applications". John Wiley & Sons Ltd., 2011.	,
R3 Dr K Balaveera Reddy ISTE Summer School on Machinery Diagnostics an	d
Preventive Maintenance KREC Surathkal June 19-25 1995	.c.
Online Recourses:	
W1 http://www.bkgw.com/modia/dog/16.054.ndf	
W1. http://www.bksv.com/meula/u0c/10-034.pul	
W2. http://www.billut.org/wildt-is-Cwi/wibration-monitoring-and-analysis/	0 Jf
W5. https://www.kau.edu.sa/Files/005/850/Subjects/fault%20course%20201	o.par
W4. $\frac{\text{nups:}/\text{web.tu.edu.tr/~arana/ndt.pdf}}{\text{ME}}$	
wo. https://www.bksv.com/media/doc/BO0163.pdf	

Course Name: THEORY OF PLATES AND SHELLS					
	Course Code : MTME233E3				
	L	Т	Р	Catego	ry PEC
Contact Hrs./Week	3	0	0	CIA Mar	ks 50
Contact Hrs./Sem.	45	0	0	ESE Mar	ks 50
Credits.	3	0	0	Exam Hou	irs 3
 Course objectives: To facilitate the students to appreciate the shell structures, stresses in a plates and the different load conditions. To impart the knowledge of symmetrical bending for cylindrical and rectangular plates. To be able to find the bending of plates using differential equation for certain plates under different boundary and loading condition. To understand the analytical and numerical techniques to design the plates and shells for practical applications. To course aims at enumerating the behaviour of plates and shell elements. 					
Proroquisitos: Strongth o	f Mator	iale T	Docian	of Machina Elements	
Units	1 Witter	iai3, L			Teaching Hours
Unit-1					
BENDING OF LONG RECTANGULAR PLATE INTO A CYLINDRICAL 9 SURFACE, DIFFERENTIAL EQUATION: 9 Bending of plated with different boundary conditions - Long plate on elastic foundation. 9 PURE BENDING: Moment and curvature relations problems of simply supported plates-Strain energy impure bending. 9					
SVMMETRICAL REND		FCIR		R PI ATES.	0
Differential equation un plates - loaded at the cent	iformly tre.	v load	led pl	ates, Plates concentricity loaded	2
KECTANGULAR PLAT Differential equations - S conditions, viz, uniform concentrated load, centr solutions with various supported, Two opposite BENDING OF PLATE U Bending of Plate Under derivation of differential	ES: Solution mly di ral as edge b edge fi NDER Comb equatic	n of si istribu well a oounda ixed a ixed a ined ined	imply ited l as not ary co nd two I BINE Actior ply su	supported plate Various loading load, hydrostatic pressure and ncentral, Navier and Levy type onditions, viz., all edges simply o adjacent fixed. D ACTION: n of lateral and transverse loads upported rectangular plate.	9

Unit-4	
INTRODUCTION TO SHELL STRUCTURES:	0
General description of various types. Membrane Theory of thin shells (Stress Analysis): Cylindrical shells - Spherical Shells- Shells of double curvature, Viz, cooling tower Hyperbolic, Parabolic and elliptic paraboloid. MEMBRANE DEFORMATION OF SHELLS: Symmetrical 'loaded shell, symmetrically loaded spherical shell. General	9
Theory of cylindrical shells: Circular; Cylindrical shell loaded symmetrically.	
General equation of circular cylindrical shells, Approximate investigation of bending of circular cylindrical shell.	9
Site/Industrial Visits: Nil.	
Course outcomes: CO1: Analyse the solutions of bending of rectangular plates into a cylindrical se different boundary conditions. {L1, L2, L3} {PO1, PO2, PO3} CO2: Apply the analytical methods to find the solutions for the circular plates se symmetric bending.{L1, L2, L3 }{PO1, PO2, PO3} CO3: Analyse the solutions of simply supported plate various loading condi- bending of plate under combined action. { L1, L2, L3 }{PO1, PO2, PO3} CO4: Discuss the various types of shell structure and membrane deformatio { L1, L2, L3 }{PO1, PO2, PO3} CO5: Apply the numerical techniques and tools for bending of circular cylind { L1, L2, L3 }{PO1, PO2, PO3}	urface with subjected to ditions and n of shells. rical shells.
Text Books: T1. Timoshenko, Woinowsky and Krieger, "Theory of plates and Shells" McGra Newyork.2ND Edition,2017 T2. Flugge, "Stresses in Shells "Springer Verlag, Berlin.	aw Hill,
Reference Books: R1. Goldnvizer, "Theory of Elastic Thin Shells" - Pergamon Press, New York, 20	14
Online Resources: W1. https://nptel.ac.in/courses/112101095/34 W2. https://www.mae.ust.hk/~meqpsun/Notes/Chapter3.pdf W3. https://www.ct.upt.ro/suscos/files/2016-2018/L16_17_Shell%20structure	es.pdf

Course Name: DESIGN FOR MANUFACTURE					
Course Code : MTME234E1					
	L	Т	Р	Category	PEC
Contact Hrs./Week	3	0	0	CIA Marks	50
Contact Hrs./Sem.	45	0	0	ESE Marks	50
Credits.	3	0	0	Exam Hours	3

- To know the design consideration for manufacturing of components.
- To describe the different types of features in the design for manufacturing the components.
- To know the geometrical tolerance for manufacturing the components.
- To learn the theory behind Component design with machining considerations.
- To learn to design gauges, suitable for checking of components in assembly.

Prerequisites: 1. Design of Machine Elements. 2. Engineering Metrology.	
Units	Teaching Hours
Unit-1	
EFFECT OF MATERIALS AND MANUFACTURING PROCESS ON DESIGN: Major phases of design, Effect of material properties on design Effect of manufacturing processes on design. Material selection process cost per unit property, Weighted properties and limits on properties methods. TOLERANCE ANALYSIS: Process capability, mean, variance, skewness, kurtosis, Process capability metrics, Cp, Cpk, Cost aspects, Feature tolerances, Geometries tolerances, Geometric tolerances, Surface finish, Review of relationship between attainable tolerance grades and different machining process. Cumulative effect	09
of tolerance - Sure fit law and truncated normal law.	
Interchangeable part manufacture and selective assembly, Deciding the number of groups - Model-1, Group tolerance of mating parts equal, Model total and group tolerances of shaft equal. Control of axial play-Introducing secondary machining operations, Laminated shims, examples. DATUM FEATURES: Functional datum, Datum for manufacturing, changing the datum, Examples.	09
Unit-3	
DESIGN CONSIDERATIONS: Design of components with casting consideration, Pattern, Mould, and Parting line, Cored holes and Machined holes, identifying the possible and probable parting line, casting requiring special sand cores, designing to obviate sand cores.	08
Unit-4	•
COMPONENT DESIGN: Component design with machining considerations link design for turning components-milling, Drilling and other related processes including finish-machining operations.	10

TRUE POSITIONAL THEORY:	
Comparison between co-ordinate and convention method of feature location.	
Tolerance and true position tolerancing virtual size concept, Floating and fixed	
fasteners, Projected tolerance zone, Assembly with gasket, zero position	
tolerance. Functional gauges, Paper layout gauging.	
Unit-5	
DESIGN OF GAUGES:	
Designs of gauges for checking components in assemble with emphasis on	09
various types of limit gauges for both hole and shaft.	
Self-study: Nil.	
Site/Industrial Visits: Nil.	
Course outcomes:	
CO1: Outline the appropriate design for economical production and select the r	naterials.
{L1, L2} {PO1, PO2}	
CO2: Select between various machining and metal joining processes {L1, L2} {	PO1, PO2,
PO3}	
CO3: Apply a systematic understanding of knowledge in the field of metal cast	ing and
forging. {L2, L3, L4} {PO1, PO2, PO3, PO4}	
CO4: Fabricate basic parts and assemblies using powered and non - powered n	nachine
shop equipment in conjunction with mechanical documentation. {L1, L2} {PO1,	PO2, PO3}
CO5: To learn to design gauges suitable for checking of components in assembl	y. {L1, L3,
L5} {PO1, PO2 PO3, PO4}	
Text Books:	
T1. Harry Peck, "Designing for Manufacturing "- Pitman Publications, 1983.	
T2. R.K. Jain ,"Engineering Metrology" - Khanna Publication ,2011.	
T3. Corrado Poli, "Design for Manufacturing", Butterworth-Heinemann, 2001.	
Reference Books:	
R1. Geoffrey Boothroyd, peter dewhurst, Winston Knight,"Product design for m	nanufacture
and assembly" - Merceldekker.Inc. New York, CRC Press, 3 rd Edition, 2010.	
R2. "Material selection and Design", Vol. 20 - ASM Hand book.	
R3. O. Molloy, E.A. Warman, S. Tilley, "Design for Manufacturing and	Assembly:
Concepts, architectures and implementation", Springer Science & Business Med	dia, 1998.
Online Resources:	
W1. https://nptel.ac.in/courses/107103012/	
W2. https://www.scribd.com/doc/51195775/05-True-Position-Theory.	

W3. https://synthetica.eng.uci.edu/mechanicaldesign101/GDandT.pdf

W4. http://textofvideo.nptel.ac.in/112106179/lec16.pdf

Course	Course Name: Analysis and Synthesis of Mechanism				
	(Course	Code	e : MTME234E2	
	L	Т	Р	Catego	ry PEC
Contact Hrs./Week	3	0	0	CIA Mar	ks 50
Contact Hrs./Sem.	45	0	0	ESE Mar	ks 50
Credits.	3	0	0	Exam Hou	irs 3
 Course objectives: To Learn the graphical and analytical techniques commonly used in the synthesis of mechanisms. To Orient applications of analytical techniques by means of computer programs. To simplify the mechanism for analysis purposes. 					
Prerequisites: Kinematic	s of Me	chanis	sm		
Unit Teaching Hours					
Unit-1					
Basic Concepts: Definitions and assumptions; planar and spatial mechanisms; kinematic pairs; degree of freedom; equivalent mechanisms; Kinematic Analysis of Planar Mechanisms. Review of graphical and analytical methods of velocity and acceleration analysis of kinematically simple mechanisms, velocity- acceleration, analysis of complex mechanisms by the normal acceleration and auxiliary-point methods.					
Unit-2					
Curvature Theory: Fixed and moving centrodes, inflection circle, Euler-Savary equation, Bobillier constructions, cubic of stationary curvature, Ball's point, Applications in dwell mechanisms. Unit-3					
Vincentia Camtheoir of			1 ! .		
Chebesychev spacing, t generation and rigid bod using pole method, centre bar and slider-crank mec	pianai types of y guida e and ci hanism	of erro ance w rcle po s.	ors, C vith tw	Graphical synthesis for function vo, three and four accuracy points urves, Analytical synthesis of four-	09

Unit-4	
Freudenstein's equation, synthesis for four and five accuracy points, compatibility condition, synthesis of four-bar for prescribed angular velocities and accelerations using complex numbers, three accuracy point synthesis using complex numbers.	09
Unit-5	
Coupler Curves: Equations of coupler curve, Robert-Chebychev theorem, double points and symmetry. Kinematic Analysis of Spatial Mechanisms, Denavit - Hartenberg parameters, matrix method of analysis of spatial mechanisms	09
Course outcomes: CO1: To develop analytical equations describing the relative position, ve acceleration of all moving links. {L1,2,3} {PO1,2,3} CO2: To select, configure, and synthesize mechanical components into comple {L2,3} {PO1,2,3,4}	elocity and ete systems.
CO3. Use kinematic geometry to formulate and solve constraint equations linkages for specified tasks. {L3,4} {PO2,3,4}	s to design
CO4. Formulate and solve four position synthesis problems for planar and sph bar linkages by graphical and analytical methods. {L2,3,4} {PO2,3,4,5}	erical four-
CO5. Analyze and animate the movement of planar and spherical four-bar link {PO1,2,3}.	ages. {L2,3}
Text Books: T1. R.S. Hartenberg and J. Denavit, "Kinematic Synthesis of Linkages", McGrav	v-Hill,
T2. Robert L.Nortan ,"Design of Machinery", Tata McGraw Hill Edition T3. Hamilton H. Mabie, "Mechanisms and Dynamics of Machinery", John Wiley New York.	v and sons
T4. S.B.Tuttle, "Mechanisms for Engineering Design" John Wiley and sons New 1989.	York,
Reference Books:	
R1. A. Ghosh and A.K. Mallik, "Theory of Machines and Mechanisms", Affiliate West Press, New Delhi, 1988.	ed East-
R2. A.G. Erdman and G.N. Sandor, "Mechanism Design – Analysis and Synthes and 2), Prentice Hall India, 1988.	sis", (Vol. 1
R3. A.S. Hall, "Kinematics and Linkage Design", Prentice Hall of India, 1984.	
R4. J.E. Shigley and J.J. Uicker, "Theory of Machines and Mechanisms", 2nd Ed	ition,
McGraw-Hill, 1995.	
Online Resources:	
W1. http://ibrary.msri.org/books/book32/files/kuiper.pdf	h7/7
4.htm.	.11///-
W3. https://www.oreilly.com/library/view/theory-of-machines.	
W4. http://ocw.upm.es/ingenieria-mecanica/mechanical-devices-for-	
industry/contenidos/learning-guide.	

