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Hyperbaric oxygen preconditioning protects skin from UV-A damage
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Abstract Hyperbaric oxygen therapy (HBOT) is used for a
number of applications, including the treatment of diabetic
foot ulcers and CO poisoning. However, we and others have
shown that HBOT can mobilize cellular antioxidant
defenses, suggesting that it may also be useful under cir-
cumstances in which tissue protection from oxidative dam-
age is desired. To test the protective properties of hyperbaric
oxygen (HBO) on a tissue level, we evaluated the ability of
a preconditioning treatment regimen to protect cutaneous
tissue from UV-A-induced oxidative damage. Three groups
of hairless SKH1-E mice were exposed to UV-A 3 days per
week for 22 weeks, with two of these groups receiving an
HBO pretreatment either two or four times per week. UV-A
exposure increased apoptosis and proliferation of the skin
tissue, indicating elevated levels of epithelial damage and
repair. Pretreatment with HBO significantly reduced UV-A-
induced apoptosis and proliferation. A morphometric anal-
ysis of microscopic tissue folds also showed a significant
increase in skin creasing following UV-A exposure, which
was prevented by HBO pretreatment. Likewise, skin elas-
ticity was found to be greatest in the group treated with
HBO four times per week. The effects of HBO were also
apparent systemically as reductions in caspase-3 activity and
expression were observed in the liver. Our findings support
a protective function of HBO pretreatment from a direct
oxidative challenge of UV-A to skin tissue. Similar protec-
tion of other tissues may likewise be achievable.
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Introduction

Hyperbaric oxygen therapy (HBOT) is a method of treat-
ment in which patients inspire 100 % oxygen at a pressure
greater than 1 atm (Londahl 2012). At present, HBOT has
been approved for use in a number of clinical settings,
including the treatment of carbon monoxide poisoning, air/
gas embolisms, and chronic wounds (Gill and Bell 2004). It
has also been shown to significantly enhance the healing of
diabetic foot ulcers (Abidia et al. 2003; Kessler et al. 2003;
Duzgun et al. 2008), improve quality of life (Londahl et al.
2011), and decrease the need for limb amputations in these
patients (Faglia et al. 1996; Thackham et al. 2008; Bishop
and Mudge 2012). It is currently known that HBOT
increases the partial pressure of oxygen in hypoxic tissue
(Al-Waili and Butler 2006; Babchin et al. 2011) and attenu-
ates the inflammatory response by interfering with cytokine
production and activity (Alex et al. 2005; Daniel et al. 2011;
Lin et al. 2012). It has also been reported that HBOT
increases the production of reactive oxygen species (ROS)
within the tissue (Matsunami et al. 2011; Simsek et al.
2011), thereby mobilizing cellular antioxidant responses
(Matsunami et al. 2009; Godman et al. 2010b; He et al.
2011). Accordingly, hyperbaric oxygen (HBO) has been
acknowledged as an effective preconditioning agent under
circumstances in which protection from oxidative damage is
desired, such as in rat models of myocardial infarction (Han
et al. 2008; Sun et al. 2011) and cerebral ischemia–reperfu-
sion injury (Li et al. 2008, 2009; Cheng et al. 2011).

