
Aalborg University
Medialogy, 5th semester
Rensburggade 14
DK-9000 Aalborg

MTA16542
DERAILED

Copyright@2016. This report and/or appended material may not be partly or completely
published or copied without prior written approval from the authors. Neither may the contents be
used for commercial purposes without this written approval.

Department of Architecture,

Design and Media Technology

Medialogy, 5th Semester

Title:

Derailed – A multi-screen platform game

Project Period:

P5, Fall 2016

Semester Theme:

Audio-Visual Experiments

Supervisors:

Kasper Hald

Projectgroup no.

MTA16542

Members:

Anders Johansen

Daniel Bruun Hansen

Mathias Wessmann

Mikkel Damgaard Vindum

Nicolai Bruhn Lauritsen

Thor Vest Tidemand

Abstract:

This project investigates if visual cues
can be used as a means to reduce
the reaction time of players, when
having to swap focus between two
screens whilst playing. Multi-screen
gaming platforms face the unique
challenge of players having to
manage their focus between screens
as they play. To test if visual cues
can help players manage their focus,
the game Derailed was developed for
the platform AirConsole. This game
was then tested in a control group
experiment with and without the use
of visual cues. The project concluded
that visual cues shows promise in
helping players manage focus, and
proposes new areas to investigate in
future work.

Contents

1 Introduction 1

2 Project Description 3
2.1 AirConsole’s Project Proposal . 3
2.2 Problem Description . 4
2.3 Initial problem Statement . 4

3 Background Research 5
3.1 A TV/mobile multi-screen . 5
3.2 Methods Used to Evaluate Previous Games . 6
3.3 State of the Art . 6

3.3.1 WiiU . 6
3.3.2 Nintendo 3DS . 7

3.4 Game Research . 8
3.4.1 Multi-screen . 8
3.4.2 Micro-games . 9

4 Final Problem Statement 11
4.1 Final Problem Statement . 11
4.2 Success Criteria . 12

5 Design 13
5.1 Game Design . 13

5.1.1 Players . 13
5.1.2 Objectives . 14
5.1.3 Procedures . 14
5.1.4 Rules . 14
5.1.5 Resources . 14
5.1.6 Conflicts . 15
5.1.7 Boundaries . 15
5.1.8 Outcome . 15

5.2 Graphics . 16
5.3 Level Design . 17
5.4 Controller . 18
5.5 User Interface . 20

5.5.1 Heads Up Display . 20
5.6 Sound . 21

6 Implementation 23

i

6.1 AirConsole . 23
6.1.1 Communicating between screen and controller 23

6.2 Unity . 24
6.2.1 AirConsole Plugin . 24
6.2.2 Functionality and Ease of Access . 24

6.3 AirConsole Controller . 24
6.3.1 Game Controller . 24
6.3.2 Micro-mechanics . 25

6.4 Visual Cues . 25
6.4.1 Highlights . 25
6.4.2 Pop-Ups . 26

6.5 Model Creation and Animations . 27
6.6 Eventsystem Structure and Handling . 28

6.6.1 Event Struct . 28
6.7 Testing and Collecting Data . 29

7 Evaluation 31
7.1 Hypothesis . 31
7.2 Design of Experiment . 31
7.3 Setup . 32
7.4 Procedure . 33
7.5 Results . 34
7.6 Analysis of Results . 35
7.7 Discussion . 37
7.8 Analysis of Method . 38

8 Discussion 41
8.1 Quality of Solution . 41

8.1.1 Success Criteria . 41
8.2 Wider Context . 42
8.3 Future Work . 44

9 Conclusion 47

10 Portfolio 51
10.1 Game Concept . 51
10.2 Game Art . 52

10.2.1 Sketches . 53
10.2.2 Character Design . 56
10.2.3 Character Icons . 58
10.2.4 Train Design . 59
10.2.5 Workstation Design . 61

10.3 Sending and receiving information . 62
10.4 Game Controller . 63
10.5 Micro mechanics . 65
10.6 Visual Cues . 67

10.6.1 Pop-Up Animations and Radial Based Timer 67
10.6.2 Notification animations . 68
10.6.3 Highlight shader . 69

10.7 3D Graphics and Animations . 71

ii

10.7.1 Modeling in 3Ds Max . 72
10.7.2 Rigging in Maya . 74
10.7.3 Animations in MotionBuilder . 75
10.7.4 3D Models and Animations in Unity . 76

10.8 Handling events . 77
10.9 Tests . 78

10.9.1 Consent Forms . 78
10.9.2 Mental Model Elicitation . 79
10.9.3 Controller Survey . 85
10.9.4 Internal Testings . 91
10.9.5 Final Evaluation . 93

iii

iv

Glossary

Cognitive load: A term from cognitive psychology referring to the necessary effort required
to hold, process and manipulate information. Often used synonymously to short-term memory.

Delegate: A delegate (computing) is a type that represents references to methods with a
particular parameter list and return type. When you instantiate a delegate, you can associate
its instance with any method with a compatible signature and return type. You can invoke (or
call) the method through the delegate instance [11].

Goofy: A ’slang’ adjective used for describing odd, foolish and hilarious subjects or topics.

HUD: An acronym for Heads-Up Display, meaning any transparent display presenting infor-
mation to the users without making them look away from their accustomed viewpoints.

Micro-games: A less-known term introduced by Nintendo and indicating a short mini-game
or small challenge.

Micro-mechanic: A term coined by this project. It is a shorter version of a micro-game,
consisting of only a single game mechanic.

Mini-games: Common term used in game design and game industry as a collective name for
subgames smaller and simpler than the main game, but can be more or less self-contained.

N-Dream AG: The company behind AirConsole, located in Switzerland.

Swipe D-Pad: A 4- or 8-way relative swipe-pad used for movement and is one of the compo-
nents to build controllers for AirConsole. D-pad stands for Directional-Pad.

UI: An acronym for User Interface. Generally it includes everything in a device that the users
can interact with.

WebGL: An acronym for Web Graphics Library and is a JavaScript application programming
interface for rendering 3D-graphics compatible with web browsers.

v

vi

Chapter 1

Introduction

Multi-screen gaming platforms are platforms that utilizes more than just a main display for
interaction and conveying information. AirConsole is one such platform, where the player uses
a smartphone in conjunction with the main display (a SmartTV or a large monitor with a
laptop) to play games developed specifically for this platform. The smartphone is both used as
a screen and a controller, allowing for some unique design possibilities when compared to other
platforms.

Whilst these new design possibilities encompasses great potential for new developments, it
also presents designers with a new problem; In order to maximize the potential of the added
secondary screen, the player has to actively manage focus between the main and secondary
screen. Not managing focus correctly can lead players to miss out on important information or
actions whilst playing, and thus tools to help the user change focus when relevant should be
implemented.

This project investigates how the use of visual cues can help players change their focus between
screens by leading their attention towards it. Specifically, the project investigates if a reduction
in reaction time when players need to change focus between screens can be achieved.

To investigate this, the game Derailed for the AirConsole platform was developed. This game
sets four players on a train moving between stations, having to work together to keep the train
from derailing along the way. To effectively test the impact of visual cues, the game was designed
so the user needs to frequently look at both the main and secondary screen. Visual cues were
then implemented to help the user swap focus to the secondary screen when relevant.

This solution was evaluated in a control group experiment, testing a version of the game with
implemented visual cues against a version without. The conclusions of the evaluation along
with the process of making the game and implementing the visual cues can be found within this
report.

1

2

Chapter 2

Project Description

This chapter includes the project proposal from AirConsole, elaborating on the unique design
challenges and possibilities that it brings. Secondly, it contains the problem description and
initial problem statement. These sections set the stage for conducting the following background
research.

2.1 AirConsole’s Project Proposal

Multi-screen is used today in many different variations, but there are still areas with un-utilized
potentials. One such area was provided by a game designer from N-Dream AG through the
introduction of AirConsole. AirConsole is a online platform meant to change browsers into
video game consoles. The concept was to use equipment already accessible to most people,
monitor and smartphones, and use them to play games together. This does not require people
to buy extra hardware or be somewhere specific to have the hardware necessary to play together.
Instead users are able to use a laptop, smart-television or tablet and connect to the game through
their browser or downloaded app. Nearly everyone are walking around with their smartphones
today, and therefore AirConsole makes it easy to enjoy local multiplayer games through a simple
multi-screen mechanic. Because once connected, your smartphones become your controller and
your browser becomes the console filled with free games from all kind of developers.

N-Dream AG requested for more developers to make games and were ready to give advice and
support throughout the process. Specifically, the company was looking for games with local mul-
tiplayer, intuitive smartphone controls and WebGL. The AirConsole platform also introduced
unique game design challenges, for example with multi-screen designs and features, personal-
ized controllers, advanced controls like swiping or gyroscope and other innovative choices. They
provided guidelines on what makes a good AirConsole game:

• Intuitive controls complementing the platform

• Replay value and interesting gameplay

• Intuitive gameplay and implemented tutorial

The AirConsole project proposal introduces many interesting design possibilities. This project
saw unique design challenges in developing a intuitive and playable game with both replay value
and real-life interaction between the players. Especially, the cooperative aspect seemed impor-
tant regarding the local-multiplayer theme. Furthermore, many already established AirConsole

3

games were just using the smartphones as a controller. This project sought to implement the
multi-screen feature as a way of also showing or hiding information from other players.

2.2 Problem Description

Over the years second-screen viewing has greatly increased, especially combined with TV[19],
and now both mobile devices as well as televisions are capable of performing more advanced
tasks [1]. State of the art smartphones and tablets are constantly evolving and increasing in
power, thus prompting new usability, for example utilizing their sensors to function as game
controllers [9]. There has already been designed apps for second-screen experience, for example
mini-apps to share experiences or go behind the scenes [20]. Likewise, ”companion apps” for
games have been developed for smartphones and tablets [3], often implemented as a means
to supplement the in-game content or interact with the game without actually being at your
gaming device.

Instead of developing second-screen content as a supplementary element to an already exist-
ing application the company N-Dream AG came up with AirConsole: The TV, PC or tablet
functions as your web-based console, while your smartphone is a controller and a second screen
[12]. AirConsole does not only provide multi-screen gaming, but a new approach where every
player combines their own personal screen with the main screen. This introduces the TV/s-
martphone multi-screen possibility, while also facing different challenges beyond traditional
multi-screen gaming. Challenges such as how to utilize the second-screen for more than just
a touch-controller or redundant information, and how to direct the players focus between the
screens in an intuitive and natural way. Hence, the opportunity to investigate ways of manip-
ulating attention between screens and whether visual cues could play a relevant role in this
process.

2.3 Initial problem Statement

How can animated visual cues help the user direct attention on the relevant screen, on a multi-
screen game platform?

• Can users achieve a higher score when using visual cues for maintaining focus on the
relevant screens?

• Do visual cues have to be direct or indirect to get the user to focus on the relevant screen?

• Do the size of the individual screen affect the performance of the user in a noticeable way?

• Can visual cues help the users to react faster than they normally would?

4

Chapter 3

Background Research

Background Research attempts to investigate previous projects and game designs, and study
these to avoid making the same mistakes. This research also helps the project transition from
initial to final problem description, while investigating tools to evaluate and measure solutions.

3.1 A TV/mobile multi-screen

Second-screen viewing is a growing trend and has been so over the past years, with people
watching television while utilizing smartphones, tablets and laptops. In a Nielsen survey in
2013 regarding connected device owners 43 percent of the tablet owners and 46 percent of
the smartphone owners reported to use their devices as a second screen on daily basis[19].
Furthermore, Google concluded in their New Multi-screen World report that televisions did
not require full attention anymore, and that TV in general was the most common device to
be combined with second-screen viewing. Research shows that second-screen viewing leads
to a higher cognitive load, thus reduced understanding and comprehension of what they are
watching. Further studies indicated that there were no difference in the cognitive load between
relevant and irrelevant second-screen usage [19]. With the continuous growth and technological
advancement, mobile devices are now fulfilling tasks that previously demanded a PC. The same
can be said with televisions going from passive monitors to interaction smart-TVs. The fact that
both these artifacts have grown further than their original purpose intended could contribute
to the new second-screen state of art [1].

