Module - |

Introduction to programming, Classification of computer languages,
LLanguage translators (Assembler, Compiler, Interpreter), Linker,
Characteristics of a good programming language, Factors for selecting a
language, Subprogram, Purpose of program planning, Algorithm,
Flowchart, Pseudocode, Control structures (sequence, selection,
Iteration), Testing and debugging.

What is a Programming Languages

» A programming language is a set of rules that
provides a way of telling a computer what
operations to perform.

A programming language is a tool for developing
executable models for a class of problem domains.

* A programming language also has words,
symbols and rules of grammar.

* The grammatical rules are called syntax.

> Each programming language has a different set
of syntax rules.

Classification of computer languages

Computer languages are classified into three categories

1. Machine Language

* Architecture

2. Assembly Language

3. High-Level Language

“ Machine language

Machine code or machine language is a system of
instructions and data executed directly by a computer's
CPU. The lowest-level programming language that only be
understood by computers.

Computer language that is directly executable by a
computer without the need for translation by a compiler
or an assembler.

* A machine language instruction normally has a two part
format.

* The first part is operation code that tells the computer
what function to perform.

« The second part is operand that tells where to find or store
the data on which the computer has to perform the
function.

OPCODE OPERAND

All computers use binary digits (0Os and 1s) for performing
internal operations. Hence most computer’s machine language
instructions consist of binary numbers.

Machine Language
The native language of the computer,

The set of symbolic instructions in binary that is used to
represent operations and data in a machine called machine
code

Machine Language: “0110101100101000”

machine language 1s a collection of binary digits or bits
that the computer reads and interprets.

Machine language is the only language a computer
understands. It 1s almost impossible for humans to use
because they consist entirely of numbers.

Machine level language

* Machine level language is a set of instruction or codes
which are directly understand by computer with out
help of translator. It is combination of 0 and 1.

Advantages

< It is Witten in machine code(o and 1) so no need to
translate.

It is faster then other language.

Disadvantage

It is difficulty to understand and develop the program
by using this language.

“The knowledge of computer architecture is required.

“*Debugging is difficult.

Assemble language

» Assemble language is also known as low level
language. Which uses the mnemonics code as a
instruction. The language which uses the mnemonics
codes and symbol to develop any program is called
Assemble language. This language uses some
mnemonics codes they are ADD for addition, SUB for
subtraction and MUL for multiplication , LDA for load
accumulator etc.

Advantage

* .Less time to consumed respect to machine code.

“Coding is faster then machine code because
mnemonics codes are use.

* Debugging is easier then machine code.
Disadvantage

“*Machine oriented language.

“The knowledge of computer hardware is required.

<This language is not understand by hardware so we
need to translator like assembler

High Level Languages

* High Level Language: High Level Language: are
problem oriented language. Most programs are written
in high level language which are quite similar to
English languages that’s why they are easier then
machine level language. This programming language

is used to develop different softwares. For example
C,C++,JAVE etc.

Advantages

» Simple English is used for programming coding.
* Machine independent.

* The knowledge of computer architecture is not
required.

* [t requires less time for program coding.

* Program can be debugging easily because the code is
written in simple English language .

Disadvantage

» This language is not easily understand by computer
hardware so we need to translate this language in to
machine code. By the help of compiler.

* The program execution is slower then machine
language.

* The conversion time is slower then Assemble
language.

Language translators

Language Translator

= | anguage translator is a program that converts the source code
in to the object code.

onverter

Translator

) Why Language Translators?

» Computer only understands object code (machine code).
= |t does not understand any source code.

» There must be a program that converts source code in to the object code
so that the computer can understand it.

= The language translator is one which does this job.

= The programmer writes the source code and then translator converts it
in machine readable format (object code).

= There are Three types of Language Translator

Assembler

Compiler

Interpreter

b Assembler

®» Assembler is the language translator that converts assembly
language code in to the object code (machine code).

Assembler
Source Code

Translator

) Compiler

= Compiler is the language translator that converts high level
language code in to the object code (machine code).

= |t converts the whole code at a time.

Onvert _

Translator

Source Code

8 3 Compiler

Program Read whole program

Line 1 : Instruction 1 Line 1 : Instruction 1 Convert whole program Execute
Line 2/Instruction 2 ™™ Mine 2 : Instruction 2 ™™=, t5 object codpe . —
' : Instruction 3 Line 3 : Instruction 3
Ling 4 : Instruction 4 Line 4 : Instruction 4
Line 5 : Instruction 5 Line 5 : Instruction 5

1 2 3 4

B Interpreter

» [nterpreter is the language translator that converts high level
language code in to the object code (machine code).

= |t converts the code line by line.

