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ABSTRACT 

Faults detection and classification considering distributed generation insertion is a crucial 

procedure for power distribution systems. The significant growth of distributed generation units in the 

utility grid results in impacts on the conventional protection systems’ operation. These impacts are 

mainly caused by changes in the short-circuit current’s characteristics, direction, and amplitude. In this 

sense, this study addresses the impact of photovoltaic penetration on short-circuit fault classification 

process. The fault conditions are available in a modified IEEE 34-bus test system and modeled in 

ATPDraw. The algorithm for shot-circuit fault detection and classification is developed using MATLAB 

programming environment. Multilayer Perceptron artificial neural network is used to classify short-

circuits types. The accuracy rate of the fault classification algorithm reduces as long as the photovoltaic 

panels insertion increases, being 100% and 96.5% without photovoltaic insertion and with high 

photovoltaic insertion, respectively. 

Keywords: Multilayer Perceptron, Power Distribution Systems, Photovoltaic panels, Short-Circuit 

Fault Classification. 

Introduction 

Power distribution systems (PDS) are changing in recent years due to the incorporation of 

distributed generation (DG) resources. The arbitrary and large-scale DG penetration can impact the 

detecting, classifying, and locating faults processes. This impact can occur due changes in PDS 

topology, where its radial characteristics is losing, because there are many DG units’ sources in the 
system. These changes challenge the effective operation of conventional protection systems [1], [2]. 

The massive insertion of photovoltaic (PV) DG units into PDS impacts on conventional protection 

systems’ operation. That impact is due to its contribution to the short-circuit current. Thus, as the PV 

penetration in a distribution feeder increases, the fault current profiles are considerably different when 

compared to those ones without PV insertion. Therefore, the short-circuit currents variations can impact 

on protection devices’ operation and coordination [3]. 

The PDS main purpose is supply the loads of consumer’s units without interruptions. However, 

such systems are subject to events such as: electrical discharges, tree vegetation, system components 

damage, and human errors which usually cause disturbances and lead to interruptions in electricity 

supply [4]. 

In this context, short-circuit fault classification is performed in unbalanced three-phase PDS with 

PV panels insertion. Fault scenarios are created considering a variation in test system parameters and 

several levels of PV penetration. The fault classification algorithm inputs are the current signals 

measured at the substation output. 

Several studies have been presented over the years on fault classification. In [5], the classification 

was performed via a Convolutional Neural Network (CNN). Three-phase currents signals were used 

directly as input; thus, there was not a pre-processing phase. The results achieved an average accuracy 

of 99.52% for all the fault cases tested. 

In [6], Patcharoen and Atcharoen proposed an algorithm for classifying multiple faults 

considering wind power penetration. Three-phase currents signals were processed using discrete wavelet 

transform. They were the input set for the classifier whose precision achieved accuracy of 100% under 

wind power variation. 
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A proposal for faults detecting and classifying in a system with PV penetration was presented in 

[7]. The technique was based on a combination of generative adversarial networks and social spider. 

Sensors were implemented to measure changes in currents and voltages. The method achieved 

satisfactory performance with accuracy of 0.95. 

Short-Circuit Faults Classification 

A. Methodology for Short-Circuit Fault Classification 

Fault classification is performed by analyzing the changes in the current signals amplitude after 

its occurrence in the electrical system. The disturbed phases have magnitude of currents higher than 

those ones operating under normal conditions. As a result, the average of faulted phases currents will be 

higher than those ones operating under normal conditions. In this way, the distinct characteristics of 

fault types can be extracted by average of current signals. Once a fault is detected in PDS, the 

classification step is activated. According to [8], there is a data window consisting of two samples cycles 

of post-fault current signals measured at substation output. Thus, one can obtain the average current of 

each phase using (1)-(2). 

𝑀𝑖 =  
∑𝑥𝑖
𝑁

, 𝑤𝑖𝑡ℎ 𝑖 ∈ 𝑎𝑏𝑐 phases (1) 

𝑴 = [ 𝑀𝑎 𝑀𝑏 𝑀𝑐 ] (2) 

Where 𝑀𝑖 is the average of current signals for each phase 𝑖 and 𝑥𝑖 represents the 𝑛𝑡ℎ sample of current 

signals for the phase 𝑖 and 𝑁 is the number of signals. 

