

FLASH TEST REPORT

Execution

State of charge Date Executed by 36 % 25/08/2023 10:36:46 Carla AB

Vehicle

Brand Model VIN Mileage Kia EV6 - 77,4 kWh KNAC481CPP5083468 13,558 km

Analysis Result

AVILOO SCORE

High voltage battery usage and history Analysis of charging & driving behavior	50 / 50
High voltage battery performance Analysis of cell voltages and module temperatures.	30 / 30
High voltage battery control unit Check of signals and calculations of the battery management control unit.	10 / 10
Electrical low voltage system Check of 12 V battery state and power supply.	5 / 5
Vehicle communication interface Check of communication via the diagnostic interface.	5 / 5

DI Wolfgang Berger MBA Managing director

DI Nikolaus Mayerhofer Managing director

Dr. Marcus Berger COO/CFO and Partner

EXPLANATION OF THE BATTERY FLASH TEST

ANALYSIS METHOD

The analysis performed is a combined result of: The communication quality between the diagnostic hardware AVILOO Box and the on-board diagnostic interface of the vehicle. The live battery data and data that indicates the previous use of the high voltage battery, which is made available to the AVILOO Box by the battery management system during the measurement. The plausibility check and classification of the battery condition using the collected values and a comparison with the AVILOO Battery Cloud using Big Data algorithms.

FLASH TEST EXECUTION PROTOCOL

10:36:43	AVILOO Box connected.	
10:36:46	Flash Test started.	
10:36:52	Vehicle detected.	
10:36:57	Starting data acquisition.	
10:39:52	Finished data acquisition.	
10:40:03	Analyzing data.	
10:40:04	Analysis completed.	

DETAILED RESULTS OF PERFORMED CHECKS

Vehicle Information

VIN	KNAC481CPP5083468 25/08/2023 10:36:46	
Date		
Mileage	13,558 km	
Measurements High Voltage System		
Battery temperature	17 °C	
Maximum cell temperature deviation	1 °C	
Pack voltage	697 V	
Maximum cell voltage deviation	0 mV	
Peak current during check	-1.3 A	
State of Health (SoH - read from car manufacturer)*	100 %	
Measurements Low Voltage System		
Power supply 12V system	14.02 V	

*The SoH shown here was not calculated by AVILOO but corresponds to the SoH read out from the battery management system and calculated by the manufacturer. AVILOO therefore does not guarantee the correctness of this SoH.

AVILOO GmbH

Brown Boveri Strasse 16 2351 Wiener Neudorf Austria Tel: +43 2236 374 036 Mail: info@aviloo.com Web: www.aviloo.com

UID Nr.: ATU 737 81605 FN: 502117 h