Interpreter onvert Object Code

Source Code

Hrariosialui

103 Interpreter

Program

Line 1 :Instruction 1 =Read Line 1

Line 2/Instruction 2 =Read Line 2

Ligle 3 : Instruction 3 =Read Line 3

Line 4 : Instruction 4 —Read Line 4

Line 5 : Instruction 5 =Read Line 5

=Convert in to Object code
=Convert in to Object code
—tConvert in to Object code
—Convert in to Object code

=—Convert in to Object code

=Extcute

=EXtcute

—f#xecute

-—Execute

—Extcute

BDifference between Compiler and Interpreter

Compiler Interpreter
® |t converts whole code at a time. ®» |t converts the code line by line.
» [t is faster. ® |tis slower.

® Requires less memory.

» Requires more memory.
- : = Errors are displayed for every
Errors are displayed after entire program iRt e

is checked. interpreted (if any)
= Example: C, C++, JAVA. = Example: GW BASIC, Ruby, Python

Linker

Introduction
Linker
Linker is a program that takes one or more objects generated by a compiler and combines/assembles them into a single
executable program.

Source program gl Compiler |%M| Linker ‘|=bExecutable program

Object modules

Loader
Loader is a program that is responsible for loading programs from executables into memory, preparing them for execution
and then executing them.

Source program Loader ||=} Executable program

Data

The execution of a program involves the following steps:
Step 1: Translation

Translator Loader g Memory Dutput

Step 2: Linking Sourct
Step 3: Relocation

Step 4: Loading Object Binary

Characteristics of a good programming language

Selection Criteria for a ProgrammingLanguage

1. Usability
Easy to learn, ease of use for an experienced programmer.
2. Performance
Speed of program execution, speed of compiler execution (a program which translates
the program into machine code), stability (lack of defects).
3. Portability
A portablelanguageis one which is implemented in variety of computers (design

relatively machine dependent). Well defined language are more portable than others e.g. C,
C++.

4. Extendibility

Possibility of developingthe language and its implementation, existence function
libraries, class libraries, etc.
5. Continuity

Continuity of the manufacturer, language continuity, implementation continuity,
existence of international standardsfor defining the language, conformity of implementation
by following standards, existence of other manufacturers for that language.

Factors for selecting a language,

Targeted platform: The most important thing to decide is how and where the
program would function. It is well known that not all the languages can run in all types

of platforms. When the program is written in the renowned C language, it requires
compilers to function on Linux and Windows-based systems.

Efficiency: Itis important for the compilers to match with the language you are
selecting. It should be efficient so that it helps in making the language to function

fast,
Performance and elasticity: When you are choosing a language, you have to

remain flexible enough. By being flexible, you can add extra features and programs

"‘rc]nl')tl support: Itis recommended to purchase tool oriented language which
provides several elements and also methods to control, work and edit.

Subprograms

In computer science, a subroutine or subprogram (also

called procedure, method, function, or routine) is a portion of code within a larger
program, which performs a specific task and is relativelyindependent of the remaining
code.

As the name "subprogram' suggests, a subroutine behavesin much the same way as a
computer programthat is used as one step in a larger program or another subprogram.

A subroutineis often coded so that it can be started ("called") several times and/or from
several places during a single execution of the program, includingfrom other subroutines,
and then branch back (return) to the next instruction after the "call" once the subroutine's
task is done.

There are two distinct categories of subprograms:
1. Procedures 2. Functions.

Function

In a programming language, function is said to be a set of instructions that take some input and
execute some tasks. A function can either be predefined or user-defined. In the C program, a
function can be called multiple times to provide reusability and modularity. It may or may not
return a value.

Procedure

It is an important programming construct for a compiler. The procedure is used for generating
good code for procedure calls and returns. It does not deal with an expression. It is defined as the
set of commands that are executed in order.

In DBMS, a procedure (often called a stored procedure) is a collection of pre-compiled SQL
statements stored inside the database. It is a subroutine or a subprogram in the regular
computing language. A procedure always contains a name, parameter lists, and SQL statements.
In structured query language (or SQL), it does not return a value. In Java, both function and
procedure are the same and called sub-routines.

Purpose of program planning

Planningis the first step in developingand clarifying the concept for a program.

In addition to writing down the idea for their program, students may also draw
and label a diagram of what the program will look like.

Planning software can be a powerful tool to organize projects and resources
into phases and tasks with attainable deadlines - all in one place

Algorithm

An algorithm describes the step by
step action to

An algorithm has a well defined

sequence of steps, it gives you an
output, and it will eventually
terminate.

e numbers of

means that the acti

(explain the meaning of) in
without any confusion.