This also explains why the game developing company N-Dream AG has set their focus on this
new platform type. They came up with the name AirConsole and made it a free, web-based
gaming platform focusing on local-multiplayer aspects. Here, everything between a laptop, PC
and smart-TV can act as your console. Connecting a smart-phone using the provided AirConsole
code will change the phone into a controller. Local-multiplayer games have more or less been
disappearing over the last years. This is what AirConsole wants to change by offering a platform
put together by things that you often have with you at any time [12]. With new functionalities
comes new challenges as well, in this situation being issues as synchronization between game
screen and smartphone, distribution of this new concept and alignment of user interfaces between
all the different smartphone types [1]. Working with the topic could eventually lead to other
problems being discovered, for example how to direct users attention between the two screens.

5

3.2 Methods Used to Evaluate Previous Games

Eye-tracking is used in order to understand what parts or areas of the screen that the user
focuses on during a play session. When playing the game, what draws the user’s attention and
do they direct their attention where they are supposed to. Eye tracking can be done manually
by watching a video recording of participants, although this is not the most accurate way of
doing it. There is different software available for web-cams that enables them to do eye tracking.
Essentially, the eye tracking tracks the movement of the user’s eye to give an idea of what they
are focusing on [4].

3.3 State of the Art

The state of the art section is about investigating and researching currently existing games,
projects or platforms that utilize multi-screen features. To take this project into the design and
final problem stages it is necessary to be aware of the most recent state of developments.

3.3.1 WiiU

A gaming console developed by Nintendo and released in Europe in 2012. The unique element in
this console was that its GamePad controller also had an implemented touchscreen. This second
screen would function even though the television was turned off or someone else was watching
another channel. Nintendo made it so that the current Wii controllers could be combined with
the new GamePad. The GamePad was a technical advancement and the users could point, tilt,
shake, tap, swipe and talk to it. The possibilities of having a primary and a secondary screen
changed the way games could be developed and designed [16].

Figure 3.1: This example shows how second-screen features are implemented in Mass Effect 3
on the WiiU.

ZombiU

ZombiU is a WiiU game from Ubisoft released in 2012, made for up to two players. However,
the local multiplayer aspect of this game is not the relevant part for this project, rather it is
the multi-screen implementation. With similarities to AirConsole, ZombiU is played using both
the TV and the WiiU-controller screen. Ubisoft has implemented this multi-screen in a way

6

to increase the horror. Players are primarily looking at the TV, but direct focus to the WiiU-
controller screen when performing small microgames. In this state, the TV shifts to a 3rd-person
view and players have to keep an eye on both screens since zombies could be approaching [18].

Figure 3.2: Example of the ZombiU multi-screen implementation.

3.3.2 Nintendo 3DS

Like the WiiU the Nintendo 3DS is designed as a multi-screen gaming device, but in this case
both screens are physically connected in the same device. In the Nintendo 3DS the upper
display is 3.53-inches and the display below is 3.02-inches, but in the new Nintendo 3DS XL
edition the screens are larger (4.88- and 4.18-inches). In both examples, the upper display is
the main screen and the other is used as a secondary screen for micro-games, maps, options,
interface and items. The upper display is a 3D-screen and can be adjusted with a 3D depth
slider on the side. The bottom display is touch-sensitive and is meant to be controlled with the
enclosed stylus[14], but can also be navigated by the fingertips.

The fact that both screens are located so close to each other enables new second-screen features
which are more intuitive and user-friendly. Examples could be showing the avatar on the upper
display while showing the map below. Or circling around the battlefield on the main display
and showcase the optional battle-moves on the display below. The Nintendo 3DS also makes
it easier to be aware of the the main display while doing micro-games on the second-screen,
whereas with the WiiU and AirConsole the player have to actually look up at the main display.
However, WiiU’s and AirConsole’s main display could be better fitted for multiplayer due to
its larger screen size.

7

Figure 3.3: Showcases the Nintendo 3DS XL and how an info-scene can be shown on the upper
display while navigating the interface below.

3.4 Game Research

This chapter investigates four games divided into two subsections: Multi-screen games and
micro-games. The main purpose for this research is to study these games, how they implement
these elements as well as the pros and cons of doing it this way. Prospectively this process is
meant to grant a better comprehension of the game project. The two subsections are covering
two areas and concepts that are very important to this project.

3.4.1 Multi-screen

Quiplash

In this game you can choose between 3-8 players, but also have up to 10,000 participants that
functions as an audience and have the possibility to affect the voting. The screen shows a
question, and then you type in an answer. The developers, Jackbox Games, say that Quiplash
is a game where ”you can say anything” [8], and that there are no rules or correct answers.
Later on, your answer will be competing against other answers to the same question, everyone
else will be voting for their favorite answer. This creates a situation where the number of players
do not matter, because you can all be entertained. It also enables the possibility of streaming
it and having viewers join the game. This means Quiplash is suitable for both local and online
multiplayer.

BioSpil

8

This application is developed for people waiting for the movie to begin in the cinema. Instead
of just sitting impatient in the dark cinema, everyone can connect to the cinema’s wi-fi and
enter BioSpil with the unique code shown on the screen. A timer on the screen will count
down for the game to start, meanwhile players can move their icon around the screen and write
messages. The game itself is often a quiz, puzzle or memory test and there is a prize for the
winner. Most people have smartphones with them and it is simple for them to connect to the
screen [2]. BioSpil is an innovative, modern way of utilizing second-screen viewing to develop a
game, while improving an unsatisfactory situation.

Figure 3.4: Showing the spectators in a cinema connecting their smartphones to the screen.

3.4.2 Micro-games

WarioWare

WarioWare is played on Nintendo DS and was published in 2010. It is only designed for
one player, but features a main concept of microgames. Microgames in WarioWare can be
categorized as bite-sized mini-games, that are shorter, simpler and have clear conditions. The
WarioWare-series consist of different games, for example WarioWare: D.I.Y. where the players
can design microgames and upload them [15]. The fact that microgames are shorter and simpler
means they are better fitted to be combined with multi-screen gaming. Both in situations where
players have to be aware of both screens at the same time and when minigames would have
taken longer and more resources to complete.

Move or Die

Move or Die is fast paced and for up to four players, both local and online. The goal of the
game is to stay alive for as long as possible, if you stand still you die, and thus you need to keep
moving (Move or Die). The game is ever changing, shifting the mechanics every 20 seconds so
that the players are constantly on edge. The characters in the game are unique and can be
leveled up in different ways during the game. Move or Die is for PC, and players can pick it
up instantly and play it together with friends. Furthermore, the game developers encourage
players to create their own content as well [17]. It does not require much tutorial, and despite
it being simple at first, it constantly changes to keep the players engaged.

9

Figure 3.5: A display of Move or Die and players testing it.

10

Chapter 4

Final Problem Statement

In this chapter, the final problem statement and its research question will be derived. This will
be followed up with a list of this project’s success criteria.

4.1 Final Problem Statement

There is un-utilized potential in the existing AirConsole games and how they make use of the
multi-screen aspect. Most of the existing games use smartphones as simple controllers where
the players never have to look down or change their focus, which to this project’s research and
knowledge is not utilizing AirConsole’s potential and strengths. According to the current State
of the Art and the conducted Game Research multi-screen games face unique design possibilities,
for example using the second display to play micro-games, showcasing secondary visuals while
playing the main game or giving the user specific feedback.

Second-screen viewing has greatly increased over the years. This, combined with the fact
that mobile devices are constantly growing in power and usability, puts AirConsole’s platform
in a situation where new designs, concepts and experiments could be highly beneficial. The
platform is also unique in the way it uses easy-accessible software and hardware most users
already have access to. Challenges could be how to make the second display more intuitive
towards the players and how to implement natural transitions between main- and second-screen
viewing, while combining this with a local-multiplayer game based on interaction in real life
and cooperative play. Finally, the process towards developing a game utilizing AirConsole’s
potentials could be to conduct an experiment on user’s focus while playing the game:

Can a mechanic in a game using multiple screens requiring the player’s attention, help the player
reduce reaction time when a transition between main- and second-screen viewing is required?

With this problem statement, the goal is to investigate how a game can help the player changing
focus when relevant, by effectively reducing that player’s reaction time when a transition from
one screen to another is required. Specifically, this project aims to investigate if implementing
visual cues in the game, can help direct attention to the second screen, and if a difference in
reaction time for users can be measured. To test this, several success criteria were set up.

11

4.2 Success Criteria

• The user has to change their focus from the game screen to the controller screen in order
to obtain all necessary information within the game.

• Users playing a version of the game with visual cues should be faster at changing focus
between screens when required.

• The controller should not steal attention when there is no relevant information.

• The implemented movement system complements the AirConsole platform in case of any
delays.

• The game clearly informs the user where to navigate to when prompted.

• The game should include animated 3D-Graphics.

12

Chapter 5

Design

In this chapter, the process of going from a a concept to an actual game design will be explained.
The design phase consists of several important visual aspects of the game, including graphics,
level design, controller and user interface. Finally, the audible effects and soundtrack will be
described.

5.1 Game Design

According to Tracy Fullerton, a game is defined as: A closed, formal system that engages players
in a structured conflict and resolves its uncertainty in a unequal outcome[10]. Games can come
in many different shapes, but are often similar to that of competitive play in general. This
is because a game usually provides the player with a winning condition, structured with an
artificial conflict and safe boundaries among other elements. In other words, a game ultimately
engages the player in a structured form. This form is known from Fullerton as the formal
elements, and they are the essence of a game [5]. The subsections below will be used to explain
the game design and gameplay principles using Fullerton’s theories.

5.1.1 Players

The game will be played through AirConsole, and the players only need a screen and their
smartphones to do so. Therefore, the environment and general ambiance at the start of the
game will be more casual and laid-back. This also means that the game’s world needs to be
easy to relate to and invites the four players into a cooperative game of planning and quick
action. The setting and the situation is easy to comprehend: There are different roles, but the
four players fight, win and lose together. The part generic, part goofy western design does not
require much of the players in terms of playing the fantasy of the game. Therefore it can be
used as a quick break and nearly every kind of player can participate. The cooperative aspect
and the need for talking and planning during the game enables group bonding and the feeling
of achieving a common goal.

13

5.1.2 Objectives

The overall objective of the game is to survive from one train station to the next. Somewhere
along the journey the train starts breaking down, which makes the four workstations launch
individual events for the players to complete. Failing five of these events will derail the train, and
it does not matter which player fails the event. This also means that the individual objectives
for each player can be seen as a group objective, distributed between individuals. The health of
the train is shared between all players. Each event consists of a smaller objective in completing
the presented micro-mechanic on the smartphone.

The objective itself does not only lie in completing the events, but also how to distribute the
tasks between the players. Some events will be shared, meaning that everyone can complete
them, but others will be specific to a chosen individual. These individual tasks can only be seen
by the relevant player, therefore the objective will be more challenging and perhaps impossible
for some if they are not communicating together. If every player just goes after their individual
objectives it also means that there will be none left to take care of shared events. This element
forces the group to interact together as all of the players share a common goal.

5.1.3 Procedures

The players are constantly given actions to do, but they vary between being movement, inter-
action and micro-mechanics. A player cannot choose to interact with all the workstations at
the same time because they are located in different places within the train. The time is limited,
and therefore both the time it takes to decide which action to do and to actually walk there
is costly for the players. Furthermore, they also have to complete a micro-mechanic for every
interaction with a workstation. It is constantly a dilemma-based choice to choose what action
to perform, due to both shared and individual events. A player might take a shared event in
one side of the train, but meanwhile there is a individual event for him at the other side that
his teammates cannot complete. These procedures create interactive and social gameplay.

5.1.4 Rules

The rules are explained by a visual tutorial at the beginning of the game, but are also implicit
and implied through the designed visuals. For example, the workstations are familiar real-world
objects that the players can interact with and are shown by highlighting them when an event
becomes available. When being in reach of the workstation an icon with an ”A” will pop up.
This illustrates that the players can press the ”A” button on their smartphone, and that it will
work when being within the zone. Pressing wrong buttons when being in a micro-mechanic or
failing to press any buttons will fail the event, and this is visualized by a timer counting down.
If the player happens to fail an event, it will be visualized through the HUD. This also reminds
the players how many events they can fail before the game is lost. The players cannot leave the
train which is implied by the walls and the train moving.

