Elaboration on
Atomic Images

and BlueBuild

with demo

by Armin Bade (arminmiau)
originally created for my Lightning Talk in class at HTL Grieskirchen

published 6" January, 2025 on arminmiau.vercel.app

Elaboration on Atomic Images and BlueBuild

Table of Contents

TDEMO Prer@QUISITES. . iiiiiei ittt e e et e e e e ate e e e e e e e enanaa s 3
2 =4 o] F= 1 F= | (] o PO PSP PPPRPPRRPPPPPPIIN 3
2.1General idea Of AtOMIC IMAGES....ccciuiiiiiiiiiee ettt e eeeee e 3

2. 1.1 Reliability & CONSISTENCYuuiiiiiiiiiiiiiiiiiieiieiieeeee et e e e e e e e e e e e e 3
2.1.2 SIMPLIfied UPAates....uu e 3

2. 1.3 IMProVEd SECUITY ..ccciiiiiiiiiieee ettt e e e e eeee e eee e e e e aeeeeaaassanaaaeaeaeaaannens 3
2.1.4 Container-Optimized WOrKfIOW.........uuuiiieeeeeieeeeeeeeeecceee e 4

2. 1.5 Easy ReProdUCIDIlItY....ccceeeiiiiieeeeeeeeceee e e e e e e e e e e e e e e e e e e aaaeeeaes 4
2.1.6 TYPES ANA EXAMPIES... e ieei ittt e eer e e e e et e e e e ettt e e e e e raeneeeesarnaeeeerennnnns 4

A o Co] =T ot £ T PP P PP PP PR PPPPRUPPPRRE 5
2.2 T lIDOSIIEE. .ttt e e e e e e e e e s 5
A A 4 o]0 1 o1 =T T PP PRR R PPPPPPRPRt 5
2.2.3 BUIl TOOIS...eiiiiiiiiiieeteee ettt e e s e e 5

R LU E= o] 0 0 10 0= T [TP 5
2.3 TUNIVEISAl BIUB..ccoeeeeeeeeeee ettt e s e e e 5}
2.3 2 BIUEBUII. ..ttt ettt sttt et e sateeeas 6
2.3, 3 USE CASES. ittt ettt ettt eaas 6

K 3 BT 1 Lo TP PSPPI 7
R BT = (U o T PP PP UUPPRRRRR 7

R 2 D 1T o] ()Y 1 1= o | SO PSPPSR 10
3.3 Layering and live-apply @XampPle........ ceeee e e eeeeeeeveee e e e e e e e e e e aaaaaeaaas 12

B LINKS. . ieitiiiieeeeeetteee e eetttee e e e e ettt e e e e e e eaaa e e s e eeataa e e e eeeaaaa e eeeearanaaeaas 15

Elaboration on Atomic Images and BlueBuild 2

1 Demo Prerequisites
* GitHub account

* Ability to run VM

2 Explanation

2.1 General idea of Atomic Images

The concept of atomic images, also known as immutable images, refers to Linux
distributions packaged similarly to container images. These images are often called
"bootable containers." They allow for atomic updates to the distribution and programs in
a single operation—hence the name "atomic"—while enabling layering of additional

programs.

211 Reliability & Consistency

Atomic images prioritize reliability and consistency by mounting their root file system as
read-only. This prevents "configuration drift" over time, as user changes that could lead

to unpredictability are restricted.

212 Simplified Updates

Traditional update mechanisms risk leaving systems partially updated or broken if
interruptions occur. Atomic images mitigate this through transactional updates, where
changes take effect only upon successful completion and can be rolled back if needed.
For instance, Fedora images using rpm-ostree perform automatic background

updates.

21.3 Improved Security

Writable root file systems are significant attack vectors in Linux. Atomic images reduce
this risk by employing a read-only root file system, making them less vulnerable to

exploitation.

Elaboration on Atomic Images and BlueBuild 3

214 Container-Optimized Workflow

Linux systems were not traditionally optimized for containerized workloads. Atomic
images address this gap by offering minimal, consistent base images designed for
hosting containerized applications. Examples include Fedora CoreOS and Flatcar

Container Linux.