We previously reported that HBOT efficiently induces the
expression of a number of cytoprotective genes in human
microvascular endothelial cells (HMEC-1), including
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molecular chaperones and Nrf2-regulated antioxidant genes
(Godman et al. 2010a, b). These changes in gene expression
conferred significant protection against cell death by expo-
sures to both hyperthermia and the oxidizing agent t-butyl-
hydroperoxide in vitro. The antioxidant genes activated by
HBOT include heme oxygenase-1 and metallothionein,
which have been reported to protect cells from oxidative
stress-induced damage (Bell and Vallee 2009; Xue et al.
2009; Verma et al. 2010; Hou et al. 2012). The ability of
HBOT to activate the expression of antioxidant genes has
also been reported for a number of other cell and tissue types
(Shiraishi et al. 1983; Padgaonkar et al. 1997; Dennog et al.
1999; Rothfuss et al. 2001). However, little is known about
the functional consequences of these gene expression
changes and whether HBOT can indeed protect tissues from
oxidative damage. We were therefore interested in determin-
ing whether HBO preconditioning can protect cutaneous
tissue from UV-A radiation, a known inducer of oxidative
stress (Phillipson et al. 2002; Marrot et al. 2005; Hseu et al.
2012; Svobodová et al. 2012). UV-A penetrates the dermal–
epidermal junction and hypodermis of the skin and imparts
tissue damage via the generation of ROS. These molecules
can oxidize proteins and lipids and react with DNA to cause
single-strand breaks and base modifications (Svobodova et
al. 2011). This process imparts a number of molecular
changes to skin tissue, including the increased turnover of
keratinocytes (El-Abaseri et al. 2006) and an overwhelming
of cellular protective responses, ultimately leading to in-
creased levels of cell death (Gentile et al. 2003; He et al.
2005; Pustisek and Situm 2011). If HBO does indeed have
protective properties as a preconditioning agent, we rea-
soned that it should be clearly manifested by the suppression
of these markers of UV-A-induced skin damage. These
studies would have direct implications for the protection of
the skin from UV-A radiation (Svobodova et al. 2011;
Poljsak and Dahmane 2012) and further demonstrate the
utility of HBO for tissue protection from chronic, repetitive
oxidative stress.

In these studies, three groups of hairless SKH1-E mice
were exposed to an escalating UV-A dose for 22 weeks
(Benavides et al. 2009). Two groups of animals were addi-
tionally subjected to HBO preconditioning either two or
four times per week under conditions that approximated
clinical settings (Gill and Bell 2004; Londahl 2012). Con-
sistent with a preconditioning model, mice exposed to HBO
showed a reduced level of radiation-induced cell turnover
and skin creasing. Interestingly, changes in gene expression
consistent with cellular protection were also observed in the
liver. Our findings demonstrate that HBO can protect skin
tissue from UV-A-induced oxidative damage. Due to the
systemic nature of HBO treatment, its protective effects
may also extend to tissues that are not directly exposed to
the stressor.

Materials and methods

Animal model

Cutaneous tissue is constantly and directly exposed to
solar light, the primary environmental source of UV-A
radiation (Svobodova et al. 2011; Poljsak and Dahmane
2012), and is easily accessible for experimental manipu-
lation and noninvasive measurements. The hairless SKH1-
E mouse has been used extensively in prior studies of skin
physiology (Panteleyev et al. 1998; Benavides et al. 2009)
and was therefore selected for these experiments. These
immunocompetent, unpigmented animals permit ready ex-
posure to UV-A radiation as well as direct visualization of
skin response (Benavides et al. 2009).

Experimental design

Thirty-seven SKH1-E mice obtained from Charles River
Laboratories, International, Inc. (Wilmington, MA, USA)
were used in these experiments. All mice were housed and
treated in accordance with protocols approved by the Insti-
tutional Animal Care and Use Committee at the University
of Connecticut. Mice were randomly assigned to one of four
groups (n08–10 per group): UV-A+2× HBO (100 % O2,
2.4 atm, 1 h, twice per week); UV-A+4× HBO (100 % O2,
2.4 atm, 1 h, 4 days per week); UV-A only; or control (mice
were handled, but no UV-A exposure nor HBO pretreatment
was conducted). Animals undergoing UV-A exposure were
subjected to a whole-body irradiation three times per week
using 15-W, F15T8/BLB black light bulbs (General Electric,
Fairfield, CT, USA; Fig. 1a). An escalating UV-A dose over
a period of 22 consecutive weeks was employed, starting at
90 mJ/cm2 and increasing 10 % per week until a dose of
175 mJ/cm2 was reached. HBO preconditioning treatments
were administered using an OxyCure 3000 hyperbaric incu-
bator (OxyHeal Health Group, National City, CA, USA).
Intermittent, normobaric air breaks may be included in
HBOT treatment regimens in order to reduce the risk of
seizures resulting from CNS oxygen toxicity (Chavko and
McCarron 2006). However, at the standard clinical dose of
2.4 atm, this response is exceedingly rare and has been
shown to occur at a rate of only 0.0024 % (Yildiz et al.
2004). Because oxygen toxicity to cells and tissues was not
a significant issue in our study, and the inclusion of air
breaks would have substantially complicated our treatment
protocol, this was not included. However, all animals were
monitored during and after treatment, and no indications of
distress or seizure were observed. Animals were also
weighed on a weekly basis in order to assess any impact
of treatment on the growth rate and overall health. Follow-
ing the treatment period, mice were euthanized and their
skin and liver tissues removed. Tissue samples were fixed in
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4 % paraformaldehyde and then processed for sectioning
and histological analysis. Others were snap-frozen and used
for biochemical assays.

