Protected Cultivation of High Value Vegetables

Protected cropping system utilizes permanent structures covered in plastic to achieve year-round production of high value vegetables such as cauliflower, lettuce and sweet pepper. Complementing the system with drip irrigation made up of 3 pieces of drip irrigation hose, metal pipes, and 1 plastic barrel water tank allows the farmer to use water more efficiently as little water is lost due to evaporation or runoff. In the study site, a typical permanent structure stands 3.5 meters tall, is fabricated of an aluminum frame and has an effective cultivation area of 100sq.m. It allows farmers to plant vegetables up to five times a year. The structure can last for 10 years but the drip irrigation hose and the covering materials made of fine mesh requires replacement every 5 years.

Aside from crop damage caused by heavy rainfall and strong winds, farmers also encounter problems of pest infestation and heavy rainfall and strong winds, thereby, protecting farmers from incurring losses.

Protected Cultivation of High Value Vegetables

Protected cropping system utilizes permanent structures covered in plastic to achieve year-round production of high value vegetables such as cauliflower, lettuce and sweet pepper. Complementing the system with drip irrigation made up of 3 pieces of drip irrigation hose, metal pipes, and 1 plastic barrel water tank allows the farmer to use water more efficiently as little water is lost due to evaporation or runoff. In the study site, a typical permanent structure stands 3.5 meters tall, is fabricated of an aluminum frame and has an effective cultivation area of 100sq.m. It allows farmers to plant vegetables up to five times a year. The structure can last for 10 years but the drip irrigation hose and the covering materials made of fine mesh requires replacement every 5 years.

Aside from crop damage caused by heavy rainfall and strong winds, farmers also encounter problems of pest infestation and heavy rainfall and strong winds, thereby, protecting farmers from incurring losses.

Available Technical Briefs

LUZON
- Cordillera Administrative Region (CAR)
 - Water Harvesting Tank for Carabao in Benguet
 - Improved Potato in Benguet
- Region I: Ilocos Region
 - Mango Production in Ilocos
 - Rice-Corn Crop Rotation in Ilocos
 - Tomato Rotation in Ilocos
- Region II: Cagayan Valley
 - Rice-Mungbean Crop Rotation in Isabela
 - Rice-Corn Crop Rotation in Isabela
- Region III: Central Luzon
 - Water Conservation Technology (AWD) in Tarlac
 - Climate-Smart Rice in Tarlac
 - Crop Rotation Zero Tillage Combination in Tarlac
- Region IV: Western Visayas
 - Splitting Agricultural Land Technology for Corn in Iloilo
 - towns and impounding Projects for High Value Crops in Iloilo
- Region V: Negros Island Region (NR)
 - Use of Submergence-Tolerant Rice Varieties in Negros Occidental
 - Organic Rice Production in Negros Occidental
- Region VI: Zamboanga Peninsula
 - Alliums and Dr. Dying for Rice in Zamboanga
 - Cabbage and Corn Intercropping in Zamboanga
- Region X: Northern Mindanao
 - Biochemistry in Corn Production in Bukidnon
 - Corn-Banana Crop Diversity in Bukidnon
 - Rice-Banana Crop Diversity in Bukidnon
- Region XI: Davao Region
 - Crop Rotation with Integrated Nutrient Management in Davao
 - Rice-Coconut Intercropping in Davao

MINDANAO
- Region II: Davao Region
 - Corn-Green Corn Crop Rotation in Agusan Del Norte
 - Corn-Rice Crop Rotation in Agusan Del Norte
 - Corn-Rice Crop Rotation in Agusan Del Norte
- Autonomous Region of Muslim Mindanao (ARMM)
 - Coconut-White Corn Inter cropping in Lanao Del Sur
 - Coconut-Banana Inter cropping in Lanao Del Sur

VISAYAS
- Region VI: Western Visayas
 - Splitting Agricultural Land Technology for Corn in Iloilo
 - Dams and impounding Projects for High Value Crops in Iloilo
- Region VII: Central Visayas
 - Corn-Rice Crop Rotation in Cebu
 - Protected Vegetable Cultivation in Samar
- Region VIII: Eastern Visayas
 - Any Crop Crop-Drying for Rice in Samar
 - Protected Vegetable Cultivation in Samar

TECHNICAL BRIEF on Climate-Resilient Agriculture (CRA) Eastern Visayas (Region VIII)

Protected cultivation of high value vegetables such as cauliflower, lettuce and sweet pepper is a CRA practice that makes use of permanent structures covered in plastic with drip irrigation systems installed. This system enables the production of high value vegetables year-round. Compared to open field cultivation, farmers adopting the CRA practice can increase yield and income while producing clean and safe vegetables. Protected cultivation technology can result to reduced nutrient leaching and fertilizer and pesticide use.