215 Easy Reproducibility

Reproducing exact environments across systems is error-prone. Atomic images, akin to
OCl and Docker images, use a layered approach, ensuring reliable and consistent setups
across multiple systems. This enables large-scale operating system deployments.

Paired with containerized applications, they create a fully reproducible stack.

216 Types and examples

* Minimal base images:
o Fedora CoreOS
o RHCOS (similar to CoreOS, but RHEL)
o Fedora loT
o Flatcar Container Linux
o Universal Blue uCore (based on Fedora CoreOS)
o openSUSE MicroOS
» Atomic Desktops:
o Fedora Silverblue (GNOME)
o Fedora Kinoite (KDE Plasma)
o Universal Blue Bluefin (based on Silverblue)
o Universal Blue Aurora (based on Kinoite)

o Universal Blue Bazzite (gaming orientated)

Elaboration on Atomic Images and BlueBuild 4

2.2 Projects

221 libostree

libostree (formerly OSTree) is a shared library and suite of command-line tools for

committing and downloading bootable file system trees.

2.2.2 rpm-ostree

rpm-ostree integrates libostree with 1ibdnf (the RPM package system). It powers
Fedora/Red Hat images and derivatives like Universal Blue, enabling RPM package
layering on base images.

Note: As of Fedora 41, focus has shifted to DNF5 and bootc. Features of rpm-ostree
are gradually being migrated to DNF5.

2.2.3 Build Tools

Specific tools are required to build atomic images. Fedora uses coreos-assembler for
Core0OS-style systems, while Universal Blue employs Red Hat's buildah to build OCI-

compatible containers compatible with Docker and Kubernetes.

2.3 CustomImages

Linux is renowned for its customization capabilities, but sharing customizations is often
cumbersome. Atomic images simplify this by encapsulating adjustments within the
image itself. These adjustments can include style, kernel optimizations, drivers, and

preinstalled applications.

2.31 Universal Blue

Universal Blue images are built on Fedora images, layering kernel optimizations and
drivers (e.g., NVIDIA graphics drivers) on top. They offer a GitHub template for building

custom images.

Elaboration on Atomic Images and BlueBuild 5

2.3.2 BlueBuild

BlueBuild simplifies the creation of custom Universal Blue images. It provides a
workshop that sets up a GitHub repository to jump-start image creation. Future updates

aim to enable programmatic image configuration.

2.3.3 Usecases

2.3.31 Application Deployment

Custom images streamline deployment by pre-configuring services, security, and
compliance requirements. This approach reduces risks and accelerates product rollouts
at scale.

2.3.3.2 Developer-Team environments

In teams where everyone uses Linux, a shared image can eliminate "works on my
machine" issues by standardizing the development environment.

2.3.3.3 Education and Training environments

Pre-configured sandbox images provide students with secure, ready-to-use
environments for practicing DevOps, security, or containerization, with minimal setup.
2.3.3.4 Experimentation and Learning

Atomic images offer a safe platform for testing different desktop environments, tools,
and configurations. They allow users to experiment with Linux customizations and roll

back changes as needed.

Elaboration on Atomic Images and BlueBuild 6

3 Demo

3.1 Setup

Head to https://workshop.blue-build.org/ and login with GitHub. You'll need to authorize

the application on the first time. Then click on “New custom Image repository +":

& (] blue-build.org

f BlueBuild Workshop

arminmiau/dev-image

https://github.com/arminmiau/dev-image

Name it something and in the next step click on “Set keys cosign automtically":

@ (o] blue-build.org

f BlueBuild Workshop

Set up container signing

How do you want to set up container signing?

Container signing is used to verify the authenticity of the custom

image. It is important not to expose the cosign keys to third parties.
for you. The keys will be

ed over HTTPS to GitHub. If

manually instead. Read more about trust...

Skip Set keys cosign automatically
Openlog ¢

Once it's done open the repository and clone it.