The normalized averages 𝑀̅𝑖 obtained via (3) are applied as classifier’s input. 

Where ∑𝑴 is the sum of the 𝑴 vector’s elements in (2). The phases with anomalies have higher 

normalized averages than those ones operating under nominal conditions; therefore, it possible to 

determine the operating status of each phase. 

B. Short-Circuit Classification 

The short-circuit classification is performed by multilayer perceptron (MLP) artificial neural 

networks with backpropagation supervised training algorithm, as presented in [9]. 

The classification process is divided into two stages. In the former, defective phases are identified 

using the outputs provided by MLP. Binary values are assigned to phases that are not within a pre-

established threshold ℒ𝑖, according to (4). The absence of an anomaly is represented by bit 0, while 

short-circuited phase is represented by bit 1. 

𝑆𝑖 = {
0,  𝑃ℎ𝑎𝑠𝑒𝑖  𝑆𝑡𝑎𝑡𝑒 ≤ ℒ𝑖 𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ {𝑎, 𝑏, 𝑐}

1,                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

The latter step consists of counting faulty phases using (5). The short-circuit type is determined 

via number of short-circuit phases. 

𝑆ℎ𝑜𝑟𝑡 − 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 𝑇𝑦𝑝𝑒 =

{
 
 
 
 

 
 
 
 𝑠𝑖𝑛𝑔𝑙𝑒 − 𝑝ℎ𝑎𝑠𝑒, 𝑖𝑓 ∑𝑆𝑖 = 1

3

𝑖=1

𝑡𝑤𝑜 − 𝑝ℎ𝑎𝑠𝑒,              𝑖𝑓 ∑𝑆𝑖 = 2

3

𝑖=1

𝑡ℎ𝑟𝑒𝑒 − 𝑝ℎ𝑎𝑠𝑒, 𝑖𝑓 ∑𝑆𝑖 = 3

3

𝑖=1     

 
(5) 

𝑀̅𝑖 = 
𝑀𝑖

∑𝑴
,𝑤𝑖𝑡ℎ 𝑖 ∈ 𝑎𝑏𝑐 phases (3) 
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Results 

A. Test System Modelling IEEE-34 Bus 
The fault conditions are simulated on modified IEEE-34 bus test system and modeled using the 

ATP and its ATPDraw graphic interface [10]. The system consists of single-phase and three-phase 

branches, and it has a nominal voltage of 24.9 kV. The loads are modeled as a constant impedance model 

and the voltage regulators are removed. Four scenarios with different levels of PV penetration are 

created according [10]. In the first scenario, the classification of fault types is performed without PV 

panels; in the others three scenarios, PV panels are introduced with installed power of 1 MW (one PV 

panel), 2 MW (two PV panels), and 3 MW (three PV panels), respectively. 

The MLP algorithm is implemented in MATLAB® programming environment. All simulations 

are performed on a computer with an Intel Core i7 processor; 1.8–1.99 GHz and 8 GB of RAM. 

B. Short-Circuit Fault Classification 
MLP topology applied in this study has three neural layers. The input layer contains three neurons, 

and it receives the normalized averages as input vector. The MLP structure has a single hidden layer 

with ten neurons. Finally, the output layer contains three neurons. The classification process aims to 

identify the faulty phases. Operating status of each phase is provided by MLP outputs. Several fault 

conditions performed considering variations in the system parameters, as shown in Table 1. 

In each scenario, there are 2244 simulations, amounting 8976 simulations in total. Training phases 

apply 70% of data, equivalent to 6284 simulations, while the remaining 30%, equivalent to 2692 

simulations is allocated for MLP testing and validation. Three MLP are introduced, one for each short-

circuit type to maximize the accuracy rate. 