5.1.5 Resources

There are two main resources for the players to be aware of, this being health and time. The
players have five lives shared between them, and one life is lost every time one player fails to

14

complete a micro-game. There is no way to regain lives, and once all five lives are lost the game
is lost.

The other resource is time and the players does not have direct control of it. There are two
different time resources, the first one being the actual time it takes from the train to reach
another station. This is invisible to the players, but it takes five minutes for the train to reach
its destination. The events, both shared and individual, are also timed and a countdown timer
is shown above the workstation with that event. Within this time limit the player have to reach
the workstation, activate it and complete the following micro-mechanic.

5.1.6 Conflicts

In order for a game to be engaging for the player, there must be one or more conflicts that the
player is presented with. These conflicts are what drives the game forward, and they are also
usually what drives the narrative of the game. Within the game there are one major conflict, and
several minor conflicts. The major conflict in the game is keeping the train running without
stopping or being destroyed between stations. This conflict is fueled by many other minor
conflicts, represented in the form of malfunctioning workstations needing to be fixed within a
time limit or else they are going to inflict damage on the train.

The other players are not opponents, but might end up being obstacles when everyone is running
from workstation to workstation. Therefore, conflicts in the form of dilemmas might arise
between the players themselves. This also create mental obstacles perhaps inciting some sort
of competition because one player might think one of the shared events is more important than
his own individual one. It could also be that one player is not fast enough with a shared event
which might stress another player waiting to complete his own individual one, or perhaps he
has another event waiting for him in the other wagon. The players cannot ignore the mental
conflicts because they need to work together to win, forcing them to employ a range of social
skills as well as individual decisiveness and multitasking.

5.1.7 Boundaries

The physical boundaries are the train itself. The players can never exit the train and can only
act inside the two wagons visible in the camera. They also have to walk through the doors and
cannot go through the walls inside the train. The only way to get from wagon to wagon is to go
through the passage in the middle section. There is also the emotional boundary of separating
the game from the real life. The interaction of the players in-game might lead to discussions or
different opinions on the executed strategy. Therefore, it is also perfect for a group of friends
who can really push these boundaries because they already know each other. They are then able
to joke around and enjoy multitasking together as a team. Generally, the players achieve wins
or losses together in the game, and it should therefore not inflict damage on their relationship.
In fact, the feeling of competing in union could potentially make the players feel closer than
they were before.

5.1.8 Outcome

There are two outcomes in the game; either the train derails before reaching the station or else
it arrives safely at its destination. The first outcome means that all players lose no matter how

15

many events they have completed during the game. The second outcome on the other hand
means that every player wins, even if one of the four players lost four events and the other
players did not lose a single one. The players always share the same outcome. Winning the
game is always determined after five minutes, but losing the game can be determined at any
given moment during the game.

5.2 Graphics

This project decided on a graphic-style based on boxes and box-figures, almost Minecraft-like
characters. This was to give the game an unrealistic and goofy style, which was suitable because
it is supposed to be easy to jump into and takes little time to finish. The fun graphical style
entertains the players and bring them together in this short teamwork game. The graphical
inspiration was originally picked up from the danish game Stikbold. Stikbold is a sports game
where the players compete in a variation of dodgeball with fast-paced and often unfair gameplay.
The characters in Stikbold are also box-figures and designed to be very quirky and entertaining
[6]. A full collection of the final game art can be found in portfolio section 10.2.

Figure 5.1: Stikbold is developed by the danish company GameSwing [7].

16

Figure 5.2: An example of the graphic choice inspired by Stikbold.

5.3 Level Design

The level design was created to direct players with visual cues, keeping them on their toes
constantly while demanding team coordination and planning. This was achieved with seeing
the train from a sloping angle, as well as making the players capable of seeing through the outer
walls. From this point of view, the players are able to both see each other, the obstacles and
highlighted workstations, but still have to navigate correctly to get through the narrow rooms.
This may seem easy if you have a lot of time, but once the workstations begin breaking down,
the four players will have to talk and plan together to manage the tasks.

The narrow rooms are both authentic towards a realistic train map, but also functions as a
second challenge. Not seeing the level map from above means it is more difficult to notice the
walls, which again adds to the stress levels because the players are constantly on their feet.
Players might also bump together as they haste from one workstation to another. The level
design complements how the overall game mechanic works, because in this game you cannot
camp by one workstation. The game will launch events that only a certain character can
complete, and therefore one player might suddenly be needed in the opposite side of the train.
The map should be seen as a challenge, not a nuisance. Therefore, the active workstations are
briefly highlighted when events begin, and an icon with an exclamation mark will make sure the
player notices when a new task is available to him. The workshops are placed in their realistic
areas and generally the train is divided into rooms and sections designed to make the level map
more intuitive.

17

Figure 5.3: Shows the design level seen from the player’s angle and the highlighted workstations:
Passenger seat, stove, shooting range and pipebox.

5.4 Controller

A central part of AirConsole’s project proposal was the concept of using smartphones as the
controller. The company already had experience on this topic, regarding its benefits and issues.
The mayor problem being the inherent delay created between the main screen and the smart-
phones. This latency was not a big issue in the slow-paced or turn-based games, but could
frustrate the player when facing fast-paced games. This was especially true in games where
timing was important or when navigating the controls precisely was necessary.

This project quickly took focus in developing an initial design for the controls. The measure-
ments of the screen depended largely on the individual smartphones and it varied a lot between
the many brands and series. Therefore, it was an iterative process to design controls that would
fit on any smartphone screen. Using the controls should always be intuitive for the player which
meant the buttons and interactive zones could not be to close to one another. The early design-
phase was followed up with a mental model elicitation, investigating the current controls at the
time (see portfolio 10.9.2).

Figure 5.4: The controller design used in the mental model elicitation.

The directional buttons were on the right side and the a-button on the left side. This was
changed shortly hereafter, as it was more intuitive for players to control the movement from the
left side of the controller. In all probability, this was due to the already implemented controllers
used by Playstation, X-Box and Nintendo being designed this way. Players were used to such
a control scheme.

18

Figure 5.5: Early controller design used in surveys.

Later in the process it was concluded that the current directional buttons were not complement-
ing the TV/mobile multi-screen concept. Participants using these buttons had to constantly
look down to ensure they were pressing the intended ones. This caused issues because the ex-
periment was to improve reaction time between the screens by visual cues. If the players already
had to prematurely look down, the controller design was ineffective. Therefore the directional
buttons were changed to a swipe-pad area where players would not have to look down. Once
their finger was placed they could just swipe it around to move their character.

Figure 5.6: End result of the controller design.

As seen above, the final design included a swipe-pad to the left, a work-order list in the middle
and a A-button to the right. The swipe-pad is used to move the character, while the a-button
activated a workstation once the player is close enough. The individual tasks are hidden from the
other players. This is a design choice based primarily on the idea that it is a cooperative game,
and thereby forcing the players to share information with each other. Furthermore, including
everyone’s individual events on every work-order list would be a very cluttered design.

19

5.5 User Interface

The players are able to interact with the game and all its stages through their controller. The
different stages of the user interface (UI) are the ready-check, the game on the main screen and
the micro-games on the smartphone-screen.

Figure 5.7: The initial ready-check stage activated when the game is launched.

After finishing the ready-check the level design will appear on the main screen. The players
navigate through the train until they activate a workstation by pressing the A-button. After
doing this, a micro-mechanic (see portfolio section 10.5) will appear on their smartphone and
they will have to look away from the main screen. The players can never physically interact
with other elements than the swipe-pad and A-button, but information throughout the game is
showed on both screens. There are visual cues like highlights and pop-up icons on the screen to
constantly tell the user where new information is given. This is supposed to guide the player’s
attention and indicate what actions he can perform.

5.5.1 Heads Up Display

Part of the information giving by the UI is through the Heads Up Display (HUD).

Figure 5.8: The HUD displaying how many micro-mechanics the players can fail before the
train derails and the game ends. Each respective wagon and the locomotive itself counts as one
failed micro-mechanic when removed.

Figure 5.9: The HUD displaying the four characters, their given colors and underneath the tag
that each player is registered as.

20

5.6 Sound

The background music were chosen to complement the goofy graphics, but the noise of a mov-
ing steam locomotive were added to ensure authenticity. Even though the game is short and
supposed to be fun, the sounds should complement the actual feeling of being on a train. There
are also in-game sounds for interacting with the workstations, the pop-up icons, the completion
of an event and the failure of an event. These sounds are commonly used and are meant as
audio-feedbacks to give the players more information.

21

22

Chapter 6

Implementation

In this chapter, the key elements that were implemented to test the hypothesis will be explained.
First an explanation of the platform which the game is built on, and built in, then an explanation
of how the game utilizes the multi-screen setup and lastly how the games visual cues work.

6.1 AirConsole

AirConsole is a platform with an API that allows for easy communication between a screen de-
vice and multiple controller devices. It does this by creating sessions on their servers, allowing
the controller devices to just put in a session ID, to be redirected to the screen that runs the
game.

AirConsole is a web based platform, meaning that for the game to run on their platform it
needs to be compiled into two HTML files, one for the screen to run and one for the controller
to run. AirConsole will automatically redirect the devices to the right file, if the host location
is properly configured. It is worth noting that given it is a web based platform the game is
restricted to using the WebGL API.

6.1.1 Communicating between screen and controller

Utilizing the JSON (JavaScript Object Notation), in conjunction with the AirConsole call func-
tions, makes it simple to send and receive customized packages of information from screen to
controller and vice versa. The information is handled by an ”OnMessage(int deviceID, JToken
data)” function, where Data is the package of information and the deviceID is the ID of the
device that send the message.

An instantiation of AirConsole is then able to parse which deviceID is tied to which active
player, allowing for all information parsing, sending and receiving to be done in a single script.
For this project all of the message parsing and AirConsole functionality was implemented in a
”GameLogic” script that is appended to this report. For more information on how the data is
parsed see section 10.3.

23

6.2 Unity

Unity is a game engine that offers support for multiple platforms, and for this project the focus
was on creating a WebGL game to run with the AirConsole platform. Unity natively is able to
compile a unity project into a WebGL application which can be hosted on a website, a local
server or locally on your computer. Unity offers many prebuild components that highly simplify
many timeconsuming tasks, and allows for easy and fast implementation of prototypes. Unity
in short is a powerful multipurpose game engine, which perfectly facilitated the projects needs
and requirements.

6.2.1 AirConsole Plugin

The AirConsole plugin is described as: ”Unity-Plugin is a C# wrapper for the AirConsole
Javascript API. With the plugin, Unity serves you the needed screen.html file inside the Editor
and creates a screen.html file after an WebGL build export.” [13]

Using this plugin the game can be programmed primarily within the C# syntax, yet still
works with WebGL. The plugin also comes with a build in websocket-server for communication
between the backend AirConsole system and Unity’s editor. The project can be tested within
Unity’s environment before being compiled and hosted.

6.2.2 Functionality and Ease of Access

Creating a game with Unity is heavily based on object oriented design. It is possible to create
many different predefined objects, or create some custom ones, though they all have one thing in
common: components. Components and object allows for a flexible work environment with ef-
fective modularity, creating scripts, colliders, character controllers and many other components,
that are independant or reliant on other components.

6.3 AirConsole Controller

The AirConsole platform uses smartphones as the game controller, which allows for innovative
designs. The controller is build using HTML, for the controller elements, designed with CSS
and altered with JavaScript. The controller is built the same way as a normal website, making it
easy to build and design. The AirConsole API makes it easy for the controller to communicate
with the game screen. The game is designed with small micro-mechanics that occurs on the
controller.

6.3.1 Game Controller

The game controller standard view is split into three section, left, middle and right. The left
has a basic 4-way swipe-pad, which allow the users to move around by swiping in the desired
direction. The middle section has a box with a title of ”My Orders”, throughout the game the
box will be filled with active task that has to be fixed during the game. The right section has
a single button, which allows the player to interact with specific game objects. The interactive

24

button works by sending information to the screen, the screen checks if there is a gameObject
and sends the name of the micro-mechanic at that location to the controller. This will activate
the controller overlay which consists of a micro-mechanic. Based on the event name a specific
micro-mechanic will be shown and disable the standard controller function. For more details
about the controller setup and communication between controller and game screen, see portfolio
section 10.4.