Preparation of cytosolic liver extracts

To prepare cytosolic liver extracts, sections of tissue weighing
28.5±1.5 mg were obtained from each animal. Each sample
was added to 400 μL of buffer A (10 mM HEPES, pH 7.9,
10 mM KCl, 0.1 mM EDTA, 2 mM MgCl2, 15 mM sucrose)
containing 0.1 % Nonidet-P40 (NP40) cell lysis buffer. Tissue
was lysed via homogenization and centrifuged at 10,000×g for
5 min. The supernatant (20 μL) was removed from each
sample and used to create pools representative of all treatment
groups. Extracts were stored at −80 °C.

Immunohistochemistry

Skin and liver tissues were dehydrated, formalin-fixed, and
embedded in paraffin according to standard procedures, and
10-μm-thick sections were cut and mounted on glass slides.
The slides were de-paraffinized and rehydrated according to
standard protocols and then heated in 10 mM citrate buffer
(pH 6.0) for 20 min for epitope retrieval. The skin tissue was
blocked at room temperature for 30 min using 5 % serum (in
phosphate-buffered saline) and incubated for 1 h with dilut-
ed primary antibodies (1:100 in 5 % serum) against prolif-
erating cell nuclear antigen (PCNA; rabbit polyclonal, SC-
7907, Santa Cruz Biotechnology, Santa Cruz, CA, USA) or
cleaved/active caspase-3 (rabbit polyclonal, no. 9662S, Cell
Signaling Technologies, Beverly, MA, USA). The liver
tissue was similarly blocked and incubated with diluted
primary antibodies against cleaved caspase-3 only. CY3-
conjugated secondary antibodies (goat polyclonal, no. 111-
165-144, Jackson ImmunoResearch, West Grove, PA, USA)
diluted 1:100 in 5 % serum were selected for a 30-min
incubation. A DAPI counterstain was performed to facilitate
the visualization of tissue nuclei, and coverslips were
mounted on slides for imaging.

TUNEL staining

Skin and liver tissues were prepared and mounted on glass
slides as described previously. Slides were de-paraffinized
and rehydrated according to standard protocols and heated
in 10 mM citrate buffer (pH 6.0) for 20 min. An in situ Cell
Death Detection Kit (no. 11684795910, Roche Applied
Science, Indianapolis, IN, USA) was employed to stain for
DNA fragmentation (apoptosis) according to the manufac-
turer’s instructions, and coverslips were mounted on slides
for imaging. The data were quantified by determining the
number of terminal deoxynucleotidyl transferase dUTP nick
end-labeling (TUNEL)-positive cells per length of epidermis.

Since some normal-appearing cells were weakly labeled, only
cells showing intense staining and an apoptotic morphology
(e.g., “rounding-up”) were counted as positive.

Analysis of skin micro-creasing

Histological samples were utilized to quantify microscopic
folds within cutaneous tissue. Tissue sections were imaged,
and measurements of the depths of individual “micro-
creases” were made using an equal number of images and
animals per treatment group (n08). Individual measure-
ments within each group were summed to generate a total
micro-creasing value.

Skin elasticity

The skin elasticity of animals was assessed using a Revisc-
ometer RVM 600 probe (C-K Electronic, Köln, Germany).
This device uses two parallel sensors to measure the prop-
agation of ultrasonic waves through the tissue and is sensi-
tive to the density and orientation of collagen fibers and the
moisture content of the tissue. Wave propagation (resonance
running time, RRT) is expressed in arbitrary units (Uhoda
and Piérard 2003; Ruvolo et al. 2007; Sommerfeld 2007).