Course Name: MULTI BODY DYNAMICS						
	Course Code : MTME234E3					
	L	Т	Р	Category	PE	
Contact Hrs./Week	3	0	0	CIA Marks	50	
Contact Hrs./Sem.	45	0	0	ESE Marks	50	
Credits.	3	0	0	Exam Hours	3	

- Design Multibody systems in two and three dimensions starting from scratch using sound theoretical principles and state of the art software.
- Design of rigid body systems with applications to mechanisms and working assemblies in two and three dimensions.
- Dynamic analysis models for kinematic (position, velocities accelerations) and kinetics (forces and moments).
- Perform simulations of rigid and flexible multi-body assemblies to determine loads, dynamic forces, energy and momentum and control. Finite Element Analysis under dynamic loads.
- Analyze forces and moments in two and three dimensions under impulsive impact forces and collisions.
- Apply these techniques to, ground, space vehicles and machinery.

Prerequisites: Engineering Mechanics, Numerical methods and Finite Element	Methods.
Units	Teaching Hours
Unit-1	
BASIC CONCEPTS IN 3-D RIGID-BODY MECHANICS: Degrees-of-freedom; Rigid body vs flexible body; Spatial kinematics (3-D rotation transformations); Euler theorem, rotation parameterization, Rodriguez formula; Moments and products of inertia; Newton-Euler equations of motion; Lagrange Equation; Generalized forces. BASIC PRINCIPLES FOR ANALYSIS OF MULTI-BODY SYSTEMS: The automatic assembly of the systems of equations for position, velocity and acceleration analysis. Iterative solution of systems of nonlinear equations.	09
Unit-2	
FORMULATION OF EQUATIONS OF MOTION FOR INTER-CONNECTED BODIES: Relative coordinates, generalized coordinates, Cartesian co-ordinates ; Lagrange' s equations and other approaches; Differential equations (DE) and differential algebraic equations (DAE); Co-ordinate partitioning and Lagrange multipliers; Types of analyses (kinematic, static, quasi-static, kineto-static, dynamic and linear dynamic).	09
Unit-3	
INTER-CONNECTED RIGID BODIES: Kinematic pairs (joints) with classification of constraints; holonomic and non- holonomic constraints; Springs, dampers, actuators and controllers with brief introduction of controls theory. COMPUTATION OF FORCES:	09

Computation of spatial generalized forces for external forces and for actuator-	
spring-damper element. Computation of reaction forces from Lagrange's	
multi- pliers.	