6.3.2 Micro-mechanics

A micro-mechanic is a quick and interactive mechanic which requires small amount of under-
standing and time. This is different from a mini game which requires more understanding and
longer gameplay than a micro-mechanic. The mechanics are built in a different section from
all the other elements and is first shown when a message is received from the game screen.
The mechanics are shown on the controller when specific information is received, based on the
event name a specific mechanics is shown, such as a variable with the name ”WS01E01” would
activate the overlay for micro-mechanic 1. For more information about the micro-mechanics,
see portfolio section 10.5.

6.4 Visual Cues

The game includes visual cues for the user to help them guide their focus towards the relevant
screen when something has changed. This is used primarily to navigate the user towards the
work-order list on the phone whenever it is updated. The visual cue that notifies the user of
a new work-order is a pop-up. Another visual cue in the game is the highlight which makes it
easier for the user to locate the workstation that has an active event.

6.4.1 Highlights

Figure 6.1: The visual cue for a new active event on a workstation.

Highlights appears whenever a new event is active on a given workstation. The highlight pulses
slowly once when it becomes active. The color does not change, it is set to be pink to avoid
matching any other role color. This cue is not meant to tell the user what event is currently active
but rather where it is. Once the state of the workstation changes to inactive, the workstation

25

will wait to flash the highlight until it becomes active once again. To see how the shader is set
up and used in Unity, please refer to section 10.6.3.

6.4.2 Pop-Ups

Figure 6.2: The visual cue for the players to look down on the phone.

One of the pop-ups is an image of a phone with a exclamation mark of the role color as seen
in figure 6.2. The role colors are equivalent to the one they are given as they join the game:
red, blue, yellow and green. There is also the white exclamation mark that indicates a shared
work order appearing on the list. Since the shared ones can be completed by all of them, they
all receive this notification. This is different compared to the highlight cue as this is whenever
a work-order appears on the list. The pop-up does not have to be active to appear and this cue
also only indicates who can do the task, not where. For an explanation as to how these were
implemented in Unity, refer to section 10.6.2.

Figure 6.3: The visual cues to help the user locate their character and when to interact.

These pop-ups are meant to help the users locate themselves and navigate the train as well as
to interact with the workstations. The first pop-up cues in figure 6.3 are the colored arrows to
the left. These are active during the first few seconds of the game to help the user locate their
character when first launched. The pop-ups to the right are the A button that tells the user
when the character can interact with that workstation. Another pop-up that will appear over
the workstation if it is active is the circle that represents the time left to do the active task.
The circle will be colored depending on what player role is required to complete the task, just

26

as the previous pop-up. To see how these cues were made in Unity refer to section 10.6.1 in the
portfolio.

6.5 Model Creation and Animations

Figure 6.4: A flowchart of how the different assets and animations are made between software.

As seen in figure 6.4, all the 3D assets present in the game are modeled in AutoDesk’s 3Ds Max
with primarily box modeling, rigged in AutoDesk Maya and partially animated with Perception
Neuron using a plugin for AutoDesk MotionBuilder. Perception Neuron is a kit with sensors
that is worn as a harness on the body to record your movements, better known as motion
capture. The sensors on this kit tracks your joints’ position in real time. These animations
are applied to a character avatar made in Maya by rigging the model from 3Ds Max. The
animation takes are imported separately in Unity and then applied to the character model from
Maya which is also imported separately into Unity as well. The raw models of the assets without
animations are directly imported from 3Ds max into Unity.

Figure 6.5: The animation controller for the animations in Unity.

27

Once all the assets are in Unity, each animation take can be applied in Unity using an animation
controller. In figure 6.5 is an example of how the base layer of the animation controller looks.
The orange layer in the middle is the idle rotation used for the models which consist of six
different animations. Transitions between the animations are made when called in the script.
Section 10.7 includes further explanation as to how the 3D assets were made, rigged, animated
and implemented.

6.6 Eventsystem Structure and Handling

To control when and where the micro mechanics were active, an eventsystem was developed to
control the flow of the game, as well as the communication between different workstations and
the controller devices. This is achieved using a delegate based event system. A delegate based
event system uses a single communication point: the delegate, which other classes can subscribe
specific functions to. When a function is subscribed to a delegate based event, said function
will always be executed when the event triggers. Using these triggers, multiple classes can be
passed the same information, as well as be executed at the same time without being reliant on
whether or not they are specifically referenced.

Before detailing what the individual delegate events pass to their subscribers, a quick explana-
tion of the event structure is in order.

6.6.1 Event Struct

When designing a game event system, the data explaining how, when and what of each event
consists of needs to be passed to the relevant components. For this, two prominent solutions
are available, passing a reference to an instantiation of a class or passing a struct. The major
difference is that a class is a reference type, and a struct is a value type. When passing a
value type object, both the sender and receiver will end up having an independent copy of the
variable, where as passing a reference type, only the original sender will be in possession of the
actual variable. Here the receiver is in possession of a reference to the original variable.

Given that the events that are being passed in our game are short lived and are created and
subsequently removed, using a struct is the most effective choice. The struct then contains the
relevant information needed to execute, track and initialize each event.

For this system, the following four delegate events have been implemented:

• Start Event. This passes a new event struct to the subscribed classes indicating a new
event has started.

• Stop Event. This passes a struct similar to the Start Event, but also a Boolean value
that allows the subscribed classes to know whether it was a failed or completed.

• Start Game. This delegate event lets its subscribers know that the ready check has been
completed and the game has begun.

• Stop Game. This delegate event lets the subscribing classes know that the game has
ended, whether it be completed or failed.

28

6.7 Testing and Collecting Data

To efficiently collect data with as little human errors as possible, data collecting class was imple-
mented. The class named DebugToCsv was implemented to write a CSV file with the relevant
information, whenever an action relevant to the hypothesis testing occurred. To be able to sort
the information for further analysis and evaluation, each event had four associated data points:
session time, date and time, player ID and Session ID.

The following events were tracked and written into the CSV files: when an event indicator
flashed above a characters head indicating that a new event had been added to the work-order
and when a workstation was highlighted upon an event being active.

29

30

Chapter 7

Evaluation

7.1 Hypothesis

In order to evaluate the problem formulation, a hypothesis must first be made. Looking at the
problem statement: ”Can a mechanic in a game using multiple screens requiring the player’s
attention, help the player reduce reaction time when a transition between main- and second-
screen viewing is required?” The problem statement centers around improving the reaction
time of swapping focus between two screens for the users. To set up an experiment that tests
this, a control group experiment would be most suited as the difference in reaction time between
users with and without the help of visual cues can be measured. In accordance with the problem
statement, a one sided hypothesis can be made, as we assume that users with visual cues react
faster than users without. Since it is more scientifically correct to try to falsify a hypothesis,
the null hypothesis should be one that can be falsified, where the alternative will correspond to
the problem statement. Thus, a null-hypothesis can be formulated:

H0 : µReactionCues ≥ µReactionControl

As can be seen, the null hypothesis assumes that users with visual cues (treatment group) have
an equal or higher reaction time than regular users (control group). The goal is to falsify this
hypothesis, as the alternative hypothesis would then be true:

HA : µReactionCues < µReactionControl

Stating that the average reaction time of the treatment group is lower than that of the control
group, confirming what the project set out to investigate.

7.2 Design of Experiment

To test the hypothesis, a control group experiment was designed. In this experiment the treat-
ment group plays a version of the game where visual cues are implemented to help guide the
player’s focus between the two screens. The control group plays a version of the game with-
out any visual cues. Thus, the only difference between the treatment and control group is
whether the two types of visual cues are implemented (Highlights and Pop-ups as described in
section 6.4), with no changes in actual gameplay. To ensure that the participants are not biased

31

or actively seeking the elements they are testing, they are not made aware of either the presence
or lack of visual cues.

As a group of participants play the game, a camera facing the front of the participants records
the session, making it possible to track which screen each of the participants are focusing on
at any time. At the same time, the game records time stamps for all events when they become
active (saved in a CSV file), making it easier to calculate the reaction time from when an event
occurs on the main screen until a player shifts focus to the mobile screen. After recording and
calculating the reaction time for all events for all participants, the values of the participants’
reaction times can be used to test the hypothesis using ANOVA (done in R).

7.3 Setup

For this experiment, a setup with a large wall-mounted TV-screen (main screen) was used as
seen in figure 7.1. The participants were placed on a row at the end of a table set facing the
main screen and each participant had a smartphone available for use in junction with the main
screen. A camera was placed in front of the participants and filming their faces during the
experiment.

Figure 7.1: An illustration of the setup used to evaluate our system.

32

7.4 Procedure

Each session of testing with the experiment followed the same procedure to ensure validity and
reliability of the experiment. The procedure is as follows:

1. At first the participants are welcomed and asked to sign a consent form, giving permission
to record the session on video as well as giving permission to publish the material for
scientific purposes. For the consent form, see 10.9.1.

2. Each participant then logs into the game on their smartphone through the AirConsole
app, using the code supplied on the main screen. For this test, participants were also
asked to log onto a hotspot provided by the facilitators to reduce latency.

3. Having ensured that all participants are logged on to the hotspot and connected to the
game (this can be seen when their smartphone has the controller layout in one of the four
player colors), the participants gets a short introduction to the game and how to play it.
(for more see 10.9.5)

4. After the explanation, the participants proceed to play the first round of the game. This
can last up to 5 minutes (after which they win the round) or until they fail to complete
five micro-mechanics and lose the round.

5. Once the first round is completed, if the participants where not sure of where the work-
stations were placed in the train, this would be explained to them.

6. Afterwards, the participants would continue to play the second round of the game (the
same level again).

7. After having completed the second round of the game, the participants are presented with
a short questionnaire of six questions, concerning the game. Once the participants have
finished filling out the questionnaire, the test is concluded.(for more see figure 10.62)

33

7.5 Results

As mentioned in section 7.2 the data from the tests were recorded on camera (the focus of
the participants) and stored in a CSV file (timestamps of events in-game) by a debugger. The
debugger would indicate when a new visual cue was activated in the game, together with a
time-stamp and a playerID. This would indicate which player the visual cue was meant for and
when it would appear. To prepare the data for analysis and presentation, the response times of
the participants for each of the timestamped events from the video material were recorded in
the CSV file with their corresponding events. From this, the reaction times of the participants
could be calculated.

Figure 7.2: A table of the results from one participant during one session. Event Time indicates
when a visual cue was activated, Look Time is the closest time a participant looks down on
their phone since the event occurred, and Response Time is calculated by subtracting Event
Time from Look Time.

34

7.6 Analysis of Results

With the data being split into a control group and treatment group, each group had consisted
of five sessions, with four people who played the game twice. The relevant thing to look at is
the mean and variance of the data. An example of how the data is processed for game one
would be; taking the response time for each of the 20 participants in the treatment group. It is
important this is done in order from the first to the last participant in game one. Calculating
the mean and variance for the collected response time. The mean gives an understanding of
how fast the average player understand the games visual cues being tested. Plotting this into a
graph, the x-axis shows the index number and the y-axis is the calculated result.

Figure 7.3: Comparing the mean values of game 1 and 2 from the treatment group.

Figure 7.3 shows the mean results from game one and two. The graph shows slight improvement
from game one into game two.

35

Figure 7.4: Comparing the variance values of game 1 and 2 from the treatment group.

The variance gives an idea of how fast the participants understand the game. Figure 7.4 gives a
different look at the data. The graph shows a lot of spikes and comparing the two games, there
is a difference: the red starts high with big spikes but the blue is lower in general. Again, the
variance shows improvement from game one into game two, as people get more experience.

Figure 7.5: Comparing the mean values of game 1 and 2 from the control group.

36

Figure 7.6: Comparing the variance values of game 1 and 2 from the control group.

The same procedure was done with the control group data, resulting in the graphs shown in
figure 7.5 and figure 7.6 . Given there was more data from the control group, the graphs are
closer to a smooth curve.

Both the treatment and control group showed improvement over the time they played the
game. However the treatment group showed better results than the control group, based on the
graphs processed from the response time data.