Caspase-3 activity

Fifty microliters of the supernatant from individual cytosolic
liver extracts was diluted to 0.5 μg/μL and added to 50 μL
of 2× reaction mixture (20 mM PIPES, pH 7.4, 4 mM
EDTA, 0.2 % CHAPS, 10 mM DTT) containing 0.2 mM
of the fluorogenic substrate acetyl-Asp-Glu-Val-Asp-7-ami-
no-4-methylcoumarin (DEVD-AMC; Enzo Life Sciences,
Farmington, NY, USA). The reaction was carried out on a
96-well plate, and the fluorescence was measured using a
microplate reader (excitation/emission, 360/460) at the start
of the reaction and after 15 min. Protein concentrations were
determined using the BioRad Protein Assay reagent accord-
ing to the manufacturer’s instructions (BioRad, Hercules,
CA, USA). The enzyme activity was quantified by dividing
the change in fluorescence after 15 min by the total amount
of protein in each reaction mixture (Kuratnik et al. 2012).

Results

Experimental design

To determine the effect of HBO preconditioning on the skin
tissue, hairless SKH1-E mice were sorted randomly into
four groups (shown schematically in Fig. 1a). Three groups
of animals were exposed to UV-A three times per week,
with two of these groups receiving an HBO pretreatment
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either two or four times per week. An unexposed and
untreated control group was run in parallel. The HBO dose
was similar to that used clinically: 1 h exposure at 2.4 atm in
100 % O2. The safety of HBOT at this intensity is well
established, with only minor side effects such as inflamma-
tion of the middle ear and reversible myopia being the most
frequently reported (Heyneman and Lawless-Liday 2002;
Tiaka et al. 2012). Accordingly, no major deviation in
growth curves was observed for the groups receiving HBO
pretreatment (Fig. 1b).

Effects of HBO preconditioning on cell turnover in the skin

To determine the effect of UV-A and HBO preconditioning
on keratinocyte turnover, cutaneous tissue was stained for

the cell proliferation marker PCNA (von Neubeck et al.
2012), and a proliferation index was derived by calculating
the ratio of PCNA-positive nuclei to the total nuclei within
the tissue (Kuratnik et al. 2012; Rigatti et al. 2012). Figure
2a, b shows representative images and the quantified data,
respectively. The PCNA staining index in the group treated
only with UV-A was significantly higher than that of the
control group. HBO pretreatment, either two or four times
weekly, reduced PCNA staining to the control levels, con-
sistent with a protective effect from UV-A-induced damage.

To determine whether HBO preconditioning suppressed
apoptosis associated with chronic UV-A exposure, we quan-
tified caspase-3 activation in the four groups. Figure 3a, b
shows representative images and the quantified staining for
active caspase-3, respectively. Animals exposed to UV-A

UV-A, 2X HBO

UV-A

Control
Handled, no UV –A exposure or HBO treatment

Weekly treatment regimen (x22 weeks)
Group M  T W R F

HBO HBO Weights

UV-A, 4X HBO
UV -A UV-A UV-A

HBO HBO HBO HBO Weights

Weights

Weights

Reviscometer
Measurement

Tissue Prep

A.

B.

20

21

22

23

24

25

26

27

28

29

30

W
ei

g
h

t 
(g

ra
m

s)

Control

UV-A

UV-A, 2x HBO

UV-A, 4x HBO

UV -A UV-A UV-A

UV -A UV-A UV-A

Fig. 1 Experimental design. a
Figure illustrating the basis of
our experimental design. HBO
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showed a higher staining index than the control animals.
Likewise, both groups pretreated with HBO had significantly
lower levels of active caspase-3 staining in comparison to the
UV-A-exposed animals. ATUNEL stain for DNA fragmenta-
tion (Fig. 4a) generated similar results. The labeling index
(Fig. 4b) was significantly higher in the UV-A-only group
relative to the control or HBO-preconditioned animals.

HBO preconditioning and structural changes in the skin

To assess the impact of experimental treatment on the skin
structure, we measured the total depth of skin “micro-creases”

(microscopic tissue folds) per animal using hematoxylin and
eosin-stained sections. The red bars in Fig. 5a show how the
micro-creasing measurements were obtained; an equal num-
ber of animals and images within each treatment group were
analyzed. The degree of creasing was significantly higher in
the animals treated with UV-A alone, relative to the control or
those receiving HBO preconditioning (Fig. 5b). This is con-
sistent with an HBO-induced protection of the tissue.