References

About the Authors

The authors would like to acknowledge the active participation of our farmer respondents, the local counterparts from the Local Government and the Department of Agriculture Regional Field Office VIII and the financial support provided by the DA-Bureau of Agricultural Research (DA-BAR) and DA-AMIA.

About the Authors

This technical brief was produced through the VSU-CIAT-DAR partnership under DA-BAR project titled “Climate-Resilient Agriculture (CRA) Assessment, Targeting & Prioritization for the Adaptation and Mitigation Initiative in Agriculture (AIMA) Phase 2 in Samar Province (Eastern Visayas Region).”

CRA Team
Ms. Paula Beatrice M. Macandog, Environmental & Natural Resources Economist
Dr. Sekou M. Balde, Agricultural Economist
Ms. Asha I. N. Jakes, Research Assistant
Ms. Patricia D. M. Legaspia, Research Assistant

“Climate-Resilient Agriculture (CRA) Assessment, Targeting & Prioritization for the Adaptation and Mitigation Initiative in Agriculture (AIMA) Phase 2 in Samar Province (Eastern Visayas Region)”

VSU team
Dr. Pastor P. Garcia, Project Leader
Prof. Allan B. Loven, GIS Expert
Dr. Daniele M. Batac, Farming System Expert
Emp. Ann Raphael O. Royal, Research Assistant

CIAT team
Ms. Paula Beatrice M. Macandog, Environmental & Natural Resources Economist
Dr. Sekou M. Balde, Agricultural Economist
Ms. Asha I. N. Jakes, Research Assistant
Ms. Patricia D. M. Legaspia, Research Assistant

Acknowledgment

The authors would like to acknowledge the active participation of our farmer respondents, the local counterparts from the Local Government and the Department of Agriculture Regional Field Office VIII and the financial support provided by the DA-Bureau of Agricultural Research (DA-BAR) and DA-AMIA.

About the Authors

This technical brief was produced through the VSU-CIAT-DAR partnership under DA-BAR project titled “Climate-Resilient Agriculture (CRA) Assessment, Targeting & Prioritization for the Adaptation and Mitigation Initiative in Agriculture (AIMA) Phase 2 in Samar Province (Eastern Visayas Region).”

CRA Team
Ms. Paula Beatrice M. Macandog, Environmental & Natural Resources Economist
Dr. Sekou M. Balde, Agricultural Economist
Ms. Asha I. N. Jakes, Research Assistant
Ms. Patricia D. M. Legaspia, Research Assistant

“Climate-Resilient Agriculture (CRA) Assessment, Targeting & Prioritization for the Adaptation and Mitigation Initiative in Agriculture (AIMA) Phase 2 in Samar Province (Eastern Visayas Region)”

VSU team
Dr. Pastor P. Garcia, Project Leader
Prof. Allan B. Loven, GIS Expert
Dr. Daniele M. Batac, Farming System Expert
Emp. Ann Raphael O. Royal, Research Assistant

CIAT team
Ms. Paula Beatrice M. Macandog, Environmental & Natural Resources Economist
Dr. Sekou M. Balde, Agricultural Economist
Ms. Asha I. N. Jakes, Research Assistant
Ms. Patricia D. M. Legaspia, Research Assistant

Acknowledgment

The authors would like to acknowledge the active participation of our farmer respondents, the local counterparts from the Local Government and the Department of Agriculture Regional Field Office VIII and the financial support provided by the DA-Bureau of Agricultural Research (DA-BAR) and DA-AMIA.