7.7 Discussion

According to Analysis of Results in section 7.6 this project is able to falsify the null-hypothesis:

H0 : µReactionCues ≥ µReactionControl

And therefore also accept the alternative hypothesis:

HA : µReactionCues < µReactionControl

This means that the average reaction time of the treatment group would be lower than that of
the control group. The players in the treatment group would, according to this analysis, have
a reduced reaction time when directed by certain visual cues. This can be concluded due to
the players in the control group having a mean value higher than the treatment group. The
mean value in this situation reflects on how fast the average player changes focus which in this
case should be as low as possible. The variance is how far each player in the index is from the
average player. In other words, the variance reflects how close the players are to each others
reaction time, and it should also be as close to zero as possible. Otherwise it means that not

37

everyone is reacting as fast as the average player or that some of the players did not understand
the visual cues. The variance would rarely be zero or close to zero at the beginning, but ideally
should be getting closer to zero during the games. When looking at the graphs from section 7.6,
the variances from the control group have more spikes and are higher than the variances from
the treatment group.

These findings should bring the project closer to confirming and answering the final research
question, confirming that a multi-screen game could reduce players reaction time with the
implementation of visual cues. However, it cannot scientifically be proven that the difference
is significant enough. Nor can it be precluded that unknown factors could have contributed to
the results. This could primarily be because of a small sample size and inefficient evaluation
designs. Many unusable data points were excluded from the results because of players already
looking at their smartphone the moment when the reaction time was measured. Furthermore,
most of the first indexes had a lot of usable inputs, but as the games went on some of the groups
lost while others continued playing. This left the last indexes with fewer inputs to calculate
from, which reduces the value of the results.

The findings could be seen as a step in the correct direction, hinting that the reaction time
theoretically could be reduced and that visual cues might be a tool to achieve the intended
effect. Further investigation and evaluations could be conducted with similar hypotheses to
expand the findings and validate the current results. In such experiments, it would be important
to randomize the participants to avoid impacting factors like game experience.

7.8 Analysis of Method

The evaluation was conducted with a control and a treatment group, each group consisting of 20
participants. Each individual evaluation was carried out with four participants at a time, with
the participants consisting of students from Aalborg University. The reliability is important so
that the gathered results, and its scientific process, can be repeated by others. Also, this ensures
that the findings of the project is not a one-off finding. Others should be able to replicate this
evaluation, due to the written procedures and questionnaires, and should get similar results in
doing so. This said, they might get better results or findings due to inconsistent design and
execution in this evaluation.

Issues in the evaluation design are factors that could eventually have been predicted and pre-
vented, such as the game length depending on whether the participants lost or won. As a result
some participants ended up playing the game over a longer duration than others and got more
experienced in the game. Also, some participants lost faster than others. Furthermore, some
participants were already looking at their smartphone when the visual cue appeared on the
main display. This made a lot of the data irrelevant as the reaction time could not be found in
such cases. The evaluation ended with a small sample size due to the removal of the irrelevant
data.

The execution caused issues because the participants were not randomized, increasing the
chances that there could have been an unknown factor affecting the results. The results clearly
states a difference in reaction time between the control and treatment group, but it affects
the validity negatively that it cannot clearly be determined if a possible unknown factor is the
reason, or that an unknown factor could at least have had an influence. Such an unknown
factor could for instance have been some of the players being more experienced than the oth-
ers. It could be stereotyped that the Medialogy students were more experienced in games than

38

participants from other studies.

The method of having a control and a treatment group should heighten the external validity,
but in this case not-fully-randomized participants and a small sample size are compromising
the internal validity. No methods can be completely successful, but the current design and
execution opens up for possible unknown factors as well as inconsistent design affecting the
reliability and validity.

39

40

Chapter 8

Discussion

8.1 Quality of Solution

The chosen game design of a western theme and box-like graphics mixed with multi-screen
aspects and micro-mechanics were well received by the participants, engaging them in a co-
operative and real life interactive game. The game itself as well as the required software and
hardware is easy to set up and can be played without requiring much dedication from the play-
ers. Therefore, it is also entertainment that potentially can be used in many different situations
and contexts, for example during breaks, by a group of friends hanging out or by people trying
to get to know each other. After the evaluation a few new implementations were made to the
game. This included new coding compatible with iPhones, new HUD-animations and a tutorial
at the beginning of the game. When the train took damage it would now be visualized by one
of the wagons on the HUD falling down and the camera being shook. The tutorial was imple-
mented due to participants at the evaluation being thrown into the game to fast and without
any introductory help.

The highlighted workstations did not work as expected, primarily because the participants often
were focused on the smartphones when the highlighting appeared. The workstations are only
highlighted once for every active event, and it was therefore easy to miss by the participants.
This could also happen if all four players were inside one wagon and the camera angle excluded
the other wagon. The pipebox workstation, and to a lesser extend the shooting range as well,
were also difficult to detect. The stove and passenger seat were more iconic and participants
had an easier time navigating to these workstations. Participants were fast to guess where the
stove and passenger seat should be located inside the train, whereas when reading ”shooting
range” and ”pipebox” it seemed harder for them to estimate the location.

8.1.1 Success Criteria

In general, ineffective experimental design and the lack of randomization compromises the ability
to validate success criteria. The findings can therefore be related to the criteria, but in most
cases not be concluded with a definitive answer. It could be beneficial for the project to conduct
new experiments with improved methods and designs to test some of the current as well as new
criteria. This said, the design- and implementation process were still carried out with focus on
the success criteria and with frequent advice from AirConsole on how to fulfill them.

41

It was shown in the evaluation that users changed their focus between the displays as a way of
obtaining the game’s information, following the visual cues giving to them on both screens. Like-
wise, the success criteria regarding the inclusion of animated 3D-graphics is achieved through
the animated characters implemented in Unity (see section 10.7). The evaluation indicated
that users playing with visual cues were faster at changing focus between screens than the users
with none, though the scientific proof is lacking significance due to lack reliability and validity.
Whether the game clearly informs users where to navigate when prompted lacks scientific proof
in the same way and is therefore partially achieved. The highlight-implementations did not
affect the participants as planned and two of the workstations were difficult to detect.

The criteria that the controller should not steal attention when there is no relevant information
was partially achieved. It was implemented specifically to prevent this with a intuitive design
and no attention-demanding visuals happening while the user’s focus were supposed to be
at the main display. It was designed this way, but it cannot be entirely excluded that it
does not draw attention. Similarly, the implemented movement system should complement the
AirConsole platform and were implemented to do so by using the AirConsole API’s build-in
codebase. However, the currently implemented movement system does not function well with
the variation of delays, that network based application sometimes produced.

8.2 Wider Context

Multi-screen gaming

Working in a multi-screen environment has both advantages and disadvantages. It allows for
new ways to use the devices we all carry around in an interactive manner, however it does also
require more awareness from the individual user.

Within the AirConsole platform, there are many opportunities to make use of the multi-screen
environment, however there are some restrictions as well. Looking at the opportunities, it is
possible to create some unique scenarios that are not possible in standard local multiplayer
setups. Since the secondary screen (the smartphone) can be used to send unique information to
a specific player, that no other player has access to (assuming they do not look at each others’
screens), it is possible to create scenarios that either require a lot of cooperation to solve as
a team. Each player only has part of the total information (as in Derailed), or the opposite
scenario where players work against each other, using information that only they have access
to through their secondary screen. This allows for entirely new fields of development for local
multiplayer games, where Derailed explores just one of the many new opportunities. However,
many of the games found on AirConsole today, do not utilize the ability to give specific players
unique information through the secondary screen. Instead, they merely use it as an ordinary
controller with buttons for movement and/or interaction, leaving much of the potential of a
platform like Airconsole un-utilized. Beyond giving different players unique information, the
multi-screen environment can also be used for individual assignments like micro-mechanics or
mini games, without taking up room on the main screen that everyone needs to pay attention
to, which allows for less visual clutter. Furthermore, having two screens that require attention
can add an element of stress to the game, which depending on how it is handled, can be good
as well as bad. In Derailed this stress concept was tested to some degree of success, with the
conclusion that whilst it does add an element of cooperation and management to the game, the
information received on either display must not in any way be confusing for the players as it
causes frustrations.

42

Concerning the technical aspects of the platform that AirConsole provides, it presents developers
with some challenges that needs to be considered when designing and implementing a game.
First of, the connection between the secondary screen of the smartphone and the main screen
can experience high amounts of latency depending on which network is used for connecting
the smartphones. During this project, the general experience was that it gives a smoother
connection if using a hotspot rather than connecting over Wi-Fi or mobile networks. However,
even when using a hotspot, players can still experience high latency from time to time, and
setting up a hotspot might not always be possible. Having a high latency whilst playing can
lead to some frustrations, as the game reacts slower than the player anticipates after issuing
a command. This is especially problematic in games that require some level of precision, such
as the free movement system in Derailed, as it becomes difficult to ensure that precision when
needed. This is something that is difficult to avoid when working with the AirConsole platform,
and as such it would seem better to design around the problem, by replacing the systems
requiring precision with other systems that fulfills the same functions, but requires less precision.
In the example of the movement system in Derailed, possible solutions could be using a grid
based movement system or perhaps even a turn based movement system, as this would put
more focus on managing time rather than precision within the game. Likewise, mechanics that
requires the player to do something within a strict time limit or timing something perfectly, are
best avoided as it will eventually result in frustrations for players experiencing high latency.

Another technical limitation of the Airconsole platform, is the 10 package limit per second.
In case the controller sends 10 packages in less than a second (one problem encountered in
this project was users changing movement direction rapidly, using up the 10 allowed packages),
that controller receives a short cooldown before being able to send packages again. From the
user’s point of view, this makes the controller unresponsive if they send too many packages
too quickly, which is something they are not aware of, thus causing frustrations. As with the
latency issue, this is something that should be designed around, by finding alternatives that
requires less packages sent. A turn based movement system could possibly prevent the player
from reaching the package limit, as they would only be able to send a few commands every now
and then. Solutions like this can have other implications on design, but avoiding the package
limit is definitely something developers should strive to reach.

Visual cues

In this project, visual cues was used as a way to direct the users attention to the secondary
screen when there was relevant information to retrieve. Currently it works through a highlight
and a pop-up, but there are many different ways this could be implemented. Another approach
that was discussed through this project, was making the visual cues more subtle, such as making
the characters sweat as tasks bundled up on the secondary screen, or a workstation gradually
break more and more as a timer was about to expire. It could be interesting to see if the manner
in which visual cues are implemented changes how players perceive and use them.

Target group

Throughout this project, no specific target group was chosen to be in focus. That however,
does not mean that it might not be important to look into how different target groups approach
the idea of multi-screen gaming, or how visual cues affect different target groups. Specifically
it would be interesting to investigate if this gaming platform works better with different age

43

groups, as well as investigating if player skill makes the platform appeal more to some groups
than others. In this regard, it would also be interesting to investigate if the need for visual cues
directing attention is equally relevant for all age groups and player skill groups.

Second screen viewing

With second screen viewing becoming more widespread as a trend, it is only natural to incorpo-
rate this behavior in other systems. AirConsole is one attempt at integrating the smartphone as
a tool whilst playing games, which generally works well since most people are already comfort-
able using their smartphone. This could possibly be expanded to other areas as well, and even
though this project did not directly explore other ways to integrate the use of smartphones as
a secondary screen for other purposes than gaming, the group saw promises that it could work
well in other environments.

8.3 Future Work

It was originally planned that the game should have implemented a difficulty scaling, meaning
that every time the players would complete a level the next one would get more difficult. This
was not implemented due to time constraints, but it would increase the replayability of the
game. Likewise, it was planned that the game could be played by any amount of players from
one to four. It would have been interesting to observe whether the amount of players could
have influenced the impact of visual cues. In combination with this it could be interesting to
conduct further experiments on different types of visual cues, also studying how they perform
against each other.

The shortcoming regarding the pipebox and shooting range workstation could be solved by
making them more visible or designing new workstations to replace them. Designing new, iconic
workstations would also make it easier for participants to anticipate their locations from the
work-order list alone. Furthermore, a larger variation in workstations could increase the stress-
factor and teamwork required to complete a level efficiently, thus adding more depth and replay
value to the game. This could also be combined with a larger variation of micro-mechanics.