Using a Reviscometer 600, we determined the ability of
HBO preconditioning to prevent the loss of skin elasticity
incurred from chronic UV-A exposure. Although UV-A
exposure only showed a trend to decreasing skin elasticity,

Control UV-A

UV-A, 2x HBO UV-A, 4x HBO

*

A. B.

Fig. 2 Analysis of PCNA staining in skin tissue. a Representative
PCNA immunohistochemical staining of the skin tissue from the
different groups. Darkly stained nuclei (mostly in the epidermis) are
PCNA-positive. Magnification, ×200. b Quantified staining. The ratio

of PCNA-positive nuclei to the total nuclei was obtained to calculate
the staining index. The UV-A group showed a higher staining index
than the control, whereas the HBOT groups were not significantly
different from the control (Bartlett’s test for variance: *p<0.05, n08)

Control

UV-A

UV-A, 2x HBO

UV-A, 4x HBO

A. B.

* *
**

Fig. 3 Analysis of active
caspase-3 in skin tissue. a Rep-
resentative cleaved caspase-3
immunohistochemical staining
in cutaneous tissue from the
different groups. An antibody
recognizing both the full-length
caspase-3 protein and the 17-
kDa fragment resulting from
enzymatic cleavage was
employed. Magnification,
×200. b Quantified staining.
Cells staining for cleaved/active
caspase-3 were counted and
controlled for field area. The
UV-A group showed a higher
staining index than the control
and either HBO group
(ANOVAwith Tukey’s post hoc
test relative to the UV-A group:
*p<0.05, **p<0.001, n08)
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animals preconditioned four times a week with HBO
exhibited a statistically significant increase in elasticity rel-
ative to UV-A-treated animals (Fig. 6).

HBO preconditioning and liver tissue

Immunohistochemical staining for cleaved/active caspase-3
was performed on hepatic tissue sections to determine whether
the livers of HBO-preconditioned animals showed signs of
protection following chronic UV-A exposure (Fig. 7a, b). UV-
A-treated animals showed a trend of increasing caspase-3 stain-
ing relative to the control animals, with a significant reduction
observed in animals receiving HBO pretreatment four times per
week.We also assessed the activity of caspase-3within the liver

extracts using a DEVD-AMC substrate. Although UV-A-
treated animals only showed a trend to increased caspase-3
activity relative to the controls, enzymatic activity was signif-
icantly decreased in animals receiving four HBO treatments per
week (Fig. 7c). No significant changes in TUNEL staining
were observed (Fig. 7d). These findings support the possibility
that in addition to the skin, HBO may also be capable of
exerting a protective effect on internal organs.

Discussion

Although the types of approved medical applications vary,
the benefit of HBOT stems from its ability to increase tissue

A. B.
Control UV-A

UV-A, 2x HBO UV-A, 4x HBO

Fig. 4 TUNEL staining in the skin tissue for DNA fragmentation. a
Representative TUNEL-stained images. Magnification, ×200. b Quan-
tification of TUNEL-positive cells per length of epidermis. Cells that

showed intense TUNEL staining and an apoptotic morphology (e.g.,
“rounding-up”) were scored positive (ANOVA with Tukey’s multiple
comparison test: *p<0.01)

A. B.

Fig. 5 Skin micro-creasing. a Skin micro-creasing was quantified by
measuring the depths of folds on microscopic sections. The red bars
show an example of such a measurement on a tissue section. b Images
obtained from all treatment groups were quantified for micro-creasing.
An equal number of images and animals were analyzed for each group

(n08). Depth measurements were summed to obtain the total micro-
creasing value, which is shown in the graph (*p<0.01 and 0.001 for the
2× HBO and 4× HBO groups, respectively, as determined by ANOVA
and Tukey’s multiple comparisons test)
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levels of O2. The increased concentration of O2 can serve to
stimulate a range of O2-dependent biochemical reactions.
For example, the ability of NADPH oxidase to generate
superoxide is strictly limited by the local concentration of
O2. Increasing tissue levels of O2 can therefore enhance
wound healing by enhancing the bactericidal actions of
leukocytes within hypoxic, non-healing wounds. Evidence
has also been obtained that the tissue levels of NO can be
enhanced by hyperbaric treatment; oxygen tension at atmo-
spheric pressures above 2.0 can increase NO production by
pulmonary endothelial cells (Buras et al. 2000). In some
instances, increased NO production has also been associated
with enhanced cardioprotection in an ischemia–reperfusion
model (Cabigas et al. 2006).