Elaboration on Atomic Images and BlueBuild 7

https://workshop.blue-build.org/

Open recipe.yml in recipes. For this demo we'll choose aurora-dx with latest version.

demo—-image

This is a demo image for my lightning talk.

ghcr.io/ublue-os/aurora-dx
latest

Let's install .NET 8 as a layered rpm package and Rider as a Flatpak.

rpm-ostree

dotnet-sdk-8.0

default—-flatpaks

com. jetbrains.Rider

Elaboration on Atomic Images and BlueBuild 8

Add a

ISO build job to the GitHub workflow

.github/workflows/build.yaml):

Build ISO
bluebuild
ubuntu-latest

read
write
write

Build
jasonn3/build-container-installer@main
build

x86_64
demo-image
ghcr.io/arminmiau
latest
41
kinoite
demo—-image-latest_x86_6U.1is0
Upload as artifact
upload
actions/upload-artifact@vd

${{ steps.build.outputs.iso_name }}

I
${{ steps.build.outputs.iso_path }}

${{ steps.build.outputs.iso_path }3}-CHECKSUM

error
0

(after

bluebuild

job

Commit and push the changes. The workflow will automatically build the new image and
also an installation ISO. Once the ISO has been built you can test it out in a virtual

machine.

Elaboration on Atomic Images and BlueBuild

3.2 Deployment

Due to the build and deploying process taking too long for the Lightning Talk, | have my
virtual machine already prepared and this was the installation summary:

INSTALLATION SUMMARY
) fedora
LOCALIZATION SYSTEM
Keyboard Installation Destination
German (Austria, no dead keys) Automatic partitioning selected

Language Support (=) Network & Host Name

English (United States) Connected: ens18

Time & Date

Europe/Vienna timezone

DEMO-IMAGE 41 INSTALLATION
B at (nodead...

USERSETTINGS

Root Account
Root account is disabled

® User Creation
Administrator test will be created

Quit Begin Installation

We won't touch your disks until you click '‘Begin Installation’.

While installing you can see that it starts the deployment of the image:

INSTALLATION PROGRESS

@ fedora

ploy starting: /run/install/repo/demo-image-latest

DEMO-IMAGE 41 INSTALLATION
B3 at (nodead...

Quit Reboot System

Elaboration on Atomic Images and BlueBuild

10

After logging in we check the .NET version, which should be 8:

test@aurora:~

Description

dotnet --version
8.0.111

€ % & U AE O

Then we can look for Rider, but at first login it will take a short time to appear as Flatpaks
only get installed after first login, because they are sandboxed applications.

Yy
test a = 2 iption

Applications

rp Rider

S

4 % © U A UM O

Elaboration on Atomic Images and BlueBuild

Layering and live-apply example

With rpm-ostree status we get a brief overview of the deployment status.

test@aurora:~

rpm-ostree status
State: idle
AutomaticUpdates: stage; rpm-ostreed-automatic.timer: no runs since boot
Deployments:
e ostree-image-signed:docker://ghcr.io/arminmiau/demo-image:latest
Digest: sha256:a21d152eab657431e7a02993e733f9b5949f2d1f30f9c2
309bad1f5435e7864c
Version: latest-41.20241202.2 (2024-12-02T18:51:37Z)

ostree-image-signed:docker: //ghcr.io/arminmiau/demo-image: latest
Digest: sha256:a21d152ea0657431e7a02993e733f9b5949f2d1f30f9c2
309bad1f5435e7864c
Version: latest-41.20241202.2 (2024-12-02T18:51:37Z)

% & WA G O

To layer a package we can use rpm-ostree install <package>.

i) test@aurora:~

AutomaticUpdates: stage; rpm-ostreed-automatic.timer: no runs since boot

Deployments:

e ostree-image-signed:docke /ghcr.io/arminmiau/demo-image: latest
Digest: sha256:a21d152ea0657431e7a02993e733f9b5949f2d1f30f9c2309bad1f5435e7864c
Version: latest-41.20241202.2 (2024-12-02T18:51:37Z)

ostree-image-signed:docker://ghcr.io/arminmiau/demo-image: latest
Digest: sha256:a21d152ea0657431e7a02993e733f9b5949f2d1f30f9c2309bad1f5435e7864c¢
Version: latest-41.20241202.2 (2024-12-02T18:51:37Z)