Improvements to highlight problems could be to implement arrows on the main display directing
the players in the right direction, this could help guide players if the camera angle had excluded
the active workstation. It could also be visualized above the work-order list on the smartphones.
The camera angle could also be changed as it seemed difficult for the participants to detect the
walls separating the rooms, but a camera angle from above would instead make it harder to
define objects.

Initially it was discussed that the roles could be expanded further than they are in the current
implementation. For example, each role could have specific tools available to complete certain
tasks and/or multiple events that require two or more specific roles to cooperate. Another idea
was to implement environmental effects that would involve every character at specific points,
for instance if the train where to run over a bump all players would have to press a button or
complete a micro-mechanic to avoid getting knocked down. This could be expanded to many
other type of events as well.

The current movement system has some limitations with this type of platform. The package
limit for each controller is ten packages per second, meaning that rapid changes in direction

44

can lead to a lockout on that controller for a short duration. This could be mitigated by
implementing a different type of movement system that requires less packages send per second
such as a grid-based system. Furthermore, players risk experience high latency which affects
the players precision in the game. This could possibly be avoided by implementing systems that
require less overall precision.

45

46

Chapter 9

Conclusion

Platforms using multi-screen gaming requires players to easily shift focus between screens when
needed. Thus, this project set out to investigate if implementing visual cues within a multi-
screen gaming platform could improve the process of changing focus between screens. This was
tested with a control group experiment, with the goal of measuring users’ reaction time when
changing focus.

Throughout evaluating the solution, some important lessons about designing experiments and
recording data were discovered. First of, ensuring that a balanced sample size is obtained by
making all participants play through the exact same amount of content, is important to increase
the validity of the results. Secondly, recording when players react to visual cues by changing
their focus can be challenging, as you have to ensure that 1) the visual cue can be seen by all
players at any time, and 2) that players are not already looking at their secondary screen as
that makes it impossible to record a reaction time.

The evaluation carried out in this project suffered somewhat from the aforementioned problems,
reducing the validity of the results. This can be fixed by making another round of evaluation,
incorporating the lessons learned from the first round. Doing so should not present much of a
challenge, as the evaluation had good reliability. Using the results gathered from the evaluation
and the overall experiences gained through this project, an answer for the problem statement
can be formulated:

Can a mechanic in a game using multiple screens requiring the player’s attention, help the player
reduce reaction time when a transition between main- and second-screen viewing is required?

Visual cues implemented in a game using multiple screens, seems to reduce the reaction time
of players when a transition between main- and second-screen viewing is required. Whilst this
cannot be finally concluded with the current data, it does show great promise in helping players
manage their focus when using multiple screens.

Going from here, it would be relevant to conduct more evaluation regarding this solution, to
ensure the validity of it. Furthermore, it would also be important to investigate how different
implementations of visual cues perform against each other, to find the most efficient ways of
designing these. Overall, this project should be used as guidelines on how to evaluate the use of
visual cues in a multi-screen environment, and inspiration for what areas to research further.

47

48

Bibliography

[1] Louay Bassbouss, Max Tritschler, Stephan Steglich, Kiyoshi Tanaka, and Yasuhiko
Miyazaki. Towards a Multi-Screen Application Model for the Web. 2013 IEEE 37th Annual
Computer Software and Applications Conference Workshops (COMPSACW), (July):528–
533, 2013.

[2] Biospil. BioSpil – Android-apps p̊a Google Play, 2016.

[3] John Corpuz. 10 Best Game Companion Apps, 2016.

[4] Andrew Duchowski. Eye Tracking Methodology: Theory and Practice - Andrew Duchowski
- Google Bøger, 2007.

[5] Tracy Fullerton. Game Design Workshop: A Playcentric Approach to Creating Innovative
Games. Elsevier Inc., 2nd editio edition, 2008.

[6] Game Swing. Stikbold! - A Dodgeball Adventure, 2016.

[7] Game Swing. STIKBOLD! PRESSKIT, 2016.

[8] Jackbox Games. Quiplash — Jackbox Games, 2015.

[9] Nicholas Katzakis, Masahiro Hori, Kiyoshi Kiyokawa, and Haruo Takemura. Smartphone
Game Controller. Proceedings of the 74th HIS SigVR Workshop, 2011.

[10] Martin Kraus. SEMESTER LECTURES ON GAME DESIGN AND DEVELOPMENT.
2016.

[11] Microsoft Developer Network. Delegates (C# Programming Guide), 2015.

[12] Rafael Morgan. AirConsole Dev Diary: Our first Local Multiplayer game for AirConsole
— AirConsole Blog, 2016.

[13] N-Dream AG. AirConsole - Play multiplayer games together, 2015.

[14] Nintendo. Nintendo 3DS - Official Site - Handheld Video Game System.

[15] Nintendo. WarioWare: D.I.Y. for Nintendo DS - Nintendo Game Details, 2010.

[16] Nintendo WiiU. What is Wii U? - Wii U from Nintendo - Info, Details.

[17] ThoseAwesomeGuys. Move or Die Game — Official Site, 2012.

[18] Ubisoft. ZombiU for Wii U - Nintendo Game Details, 2012.

[19] Anna Van Cauwenberge, Gabi Schaap, and Rob van Roy. “TV no longer commands our
full attention”: Effects of second-screen viewing and task relevance on cognitive load and
learning from news. Computers in Human Behavior, 38:100–109, 2014.

49

[20] Anna Washenko. 8 Great Apps for Second-Screen TV, 2014.

50

Chapter 10

Portfolio

10.1 Game Concept

Vision statement

Game logline: Players work together to solve small tasks aboard a train to keep it moving between
stations.

At the moment we call the game Derailed as a placeholder. In Derailed a small group of players
(1-4) work together aboard a moving train, to keep the train moving between stations and
ensure that nothing goes wrong. As the train moves towards its next destination, minor or
major crises will appear, forcing to players to attend to them before a timer runs out. Failure
to do so results in penalties either to score or health of the train. Should the health of the train
reach 0 before arriving at a new station, the train will derail and the level will be lost. If the
players on the other hand manages to keep the train running until the next station the level will
be completed, and a score will be given to the team based on their performance. From here,
players can advance to the next level with a slightly higher difficulty level.

Mechanics

Derailed has two cores mechanics: Tasks that makes up the crises that the players has to attend
to, and player roles, restricting the players from doing specific tasks.

The tasks are micro mechanics that the players has to solve within a set timer. In order to solve
a task, the player must first move to the relevant work station in the train (i.e. if a window
is broken, the player must move there) and interact with the work station to begin the task.
After this, the player must complete a simple task on their controller, such as hitting a moving
button, pressing several buttons in the right order within a short time span or pressing two
buttons fast enough in rapid succession. Some of these tasks can be solved by a single person,
whilst others will require the help of several players to solve. The cooperative puzzles requires
management within the group, as some of them may require the players to share clues with the
other players that only they can see on their controller.

51

The tasks will appear in different areas of the train, requiring players to move in order to reach
the workstation at which the task can be solved.

Each player has a unique role on the team, such as Chef, Conductor, Engineer etc. Each role
restricts the player from doing certain tasks, effectively meaning that tasks or part of cooperative
tasks can only be done by a certain player. This will force the group to coordinate which member
will be solving which tasks, hopefully adding a stress factor to the game.

If the players fail to complete a task within the timer, they will suffer penalties based on the
task. Some tasks will subtract from the health of the train, whilst other tasks might subtract
from the score of the team or reduce the remaining timer on all other active tasks. Should
the players on the other hand succeed to complete a task within its timer, they will avoid the
imposed penalties, and in some cases earn additional bonuses as well, such as increased score
or extra time for all other active tasks.

Currently the game is using a 4-way movement system, but the group is discussing changing
the movement system based on how well it performs. Other suggestions for movement currently
include a grid based movement system and a system where you simply click specific rooms to
move there.

Setting

The game is set in a western theme, travelling through a classic western scene on a train. Events,
characters and environment will be designed to fit the theme, as will sound effects and music.
As the train travels from station to station, the environment will go through a day and night
cycle, changing the feeling of the scene based on the progress of the players.

Design mock up:

Figure 10.1: A mock up of initial designs: Both level design and controller design.

10.2 Game Art

This chapter is a collection of design samples. The samples are gathered both to show the game
art and design, but also to illustrate how the western theme was implemented.

52

10.2.1 Sketches

Figure 10.2: Two sketches of early micro mechanic ideas.

Figure 10.3: Three sketches of early micro mechanic ideas.

53

Figure 10.4: Sketches of different elements on the train, which could be made into work stations.

54

Figure 10.5: A sketch of the mechanic character, with ideas of how he could appear.

55

Figure 10.6: A sketch of the chef character, with ideas of how he could appear.

Figure 10.7: A sketch of the layout of the different rooms on the train.

10.2.2 Character Design

The design of the four avatars in the game were planned to ensure two elements. To make
them fit into the western themed game, but also for each of them to have their own original
appearance. This appearance were created by individual headgear, beards and clothes. In some
examples the avatars were also equipped with items. They were all designed from a stereotypical
point of view. For example, the sheriff with his sheriff star, mechanic with full beard or the
operator with his formal wear. This were a design choice to make their role more iconic, so
that they would be easier to recognize. The graphic art were also kept true towards the ”box
graphics”.

56

Figure 10.8: The design of the train operator, recognizable by his traditional cap and formal
wear.

Figure 10.9: The design of the chef, recognizable by his white clothes and iconic chef toque.

57

Figure 10.10: The design of the sheriff, recognizable by his cowboy hat, pistol holster, iconic
outfit, gunslinger mustache and sheriff star.

Figure 10.11: The design of the train mechanic, recognizable by his more practical outfit, tool
belt and full beard.

10.2.3 Character Icons

The character icons are used in-game and represents the avatar each player has been given. They
are placed at the bottom of the main screen inside a colored border. Each of the four icons have
been designed with an authentic western style at mind, but with different appearances connected
to their individual role. For example, the chef can be recognized by his white clothes and the
chef’s togue. Another example is the train train operator and his more formal appearance and
cap. The sheriff and mechanic are more difficult to recognize by their icon alone, but their
characters are equipped with a gun holster and belt with tools.

58

Figure 10.12: (From left to right) Showcases the train operator and the chef.

Figure 10.13: (From left to right) Showcases the sheriff and the train mechanic.

10.2.4 Train Design

Designing the train was a mayor step in the initial design phase. This phase mainly focused on
how many wagons the train should have, how to design it as a western themed train and from
which angle the train itself should be seen from during the game. The angle itself would be a
deciding factor in how long the train should be, because all four players had to be able to see
the interior level, at all time. Different viewpoints would each give different areas to cover, and
with to many wagons to cover the camera would be zoomed out to much for the players to see
anything. The chosen angle for the viewpoint would also affect how the interior design should
be placed, because larger objects and workstations in the wrong place could block line of sight.
This could not entirely be avoided, because a slightly sloping angle was chosen, but the interior
was designed to avoid it as much as possible. The outermost walls closed to the camera as well
as the interior walls would be invisible for the players, allowing them to see inside the wagons.

59

Figure 10.14: The wagon at the back houses the kitchen, dining room, passenger seats and
sleeping areas.

Figure 10.15: The front wagon is designed to feature a shooting area, prison and multiple
maintenance rooms.

Figure 10.16: The front of the train is designed to look like a steam locomotive, because this is
corresponds with the chosen western theme.

60

10.2.5 Workstation Design

There are four workstations in the game, each implemented with their own micro-game. These
micro-games will appear on the smartphone after activating one of the workstations. The
stations are placed as realistically as possible inside the train wagons,for example the stove is
placed inside the kitchen area and the pipebox close to the distribution board. The workstations
are briefly highlighted once an event is ready.

Figure 10.17: The passenger seat workstation.

Figure 10.18: The stove workstation.

61

Figure 10.19: The shooting range workstation.

Figure 10.20: The broken pipes workstation.

10.3 Sending and receiving information

Below are three examples of how data is handled and cast into their respective data type.