In addition to increasing the activity of O2-utilizing
enzymes, HBOT can stimulate O2-dependent signaling path-
ways, which range from MAP kinase pathways to NF-κB
(Bonomo et al. 1998; Lin et al. 2002; Shyu et al. 2009;
Rinaldi et al. 2011; Wang et al. 2011). One pathway of
particular interest is the Keap1/Nrf2 pathway which regu-
lates the expression of a range of antioxidant genes that can
potentially protect cells from severe oxidative stress.
Employing a gene array approach, we reported that the
activation of Nrf2-regulated genes, along with a number of
molecular chaperones, is a dominant response of cells to
HBOT (Godman et al. 2010a, b). However, since HBOT can
induce such a broad range of cell- and tissue-level effects, an
important question is whether, on balance, these responses

are protective. As a step toward addressing this issue, we
used a hairless mouse model with UV-A as a source of
oxidative stress. We find that HBO preconditioning treat-
ments provide a protective effect to UV-A-irradiated skin, as
determined by reduced epidermal turnover, cutaneous creas-
ing, and loss of skin elasticity. Effects were also observed in
the liver, which can incur some damage from UV-A expo-
sure due to the circulation of reactive molecules (Svobodova
et al. 2011). When UV-A is used as the primary stressor, our
mouse model indicates that HBO preconditioning provides a
significant degree of protection from oxidative stress at the
tissue level. Although this has implications regarding the
protection of skin for various cosmetic purposes and patho-
logical conditions, we propose that our data could also
prove useful for understanding the mechanism of HBO-
mediated tissue protection.

The phenomenon known as hormesis involves a favor-
able biological response to sub-toxic levels of stress. Hor-
metic agents induce an adaptive cellular response which
confers resistance to harmful doses of the same stressor
(Martins et al. 2011). We envision HBOT to be acting
largely as a hormetic agent, stimulating the generation and
sensing of reactive oxygen intermediates within the tissue
(i.e., oxidative signaling), leading to the activation of pro-
tective responses including Nrf2 mobilization and antioxi-
dant gene expression (Cypser and Johnson 2002; Rothfuss
and Speit 2002; Godman et al. 2010a, b; Matsunami et al.
2011; Simsek et al. 2011). The HBO-preconditioned tissue
is therefore prepared to withstand the stresses of UV-A and
potentially other oxidative stressors. Even though HBOT
has been reported to induce a level of oxidative stress within
cells and tissues, it is only rarely associated with adverse
effects. HBOT may therefore generate a spectrum of ROS
that efficiently induce protective pathways without inducing
extensive oxidative damage to macromolecules. In support
of this conclusion, we found previously (Godman et al.
2010a) only small inductions of the cytosolic chaperones
involved in protein damage responses, and no mobilization
of HSPA6, which is only activated in human cells that incur
substantial damage. Nonetheless, as with any hormetic
agent, HBO dosing schedules need to be carefully studied
to allow the development of maximal tissue protection.

In addition to upregulating antioxidant gene expression,
the protective effects of HBO may also derive from a num-
ber of other reported effects of high oxygen tensions in
tissues. One physiological response that may contribute to
tissue protection is enhanced circulation. Saglam et al.
(2008) described a significant increase in the diameter of
the right brachial artery in healthy subjects following 10
HBO treatments, suggestive of long-term effects on vascular
physiology. Accordingly, the HBO-mediated upregulation
of nitric oxide synthase has been observed in a number of
cell types (Buras et al. 2000; Liu et al. 2008; Xu et al. 2009;

Fig. 6 Reviscometer 600 measurements. This probe quantifies the abil-
ity of HBO preconditioning to suppress macroscopic changes in the skin
arising fromUV-A exposure. There is a statistically significant increase in
the probe readings (RRT, expressed in arbitrary units) of mice that
received HBO preconditioning four times per week relative to mice
exposed to UV-A only. A higher number indicates less damaged (i.e.,
more elastic) skin (ANOVA and Tukey’s post hoc test: *p<0.01)
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Lin et al. 2011; Kendall et al. 2012). HBOT also induces the
expression of angiogenin, another promoter of NO synthe-
sis, in a chronic wound model (Kendall et al. 2012). By
stimulating NO production, HBOT triggers a vasodilatory
response which increases blood flow and oxygen delivery to
target tissues (Buerk 2007; Giles et al. 2012). Although
future studies are required to test the contribution of en-
hanced circulation to HBO preconditioning-mediated pro-
tection, this well-documented response could facilitate the
efficient flow of nutrients to the tissue and the removal of
reactive molecules (such as aldehydes and other breakdown
products) during times of stress.