3) Input:- an algorithm accepts zero or more inputs
4) Output:- it produces at least one output.
5) Effectiveness:- it consists of basic instructions that are realizable.

This means that the instructions can be performed by using the
giveninpuks in a finite amount of time.

Eg. Develop an Algorithm to find the average of three numbers taken as input
from the user.

Algorithm AVERAGE

Step 0 START

Step 1 INPUT first number into variable A
Step 2 INPUT second number into variable B
Step 3 INPUT third number into variable C
Step4 COMPUTE sum= A+B+C

Step 5 COMPUTE Average = sum/3

Step 6 DISPLAY Average

Step7 END

Eg. Develop an Algorithm to divide one number by another and find the quotient
Algorithm DIVISION
Step O START
Step 1 INPUT first number into variable A
Step 2 INPUT second number into variable B
Step 3 If B!=0 then

Q=A/B

DISPLAY Q

End if

Step4 END

Questions

1.

2.

3.

Develop an algorithm to find the maximum of two input numbers.
Write an algorithm to check whether the input number is even or odd.
Write an algorithm to check whether the input number is divisible by 5.
Write an algorithm to check whether the input number is a multiple of 6.

Write an algorithm to find the product of three input numbers.

FLOWCHART

Is a type of diagram that represents an
algorithm, workflow or process, showing the
steps as boxes of various kinds, and their
order by connecting them with arrows.

Flow chart are used in designing and documenting complex
processes or programs.

Terminaftor

Represented as circles ,
ovals or rounded

rectangles, usually : O
containing the word “Start” \
or “End” , or another Start / end
phrase signalling the start /
or end of a process , such _ A

as “submit inquiry” or
‘receive product”.

Arrows

® Showing “flow of control”.

® An arrow coming from one
symbol and ending at another
symbol represents that control
passes to the symbol the arrow
points to .

® The line for the arrow can be solid
or dashed.

®* The meaning of the arrow with
dashed line may differ from one
flowchart to another and can be

Mined in the legend

Processing

® Represented as rectangles.

® Use it to represent an event
which is controlled within the
process.

® Typically this will be a step or
action which is taken.

® In most flowcharts this will be the
most frequently used symbol.

® Examples: “ Add 1to X”; “replace
identified part”; “save changes”
or similar.

processing

INPUT / OUTPUT

Represented as a
parallelogram.

Represents material or
information entering or
leaving the system, such
as customer order (input)
or a product (output).

Example: Get X from the
user; display X.

Input/output

DECISION
A decision or
branching point.
Lines representing /\
different decisions < N
decision
emerge from

different points of
the diamond. &

Average of three numbers

Sum= A+B+C

Average=Sum/3

Display Average

Testing and Debugging

Program Errors

» Compiler errors (syntax errors)

» Runtime errors

» Logic errors

40

Compiler Errors

» Syntax error

» Error in usage of Code

» Detected by the compiler

» A program with compilation errors cannot be run
» Syntax warning

» Warning message generated by the compiler

» The program can be run

41

Compiler Errors

» Very common (but sometimes hard to understand). Examples of
syntax errors:

»Forgetting a semicolon
»Leaving out a closing bracket }
»Redeclaring a variable
»Others?

42

Compiler Errors

» Hints to help find/fix compiler errors:

» Compiler errors are cumulative: when you fix one, others may go away
» Read the error messages issued by the compiler

» Realize that the error messages from the compiler are always not very
helpful

» The compiler does not know what you
intended to do, it merely scans the
code

43

Runtime Errors

» Runtime error: program runs but gets an exception error
message

»Program may be terminated

» Runtime errors can be caused by
» Program bugs
» Bad or unexpected input

» Hardware or software problems in the computer system

44

Logic Errors

» Logic error: program runs but results are not correct

» Logic errors can be caused by:

» incorrect algorithms

» Very common logic errors are:
» using == instead of the equals method
» infinite loops
» misunderstanding of operator precedence
P

starting or ending at the wrong index of an array

» If index is invalid, you would get an exception

v

misplaced parentheses (so code is either inside a block when it shouldn’t
be, or vice versa)

45

Thank You

	Slide 1: Module - I
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: High Level Languages
	Slide 11
	Slide 12: Language translators
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Linker
	Slide 22: Characteristics of a good programming language
	Slide 23: Factors for selecting a language,
	Slide 24
	Slide 25
	Slide 26: Purpose of program planning
	Slide 27: Algorithm
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: FLOWCHART
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Average of three numbers
	Slide 40: Testing and Debugging
	Slide 41: Compiler Errors
	Slide 42: Compiler Errors
	Slide 43: Compiler Errors
	Slide 44: Runtime Errors
	Slide 45: Logic Errors
	Slide 46: Thank You