rpm-ostree install syncthing
Checking out tree a841931... done
Enabled rpm-md repositories: updates fedora copr:copr.fedorainfracloud.org:gmaglione:podman-bootc copr:copr.fedorainfracloud.org:hikariknight:looking-glass-k
vmfr updates-archive
Importing rpm-md... done
rpm-md repo 'updates' (cached); generated: 2024-12-06T02:59:48Z solvables: 12383
rpm-md repo 'fedora' (cached); generated: 2024-10-24T13:55:59Z solvables: 76624
rpm-md repo 'copr:copr.fedorainfracloud.org:gmaglione:podman-bootc' (cached); generated: 2024-11-26T03:58:59Z solvables: 5
rpm-md repo 'copr:copr.fedorainfracloud.org:hikariknight:looking-glass-kvmfr' (cached); generated: 2024-10-25T08:11:34Z solvables: 5
rpm-md repo 'updates-archive' (cached); generated: 2024-12-06T03:22:49Z solvables: 13545
Resolving dependencies... done
Will download: 1 package (9.5 MB)
Downloading from 'updates'... done
Importing packages... done
Checking out packages... done
Running pre scripts... done
Running post scripts... done
Running posttrans scripts... done
Writing rpmdb... done
Writing 0STree commit... done
Staging deployment... done
Added:

syncthing-1.28.0-1.fc41.x86_64
Changes queued for next boot. Run "systemctl reboot" to start a reboot

took

« © O~ I O

Elaboration on Atomic Images and BlueBuild

At the end the command will say: “Changes queued for next boot".

If we look at rpm-ostree status again, we see that the new change hasn't been deployed

test@aurora:~
i)]

rpm-md repo 'copr:copr.fedorainfracloud.org:hikariknight:looking-glass-kvmfr' (cached); generated: 2024-10-25T08:11:34Z solvables: 5
rpm-md repo 'updates-archive' (cached); generated: 2024-12-06T03:22:49Z solvables: 13545
Resolving dependencies... done
Will download: 1 package (9.5 MB)
Downloading from 'updates'... done
Importing packages... done
Checking out packages... done
Running pre scripts... done
Running post scripts... done
Running posttrans scripts... done
Writing rpmdb... done
Writing 0STree commit... done
Staging deployment... done
Added:
syncthing-1.28.0-1.fc41.x86_64
Changes queued for next boot. Run "systemctl reboot" to start a reboot

took
rpm-ostree status
State: idle
AutomaticUpdates: stage; rpm-ostreed-automatic.timer: no runs since boot
Deployments:
ostree-image-signed:docker://ghcr.io/arminmiau/demo-image:latest
Digest: sha256:a21d152ea0657431e7a02993e733f9b5949f2d1f30f9c2309bad1f5435e7864c
Version: latest-41.20241202.2 (2024-12-02T18:51:37Z)
Diff: 1 added
LayeredPackages: syncthing

e ostree-image-signed:docker://ghcr.io/arminmiau/demo-image:latest
Digest: sha256:a21d152ea0657431e7a02993e733f9b5949f2d1f30f9c2309bad1f5435e7864c
Version: latest-41.20241202.2 (2024-12-02T18:51:37Z)

ostree-image-signed:docker://ghcr.io/arminmiau/demo-image:latest
Digest: sha256:a21d152ea0657431e7a02993e733f9b5949f2d1f30f9c2309bad1f5435e7864c
Version: latest-41.20241202.2 (2024-12-02T18:51:37Z)

28w &AM O

We can trigger a live deploy using sudo rpm-ostree apply-live. (Which might not always
work, in my testing it only worked after layering one package and rebooting before
adding syncthing and applying live.)

i) test@aurora:~

Checking out tree a841931... done
Enabled rpm-md repositories: updates fedora copr:copr.fedorainfracloud.org:gmaglione:podman-bootc copr:copr.fedorainfracloud.org:hikariknight:looking-glass-k
vmfr updates-archive
Importing rpm-md... done
rpm-md repo 'updates' (cached); generated: 2024-12-06T02:59:48Z solvables: 12383
rpm-md repo 'fedora' (cached); generated: 2024-10-24T13:55:59Z solvables: 76624
rpm-md repo 'copr:copr.fedorainfracloud.org:gmaglione:podman-bootc' (cached); generated: 2024-11-26T03:58:59Z solvables: 5
rpm-md repo 'copr:copr.fedorainfracloud.org:hikariknight:looking-glass-kvmfr' (cached); generated: 2024-10-25T08:11:34Z solvables: 5
rpm-md repo 'updates-archive' (cached); generated: 2024-12-06T03:22:49Z solvables: 13545
Resolving dependencies... done
Will download: 1 package (9.5 MB)
Downloading from 'updates'... done
Importing packages... done
Checking out packages... done
Running pre scripts... done
Running post scripts... done
Running posttrans scripts... done
Writing rpmdb... done
Writing 0STree commit... done
Staging deployment... done
Freed: 148.3 MB (pkgcache branches: 0)
Added:
syncthing-1.28.0-1.fc41.x86_64
Changes queued for next boot. Run "systemctl reboot" to start a reboot