1 i f (data [”move”] != nu l l) moveDirect ion = ((s t r i n g) data [”move”]) ;
2 i f (data [” i sP r e s s ed ”] != nu l l) movePressed = ((bool) data [” i sP r e s s ed ”]) ;
3 i f (data [”button push A”] != nu l l) a = (bool) data [”button push A”] ;

As can be seen by the example, the information is accessed in the data package by name, these
names are determined and set by the sender, and the reciever will have to know or guess what
those data packages are named for it to easily access them, though it is possible to deserialize

62

that information, at the cost of some extra processing.

The shortcomings of this system is that if a package is recieved and said package is corrupted
or contains something other than what is expected, an exception is thrown. Given the custom
packages are made specifically for this project, the chance of this event is highly unlikely.

Sending information also allows for great customization. It starts with declaring and initializ-
ing a ”message” variable, and writing the desired information into said message. In the case of
opdating the list of currently active events on the controller devices, three arrays are sent, those
three arrays eventNames; which details the names of the active events, eventGroups; which
details which group of players are able to solve it, eventStatus; which details the current status
of the events(i.e. active or inactive) and list empty; Which controls whether or not the list of
events is supposed to be visible for the user. Creating the package looks as such:

1 var message = new
2 {
3 i n f o = new { eventNames = ListOfEventNames ,
4 eventGroups = GroupsAsText ,
5 eventStatus = ListOfEventStatus ,
6 l i s t empty = f a l s e }
7 } ;

That creates the message and then the message can be send using the AirConsole ”Message(int
DeviceID, JToken data)” function, at this point the game still handles the players with a integer
detailing which active player number they currently have. Thus before sending the package
the associated DeviceID must be retrieved, and that is retrieved, using an AirConsole getter
function called: ”ConvertPlayerNumberToDeviceId(int Playernumber)”. Said function is used
in the message function call and looks as such:

1 i f (player number == 1) { AirConsole . i n s t ance . Message (AirConsole . i n s t ance .
ConvertPlayerNumberToDeviceId (0) , message) ; }

2 i f (player number == 2) { AirConsole . i n s t ance . Message (AirConsole . i n s t ance .
ConvertPlayerNumberToDeviceId (1) , message) ; }

3 i f (player number == 3) { AirConsole . i n s t ance . Message (AirConsole . i n s t ance .
ConvertPlayerNumberToDeviceId (2) , message) ; }

4 i f (player number == 4) { AirConsole . i n s t ance . Message (AirConsole . i n s t ance .
ConvertPlayerNumberToDeviceId (3) , message) ; }

10.4 Game Controller

This section will be going through how the game controller is build, the process and design.
This section will not cover the basics of HTML, CSS and javascript/jquery, but focus on more
important parts of the code. The following code will consist of three different languages, HTML
(Hyper text markup language), CSS (cascading style sheets) and javascript.

The overall design with movement and buttons is built after a standard controller design,
examples like playstation and x-box, having the movement on left side and the interaction
buttons on the right side. Since airconsole gives the possibility of changing the controller
design, we then added a third part to the standard controller. The Task list which is used
throughout the game to keep track of the game objects, overall controller design is shown in
figure 1.

63

Figure 10.21: The default look of the game controller, containing a movement control, task list
and interactive button.

The swipe-d-pad was created with AirConsole own API, only thing changed was the messages
send to the game screen. With a limit of 10 packages per device the swipe-d-pad had a problem,
since it would send too many when swiping in a direction. Sending a TRUE boolean for the
swipe direction and FALSE for all other direction, removing the false Booleans gave more space.
Participants would experience delay when moving the swipe-pad to fast around, due to all the
messages send from the controller to the screen.

1 "directionchange" : function (key , pre s sed) {
2 i f (pre s sed == true) {
3 conso l e . l og (key+" : "+ pres sed) ;
4 a i r c o n s o l e . message (AirConsole .SCREEN, {move : key }) ;
5 }
6 } ,

This code above is the part that sends data to the game screen, the ”directionchange” was
AirConsoles own API and was not changed. It has two input a string with the name of the
direction and a Boolean if the direction is true, normally the function would send four mes-
sages but we cut away the variables containing Booleans with FALSE. This way the amount of
messages send is significantly reduced by three fourths.

The task list gets updated by receiving to arrays from the game screen, with the group number
which contains numbers, who can do certain task, and what color the task is getting on the list.
The list is not interactive but just there for information about the game, the information on the
list is split into two columns. First column has a color, each player will see two color, “white”
for shared tasks and color for individual tasks. Blue player will only see “white” and “blue”
tasks, this is achieved with checking the group number of the task send by the game screen.

64

Figure 10.22: Player 1 game controller, showing active task both specific and queued.

Each player gets a different background on their controller, this was done to tell them apart.
Figure “red” shows an active task list for player one, as mentioned the first columns only shows
colors, and the second column was filled with strings. Player one will not be able to see blue,
yellow and green colored tasks. The string gives information about what item in the game was
broken. The text would be grayed out if the task was queued, this means there is already a
task at the object.
The “A” button is is used to interact with object on the game screen, it simply sends a Boolean
to the screen and the controller receives a name of the micro mechanic if the player is close
enough to an object.

10.5 Micro mechanics

The micro-games are very simple and designed to only take a couple seconds. They are func-
tioning as a stress-factor and a way of implementing the multi-screen aspect so that the users
utilize both screens. This is also why the micro-games can be seen as micro mechanics, imple-
mented as a part of the main game to provide multi-screen gameplay. The users always have to
be aware of the micro mechanics, switching the focus from the monitor to their smartphone, but
also have to keep communicating where they go. This is due to some micro-games only being
available for a specific character, and if one player fails it adds extra pressure on everybody.
How many micro-games the players can fail before losing the game can always be seen in the
HUD. In the examples below the different micro-games will be shown.

65

Figure 10.23: This micro-game is activated through the shooting range workstation and is
completed by pressing any of the colors, followed up by then pressing the same color again.

Figure 10.24: This micro-game is connected to the stove workstation and is about pressing the
numbers in correct order.

Figure 10.25: This micro-game is launched once the player activates the passenger seat work-
station and is completed by pressing button many times in succession.

66

Figure 10.26: This micro-game is activated through the pipebox workstation and is completed
by pressing the button eight times. Once pressed, the button will reappear at another point.

10.6 Visual Cues

10.6.1 Pop-Up Animations and Radial Based Timer

Figure 10.27: A collection of the sprites that are animated in the game scene.

Almost all sprite movement are animated using the animator in Unity to keyframe certain
transitions and sprite settings. Another method used is providing a script for the sprites so it
changes over a specific set time which would usually be difficult to make in the animator. An
example is the circular radial based timers in figure 10.27. These timers runs out from being
a full circle to nothing, ”slicing” the circle from it’s center. The script basically gets the time
of when the event started, who can do the event and uses the time the event will take to finish
and ticks down like a clock from there, slicing the circle until the time is over and the image is
completely removed.

Figure 10.28: How the keyframes for the A button prompt looks.

A very simple animation here for the A button. It is only meant to pop up over the head of the

67

player and stay there while the player remains in the zone of the workstation, the workstation
has an active event and the event can be completed by that players role. The easiest way to
trigger animations to happen on sprite is to disable the gameobject until it is needed. Once
enabled the animation will play on activation and by setting it to not loop it will remain in the
state the last keyframe is set to. This method is used for all the animated sprites that makes
use of the Unity animator. The indicator over the head of the player at the start of the game
and as previously mentioned, the radial based timer makes use of a script instead.

Figure 10.29: How the keyframes for the A button prompt looks.

The sprites above the head of the player as seen in figure 10.29 or just above the workstations
are achieved by using a local canvas on their parent gameobject. What is also noticeable in
figure 10.28 is that the sprites in the canvas is always facing the camera. This is also known as
billboarding. Billboarding is a method in which you make the object (commonly a 2D object
or image) face the camera at all times. This is really simple to implement in Unity as there is
a function called transform.LookAt(target); that does just that.

10.6.2 Notification animations

Figure 10.30: The sprites that are going to be animated to act as a visual cue.

This set of images are designed to look like a phone with a mark inside them to act as a cue for
the user to look down on the phone to update them self on the list of work orders. These are

68

simply made up of four shapes made in Photoshop and exported as a PNG individually. They
can also be imported as one image and then edited in the sprite editor in Unity to separate
them as individual files.

Figure 10.31: A preview of one of the animators with the key frames used for the notification
animation.

They are animated very similar to how the other pop-up animation works just a slightly different
result. Apart from the pop-up, they disappear after the animation ends. This is by making use
of the feature in the animator to call a function when it reaches a certain point of the animation.
The function that is called here is to turn off the gameobject once it has faded out completely.

10.6.3 Highlight shader

The shader removes the object and renders only the outline around the object, this way a
dublicate of the object can be placed as a child object, and still give the original object an
outline, without using excessive amounts of drawcalls.

Figure 10.32: A preview of one of the player characters, without the shader applied.

69

The shader works by rendering in 3 passes, resulting in one output that is only the outline
around the object. The shader is applied to an object, for example of original object figure10.32
Above.

Figure 10.33: A preview of one of the player characters, after the first pass.

After the first pass the entire model is rendered in a solid color, with all of its vertex points
extruded by an offset value. The offset value is controlled by a highlighting script, as well as
the color of the outline. For the actual render the object has no color and an alpha channel
value of 0, but for the sake of demonstration figure 10.33 is colored red.

Figure 10.34: A preview of one of the player characters, after the finale pass.

70

After that, the center of it is removed, but drawn at a separate point in the render queue, if
this position is increase it is possible to see a full silhouette of the object through other objects,
for this particular implementation it is rendered early so it gets overwritten by the primary
model. This is a per vertex operation that calculates the color for each vertex and interpolates
the colors in between

After that, the outline is rendered in the color determined by the scripts hard-coded value, as
seen on 10.34.

Figure 10.35: A preview of one of the player characters, with the shader and extra model
applied.

Figure 10.35 an image showing the model and the overlaid highlight model shows the finale
result.

10.7 3D Graphics and Animations

The process of creating all the assets in the game is a bit complicated when it comes to use
of software. This chapter is going to explain the process from nothing to a fully implemented
and animated model in Unity using motion capture. The process follows the same path as the
illustration shows in figure 6.4.

71

10.7.1 Modeling in 3Ds Max

Figure 10.36: An example of one of the box modeled assets in the game made in 3Ds Max.

All of the present assets and character models in the game are created using the method of box
modeling. Sometimes the models are made up of several shapes that are box modeled as seen
in figure 10.36. The base of that model is made up of a single box extruded and cut to fit the
shape of a stove. Several cylinders is added to the object to add details as well as more box
shapes for the handle and to make it look like there is an oven in the stove. This is one of the
more simple examples of a box shape in the game.

Figure 10.37: An example of one of the more complicated assets to box model in 3Ds max.

A more complicated model made with box modeling as seen in figure 10.37 is a bit harder to
create. This model is build up from one box shape. The general approach is to try and make
the form of the pigeon before adding details with extrusion that acts as an ease to the hard
edges. Another tool that makes the process is a bit simpler is to cut the model to add more
vertexes to work with and extrude more specific faces instead of the whole thing. Making the
pigeon the same on both sides is a struggle as the bridge tool of edges in 3Ds Max is not always
working. At times it will allow the bridge between two edges and draw the face, other times

72

it just wont even though the procedure on both sides of the pigeon are identical. However the
results is pretty similar when looking at both sides.

Figure 10.38: An example of the complete set of assets in the train in 3Ds Max.

All the 3D assets that are static is collected in one big file as seen in figure 10.38 to ensure all
scales and positions are correct in the train. Placing 3D objects in Unity pixel perfect could
be somewhat troublesome after importing them from 3Ds Max. This way it was also easier
to figure out the right scale for each object when collected as one. This does however make it
somewhat more difficult to add new objects without wiping the model from the current scene
in Unity. Thus this was done in the end of the process and stand-in objects were used in the
programming process. Exporting assets from 3Ds Max to Unity is pretty straight forward.
There is a game exporter build in 3Ds Max which is basically and .fbx file exporter. To get all
the required files with the models when exporting, simply tick on embed media in the export
settings to include the UVW map or other texture maps if any is used. Afterwards just make
sure the .fbx file is put into the assets folder in Unity and it will include all the materials and
UVW maps on its own in folders.