Unit-4 APPLICATION OF NUMERICAL METHODS: NR method, Jacobian, Differential equation integrators (Euler methods and Implicit methods); Stability, accuracy and Dahlquist's trade off criteria; Stiffness and damping - physical vs numerical; Lock-up, bifurcation and singularities 09 Unit-5 Introduction to flexible multi body systems, Multibody system approach, Dynamic analyses using classical approximation, FEM. 09 Dynamics of planar systems. Systematic computation and assembly of mass matrix. Computation of planar generalized forces for external forces and for actuator-spring-damper element. Simple applications of inverse and forward dynamic analysis. 09 Self-study: Nil. Site/Industrial Visits: Nil. 09 Course outcomes: 020: To analyse interconnected bodies in a multi-body systems and 3- dimensional rigid bodies. [L1, L2] {PO1, PO2] PO3, PO3, PO4 CO3: To gain analytical understanding of flexible multi body systems. [L1, L2] {PO1, PO2, PO3} CO5: To gain analytical understanding of flexible multi body systems. [L2, L3, L5] {PO1, PO2 PO3, PO4]. Text Books: T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2. R. E., Roberson and S. Richard, "Dynamics and Balancing of Multibody Systems", Springer (India) 2013. T4. Chaudhary, and S.K. Saha, "Dynamics' Multi-body Dynamics: Monitoring and Simulation rechniques – III ", Wiley; 1 edition, 2004. T2. R. E., Roberson and S. Richard, "Dynamics", Butterworth-Heinemann, 1990. Re	·	
APPLICATION OF NUMERICAL METHODS: 09 NR method, Jacobian, Differential equation integrators (Euler methods and Implicit methods): Stability, accuracy and Dahlquist's trade off criteria; Stiffness and damping - physical vs numerical; Lock-up, bifurcation and singularities 09 Unit-5 FLEXIBLE MULTIBODY SYSTEMS: 09 Introduction to flexible multi body systems, Multibody system approach, Dynamic analyses using classical approximation, FEM. 09 Dynamic of planar systems. Systematic computation and assembly of mass matrix. Computation of planar generalized forces for external forces and for actuator-spring-damper element. Simple applications of inverse and forward dynamic analysis. 09 Self-study: Nil. Site/Industrial Visits: Nil. 09 CO1: To understand the basic principles for analysis of multi-body systems and 3-dimensional rigid bodies. [L1, L2] {PO1, PO2] CO2: To analyse interconnected bodies in a multi-body system. [L1, L2] {PO1, PO2, PO3} CO3: To formulate equation of numerical methods in multi body dynamics. {L1, L2} {PO1, PO2, PO3} CO5: To gain analytical understanding of flexible multi body systems", Springer-Verlag, 1998. T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. 12. R. E., Roberson and S. Richard, "Dynamics and Balancing of Multibody Systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer-Verlag, 1998. 13. H. Chaudhary, and S.K. Saha, "Dynamics", Butterworth-Heinemann, 1990. <t< td=""><td>Unit-4</td><td></td></t<>	Unit-4	
NR method, Jacobian, Differential equation integrators (Euler methods and Implicit methods); Stability, accuracy and Dahlquist's trade off criteria; Stiffness and damping - physical vs numerical; Lock-up, bifurcation and singularities 09 Unit-5 FLEXIBLE MULTIBODY SYSTEMS: Introduction to flexible multi body systems, Multibody system approach, Dynamics of planar systems. Systematic computation and assembly of mass matrix. Computation of planar generalized forces for external forces and for actuator-spring-damper element. Simple applications of inverse and forward dynamic analysis. 09 Self-study: Nil. 5 Stiffness and the basic principles for analysis of multi-body systems and 3- dimensional rigid bodies. [L1, L2] [PO1, PO2] 09. CO2: To understand the basic principles for analysis of multi-body systems and 3- dimensional rigid bodies. [L1, L2] [PO1, PO2] CO2; To analyse interconnected bodies in a multi-body system. [L1, L2] [PO1, PO2, PO3] CO3: To formulate equation of numerical methods in multi body dynamics. [L1, L2] [PO1, PO2, PO3] [PO1, PO2, PO3] CO4: To learn the application of numerical methods in multi body systems. [L2, L3, L5] [PO1, PO2, PO3, PO4]. [PO1, PO2, PO3] Text Books: T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. [T2, R. E., Roberson and S. Richard, "Dynamics and Balancing of Multibody Systems", Springer Iachmedic Wiesbaden, 2013. T3. R. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer Rahmedia, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques - III ", Wiley; 1 editi	APPLICATION OF NUMERICAL METHODS:	
Implicit methods): Stability, accuracy and Dahlquist's trade off criteria; 09 Stiffness and damping - physical vs numerical; Lock-up, bifurcation and singularities 09 Unit-5 Implication of planar systems; Multibody system approach, Dynamic analyses using classical approximation, FEM. 09 DynAmiCS OF PLANAR SYSTEMS: 09 Dynamic analyses using classical approximation and assembly of mass matrix. Computation of planar generalized forces for external forces and for actuator-spring-damper element. Simple applications of inverse and forward dynamic analysis. 09 Self-study: Nil. Site/Industrial Visits: Nil. 09 Course outcomes: 00 00 CO1: To understand the basic principles for analysis of multi-body systems and 3-dimensional rigid bodies. [L1, L2] (PO1, PO2) 003. To formulate equation of motion for inter connected bodies. [L2, L3, L4] (PO1, PO2, PO3) CO3: To formulate equation of numerical methods in multi body dynamics. [L1, L2] (PO1, PO2, PO3) CO5: To gain analytical understanding of flexible multi body systems. [L2, L3, L4] (PO1, PO2, PO3, PO4). CO4: To learn the application of numerical methods in multi body systems", Springer-Verlag, 1998. T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2. R. E., Roberson and S. Richard, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3. H. Chaudhary, and	NR method, Jacobian, Differential equation integrators (Euler methods and	
Stiffness and damping - physical vs numerical; Lock-up, bifurcation and singularities Unit-3 FLEXIBLE MULTIBODY SYSTEMS: Introduction to flexible multi body systems, Multibody system approach, Dynamic analyses using classical approximation, FEM. DYNAMICS OF PLANAR SYSTEMS: Introduction to flexible multi body systems, fullibody system approach, Dynamic analyses using classical approximation, FEM. 09 Dynamics of planar systems. Systematic computation and assembly of mass matrix. Computation of planar generalized forces for external forces and for actuator-spring-damper element. Simple applications of inverse and forward dynamic analysis. 09 Self-study: Nil. Course outcomes: 09 CO2: To analyse interconnected bodies in a multi-body system. [L1, L2] {PO1, PO2, PO3} CO3: To formulate equation of notion for inter connected bodies. {L2, L3, L4] {PO1, PO2, PO3, PO4} CO4: To learn the application of numerical methods in multi body dynamics. {L1, L2] {PO1, PO2, PO3, PO4} Text Books: T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2: R. E., Roberson and S. Richard, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer fachmedien Wiesbaden, 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbade	Implicit methods); Stability, accuracy and Dahlquist's trade off criteria;	09
singularities Unit-5 FLEXIBLE MULTIBODY SYSTEMS: 09 Introduction to flexible multi body systems, Multibody system approach, Dynamic analyses using classical approximation, FEM. 09 Dynamic analyses using classical approximation, FEM. 09 Dynamics of planar systems. Systematic computation and assembly of mass matrix. Computation of planar generalized forces for external forces and for actuator-spring-damper element. Simple applications of inverse and forward dynamic analysis. 09 Self-study: Nil. Site/Industrial Visits: Nil. 09 CO1: To understand the basic principles for analysis of multi-body systems and 3-dimensional rigid bodies. [L1, L2] [PO1, PO2, PO3] 002: To analyse interconnected bodies in a multi-body systems. [L1, L2] [PO1, PO2, PO3] CO3: To formulate equation of numerical methods in multi body dynamics. [L1, L2] [PO1, PO2, PO3] CO3: To learn the application of numerical methods in multi body dynamics. [L1, L2] [PO1, PO2, PO3] CO5: To gain analytical understanding of flexible multi body systems? [L2, L3, L5] {PO1, PO2, PO3} PO4]. Text Books: T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2. R. E., Roberson and S. Richard, "Dynamics and Balancing of Multibody Systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer fundia) 2013. T4. Claus Eithere With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer	Stiffness and damping - physical vs numerical; Lock-up, bifurcation and	
Unit-5 FLEXIBLE MULTIBODY SYSTEMS: Introduction to flexible multi body systems, Multibody system approach, Dynamic analyses using classical approximation, FEM. 09 DYNAMICS OF PLANAR SYSTEMS: 09 Dynamics of planar systems. Systematic computation and assembly of mass matrix. Computation of planar generalized forces for external forces and for actuator-spring-damper element. Simple applications of inverse and forward dynamic analysis. 09 Self-study: Nil. Site/Industrial Visits: Nil. 09 CO1: To understand the basic principles for analysis of multi-body systems and 3- dimensional rigid bodies. {L1, L2} {PO1, PO2} 002: To analyse interconnected bodies in a multi-body system. {L1, L2} {PO1, PO2, PO3} CO2: To analyse interconnected bodies in a multi-body systems. {L1, L2} {PO1, PO2, PO3} 03, PO4} CO4: To learn the application of numerical methods in multi body dynamics. {L1, L2} {PO1, PO2, PO3} 005. TO gain analytical understanding of flexible multi body systems. {L2, L3, L5} {PO1, PO2, PO3, PO4}. CO5: To gain analytical understanding of flexible multi body systems", Springer-Verlag, 1998. Tat. A. A. Shabana, "Dynamics of Multibody systems", Springer-Verlag, 1998. T1. A. A. Shabana, "Dynamics of Multibody systems", Springer-Verlag, 1998. Tat. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer (India) 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "	singularities	
FLEXIBLE MULTIBODY SYSTEMS: Introduction to flexible multi body systems, Multibody system approach, Dynamic analyses using classical approximation, FEM. 09 DynAmics of planar systems. Systematic computation and assembly of mass matrix. Computation of planar generalized forces for external forces and for actuator-spring-damper element. Simple applications of inverse and forward dynamic analysis. 09 Self-study: Nil. Course outcomes: 09 CO1: To understand the basic principles for analysis of multi-body systems and 3- dimensional rigid bodies. [L1, L2] [PO1, PO2] 02 CO2: To analyse interconnected bodies in a multi-body system. [L1, L2] [PO1, PO2, PO3] CO3: To formulate equation of motion for inter connected bodies. [L2, L3, L4] [PO1, PO2, PO3, PO4] CO4: To learn the application of numerical methods in multi body dynamics. [L1, L2] (PO1, PO2, PO3) CO5: To gain analytical understanding of flexible multi body systems. [L2, L3, L5] (PO1, PO2 PO3, PO4]. Test Books: T1: A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2. R. E., Roberson and S. Richard, "Dynamics and Balancing of Multibody Systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer (India) 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-b	Unit-5	
FLEXIBLE MULTIBODY SYSTEMS: 09 Introduction to flexible multi body systems, Multibody system approach, Dynamic analyses using classical approximation, FEM. 09 DYNAMICS OF PLANAR SYSTEMS: 09 Dynamics of planar systems. Systematic computation and assembly of mass matrix. Computation of planar generalized forces for external forces and for actuator-spring-damper element. Simple applications of inverse and forward dynamic analysis. 09 Self-study: Nil. Site/Industrial Visits: Nil. 07 Course outcomes: 07 07.1 To understand the basic principles for analysis of multi-body systems and 3-dimensional rigid bodies. [L1, L2] (PO1, PO2) 02. To analyse interconnected bodies in a multi-body system. [L1, L2] (PO1, PO2, PO3) CO3: To formulate equation of numerical methods in multi body dynamics. [L1, L2] (PO1, PO2, PO3) 05. To gain analytical understanding of flexible multi body systems. [L2, L3, L4] (PO1, PO2, PO3) CO5: To gain analytical understanding of flexible multi body systems", Springer-Verlag, 1998. 11. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2. R. E., Roberson and S. Richard, "Dynamics and Balancing of Multibody Systems", Springer-Verlag, 1998. 13. H. Chaudhary, and S.K. Saha, "Dynamics of Multibody Dynamics: Monitoring and Simulation Techniques - III ", Wiley; 1 edition, 2004. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics - Efficient Formulations and Applications", Wiley, 2016. R3. Homer Rahnejat, Steve		
Introduction to flexible multi body systems, Multibody system approach, Dynamic analyses using classical approximation, FEM. DYNAMICS OF PLANAR SYSTEMS: 09 Management of planar generalized forces for external forces and for actuator-spring-damper element. Simple applications of inverse and forward dynamic analysis. Self-study: Nil. Site/Industrial Visits: Nil. Course outcomes: CO1: To understand the basic principles for analysis of multi-body systems and 3- dimensional rigid bodies. [L1, L2] {PO1, PO2} CO2: To analyse interconnected bodies in a multi-body system. [L1, L2] {PO1, PO2, PO3} CO3: To formulate equation of notion for inter connected bodies. [L2, L3, L4] {PO1, PO2, PO3, PO4} CO4: To learn the application of numerical methods in multi body dynamics. [L1, L2] {PO1, PO2, PO3} CO5: To gain analytical understanding of flexible multi body systems. [L2, L3, L5] {PO1, PO2, PO3, PO4}. Text Books: T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2. R. E., Roberson and S. Richard, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer [India] 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics - Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977.	FLEXIBLE MULTIBODY SYSTEMS:	
Dynamic analyses using classical approximation, FEM. 09 DYNAMICS OF PLANAR SYSTEMS: 09 Dynamics of planar systems. Systematic computation and assembly of mass matrix. Computation of planar generalized forces for external forces and for actuator-spring-damper element. Simple applications of inverse and forward dynamic analysis. 09 Self-study: Nil. Site/Industrial Visits: Nil. 09 Course outcomes: CO1: To understand the basic principles for analysis of multi-body systems and 3-dimensional rigid bodies. [L1, L2] (PO1, PO2] CO2: To analyse interconnected bodies in a multi-body system. [L1, L2] (PO1, PO2, PO3) CO3: To formulate equation of motion for inter connected bodies. [L2, L3, L4] (PO1, PO2, PO3, PO4) CO4: To learn the application of numerical methods in multi body dynamics. [L1, L2] (PO1, PO2, PO3, PO4) CO5: To gain analytical understanding of flexible multi body systems. [L2, L3, L5] (PO1, PO2, PO3, PO4). Text Books: T1: A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2: R. E., Roberson and S. Richard, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3: H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer-Verlag, 1998. T5. Roald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics - Efficient Formulations and Application	Introduction to flexible multi body systems, Multibody system approach,	
DYNAMICS OF PLANAR SYSTEMS: 09 Dynamics of planar systems. Systematic computation and assembly of mass matrix. Computation of planar generalized forces for external forces and for actuator-spring-damper element. Simple applications of inverse and forward dynamic analysis. 99 Self-study: Nil. Site/Industrial Visits: Nil. 90 Course outcomes: 90 CO1: To understand the basic principles for analysis of multi-body systems and 3-dimensional rigid bodies. [L1, L2] (PO1, PO2] 902. To analyse interconnected bodies in a multi-body system. [L1, L2] (PO1, PO2, PO3) CO3: To formulate equation of motion for inter connected bodies. [L2, L3, L4] (PO1, PO2, PO3, PO4) 902 PO3, PO4) CO4: To learn the application of numerical methods in multi body dynamics. {L1, L2} (PO1, PO2, PO3, PO4). 902 PO3, PO4). Text Books: T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. 72. R. E., Roberson and S. Richard, "Dynamics and Balancing of Multibody Systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer (India) 2013. 73. Roald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III", Wiley; 1 edition, 2004. 82. Banerjee and K. Arun, "Flexible Multibody Dynamics: Efficient Formulations and Applications", Wiley, 2016. R3. Arun K. Banerjee, "Flexible Multibody Dynamics: Efficient For	Dynamic analyses using classical approximation, FEM.	