About the Authors

This technical brief was produced through the VSU-CIAT-DAR partnership under DA-BAR project titled “Climate-Resilient Agriculture (CRA) Assessment, Targeting & Prioritization for the Adaptation and Mitigation Initiative in Agriculture (AIMA) Phase 2 in Samar Province (Eastern Visayas Region).”

CRA Team
Ms. Paula Beatrice M. Macandog, Environmental & Natural Resources Economist
Dr. Sekou M. Balde, Agricultural Economist
Ms. Asha I. N. Jakes, Research Assistant
Ms. Patricia D. M. Legaspia, Research Assistant

“Climate-Resilient Agriculture (CRA) Assessment, Targeting & Prioritization for the Adaptation and Mitigation Initiative in Agriculture (AIMA) Phase 2 in Samar Province (Eastern Visayas Region)”

VSU team
Dr. Pastor P. Garcia, Project Leader
Prof. Allan B. Loven, GIS Expert
Dr. Daniele M. Batac, Farming System Expert
Emp. Ann Raphael O. Royal, Research Assistant

CIAT team
Ms. Paula Beatrice M. Macandog, Environmental & Natural Resources Economist
Dr. Sekou M. Balde, Agricultural Economist
Ms. Asha I. N. Jakes, Research Assistant
Ms. Patricia D. M. Legaspia, Research Assistant
Financial Analysis

Yield & Prices

Without CRA
- **Plant**: Cauliflower, lettuce, sweet pepper
- **Average annual farm yield**: 83 kg/100sqm/yr, 16 kg/100sqm/yr, 0 kg/100sqm/yr
- **Price per kg**: PhP 135, PhP 300, PhP 115

With CRA
- **Plant**: Cauliflower, lettuce, sweet pepper
- **Average annual farm yield**: 112 kg/100sqm/yr, 176 kg/100sqm/yr, 102 kg/100sqm/yr
- **Price per kg**: PhP 135, PhP 300, PhP 115

Sensitivity Analysis

The CRA practice will still be more profitable than non-CRA practice even when:
- Yield of cauliflower, lettuce and sweet pepper decrease by 55%

Aggregate Impact

- **Total number of structures**: 2,200
- **Aggregate NPV**: PhP 66.2 million

Recommendations

- **Protected cultivation of high value vegetables is profitable year-round in the province of Samar, especially in the vegetable-producing areas.**
- **Aside from growing cauliflower, lettuce and sweet pepper, farmers adopting the CRA practice can also plant other vegetables like chili pepper and tomato.**
- **Farmers engaged in vegetable production are encouraged to invest in the practice.**

Cost & Benefit

- **Initial Investment**: PhP 113,500
- **Payback Period**: 2 years
- **Estimated Additional Annual Profit/100sq.m.**
 - **Without CRA**: PhP 58,450 (USD 1,139)
 - **With CRA**: PhP 58,450 (USD 1,139)

Cost of Adopting CRA

- **Initial Investment**: PhP 113,500
- **Installation costs (Year 1)**: PhP 7,000
- **Structure & Equipment**: PhP 100,500
- **Inputs**: PhP 6,000
- **Maintenance Annual costs (Years 2-10)**: PhP 18,500
- **Operations irregular/ non-permanent costs**: PhP 27,000

Study Site

Samar Province

Data Gathering

1. Analysis of experiences of 2 case farms in the municipality of Sta. Rita, Samar
2. Validation of KIIs using results of field trials in the region by the Yamang Lupa Program (YLP)
3. Conduct of Experts’ Workshop with experts from the academe (Visayas State University) and the government (Department of Agriculture Region 8) pooling knowledge and insights on emerging climate resilient farm practices
4. Conduct of workshop with Municipal Agricultural Officers (MAO) to validate and add to results from Experts’ Workshop and case farms
5. Review and synthesis of secondary information

The CIAT CBA Methodology

Cost-Benefit Analysis (CBA) is used to determine the relative profitability of alternative cropping practices, involving the comparison of the annual flows of incremental benefits with that of incremental costs. The CIAT CBA Online Tool analyzes the full benefits and costs of identified practices and adoption response at both individual farmer level and at aggregate level for a particular area.

Specifically, the tool can:
1. Quantify economic and some environmental trade-offs of adopting CRA practices.
2. Provide sensitivity analysis
3. Estimate the level of peak adoption