Figure 10.39: An example of the chef character model in 3Ds Max.

The modeling of the game characters follow the same method as previously explained, but with

73

an addition of UVW maps for the arms, torso and legs of the character. The reason why we used
UVW maps were to reduce the amount of problems that comes with adding cloth to a character
when rigging. Using 3D objects as the clothes of the characters made a lot of the clothes clip
through the body. Applying UVW maps to the characters when they are made up of boxes is
very simple as seen figure 10.39. Unfolding the masks and drawing within the rendered margins
provided by 3Ds Max gives the result we were looking for. All that was required were to make
sure the drawings were simple and without smooth curves to fit the box shaped character and
make sure to draw beyond the edges of the margin to reduce the amount of white blur lines on
the edges of the character.

10.7.2 Rigging in Maya

Figure 10.40: An example of the sherif character model rigged in Maya.

The rigging of the character models in Maya is very straight forward when making use of the
Quick Rig tool. The rig is made using the tool in the step-by-step mode to ensure all the bones
are placed correctly and that the right amount of bones are placed. Once placed and skinning
has been applied, a quick check to make sure all the joints and skin moves correctly is acquired.
Once everything is in order the model is exported to Unity as an .fbx model just like in 3Ds
Max. A naked character model were used in MotionBuilder rigged using the same method as
with the other characters to ensure a similar bone structure that is presented in figure 10.40.

74

10.7.3 Animations in MotionBuilder

Figure 10.41: A screenshot of our base character model with a motion capture animation.

MotionBuilder was the most fitting application to use for sampling the motion capture anima-
tions. It is easy to transfer the objects between the programs as they are all made by AutoDesk
and provides a send to program feature. It also made use of the character rig creation made
in Maya as they both share the character feature and makes the transition of models in the
program seamless. The program records the animations as takes as seen in figure 10.41 and are
also exported as an .fbx file which is then send to Unity with the model attached. Otherwise
Unity will not be able to track down the animations take without an avatar to link it to.

Figure 10.42: A shot from our motion capture using the Perception Neuron.

The hardware to record the motion capture is called Perception Neuron. It is a set of sensors
placed in a similar matter to how bones would be placed in a normal character rig. The sensors
are attached to a body harness for the torso and straps for the arms, legs and the head as

75

seen in figure 10.42. The hardware required a good amount of calibration in between takes
to make sure the joints did not rotate or loose sense of position in space. It has a little hub
that records the sensors position and sends that information either into the included software
or the plugin for MotionBuilder which we used. That hub can be reached through a wired USB
connection, recorded on an SD card or with a Wi-Fi connection. The Wi-Fi connection was in
a beta and very buggy so that idea was discarded. Since this was a first with motion capture,
real time illustration of the character moving was very helpful, thus the SD card was not a good
solution either. The final solution resulted in using the cord with a person with a laptop that
was recording running behind the person with the motion capture suit on when long distance
had to be covered.

10.7.4 3D Models and Animations in Unity

Figure 10.43: A screenshot of the animations applied to the character models.

As mentioned earlier, .fbx files were used as the export file for all the assets and animations in
the project. Unity handles these files very well with the embeded media for UVW maps and
places those files with the materials in subfolder of where the files are placed. After that the
3D assets can be dragged into the scene from the project window and all the materials and
UVW maps will be applied. The character models comes with an avatar file from the export of
Mayas own character rig feature. Usually this model can be used right away with the rigging
and skinning attached, but sometimes the avatar has to be selected and modified slightly to
turn on the rig. The animations have a similar approach as the animation takes has to be
rigged to the included base character model with each animation. After that, the animations
can be attached to the characters animation controller that has to be created separately with
states. Once that is done, the animations can be triggered by having the transitions between
animations start on a change of variable as seen in figure 10.43. An example would be when the
character is moving, it moves in an axis with a certain speed. If that speed exceeds a certain
value, start the running animation.

76

10.8 Handling events

An event is created as an instance of the struct of the inGameEvents class, using the structs
build in set functions, the relevant data for the event is determined. Once the data has been
filled in, for this case the events were hard coded for simplicitys sake in testing. the event
handler is called to notify the subscribed classes that a new event has started, the event handler
procedes to ”trigger” the delegate event associated with an event starting.

The subscribed classes are the workstation and the data collection class, note that the event is
passed to every workstation regardless of whether the workstation is supposed to use the event
or not, this could be optimized for improved performance, but the overhead that it creates is
negligable for this project. Once a workstation has recieved the event it will lookup the event
type in the event struct and compare it to the works tation type, this will result in the event
either being added to the queue if they correspond or ignored.

The workstations operate within four states; Active, Inactive, Failed and interacted. If the
current state is inactive, the workstation will pick the oldest event on its queue, and activate
it. The workstation does not know what the event is, other than how much time is remaining
and where on the list the given event is, the micro mechanic is solved on the controller device,
thus there is no reason for the workstation to know anything other than the state of the event.

Once an event runs out of time, another delegate event is triggered through the event handler,
telling that the event has failed, and with accompanying boolean the subscribed scripts will
know whether or not the event failed or succeeded, and correspondingly either reward or punish
the players. At this point the workstation will compare the ”finished” event with the event that
it currently has going on, if they are the same, the workstation will remove the event from its
list.

As can be seen on figure 10.44. The game will retrieve the currently active and queued events
while the event is being handled by the workstation. As mentioned in chapter 5.4, the infor-
martion each player recieves on their controller device is dependant on the character / role they
play. So four generic lists are created and the relevant events coppied into those lists. Then the
list is sorted one last time based on whether or not the events in the list are currently active or
queued, to sort all of the most relevant events to the top of the list. The information can then
be handled on the phone.

While all this is happening the data collecting script is running on the side, noting down data
and saving it for future analysis.

77

Figure 10.44: A flow chart over the movement between classes for a struct.

10.9 Tests

10.9.1 Consent Forms

The consent form used for testing throughout the project:

78

Figure 10.45: Consent form used for experiments.

10.9.2 Mental Model Elicitation

In the early design phase a mental model elicitation were made. The mental model elicitation
was made as a combined lo-fi test, with a paper mock up model of the game. The test was
made to find out if the group’s conceptual model was consistent with the users’ mental model
of the controller. To test this, a perceived affordance scheme was made, involving all elements
of the controller. For this test, the controller had two different overlays. A main controller for
moving around on the train and reading work orders, and a puzzle controller that would drop
down on the smartphone, when a micro game was being solved.

79

Figure 10.46: A picture of the two controllers, with the main controller in the top, and the
micro game controller in the bottom.

A perceived affordance scheme was made for each controller.

80

Figure 10.47: The perceived affordance scheme of the main controller. The scheme states the
Feedforward, Feedback, and the perceived affordance of each element of the controller.

81

Figure 10.48: The perceived affordance scheme of the puzzle controller. The scheme states the
Feedforward, Feedback, and the perceived affordance of each element of the controller.

The mental model elicitation was tested with 10 participants. The test was split into two, with
the first five participants testing the initial procedure, and then changes were made based on
the feedback and the remaining five participants tested the new procedure.

Procedure

Before the test begins the participant sign the consent form, allowing for video to be taken
of session. After that they are introduced to the project and what it is about. The setting of
the game will then be explained, being on a train and repairing stuff. The participant will then
be given the first controller for the first time, and asked to describe out loud what he/she sees,
and comment on each element and its expected function. They will then be given the second
controller overlay and is asked to do the same with that controller. The note taker will in the
meantime write down what the participant says into an empty perceived affordance scheme to
see if the participants mental model corresponds to the groups conceptual model of the con-
trollers. When they have looked through the controllers the game can start. The participant is
asked to think out loud while playing the game, explaining what he thinks is happening when
he interacts with the controllers.

The character starts in the bottom right corner of the Kitchen Cart. The first task is to
move the character up to the oven. When the character stands at the oven, an alert (The
exclamation mark) will appear on the controller and the first work order will be given to them,

82

and the window will break (place the broken window in the train). The first order is to fix the
broken window. When they are at the broken window they have to press the A button to start
the puzzle. The puzzle will be laid on the screen and they are given the other controller. They
have to solve the puzzle, by choosing a piece with the controller and move it to the correct place.
When the puzzle is finished, the puzzle screen will stay until exited by pressing the X button
on the controller The exclamation mark will appear again on the controller and the other work
order is given. The procedure is the same. The puzzle must be solved by choosing and turning
each pipe to make a circuit. When the puzzle is done the test is over.

Figure 10.49: The setup of the paper mock-up of the game.

The collected responses from the participants, was put into a perceived affordance scheme, to
see if it matches the one made by the group.

83

Figure 10.50: The answers about the Main controller overlay collected in a perceived affordance
scheme.

84

Figure 10.51: The answers about the Puzzle controller overlay collected in a perceived affordance
scheme.

10.9.3 Controller Survey

When the controller was being designed, an online survey was made to find the most intuitive
design. The survey revolved around the work order list, and where it should be placed in the
game. There are two different types of work orders: The individual work orders, which could
only be done by a single player, and the shared work orders, which could be done by all players.
The purpose of the survey was to find the most intuitive places to have the work order lists, be
it separate or combined into one.

85

Figure 10.52: The first page of the survey, explaining the purpose and getting general informa-
tion about the participants.

86

Figure 10.53: The first design of the main screen, where participants can choose which controller
design is most intuitive.

87

Figure 10.54: The second design of the main screen, where participants can choose which
controller design is most intuitive.

88

Figure 10.55: The third design of the main screen, where participants can choose which con-
troller design is most intuitive.

89

This survey was posted on facebook in a group for testing, and it got 77 responses. the collected
data was put into different charts.

Figure 10.56: The gender and age ratio of the participants.

90

Figure 10.57: The collected answers and preferred controller/screen combinations.

10.9.4 Internal Testings

An internal test was made in the when the first controller design was implemented. The purpose
of the test was to test the optimization of the controller screen on different smartphones. The
test was done with all the group-members’ smartphones. When the controller was designed it
was tested on a HTC One Mini2 2 smartphone, which for this test was used as a measuring
point. For this test the controller was opened on all smartphones, and every element of the
controller, including the size of the screen, was measured with a caliper. All the measurements
were collected in a spreadsheet.

91

Figure 10.58: The measurements of the controller elements in different phones, collected in a
spreadsheet.

92

Figure 10.59: The measurements of the controller elements in different phones, collected in a
spreadsheet.

10.9.5 Final Evaluation

The evaluation was made as a control group experiment, meaning that the participants were
divided into groups where half of the groups played the game with visual ques and the other
half played without. It was important to decide what to explain to the participants before the
test, to keep up the validity. A list was made that states which things were to be explained.

What to explain to the participant before the evaluation?
The setting.
You are on a train, and you have to work together to keep the train running for 5 minutes.
During the trip, things will start to break down, and it is your job to walk to the broken things
and fix them.
You have to stand in front of the thing to fix it.
You have five lives and if you fail to repair five things then you lose.
You are each assigned a character along with a color.
Some work-orders are shared by all and other are individual, and described with your color.
The controller. Each controller have a D-pad on the left of your controller.
You move by placing your finger and sliding it in the direction you want to move.
In the middle you have a work order list.
There you can see what tasks you can fix.
You can see both the shared tasks and your own individual task.
This means you have to work together and communicate between all players, to decide who
does what.

93

You can see what element is broken.
On the right you have an interaction button.
You use this to interact with the workstations when you are in range.
You have to play two rounds of the game.

What not to explain?
Do not mention the position of the workstations, the participants need to find these themselves.
Do not mention or explain the visual cues in the game, as participants needs to discover and
understand these themselves.
Don’t mention what we are testing (visual cues) and don’t mention anything about treatmen-
t/control groups.

Results

The collected results were put into separate tables for each session.

94

Figure 10.60: The collected results of the treatment groups. Index is the order, Game is the
Mean, gVar is the variance, inputs is the number of inputs.

95

Figure 10.61: The collected results of the control groups. Index is the order, Game is the Mean,
gVar is the variance, inputs is the number of inputs.

When the participants were done playing the game, they were given a questionnaire about the
game.

96

Figure 10.62: The questionnaire given to the participants at the end of the evaluation.

97