took
sudo rpm-ostree apply-live
[sudo] password for test:
Computing /etc diff to preserve... done
Updating /usr... done
Updating /etc... done
Running systemd-tmpfiles for /run and /var... done
Added:
syncthing-1.28.0-1.fc41.x86_64
Successfully updated running filesystem tree.

took

FOLLS N k@A RS O

Elaboration on Atomic Images and BlueButd 13

Once done we can start syncthing (the background process of it):

Checking out tree a841931... done

Enabled rpm-md repositories: updates fedora copr:copr.fedorainfracloud.org:gmaglione:podman-bootc copr:copr.fedorainfracloud.org:hikariknight:looking-glass-k
vmfr updates-archive

Importing rpm-md... done

rpm-md repo 'updates' (cached); generated: 2024-12-06T02:59:48Z solvables: 12383

rpm-md repo 'fedora' (cached); generated: 2024-10-24T13:55:59Z solvables: 76624

rpm-md repo 'copr:copr.fedorainfracloud.org:gmaglione:podman-bootc' (cached); generated: 2024-11-26T03:58:59Z solvables: 5

rpm-md repo 'copr:copr.fedorainfracloud.org:hikariknight:looking-glass-kvmfr' (cached); generated: 2024-10-25T08:11:34Z solvables: 5

rpm-md repo 'updates-archive' (cached); generated: 2024-12-06T03:22:49Z solvables: 13545

Resolving dependencies... done

test Q syncthing a >
Applications
@ Syncthing Web UI

a Start Syncthing

Command Line

u Run syncthing

4 % € 0 A 2 O

X +

C O D localhost

Folders This Device

B Default Folder 212 aurora

&
o

Lo

% 4 K & O~ T

Elaboration on Atomic Images and BlueBuild

4 Links

If you want to research more yourself here are some sources:

https://ostreedev.github.io/ostree/

https://coreos.github.io/rpm-ostree/

https://coreos.github.io/coreos-assembler/

https://fedoraproject.org/wiki/Initiatives/Fedora_bootc

https://fedoraproject.org/wiki/Changes/OstreeNativeContainer

https://fedoraproject.org/wiki/Changes/DNFAndBootcinlmageModeFedora

https://fedoraproject.org/coreos/

https://universal-blue.org/

Elaboration on Atomic Images and BlueBuild

15

https://universal-blue.org/
https://fedoraproject.org/coreos/
https://fedoraproject.org/wiki/Changes/DNFAndBootcInImageModeFedora
https://fedoraproject.org/wiki/Changes/OstreeNativeContainer
https://fedoraproject.org/wiki/Initiatives/Fedora_bootc
https://coreos.github.io/coreos-assembler/
https://coreos.github.io/rpm-ostree/
https://ostreedev.github.io/ostree/

	1 Demo Prerequisites
	2 Explanation
	2.1 General idea of Atomic Images
	2.1.1 Reliability & Consistency
	2.1.2 Simplified Updates
	2.1.3 Improved Security
	2.1.4 Container-Optimized Workflow
	2.1.5 Easy Reproducibility
	2.1.6 Types and examples

	2.2 Projects
	2.2.1 libostree
	2.2.2 rpm-ostree
	2.2.3 Build Tools

	2.3 Custom Images
	2.3.1 Universal Blue
	2.3.2 BlueBuild
	2.3.3 Use cases
	2.3.3.1 Application Deployment
	2.3.3.2 Developer-Team environments
	2.3.3.3 Education and Training environments
	2.3.3.4 Experimentation and Learning

	3 Demo
	3.1 Setup
	3.2 Deployment
	3.3 Layering and live-apply example

	4 Links