The changes in cell turnover within the skin tissue we
observed following UV-A exposure likely derive in part
from enhanced inflammatory signaling (Gentile et al.
2003; He et al. 2005; Rock 2009; Svobodová and Vostálová
2010; Pustisek and Situm 2011). It is well established that
UV radiation induces the production and secretion of a
number of pro-inflammatory cytokines (Morita et al. 1997;
Krutmann 2000; Halliday 2005). Interestingly, HBOT has
been reported to possess anti-inflammatory effects in other

scenarios (Al-Waili and Butler 2006; Thom 2009; Daniel et
al. 2011), and it can reduce the circulating levels of TNF-α,
IL-1, and IL-6 (Al-Waili and Butler 2006) implicated in the
cutaneous response to UV exposure (Al-Waili and Butler
2006; Thom 2009; Daniel et al. 2011). These data suggest
that HBOT may be beneficial in the management of derma-
tological conditions arising from pathological inflammation,
such as psoriasis (Schafer 2012) and atopic dermatitis
(Rebane et al. 2012).

Although decreases in caspase-3 expression and activity
were observed in the livers of animals pretreated with HBO
four times per week, animals exposed solely to UV-A
showed a trend to increasing liver caspase-3 compared to
the controls. Exposure of the skin to UV-A has been shown
to increase apoptosis in that tissue (Wu et al. 2011; Boyer et
al. 2012; Hseu et al. 2012; Lee et al. 2012), but few studies
have been conducted which examined its effects on other
tissues. Svobodova et al. (2011) described a number of
changes in oxidative stress-related parameters in hepatic
tissue following exposure to UV radiation, which were
attributed in part to the circulation of reactive signaling

A.

C.

B.

D.

Control UV-A

UV-A, 2x HBO UV-A, 4x HBO

Fig. 7 Response of the hepatic
tissue to experimental
treatment. a Representative
cleaved caspase-3 immunohis-
tochemical staining in liver
from the different groups. b
Quantification of cleaved
caspase-3 staining. The ratio of
caspase-3-positive cells to the
total cells was obtained. The
staining index is reduced sig-
nificantly in the group treated
four times per week with HBO
(ANOVA and Tukey’s post hoc
test: *p<0.05) c Cleaved
caspase-3 activity in cytosolic
liver extracts. Enzymatic activ-
ity is significantly reduced in
animals treated four times per
week with HBO relative to the
group treated with UV-A alone
(Bartlett’s test for equal vari-
ance: *p<0.001). d Quantifica-
tion of TUNEL staining in liver
tissue. TUNEL-positive cells
were counted and controlled for
field area. No significant dif-
ferences were found among the
groups (ANOVA)
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molecules generated in the skin and associated blood ves-
sels. This finding may provide a partial explanation for the
non-significant increases in liver caspase-3 we report here.
Similarly, the significant skin protection afforded to mice
receiving HBO four times per week may ultimately reduce
the indications of liver stress observed in the irradiated
animals. We expect that if the trend to increasing liver
caspase-3 is indeed real, the results would obtain statistical
significance if more animals were analyzed. If this is not the
case, the reduced liver caspase-3 in the 4× HBOT group
may instead result from a protraction of the natural caspase-
3 increases that occur throughout an animal’s life span
(Zhang et al. 2002; Kujoth et al. 2005).

In summary, the data obtained from our mouse model
support a protective function of HBO preconditioning from
oxidative stress when UV-A is used as the primary stressor.
We report that a preconditioning treatment regimen reduced
apoptosis and proliferation in the skin and prevented detri-
mental structural changes such as creasing and a reduction
in elasticity. The protective effects of HBO were also ob-
served systemically because reductions in the expression
and the activity of apoptotic markers were also evident in
the liver. These responses may be valuable for understand-
ing the molecular mechanisms by which HBOT confers
tissue protection. They may also aid in the development of
novel clinical applications for HBOT.
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