Dynamics of planar systems. Systematic computation and assembly of mass matrix. Computation of planar generalized forces for external forces and for actuator-spring-damper element. Simple applications of inverse and forward dynamic analysis. Self-study: Nil. Site/Industrial Visits: Nil. Course outcomes: CO1: To understand the basic principles for analysis of multi-body systems and 3- dimensional rigid bodies. [L1, L2] (PO1, PO2) CO2: To analyse interconnected bodies in a multi-body system. [L1, L2] (PO1, PO2, PO3) CO3: To formulate equation of motion for inter connected bodies. [L2, L3, L4] (PO1, PO2, PO3, PO4] CO4: To learn the application of numerical methods in multi body dynamics. [L1, L2] (PO1, PO2, PO3) CO5: To gain analytical understanding of flexible multi body systems. [L2, L3, L5] (PO1, PO2 PO3, PO4]. Text Books: T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2. R. E., Roberson and S. Richard, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer (India) 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics: Efficient Formulations and Applications", Wiley, 2016. R3.Arun K. Banerjee, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977.	DYNAMICS OF PLANAR SYSTEMS:	09
 matrix. Computation of planar generalized forces for external forces and for actuator-spring-damper element. Simple applications of inverse and forward dynamic analysis. Self-study: Nil. Site/Industrial Visits: Nil. Course outcomes: CO1: To understand the basic principles for analysis of multi-body systems and 3-dimensional rigid bodies. {L1, L2} {PO1, PO2} CO2: To analyse interconnected bodies in a multi-body system. {L1, L2} {PO1, PO2, PO3} CO3: To formulate equation of motion for inter connected bodies. {L2, L3, L4} {PO1, PO2, PO3} CO4: To learn the application of numerical methods in multi body dynamics. {L1, L2} {PO1, PO2, PO3} CO5: To gain analytical understanding of flexible multi body systems. {L2, L3, L5} {PO1, PO2, PO3, PO4} CO5: To gain analytical understanding of flexible multi body systems. {L2, L3, L5} {PO1, PO2, PO3, PO4}. Text Books: T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2. R. E., Roberson and S. Richard, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer [India] 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	Dynamics of planar systems. Systematic computation and assembly of mass	
actuator-spring-damper element. Simple applications of inverse and forward dynamic analysis. Self-study: Nil. Site/Industrial Visits: Nil. Course outcomes: CO1: To understand the basic principles for analysis of multi-body systems and 3- dimensional rigid bodies. [L1, L2] [PO1, PO2] CO2: To analyse interconnected bodies in a multi-body system. [L1, L2] [PO1, PO2, PO3] CO3: To formulate equation of motion for inter connected bodies. [L2, L3, L4] {PO1, PO2, PO3, PO4] CO4: To learn the application of numerical methods in multi body dynamics. [L1, L2] [PO1, PO2, PO3] CO5: To gain analytical understanding of flexible multi body systems. [L2, L3, L5] {PO1, PO2 PO3, PO4]. Text Books: T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2. R. E., Roberson and S. Richard, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer (India) 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R3. Arun K. Banerjee, "Flexible Multibody Dynamics: Efficient Formulations and Applications", Wiley, 2016. R3.Arun K. Banerjee, "Flexible Multibody Dynamics: Efficient Formulations and Applications", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977.	matrix. Computation of planar generalized forces for external forces and for	
dynamic analysis. Self-study: Nil. Site/Industrial Visits: Nil. Course outcomes: CO1: To understand the basic principles for analysis of multi-body systems and 3- dimensional rigid bodies. [L1, L2] {PO1, PO2] CO2: To analyse interconnected bodies in a multi-body system. {L1, L2} {PO1, PO2, PO3} CO3: To formulate equation of motion for inter connected bodies. {L2, L3, L4} {PO1, PO2, PO3, PO4} CO4: To learn the application of numerical methods in multi body dynamics. {L1, L2} {PO1, PO2, PO3} CO5: To gain analytical understanding of flexible multi body systems. {L2, L3, L5} {PO1, PO2, PO3}, PO4}. Text Books: T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2. R. E., Roberson and S. Richard, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer (India) 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics - Efficient Formulations and Applications", Wiley, 2016. R3. Arun, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bac	actuator-spring-damper element. Simple applications of inverse and forward	
 Self-study: Nil. Site/Industrial Visits: Nil. Course outcomes: CO1: To understand the basic principles for analysis of multi-body systems and 3-dimensional rigid bodies. {L1, L2} {PO1, PO2} CO2: To analyse interconnected bodies in a multi-body system. {L1, L2} {PO1, PO2, PO3} CO3: To formulate equation of motion for inter connected bodies. {L2, L3, L4} {PO1, PO2, PO3, PO4} CO4: To learn the application of numerical methods in multi body dynamics. {L1, L2} {PO1, PO2, PO3} CO5: To gain analytical understanding of flexible multi body systems. {L2, L3, L5} {PO1, PO2, PO3, PO4}. Text Books: T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2. R. E., Roberson and S. Richard, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer (India) 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R3. Arun, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems - Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	dynamic analysis.	
 Site/Industrial Visits: Nil. Course outcomes: CO1: To understand the basic principles for analysis of multi-body systems and 3-dimensional rigid bodies. [L1, L2] {PO1, PO2} CO2: To analyse interconnected bodies in a multi-body system. {L1, L2} {PO1, PO2, PO3} CO3: To formulate equation of motion for inter connected bodies. {L2, L3, L4} {PO1, PO2, PO3, PO4} CO4: To learn the application of numerical methods in multi body dynamics. {L1, L2} {PO1, PO2, PO3} CO5: To gain analytical understanding of flexible multi body systems. {L2, L3, L5} {PO1, PO2, PO3} CO5: To gain analytical understanding of flexible multi body systems. {L2, L3, L5} {PO1, PO2, PO3, PO4}. Text Books: T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2. R. E., Roberson and S. Richard, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer (India) 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R3. Arun K. Banerjee, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	Self-study: Nil.	
 Course outcomes: CO1: To understand the basic principles for analysis of multi-body systems and 3-dimensional rigid bodies. {L1, L2} {PO1, PO2} CO2: To analyse interconnected bodies in a multi-body system. {L1, L2} {PO1, PO2, PO3} CO3: To formulate equation of motion for inter connected bodies. {L2, L3, L4} {PO1, PO2, PO3, PO4} CO4: To learn the application of numerical methods in multi body dynamics. {L1, L2} {PO1, PO2, PO3} CO5: To gain analytical understanding of flexible multi body systems. {L2, L3, L5} {PO1, PO2, PO3, PO4}. Text Books: T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2. R. E., Roberson and S. Richard, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer India) 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	Site/Industrial Visits: Nil.	
 CO1: To understand the basic principles for analysis of multi-body systems and 3-dimensional rigid bodies. {L1, L2} {PO1, PO2} CO2: To analyse interconnected bodies in a multi-body system. {L1, L2} {PO1, PO2, PO3} CO3: To formulate equation of motion for inter connected bodies. {L2, L3, L4} {PO1, PO2, PO3, PO4} CO4: To learn the application of numerical methods in multi body dynamics. {L1, L2} {PO1, PO2, PO3} CO5: To gain analytical understanding of flexible multi body systems. {L2, L3, L5} {PO1, PO2 PO3, PO4}. Text Books: T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2. R. E., Roberson and S. Richard, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer (India) 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	Course outcomes:	
 dimensional rigid bodies. {L1, L2} {PO1, PO2} CO2: To analyse interconnected bodies in a multi-body system. {L1, L2} {PO1, PO2, PO3} CO3: To formulate equation of motion for inter connected bodies. {L2, L3, L4} {PO1, PO2, PO3, PO4} CO4: To learn the application of numerical methods in multi body dynamics. {L1, L2} {PO1, PO2, PO3} CO5: To gain analytical understanding of flexible multi body systems. {L2, L3, L5} {PO1, PO2, PO3, PO4}. Text Books: T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2. R. E., Roberson and S. Richard, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer (India) 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	CO1: To understand the basic principles for analysis of multi-body systems and	13-
 CO2: To analyse interconnected bodies in a multi-body system. {L1, L2} {PO1, PO2, PO3} CO3: To formulate equation of motion for inter connected bodies. {L2, L3, L4} {PO1, PO2, PO3, PO4} CO4: To learn the application of numerical methods in multi body dynamics. {L1, L2} {PO1, PO2, PO3} CO5: To gain analytical understanding of flexible multi body systems. {L2, L3, L5} {PO1, PO2, PO3}. Text Books: T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2. R. E., Roberson and S. Richard, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer (India) 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	dimensional rigid bodies.{L1, L2} {PO1, PO2}	
 CO3: To formulate equation of motion for inter connected bodies. {L2, L3, L4} {PO1, PO2, PO3, PO4} CO4: To learn the application of numerical methods in multi body dynamics. {L1, L2} {PO1, PO2, PO3} CO5: To gain analytical understanding of flexible multi body systems. {L2, L3, L5} {PO1, PO2 PO3, PO4}. Text Books: T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2. R. E., Roberson and S. Richard, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer (India) 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques - III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics - Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	CO2: To analyse interconnected bodies in a multi-body system.{L1, L2} {PO1, P	O2, PO3}
 PO3, PO4} CO4: To learn the application of numerical methods in multi body dynamics. {L1, L2} {PO1, PO2, PO3} CO5: To gain analytical understanding of flexible multi body systems. {L2, L3, L5} {PO1, PO2 PO3, PO4}. Text Books: T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2. R. E., Roberson and S. Richard, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer (India) 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	CO3: To formulate equation of motion for inter connected bodies. {L2, L3, L4} {	PO1, PO2,
 CO4: To learn the application of numerical methods in multi body dynamics. {L1, L2} {PO1, PO2, PO3} CO5: To gain analytical understanding of flexible multi body systems. {L2, L3, L5} {PO1, PO2 PO3, PO4}. Text Books: T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2. R. E., Roberson and S. Richard, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer (India) 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics: Efficient Formulations and Applications", Wiley, 2016. R3.Arun K. Banerjee, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	PO3, PO4}	
 {PO1, PO2, PO3} CO5: To gain analytical understanding of flexible multi body systems. {L2, L3, L5} {PO1, PO2 PO3, PO4}. Text Books: T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2. R. E., Roberson and S. Richard, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer (India) 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	CO4: To learn the application of numerical methods in multi body dynamics. {I	L1, L2}
 CO5: To gain analytical understanding of flexible multi body systems. {L2, L3, L5} {PO1, PO2 PO3, PO4}. Text Books: T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2. R. E., Roberson and S. Richard, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer (India) 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics: Efficient Formulations and Applications", Wiley, 2016. R3.Arun K. Banerjee, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	{PO1, PO2, PO3}	
 PO2 PO3, PO4}. Text Books: T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2. R. E., Roberson and S. Richard, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer (India) 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics: - Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	CO5: To gain analytical understanding of flexible multi body systems. {L2, L3, I	L5} {PO1,
 Text Books: T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2. R. E., Roberson and S. Richard, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer (India) 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	PO2 PO3, PO4}.	
 T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005. T2. R. E., Roberson and S. Richard, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer (India) 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics: - Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	Text Books:	
 T2. R. E., Roberson and S. Richard, "Dynamics of Multibody systems", Springer-Verlag, 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer (India) 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics: Efficient Formulations and Applications", Wiley, 2016. R3.Arun K. Banerjee, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	T1. A. A. Shabana, "Dynamics of Multibody systems", Wiley, New York, 2005	5.
 1998. T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer (India) 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics - Efficient Formulations and Applications", Wiley, 2016. R3. Arun K. Banerjee, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	T2. R. E., Roberson and S. Richard, "Dynamics of Multibody systems", Springer	r-Verlag,
 T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Systems", Springer (India) 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics - Efficient Formulations and Applications", Wiley, 2016. R3. Arun K. Banerjee, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	1998.	-
 Springer (India) 2013. T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics - Efficient Formulations and Applications", Wiley, 2016. R3. Arun K. Banerjee, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	T3. H. Chaudhary, and S.K. Saha, "Dynamics and Balancing of Multibody Syste	ems",
 T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics - Efficient Formulations and Applications", Wiley, 2016. R3.Arun K. Banerjee, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	Springer (India) 2013.	
 Dynamics" Springer Fachmedien Wiesbaden, 2013. T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics - Efficient Formulations and Applications", Wiley, 2016. R3.Arun K. Banerjee, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	T4. Claus Führer With Edda Eich -Soellner, "Numerical Methods in Multibody	7
 T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990. Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics - Efficient Formulations and Applications", Wiley, 2016. R3.Arun K. Banerjee, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	Dynamics" Springer Fachmedien Wiesbaden, 2013.	
 Reference Books: R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics - Efficient Formulations and Applications", Wiley, 2016. R3.Arun K. Banerjee, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	T5. Ronald L. Huston "Multibody Dynamics", Butterworth-Heinemann, 1990.	
 R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and Simulation Techniques – III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics - Efficient Formulations and Applications", Wiley, 2016. R3. Arun K. Banerjee, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	Reference Books:	
 Techniques – III ", Wiley; 1 edition, 2004. R2. Banerjee and K. Arun, "Flexible Multibody Dynamics - Efficient Formulations and Applications", Wiley, 2016. R3.Arun K. Banerjee, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	R1. Homer Rahnejat, Steve Rothberg, "Multi-body Dynamics: Monitoring and S	Simulation
 R2. Banerjee and K. Arun, "Flexible Multibody Dynamics - Efficient Formulations and Applications", Wiley, 2016. R3.Arun K. Banerjee, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	Techniques – III ", Wiley; 1 edition, 2004.	
 Applications", Wiley, 2016. R3.Arun K. Banerjee, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	R2. Banerjee and K. Arun, "Flexible Multibody Dynamics - Efficient Formulatio	ons and
 R3.Arun K. Banerjee, "Flexible Multibody Dynamics: Efficient Formulations and Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977. 	Applications", Wiley, 2016.	
Applications", 2005. R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977.	R3.Arun K. Banerjee, "Flexible Multibody Dynamics: Efficient Formulations and	d
R4. E.J. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systems -Basic Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977.	Applications", 2005.	
Methods", Allyn and Bacon, 1989. R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977.	R4. E.I. Haug, "Computer-Aided Kinematics and Dynamics of Mechanical Systematics and Dynamics an	ems -Basic
R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner, Stuttgart, 1977.	Methods", Allyn and Bacon, 1989.	
	R5. J. Wittenburg, "Dynamics of Systems of Rigid Bodies", B.G. Teubner. Stutte	art, 1977.
		, ,