Short-circuit classifications for the four scenarios are shown in Fig. 1. In Fig. 1 (a), first scenario 

shows accuracy of 100% for all short-circuits. However, Fig. 1 (b), second scenario, the single-phase 

short-circuit shows an error of 1.5%, while the single-phase and two-phase shorts-circuits maintained 

the same accuracy at first scenario. In third scenario Fig. 1. (c), there is a reduction of accuracy rate for 

two-phase short-circuits of 0.5, while single-phase and three-phase short-circuits reach accuracy rate 

equal to 100%. In the last scenario Fig. 1 (d), single-phase and two-phase short-circuits show errors of 

3.5% and 2.5%, respectively. Three-phase shorts-circuit; on the other hand, maintain an accuracy of 

100%. 

Thus, there are changes in current levels after PV panels insertion especially in the buses furthest 

from the substation, such as bus 860. Be a single-phase short-circuit in phase 𝐵𝑔, which occur at bus 

860. The normalized average obtained without PV penetration is equal to 𝑀̅ = {0.16,0.73,0.11}. After 

three PV panels insertion, these values change significantly. The shorted-circuit phase currents become 

very close than those ones in the 𝐴 and 𝐵 with normal phases. As a result, three phase averages become 

very close to 𝑀̅ = {0.30,0.38,0.32}. In some cases, in scenario 3, the average of shorted-circuit phase 

becomes very close or lower than, those ones in phases without anomalies. Therefore, the PV panels 

insertion on PDS can leading to an incorrect classification of short-circuit phases. 

Table 1. System parameters. 

Parameters Configurations 

Fault types 𝐴𝑔, 𝐵𝑔, 𝐶𝑔, AB, AC, BC, 𝐴𝐵𝑔, 𝐴𝐶𝑔, 𝐵𝐶𝑔, ABC, 𝐴𝐵𝐶𝑔 

Fault Location (buses) 802, 806, 814, 828, 830, 850, 854,860 

DG Units 1 PV panel (at buses 822, 840, and 848) 

Fault resistance 1Ω to 40Ω 

Fault inception 0°, 45°, 90°, and 120° 
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(c) (d) 

Figure 1 – Classification and accuracy for four scenarios: (a) without PV panels (scenario 1); (b)  

one PV panel (scenario 2); (c) two PV panels (scenario 3); and (c) three PV panels (scenario 3). 

C. Validation 
Classifier validation is performed for short-circuits with accuracy less to 100%. An MLP neural 

network is introduced for each fault type. In Table 2, the confusion matrices corresponding to scenarios 

2, 3 and 4 are presented. 

 
Figure 2 – Confusion matrix for scenarios 2, 3 and 4. 

Statistical metrics such as precision, recall and F1-score calculated via (6), (7) and (8) are 

incorporated to evaluate the classifier system. These metrics are obtained from the confusion matrix that 

includes two classes: short-circuit and normal. Table 2 shows the classification performance for 

scenarios 2, 3 and 4. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑄𝑁𝑁

𝑄𝑁𝑁+𝑄𝐹𝑁
 

(6) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑄𝑁𝑁

𝑄𝑁𝑁+𝑄𝑁𝐹
 

(7) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (8) 
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Table 2 – Classifier performance for scenarios 2 ,3. and 4. 

Classifier Scenario Recall Precision F1-Score 

Single-Phase 2 0.9926 0.9926 0.9926 

Two-Phase 3 1.0000 0.9951 0.9975 

Single-Phase 4 0.9827 0.9975 0.9900 

Two-Phase 4 0.9777 0.9975 0.9875 

Conclusion 

This study addressed the impact of photovoltaic (PV) panels insertion on short-circuit fault 

classification process in unbalanced power distribution system (PDS). Three-phase currents measured 

at the substation output were analyzed. Short-circuit classification was performed via three multilayer 

perceptron (MLP) artificial neural network. The fault classification accuracy for different scenarios 

were satisfactory. The assertiveness rate for the scenarios 1, 2, 3, and 4 were equal to 100%, 98.5%, 

99.5%, and 96.5%, respectively. These results showed the impact of PV panels insertion in PDS, where 

they contribute to changes in short-circuit currents levels. 
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