Online Resources:

W1. http://web.mit.edu/8.01t/www/materials/modules/chapter21.pdf

W2. http://www.sc.iitb.ac.in/~banavar/resources/notes/sneha_banavar_multibody.pdf

W3. http://users.physics.harvard.edu/~morii/phys151/lectures/Lecture10.pdf

W4. http://pages.isir.upmc.fr/~amar/COURS%20DYNAMIQUE/SLIDES.pdf W5. https://www.uni-

due.de/imperia/md/content/mechatronik/lehre/vehicledynamics_chap3.pdf

Co	Course Name: Advanced Design Laboratory				
Course Code : MTME251					
	L	Т	Р	Catego	ry PCC
Contact Hrs./Week	0	0	4	CIA Mar	ks 50
Contact Hrs./Sem.	0	0	60	ESE Mar	ks 50
Credits.	0	0	2	Exam Hou	rs 2 hrs
Course objectives:			I		
To develop skills	in the f	ield of	f desig	n Engineering.	
• Verify the princip	ples of	the co	ourse,	Application of the theory, Unders	standing of
fundamentals of t	he subj	ect de	sign E	ngineering.	
Be in a position to	relate	theory	i and j	practice	
	() ()	• 1			
Prerequisites: Strength o	f Mater	ials.			D (1 1
List of Experiments (If a	ny):				Practical Hours
1 Tensile shear and	l compi	ression	n tests	of metallic and non metallic	8
specimens using l	Univers	al Tes	ting N	lachine.	0
2. Bending Test on r	netallic	and r	ionme	tallic specimens.	
2 Propagation of an	aimon	for M	atalla	raphic examination of different	4
engineering mate	rials Id	entific	ration	of microstructures of plain	4
carbon steel, tool	steel. g	av C.	L SG i	ron, Brass, Bronze & composites	
4. Determination of	critical	speed	l of a r	otating shaft.	4
E Determination of	Enin an	-	net of	Photoslastic motorial using	6
5. Determination of a Circular d	Fringe isc subi	consta ected	int or . to dia	metral compression	0
b. Pure bending specimen (four point bending)					
6. Determination of	stress c	oncen	tratio	n using Photoelasticity for simple	6
components like p	olate wi	ith a h	ole ur	nder tension or bending, circular	
disk with circular	hole u	nder c	ompre	ession, 2D Crane hook	
7. To study the wear materials for diffe	charac erent pa	teristi ramet	cs of fo ers.	errous, non-ferrous and composite	4
8. Determination of	Pressu	e dist	ributi	on in Journal bearing.	4
9 Determination of	Princin	al Str	esses a	and strains in a member subjected	4
to combined load	ing usir	ng Stra	ain ros	settes.	1
10. Determination of	stresses	s in Cı	ırved	beam using strain gauge.	4
11. Determination of	natura	l frequ	aency,	logarithmic decrement, damping	8
ratio and dampin	ratio and damping coefficient in a single degree of freedom vibrating				
systems (longitud	linal an	d tors	ional)		
12. Non-destructive t	est exp	erime	nts lik	e,	8
(a). Ultrasonic flav	v detect	ion			
(b). Magnetic craci	x delect	non ng Ta	etuda	, the defects of Cast and Welded	
specimens		. <u>.</u> . то	sinns	The derects of Cast and Weided	
Self-study: Nil					
Site/Industrial Visits : N	il.				

Course outcomes:

- CO1: Will be able to apply the concepts of design Engineering, appreciate its application in various engineering application {L1,2} {PO1,2,5}
- CO2: Will be able to perform design engineering experiments for various mechanical elements. {L1,2,5} {PO1,2,5}
- CO3: Calculate the stresses, strain and elongation/Contraction in a bars and beams. (L1,L2,L3) (PO1, PO2,PO3)
- CO4: To correlate the theoretical principles with application based studies. {PO1,2,5}
- CO5: Determine and illustrate principal stresses, maximum shearing stress, and the stresses acting on a structural Member. (L1,L2) (PO1, PO2)

Text Books:

- T1.Mechanical Vibrations, S. S. Rao, Pearson Education Inc, 4th edition, 2003.
- T2.Mechanical Vibrations, V. P. Singh, Dhanpat Rai & Company, 3rd edition, 2006.
- T3. Egor P. Popov, Engineering Mechanics of Solids, Prentice Hall of India, New Delhi, 2001.
- T4. R. Subramanian, Strength of Materials, Oxford University Press, 2007.
- T5. Ferdinand P. Been, Russel Johnson Jr and John J. Dewole, Mechanics of Materials, Tata McGrawHill Publishing Co. Ltd., New Delhi 2005.

Reference Books:

- R1. S.S. Rattan, "Strength of Materials", 3rd Edition, Tata McGraw Hill, 2011.
- R3. K.V. Rao, G.C. Raju, "Mechanics of Materials", First Edition, 2007.
- R4. Egor.P. Popov, "Engineering Mechanics of Solids", Pearson Edu. India, 2008.
- R5. W.A. Nash, Schaum's Outlines Strength of Materials, Tata Mcgraw-Hill Publishing Company 2010.
- R6 R.K. Rajput"Strength of Materials", S.Chand & co Ltd. New Delhi, 2015.
- R7. R.KBansal, "Strength of Materials", Lakshmi Publication (P) Ltd, New Delhi, 2009.

Course Name: Analysis Laboratory					
Course Code : MTME252					
	L	Т	Р	Category	PCC
Contact Hrs./Week	0	0	4	CIA Marks	50
Contact Hrs./Sem.	0	0	60	ESE Marks	50
Credits.	0	0	2	Exam Hours	3

- To understand the concept of Finite Element Analysis and their applications, advantages and disadvantages.
- To understand the Steps involved in FEA and factors influencing FEA results.
- Discuss the assumptions on material properties and boundary conditions.

List of Exporimonts:	Practical				
List of Experiments.	Hours				
1 Introduction to EEM Commonial Tool	110015				
1. Introduction to FEW Commercial 1001.	4				
2. Types of Elements and their usages (1-D, 2-D and 3-D)					
3. Bars of constant cross section area, tapered cross section area and stepped	8				
bar, Trusses – (Minimum 2 exercises)					
4. Beams – Simply supported, cantilever, beams with UDL, beams with varying	10				
load etc. (Minimum 6 exercises)					
5. Stress analysis of a rectangular plate with a circular hole					
(There 1 Apple in 1D & 2D multiple with an industry and encoded	10				
6. Inermal Analysis – ID & 2D problem with conduction and convection	10				
boundary conditions(Minimum 4 exercises)					
7. Dynamic Analysis	10				
a) Fixed – fixed beam for natural frequency determination					
b) Bar subjected to forcing function					
c) Fixed – fixed beam subjected to forcing function					
Course outcomes:					
CO1: To gain the basic knowledge about FEM tools and their characteristics. {I	1,2}				
{PO1,2,5}	-				

CO2: To elaborate the selection of geometry and it simplification. {L1,2,5} {PO1,2,5}

CO3: To understanding of types of material data and application of boundary conditions. {L1,2,5} {PO1,2,5}

CO4: To defining the solution parameters and defining output requests. {L1,2,5} {PO1,2,5} **Text Books:**

T1. Introduction to Finite Elements in Engineering, T.R.Chandrupatla, A.D Belegund, 3rd Ed PHI, 2002.

T2. Finite Element Method in Engineering, S.S. Rao, 5th Edition, Elsevier, 2011.

Reference Books:

R1. Finite Element Methods for Engineers U.S. Dixit, Cengage Learning, 2009

- R2. Concepts and applications of Finite Element Analysis, R.D. Cook D.S Maltus, M.E Plesha, R.J.Witt, Wiley 4th Ed, 2009.
- R3. First Course in Finite Element Methods, Daryl. L. Logon, Cengage Learning 5th edition, 2012.

R4. An Introduction to the Finite Element Method, J.N.Reddy, 3rd Edition, 2006 McGraw -Hill Publication.

Course Name: DESIGN FOR MANUFACTURE					
Course Code : MTME331E1					
L T P Category PEC					PEC
Contact Hrs./Week	3	0	0	CIA Marks	50
Contact Hrs./Sem.	50	0	0	ESE Marks	50
Credits.	3	0	0	Exam Hours	3

- To know the design consideration for manufacturing of components.
- To describe the different types of features in the design for manufacturing the components.
- To know the geometrical tolerance for manufacturing the components.
- To learn the theory behind Component design with machining considerations.
- To learn to design gauges, suitable for checking of components in assembly.

Prerequisites: 1. Design of Machine Elements. 2. Engineering Metrology.	
Units	Teaching
	nouis
Unit-1	
EFFECT OF MATERIALS AND MANUFACTURING PROCESS ON	
DESIGN: Major phases of design, Effect of material properties on design Effect	
of manufacturing processes on design. Material selection process cost per unit	
property, Weighted properties and limits on properties methods.	
TOLERANCE ANALYSIS:	
Process capability, mean, variance, skewness, kurtosis, Process capability	10
metrics, Cp, Cpk, Cost aspects, Feature tolerances, Geometries tolerances,	
Geometric tolerances, Surface finish, Review of relationship between	
attainable tolerance grades and different machining process. Cumulative effect	
of tolerance - Sure fit law and truncated normal law.	
Unit-2	
SELECTIVE ASSEMBLY:	
Interchangeable part manufacture and selective assembly, Deciding the	
number of groups - Model-1, Group tolerance of mating parts equal, Model	
total and group tolerances of shaft equal. Control of axial play-Introducing	10
secondary machining operations, Laminated shims, examples.	
DATUM FEATURES:	
Functional datum, Datum for manufacturing, changing the datum, Examples.	
Unit-3	
DESIGN CONSIDERATIONS:	
Design of components with casting consideration, Pattern, Mould, and Parting	
line, Cored holes and Machined holes, identifying the possible and probable	10
parting line, casting requiring special sand cores, designing to obviate sand	
cores.	
Unit-4	
COMPONENT DESIGN:	
Component design with machining considerations link design for turning	
components-milling, Drilling and other related processes including finish-	10
machining operations.	

TRUE POSITIONAL THEORY:	
Comparison between co-ordinate and convention method of feature location.	
Tolerance and true position tolerancing virtual size concept, Floating and fixed	
fasteners, Projected tolerance zone, Assembly with gasket, zero position	
tolerance. Functional gauges, Paper layout gauging.	
Unit-5	
DESIGN OF GAUGES:	
Designs of gauges for checking components in assemble with emphasis on	10
various types of limit gauges for both hole and shaft.	
Self-study: Nil.	
Site/Industrial Visits: Nil.	
Course outcomes:	
CO1: Outline the appropriate design for economical production and select the r	naterials.
{L1, L2} {PO1, PO2}	
CO2: Select between various machining and metal joining processes {L1, L2} {	PO1, PO2,
PO3}	
CO3: Apply a systematic understanding of knowledge in the field of metal cast	ing and
forging. {L2, L3, L4} {PO1, PO2, PO3, PO4}	
CO4: Fabricate basic parts and assemblies using powered and non – powered n	nachine
shop equipment in conjunction with mechanical documentation. {L1, L2} {PO1,	PO2, PO3}
CO5: To learn to design gauges suitable for checking of components in assembl	y. {L1, L3,
L5} {PO1, PO2 PO3, PO4}	
Text Books:	
T1. Harry Peck, "Designing for Manufacturing " - Pitman Publications, 1983.	
12. R.K. Jain ," Engineering Metrology" - Khanna Publication ,2011.	
T3. Corrado Poli, "Design for Manufacturing", Butterworth-Heinemann, 2001.	
Reference Books:	<i>c</i> .
R1. Geoffrey Boothroyd, peter dewhurst, Winston Knight," Product design for m	nanufacture
and assembly - Merceldekker.inc. New York, CKC Press, 3 ^{ra} Edition, 2010.	
R2. "Material selection and Design", Vol. 20 - ASM Hand book.	A 11
K3. O. Molloy, E.A. Warman, S. Tilley, Design for Manufacturing and	Assembly:
Concepts, architectures and implementation, Springer Science & Business Med	11a, 1998.
Online Resources:	
W1. https://nptel.ac.in/courses/10/103012/	
W2. https://www.scribd.com/doc/51195775/05-True-Position-Theory.	

W2. https://www.scribd.com/doc/31193/73/03-11de-Position-Theory. W3. https://synthetica.eng.uci.edu/mechanicaldesign101/GDandT.pdf W4. <u>http://textofvideo.nptel.ac.in/112106179/lec16.pdf</u>

Course Name: Rotor Dynamics					
Course Code : MTME331E2					
	L	Т	Р	Category	PEC
Contact Hrs./Week	3	0	0	CIA Marks	50
Contact Hrs./Sem.	50	0	0	ESE Marks	50
Credits.	3	0	0	Exam Hours	03

- To know the critical speed of shaft for the rotating body.
- To find the fluid flow with in the body when it subjected to dynamic consideration.
- To know the lubrication characteristics used in the fluid film flow

Dromo gradinita ga Nil	
Prerequisites: Nil	
Units	Teaching
	Hours
Unit-1	
FLUID FILM LUBRICATION: Basic theory of fluid film lubrication,	10
Derivation of generalized Reynolds equations, Boundary conditions, Fluid	
film stiffness and Damping coefficients, Stability and dynamic response for	
hydrodynamic journal bearing, Two lobe journal bearings.	
STABILITY OF FLEXIBLE SHAFTS: Introduction, equation of motion of a	
flexible shaft with rigid support, Radial elastic friction forces, Rotary friction,	
friction Independent of velocity, friction dependent on frequency, Different	
shaft stiffness Constant, gyroscopic effects, Nonlinear problems of large	
deformation applied forces, instability of rotors in magnetic field	
Unit-2	
CRITICAL SPEED: Dunkerley's method, Rayleigh's method, Stodola's	10
method.	
ROTOR BEARING SYSTEM: Instability of rotors due to the effect of	
hydrodynamic oil layer in the bearings, support flexibility, Simple model with	
one concentrated mass at the center.	
Unit-3	
TURBO ROTOR SYSTEM STABILITY BY TRANSFER MATRIX	10
FORMULATION: General turborotor system, development of element	
transfer matrices, the matrix differential equation, effect of shear and rotary	
inertia, the elastic rotors supported in bearings, numerical solutions.	
Unit-4	
TURBO ROTOR SYSTEM STABILITY BY FINITE ELEMENT	10
FORMULATION: General turborotor system, generalized forces and co-	
ordinates system assembly element matrices, Consistent mass matrix	
formulation, Lumped mass model, linearised model for journal bearings,	
System dynamic equations Fix stability analysis non dimensional stability	
analysis, unbalance response and Transient analysis.	
Unit-5	

BLADE VIBRATION: Centrifugal effect, Transfer matrix and Finite element, 10
approaches
Self-study ·
Site/Industrial Visits :
Course outcomes: At end of this course, students will be able to:
CO1: Derive the equations of motion of a rigid rotor in the absolute and rotating coordinate systems.(L1,L2,L4)(PO1,PO2,PO4)
CO2: Explain the critical speed of revolution and the self-balancing effect. (L1,L2) (PO1,PO2,PO4)
CO3: Explain the external damping, and internal damping and their effects. (L1,L2) (PO1,PO2,PO4)
CO4: Explain the change of a critical speed in the case that the gyro effect is considered. (L1,L2) (PO1,PO2,PO4)
CO5: Explain the characteristics of the whirling vibration of a non-isotropic rotor. (L1,L2) (PO1,PO2,PO4)
Text Books:
T1. Cameron Longmans "Principles of Lubrication" ,John Wiley & Sons Inc; 3rd edition ,2016
T2.Yiwei Li ,James H. Starnes Jr ,"Nonconservative problems of the Theory of elastic
stability"- Bolotin, Pergamon. Cambridge University Press ,2001
Reference Books:
R1. E.C. Pestel and F.A. Leckie, "Matrix methods of Elastomechanics" McGraw Hill.
R2.Timosenko, Young, "Vibration Problems in Engineering"- Von Nostrand,2017 R3Zienkiewicz, "The Finite Element Method", McGraw Hill
Online Resources:

W1. W2.

Course Name: Robust Design					
Course Code : MTME331E3					
	L	Т	Р	Catego	ry PEC
Contact Hrs./Week	3	0	0	CIA Mar	ks 50
Contact Hrs./Sem.	50	0	0	ESE Marks	
Credits.	3	0	0	Exam Hou	rs 03
 Course objectives To learn steps in robust design, parametric design and tolerance design. To know the role of S-N ratios in reliability improvement. To know the parametric and tolerance design system Understand the concept of Taguchi's orthogonal arrays. 					gn.
Prerequisites: Nil					
Units					Teaching Hours
Unit-1					
QUALITY BY EXPERIMENTAL DESIGN (Quality, western and Taguchi and Taguchi quality philosophy, Elements of cost, Noise factors causes of variation, Quadratic loss function and variation of quadratic loss functions. Robust Design :Steps in robust design : parameter design and tolerance design, reliability improvement through experiments, illustration through numerical examples. EXPERIMENTAL DESIGN: Classical experiments: factorial experiments, terminology, factors. Levels, Interactions, Treatment combination, randomization, 2-level experimental design for two factors and three factors. 3-level experiment deigns for two factors and three factors, factor effects, factor interactions, Fractional factorial design, Saturated design, Central composite design.					10
Unit-2					
MEASURES OF VARIABILITY :Measures of variability, Concept of confidence level, Statistical distributions : normal, log normal and Weibull distributions. Hipothesis testing, Probability plots, choice of sample size illustration through numerical examples. ANALYSIS AND INTERPRETATION OF EXPERIMENTAL DATA:Measures of variability, Ranking method, column effect method and ploting method, Analysis of variance (ANOVA), in factorial experiments: YATE's algorithm for ANOVA,Regression analysis, Mathematical models from experimental data, illustration through numerical examples.					10
Unit-3					
TAGUCHI'S ORTHOGO of standard orthogonal dummy level technique, graphs, Column merg constructing orthogonal a Unit-4	DNAL <i>A</i> arrays, Comp ing m arrays.	ARRA Linea ound ethod	AYS: 7 ar gra facto: l, Bra	Types orthogonal arrays, Selection phs and interaction assignment, r method, modification of linear anching design, Strategies for	10

SIGNAL TO NOISE RATIO (S-N RATIOS) :Evaluation of sensitivity to noise, Signal to noise ratios for static problems, Smaller – the – better types, Nominal – the – better – type, larger – the- better – type. Signal to noise ratios for dynamic problems, Illustrations through numerical examples.	10
Unit-5	
PARAMETER DESIGN AND TOLERANCE DESIGN: Parameter and	10
tolerance design concepts, Taguchi's inner and outer arrays, Parameter design	
strategy, Tolerance deign strategy, Illustrations through numerical examples.	
RELIABILITY IMPROVEMENT THROUGH ROBUST DESIGN : Role of S-	
N ratios in reliability improvement ; Case study; Illustrating the reliability	
improvement of routing process of a printed wiringboardsusing robust design	
Self-study :	
Cite/Inductrial Visite	
Course outcomes:	
cO1: Given a set process data, characterize the process behavior using descripting testing (11)(PO1 PO2)	ve
CO2: Given sampled process data over time, establish control charts for monitor	ring
processes. (L2) (PO1.PO2)	0
CO3: Identify if the process is in-control. If not, identify special patterns that ma	y exist.
(L2) (PO1.PO2)	nrocess
is capable. (L2) (PO1.PO2)	a process
CO5: Given a measurement system, design a plan to identify if the measurement	t system is
capable. (L2) (PO1.PO2)	
Text Books:	
T1.Madhav S. Phadake,"Quality Engineering using Robust Design" Pres	ntice Hall,
Englewood Clifts, New Jersey 07632, 1st Edition,2008.	,
T2.DouglasMontgomery,"Design and analysis of experiments "- Willey India	n Pvt. Ltd.,
V8th Ed., 2013.	
T3. Phillip J. Ross: Taguchi,"Techniques for Quality Engineering"McGraw Hill I	nt. Ed., 2nd
edition.1996.	
Reference Books:	
R1 Thomas B Barker "Quality by Experimental Design" Marcel Dekker Inc AS	C Quality
Press, 2005	z Quanty
R2. C.F. Jeff Wu, Michael Hamada, "Experiments planning, analysis and param	eter design
optimization" John Willey Ed., 2002.	
R3."W.L. Condra, Marcel Dekker"Reliability improvement by Experiments: Mar	cel Dekker
Inc ASQC Quality Press,2001	

Online Resources:

W1.

W2.

Course Name: Research Methodology						
Course Code : MTME331E4						
	L	Т	Р	Catego	ry	PEC
Contact Hrs./Week	3	0	0	CIA Mar	ks	50
Contact Hrs./Sem.	45	0	0	ESE Mar	ks	50
Credits.	3	0	0	Exam Hou	ırs	3
Course objectives: • To understand so • To identify appro • To select and defi • To organize and c • To write a researc	me basi priate r ne appi conduct ch repoi	ic conc esearc copria resea t and	cepts o ch top: te rese rch/p thesis	of research and its methodologies ics earch problem and parameters roject in a more appropriate manne	er	
Prerequisites:						
Units					Tea Hou	ching 1rs
Unit-1						
Research methodology – definition and significance, Types of research – exploratory research, conclusive research, modelling research, algorithmic research, casual research, theoretical and empirical research, cross-sectional and time series research. Research process- steps, research problems, objectives, characteristics, hypothesis and research in an evolutionary perspective					9	
Unit-2						
Research design- definition, types –descriptive and experimental, validity and reliability of instrument, Validity of findings- internal and external validity, Variables in Research, types of data – primary and secondary data, methods of a data collection for scientific and business research, experiments, construction and validation of questionnaire, measurement and scaling. Types of scale – Thurstone's Case V scale model, Osgood's Semantic Differential scale, Likert scale O-sort scale					9	
Unit-3						
Sampling methods – Probability sampling methods – simple random sampling with replacement and without replacement, stratified sampling, cluster sampling. Non-probability sampling method – convenience sampling, judgment sampling, quota sampling. Nonparametric tests- One sample tests – one sample sign test, Kolmogorov-Smirnov test, run test for randomness, two sample tests – two sample sign test, Mann-Whitney U test, K-sample test – Kruskal Wallis test (H-test)						9
Unit-4						
Hypothesis testing – Test difference between two re variance _ one tailed Cl analysis, cluster analysis multiple egression and c analysis.	ting of l means - hi-squa sis, mu orrelatio	hypot - one re tes ilti-dii on, ap	heses tailed t. Intr mensioplicat	concerning means (one mean and and two tailed tests), concerning oduction to Discriminant, Factor onal scaling, conjoint analysis, ion of statistical software for data		9
Unit-5						

Report writing – types of report, guidelines to write report, typing instruction, need of summary, importance of language in the preparation of research report, oral presentation. Recording the findings of research – publication-contents to meet the journals standard – impact factor – citation and citation index, policy on academic honesty and integrity – academics cheating and plagiarism. Opportunities to carry out research projects with funding/assistance from various Government agencies.	9				
Self-study :					
Site/Industrial Visits :					
Course outcomes:					
CO1: To develop understanding of the basic framework of research process. {L:	1, L2} {PO1,				
PO2}	(1 4 1 0)				
CO2: To develop an understanding of various research designs and techniques.	. {L1, L2}				
{CO3: To identify various sources of information for literature review and data (collection				
{L1, L2, L4} {PO1, PO2, PO3, PO4}	Joneenon.				
CO4: CO4: To develop an understanding of hypothesis testing and analysis. { L	1, L-2, L-4,				
L-5} {PO1, PO3, PO4}					
CO5: Appreciate the components of scholarly writing and evaluate its quality {	L1, L2, L6}				
{PO8, PO10}					
Text Books:					
11. Garg, B.L, Karadia R, Agarwal F, and Agarwal, "An introduction to Res	earch				
Methodology, KBSA Publishers, 2002. T2 Kothari C.B. "Pasaarah Mathadalagu: Mathada and Tashniguaa". Nau	1 00				
International 1990	Age				
Reference Books:					
R1. Sinha, S.C and Dhiman A.K, "Research Methodology", 2nd volume, Ess	5				
Publications, 2002.					
R2. Trochim W.M.K, "Research Methods: the concise knowledge base", Ato	mic Dog				
Publishing, 2005.					
R3. Donald R. Cooper and Pamela S. Schindler, business Research Methods, 9th					
edition, Tata Mcgraw Hill, 2006.					
R4. Y. P. Agarwal, "Statistical Methods: Concepts, Application and Comput	ation",				
Sterling Publs., Pvt., Ltd., New Deini, 2004Gall, Metals Hand Book, A	merican				
Online Resources:					
W1. https://www.coursera.org/learn/research-methods					
W2. https://nptel.ac.in/downloads/121106007/					

Course Name: ADVANCED THEORY OF VIBRATION					
Course Code : MTME332E1					
	L	Т	P	Catego	ry PEC
Contact Hrs./Week	3	0	0	CIA Mar	·ks 50
Contact Hrs./Sem.	50	0	0	ESE Mar	·ks 50
Credits.	3	0	0	Exam Hou	irs 03
Course objectives					
 To obtain the idea of classification of vibration, modal analysis. To acquire the knowledge of damping factor and measuring instruments. To know the DOF and the damping factors To understand the measuring instruments 					
Proroquisites: Nil					
Units					Teaching Hours
Unit-1					
REVIEW OF MECHANICAL VIBRATIONS: Basic concepts; free vibration of single degree of freedom systems with and without damping, Forced vibration of single DOF-systems, Force and motion isolation, Two DOF-systems, natural frequency. Unit-2					10
TRANSIENT VIBRAT	ION	OF	SINC	LE DECREE-OF FREEDOM	10
SYSTEMS :Impulse excitation, Arbitrary excitation, Laplace transform formulation, Pulse excitation and rise time, Shock response spectrum, Shock isolation, Finite difference numerical computation.					
Unit-3					
 VIBRATION CONTROL: Introduction, Vibration isolation theory, Vibration isolation theory for harmonic excitation, practical aspects of vibration analysis, shock isolation, Dynamic vibration absorbers, and Vibration dampers. VIBRATION MEASUREMENT AND APPLICATIONS:Introduction, Transducers, Vibration pickups, Frequency measuring instruments, Vibration exciters, Signal analysis. 					10
Unit-4					
 MODAL ANALYSIS & CONDITION MONITORING:Dynamic Testing of machines and Structures, Experimental Modal analysis, Machine Condition monitoring and diagnosis. NON LINEAR VIBRATIONS: Introduction, Sources of nonlinearity, Qualitative analysis of nonlinear systems. Phase plane, Conservative systems, Stability of equilibrium, Method of isoclines, Perturbation method, Method of iteration, Self-excited oscillations. Unit-5 					10
PANDOM VIEDATIO		Zanda	m nl	anomona Time averaging and	10
expected value, Frequency response function, Probability distribution, Correlation, Power spectrum and power spectral density, Fourier transforms, FTs and response.					10

CONTINUOUS SYSTEMS:Vibrating string, Longitudinal vibration of rods, Torsional vibration of rods, Suspension bridge as continuous system, Euler equation for beams, Vibration of membranes.

Self-study :

Site/Industrial Visits :

Course outcomes:

CO1: To learn the classification of mechanical vibration {L1, L2} {PO1, PO2, PO4}

CO2: To acquire the knowledge of damping factor and transient vibration.

{L1, L2, L4} {PO1, PO2, PO3, PO4}

CO3: To learn about vibration control and the damping factors. {L1, L2, L6} {PO8, PO10} CO4: To understand the working of measuring instruments and condition monitoring systems. {L1, L2} {PO8, PO12}

CO5: To learn random vibration and continuous systems. {L1, L2} {PO8, PO12}

Text Books:

T1. William T. Thomson, Marie Dillon Dahleh, ChandramouliPadmanabhan," Theory of Vibration with Application", Pearson Education,5th edition,2008

T2.S. Graham Kelly,"Fundamentals of Mechanical Vibration". McGraw Hill.2nd edition,2000

T3. S. S. Rao., "Mechanical Vibrations", Pearson Education, 4th edition, 2003

Reference Books:

R1. S. Graham Kelly,"MechanicalVibrations"Schaum's Outlines, Tata McGraw Hill, 2007.

Online Resources:

W1.

W2.
Course Name: OPTIMUM DESIGN								
Course Code : MTME332E2								
	L T P Category				ry PEC			
Contact Hrs./Week	3	0	0	CIA Marks				
Contact Hrs./Sem.	50	0	0	ESE Marks 50				
Credits.	3	0	0	Exam Hou	irs 03			
Course objectives								
Introduction to	o classic	al opt	imiza	tion technique.				
 To learn non-li 	near pr	ogran	nming	Ş				
To know the co	onstrair	ned op	otimiza	ation techniques.				
Prerequisites: Nil					-			
Units					Teaching			
					Hours			
Unit-1								
INTRODUCTION: Eng	ineering	g app	licatic	on of optimization, Statement of	10			
optimization problem, C	lassifica	ation o	of opt	imization problems, CLASSICAL				
OPTIMIZATION TECHNIQUES: single variable optimization, Multivariable								
Unit-2	Strantes							
CLASSICAL OPTIM	ΙΖΔΤΙ)N	TFC	HNIOUES II: Multivariable	10			
optimization with equality constraints and inequality constraints Kubn								
Tucker conditions.								
NON - LINEAR PRO	NON - LINEAR PROGRAMMING: One - dimensional minimization							
methods: Unimodal function, Unrestricted search, Exhaustrive search,								
Dichotomous search, Fibonacci method, Golden section method.								
Unit-3								
INTERPOLATION M	ETHOI	DS: (Quadr	ratic, Cubic and Direct root	10			
interpolation methods.								
UNCONSTRAINED C	UNCONSTRAINED OPTIMIZATION TECHNIQUES: Direct search							
methods: Univariate method, Hook and Jeeves' method, Powell's method,								
Unit-4								
DESCENT METHODS: Stoopost descent Conjugate gradient Oussi 10								
Newton Davidon - Fletcher - Powell method								
CONSTRAINED OP	ΓΙΜΙΖΑ	ATIO	ΝΊ	ECHNIQUES: Direct methods:				
characteristics of a constrained problem, Indirect methods: Transformation								
techniques, Basic approach of the penalty function method.								
Unit-5								
DYNAMIC PROGRAMMING:Introduction, Multistage decision processes,								
Principle of optimality, Computational Procedure in dynamic programming,								
Initial value problem, Examples.								
Self-study :								
Site/Industrial Visits :								

Course outcomes:

CO1. Students will know the principles of optimization. {L1,2}{PO1,2} CO 2. Students will have knowledge of algorithms for design optimization. {L1,2}{PO1,2,3} CO 3. Students will be able to formulate an optimization problem. {L3}{PO1,2,3} CO 4. Students should be able to find the optimum solution of their problems using optimization techniques. {L3}{PO1,2,3}

Text Books:

T1. S. S. Rao, "Optimisation - Theory and Application" - Willey Eastern. T2. R.L Fox,"Optimization methods for Engg. Design "Addison – Wesley.

Reference Books:

R1. Ram, "Optimisation and Probability in System Engg" VanNostrand.R2. K. V. Mital and C. Mohan, "Optimization methods" - New age International Publishers, 2016

Online Resources:

W1.

W2.

Course Name: VEHICLE DYNAMICS							
Course Code : MTME332E3							
	L	Т	Р	Catego	ry PEC		
Contact Hrs./Week	3	0	0	CIA Mar	ks 50		
Contact Hrs./Sem.	50	0	0	ESE Mar	ks 50		
Credits.	3	0	0	Exam Hou	trs 03		
Course objectives			I		I		
 To know the response of idealized suspension systems. To learn sinusoidal transmissibility function to predict means square motion of spring mass. Find the kinematic behavior of vehicles with rigid wheels and with compliant tyres 							
Prerequisites: Nil					-		
Units					Teaching Hours		
Unit-1							
VEHICLE RIDE: Human response to vibration: ISO standards, Response of idealized suspension systems to stop and sinusoidal disturbances in bounce and to wheel out of balance. Combined pitch and bounce motion: application to multi wheel station vehicles. Random ground input excitation: Use of sinusoidal transmissibility function to predict mean square motion of spring mass.							
Unit-2							
WHEELED VEHICLE HANDLING: Handling control loop, vehicle transferfunction. Kinematic behavior of vehicles with rigid wheels and with complianttyres: neutral steer point, static margin, over and under-steer.							
Unit-3							
TRANSIENT RESPONSE: Natural frequency and damping in yaw. Frequency response in yaw. Extension of two degree of freedom theory to include effects of traction and braking, aerodynamics, self-aligning torque, dual wheels and bogies, Handling of multi-axle vehicles. Development of equations of motion to include roll of sprung mass: Effect on steady state and frequency response.							
Unit-4							
TRACKED VEHICLE HANDLING: Analysis of sprocket torques and speeds, 10 required to skid steer a tracked vehicle. Extension of theory to include three 10 degrees of freedom.Modification of theory to allow for soil conditions and 10 lateral weight transfer Application of theory of steering of articulated and half- 10 track vehicles. 10							
DERIVATION OF GENERALIZED FOULATIONS: Equation of motion for a 10							
vehicle: stability derivative notation. Solution with two degree of freedom in the steady state: stability factor, characteristic and critical speeds.							

Self-study :

Site/Industrial Visits :

Course outcomes:

CO1: Simulate acceleration and braking performance of common

vehicles(L4)(PO1,PO2,P3)

CO2: Model the normal road loads acting on vehicles(L3) (PO1,PO2,P3)

CO3: Model and simulate suspension forces due to road inputs and steady state cornering forces(L4) (PO1,PO2,P3)

CO4: Design and simulate common suspension and steering geometries(L4) (PO1,PO2,P3) CO5: Apply tire properties to vehicle performance(L5) (PO1,PO2,P3)

Text Books:

T1. Vehicle Dynamics, 19&9, IR Ellis, Business Book.

T2. Theory of Ground vehicles, 2001, JY Wong, Wily.

Reference Books:

R1. Vehicles & Bridging, igSs/Tytler, Brassey's.

R2. Fundamental of vehicle dynamics: Thomas D Gillespie

Online Resources:

W1.

Course Name: TRIBOLOGY AND BEARING DESIGN							
Course Code : MTME333E1							
	L	Т	Р	Catego	ry	PEC	
Contact Hrs./Week	3	0	0	CIA Mar	:ks	50	
Contact Hrs./Sem.	50	0	0	ESE Marks 50			
Credits.	3	0	0	Exam Hou	ırs	03	
Course objectives							
• To study the ty	vpes of	contac	rts. tvr	pes of bearing.			
 Design a bearing 	ng base	d on t	heir a	pplication and types of load.			
• To know the re	esponse	of ide	ealized	l bearing systems.			
Prerequisites: Nil							
Units					Tea	aching	
					Но	urs	
Unit-1							
INTRODUCTION TO	TRIBC	LOG	Y: Int	roduction, Friction, Wear, Wear		10	
Characterization, Regime	es of lub	ricatio	on, Cla	assification of contacts, lubrication		10	
theories. Newton's Law	of visco	us for	ces, E	ffect of pressure and temperature			
on viscosity.				1 1			
HYDRODYNAMIC LU	BRICA	ΓΙΟΝ	: New	ton's Law of viscous forces, Flow			
through stationary parallel plates. Hagen's poiseuille's theory,							
viscometers.Numerical problems, Concept of lightly loaded bearings, Petroff's							
equation, Numerical problems.							
Unit-2							
HYDRODYNAMIC B		GS:	Press	ure development mechanism.		10	
Converging and diverging	ng film	s and	press	idealized alide hearing with fixed			
shoe and Pivoted shoes	ns. Intr	oduct	for lo	idealized slide bearing with fixed			
center of pressure Nume	rical pr	oblem		au carrying capacity.Location of			
IOURNAL BEARINGS. Introduction to idealized full journal hearings. Load							
carrying capacity of idealized full journal bearings. Sommerfeld number and							
its significance. Comparison between lightly loaded and heavily loaded							
bearings, Numerical problems.							
Unit-3							
EHL CONTACTS:Introd	luction	to Ela	sto - h	ydrodynamic lubricated bearings.		10	
Introduction to 'EHL' c	onstant	.Grub	in ty	pe solution. Introduction to gas			
lubricated bearings. Governing differential equation for gas lubricated							
bearings.							
Unit-4					1		
HYDROSTATIC BEAR	INGS:	Туре	es of	hydrostatic Lubrication systems		10	
Expression for discharge	Expression for discharge, load carrying capacity, Flow rate, Condition for						
POPOLIS <i>L</i> CAS BEAD	minimum power loss. Torque calculations. Numerical problems.						
norous hearings and wo	rking n	rincin	al Fre	to porous bearings. Equations for			
	ining p	merp	ui, 110	and prenomenon and it's stages			
Unit-5					I		

MAGNETIC BEARINGS: Introduction to magnetic bearings, Active magnetic	10
bearings. Different equations used in magnetic bearings and working	
principal.Advantages and disadvantages of magnetic bearings, Electrical	
analogy, Magneto-hydrodynamic bearings.speeds.	

Self-study :

Site/Industrial Visits :

Course outcomes:

CO1: To understand the principles of tribology for selecting compatible materials for minimizing friction and wear in machinery. {L1, L2} {PO1, PO2}

CO2: To understand the principles of bearing selection based on the application. {L1, L2} {PO1, PO2, PO3}

CO3: To learn the computations required for selecting and designing bearings in machines. {L2, L3, L4} {PO1, PO2, PO3, PO4}

CO4: To understand the fundamental principles of gas lubricated bearings. {L1, L2} {PO1, PO2, PO3}

CO5: To understand the fundamental principles of magnetic bearings .{L2, L3, L5} {PO1, PO2 PO3, PO4}

Text Books:

T1. Mujamdar.B.C "Introduction to Tribology of Bearing", Wheeler Publishing, New Delhi 2001.

T2. Susheel Kumar Srivasthava "Tribology in industry" S.Chand and Co.

Reference Books:

T1. Dudley D.Fulier" Theory and practice of Lubrication for Engineers", New York Company.1998

T2. Moore "Principles and applications of Tribology" Pergamon press.

T3. Pinkus '0' Stemitch. "Theory of Hydrodynamic Lubrication"

T4. Gerhandschwetizer, HannesBleuler&AlfonsTraxler, "Active Magnetic bearings", Authors working group, www.mcgs.ch., 2003.

T5. Radixmovsky, "Lubrication of Bearings - Theoretical principles and design" The Oxford press Company, 2000.

Online Resources:

W1.

W2.

Course Name: Theory of Plates and shells						
Course Code : MTME333E2						
	L	Т	Р	Catego	ry PEC	
Contact Hrs./Week	3	0	0	CIA Mar	ks 50	
Contact Hrs./Sem.	45	0	0	ESE Mar	ks 50	
Credits.	3	0	0	Exam Hou	irs 3	
Course objectives: • To facilitate the students to appreciate the shell structures, stresses in a plates and the different load conditions. • To impart the knowledge of symmetrical bending for cylindrical and rectangular plates. • To be able to find the bending of plates using differential equation for certain plates under different boundary and loading condition. • To understand the analytical and numerical techniques to design the plates and shells for practical applications. • To course aims at enumerating the behaviour of plates and shell elements. Prerequisites: Strength of Materials, Design of Machine Elements Units						
Unit-1						
BENDING OF LONG RECTANGULAR PLATE INTO A CYLINDRICAL9SURFACE, DIFFERENTIAL EQUATION- Bending of plated with different9boundary conditions - Long plate on elastic foundation.9PURE BENDING: Moment and curvature relations problems of simply supported plates-Strain energy impure bending.9Unit-29SYMMETRICAL BENDING OF CIRCULAR PLATES: Differential equation uniformly loaded plates, Plates concentricity loaded plates- loaded at the center.9						
Unit-3						
RECTANGULAR PLATES: Differential equations - Solution of simply supported plate Various loading conditions, viz, uniformly distributed load, hydrostatic pressure and concentrated load, central as well as noncentral, Navier and Levy type solutions with various edge boundary conditions, viz., all edges simply supported, Two opposite edge fixed and two adjacent fixed. BENDING OF PLATE UNDER COMBINED ACTION: of lateral and transverse loads derivation of differential equation, simply supported rectangular plate.9Unit-4INTRODUCTION TO SHELL STRUCTURES- General description of various types. Membrane Theory of thin shells (Stress Analysis): Cylindrical9						
shells - Spherical Shells Hyperbolic, Parabolic and	s- Shell d ellipti	s of c para	doubl aboloid	e curvature, Viz, cooling tower d.		

MEMBRANE DEFORMATION OF SHELLS: Symmetrical 'loaded shell,	
symmetrically loaded spherical shell. General Theory of cylindrical shells:	
Circular; Cylindrical shell loaded symmetrically.	
Unit-5	
General equation of circular cylindrical shells. Approximate investigation of:	9
bending of circular cylindrical shell.	
Self-study :	
Site/Industrial Visits :	
Course outcomes:	
CO1: {Analyse the solutions of bending of rectangular plates into a cylindrical s different boundary conditions.} {L1, L2, L3} {PO1, PO2, PO3}	urface with
CO2: {Apply the analytical methods to find the solutions for the circular plates	subjected to
symmetric bending}{L1, L2, L3 }{PO1, PO2, PO3}	,
CO3: {Analyse the solutions of simply supported plate various loading con-	ditions and
bending of plate under combined action.} { L1, L2, L3} {PO1, PO2, PO3}	
CO4: {Discuss the various types of shell structure and membrane deformation	of shells.} {
L1, L2, L3} {PO1, PO2, PO3}	
CO5: {Apply the numerical techniques and tools for bending of circular cylindre	rical shells.}
{ L1, L2, L3} {PO1, PO2, PO3}	
Text Books:	
T1. Timoshenko, Woinowsky and Krieger, "Theory of plates and Shells" McGra	aw Hill,
Nouwork 2ND Edition 2017	

Newyork.2ND Edition,2017

T2. Flugge, "Stresses in Shells "Springer Verlag, Berlin.

Reference Books:

R1. Goldnvizer,"Theory of Elastic Thin Shells" - Pergamon Press, New York,2014

Online Resources:

W1. https://nptel.ac.in/courses/112101095/34

Course Name: ADVANCED MECHANISMS DESIGN AND SIMULATION							
Course Code : MTME333E3							
	L	Т	Р	Category 1			
Contact Hrs./Week	3	0	0	CIA Mar	ks 50		
Contact Hrs./Sem.	50	0	0	ESE Mar	ks 50		
Credits.	3	0	0	Exam Hou	urs 03		
Course objectives To know the m To learn study To know the si 	odellin of sens mulatio	ig and ors an	simu d trar l its cc	lation of physical systems. Insducers and electrical actuation Incept.			
Prerequisites: Nil							
Units					Teaching Hours		
Unit-1							
INTRODUCTION: Definition and Introduction to Mechatronic Systems.10Modeling & Simulation of Physical systems Overview of Mechatronic10Products and their functioning measurement systems.Control.10STUDY OF SENSORS AND TRANSDUCERS:Pneumatic and Hydraulic10Systems, Mechanical Actuation System, Electrical Actual Systems, Real time10interfacing and Hardware components for Mechatronics.10							
Unit-2							
ELECTRICAL ACTUATION SYSTEMS: Electrical systems, Mechanical switches, Solid state switches, solenoids, DC & AC motors, Stepper motors. SYSTEM MODELS: Mathematical models:- mechanical system building blocks, electrical system building blocks, thermal system building blocks, electromechanical systems, bydro-mechanical systems, pneumatic system							
Unit-3							
SIGNAL CONDITIONING: Signal conditioning, the operational amplifier, Protection, Filtering, Wheatstone Bridge, Digital signals, Multiplexers, Data Acquisition, Introduction to digital system processing, pulse-modulation. MEMS AND MICROSYSTEMS: Introduction, Working Principle, Materials for MEMS and Microsystems, Micro System fabrication process, Overview of Micro Manufacturing, Micro system Design, and Micro system Packaging.							
Unit-4							
DATA PRESENTATION SYSTEMS: Basic System Models, System Models, Dynamic Responses of System.							
Unit-5							
ADVANCED APPLICATIONS IN MECHATRONICS: Fault Finding, Design, Arrangements and Practical Case Studies, Design for manufacturing, User-friendly design.							
Self-study :							

Site/Industrial Visits :

Course outcomes:

CO1: Design a mechatronics system for a specific application(L4)(POPO1,PO2,PO3,PO5) CO2: Select the sensors and actuators required for mechatronics system (L3) (POPO1,PO2,PO3)

CO3: Design a signal conditioning circuit (L4) (POPO1,PO2,PO3,PO5)

CO4: Understand dynamics and control of a mechatronics system(L2)

(POPO1,PO2,PO3,PO5)

CO5: Understand MEMS based systems and their fabrication methods(L2)

(POPO1,PO2,PO3,PO5)

Text Books:

1. W. Bolton, "Mechatronics" 2 Ed. earson Education; 4 edition ,2010

2. HSU "MEMS and Microsystems design and manufacture"- TMH McGraw Hill Education; 1 edition ,2017

Reference Books:

1. Kamm, "Understanding Electro-Mechanical Engineering an Introduction to Mechatronics"- PHI. Wiley-Blackwell, 1995

2. "Fine Mechanics and Precision Instruments" - Pergamon Press, .1971.

3. Shetty and Kolk "Mechatronics System Design"-Thomson, Cengage; 2 edition 2012

4. Mahalik "Mechatronics"- TMH.

5. "Mechatronics" – HMT, TMH.

6. Michel .B. Histand&David"Introduction to Mechatronics & Measurement Systems"-. Alciatore.McGraw Hill Education; 4 edition ,July 2017

Online Resources:

W1.

W2.