
Elaboration on
Atomic Images
and BlueBuild

with demo

by Armin Bade (arminmiau)
originally created for my Lightning Talk in class at HTL Grieskirchen

published 6th January, 2025 on arminmiau.vercel.app

Elaboration on Atomic Images and BlueBuild 1

Table of Contents

1 Demo Prerequisites..3

2 Explanation..3

2.1 General idea of Atomic Images..3

2.1.1 Reliability & Consistency..3

2.1.2 Simplified Updates..3

2.1.3 Improved Security...3

2.1.4 Container-Optimized Workflow..4

2.1.5 Easy Reproducibility..4

2.1.6 Types and examples...4

2.2 Projects...5

2.2.1 libostree...5

2.2.2 rpm-ostree..5

2.2.3 Build Tools..5

2.3 Custom Images...5

2.3.1 Universal Blue..5

2.3.2 BlueBuild...6

2.3.3 Use cases...6

3 Demo.. 7

3.1 Setup..7

3.2 Deployment...10

3.3 Layering and live-apply example...12

4 Links... 15

Elaboration on Atomic Images and BlueBuild 2

1 Demo Prerequisites

• GitHub account

• Ability to run VM

2 Explanation

2.1 General idea of Atomic Images

The concept of atomic images, also known as immutable images, refers to Linux

distributions packaged similarly to container images. These images are often called

"bootable containers." They allow for atomic updates to the distribution and programs in

a single operation—hence the name "atomic"—while enabling layering of additional

programs.

2.1.1 Reliability & Consistency

Atomic images prioritize reliability and consistency by mounting their root file system as

read-only. This prevents "configuration drift" over time, as user changes that could lead

to unpredictability are restricted.

2.1.2 Simplified Updates

Traditional update mechanisms risk leaving systems partially updated or broken if

interruptions occur. Atomic images mitigate this through transactional updates, where

changes take effect only upon successful completion and can be rolled back if needed.

For instance, Fedora images using rpm-ostree perform automatic background

updates.

2.1.3 Improved Security

Writable root file systems are significant attack vectors in Linux. Atomic images reduce

this risk by employing a read-only root file system, making them less vulnerable to

exploitation.

Elaboration on Atomic Images and BlueBuild 3

2.1.4 Container-Optimized Workflow

Linux systems were not traditionally optimized for containerized workloads. Atomic

images address this gap by offering minimal, consistent base images designed for

hosting containerized applications. Examples include Fedora CoreOS and Flatcar

Container Linux.

2.1.5 Easy Reproducibility

Reproducing exact environments across systems is error-prone. Atomic images, akin to

OCI and Docker images, use a layered approach, ensuring reliable and consistent setups

across multiple systems. This enables large-scale operating system deployments.

Paired with containerized applications, they create a fully reproducible stack.

2.1.6 Types and examples

• Minimal base images:

◦ Fedora CoreOS

◦ RHCOS (similar to CoreOS, but RHEL)

◦ Fedora IoT

◦ Flatcar Container Linux

◦ Universal Blue uCore (based on Fedora CoreOS)

◦ openSUSE MicroOS

• Atomic Desktops:

◦ Fedora Silverblue (GNOME)

◦ Fedora Kinoite (KDE Plasma)

◦ Universal Blue Bluefin (based on Silverblue)

◦ Universal Blue Aurora (based on Kinoite)

◦ Universal Blue Bazzite (gaming orientated)

Elaboration on Atomic Images and BlueBuild 4

2.2 Projects

2.2.1 libostree

libostree (formerly OSTree) is a shared library and suite of command-line tools for

committing and downloading bootable file system trees.

2.2.2 rpm-ostree

rpm-ostree integrates libostree with libdnf (the RPM package system). It powers
Fedora/Red Hat images and derivatives like Universal Blue, enabling RPM package
layering on base images.

Note: As of Fedora 41, focus has shifted to DNF5 and bootc. Features of rpm-ostree
are gradually being migrated to DNF5.

2.2.3 Build Tools

Specific tools are required to build atomic images. Fedora uses coreos-assembler for

CoreOS-style systems, while Universal Blue employs Red Hat’s buildah to build OCI-

compatible containers compatible with Docker and Kubernetes.

2.3 Custom Images

Linux is renowned for its customization capabilities, but sharing customizations is often

cumbersome. Atomic images simplify this by encapsulating adjustments within the

image itself. These adjustments can include style, kernel optimizations, drivers, and

preinstalled applications.

2.3.1 Universal Blue

Universal Blue images are built on Fedora images, layering kernel optimizations and

drivers (e.g., NVIDIA graphics drivers) on top. They offer a GitHub template for building

custom images.

Elaboration on Atomic Images and BlueBuild 5

2.3.2 BlueBuild

BlueBuild simplifies the creation of custom Universal Blue images. It provides a

workshop that sets up a GitHub repository to jump-start image creation. Future updates

aim to enable programmatic image configuration.

2.3.3 Use cases

2.3.3.1 Application Deployment

Custom images streamline deployment by pre-configuring services, security, and

compliance requirements. This approach reduces risks and accelerates product rollouts

at scale.

2.3.3.2 Developer-Team environments

In teams where everyone uses Linux, a shared image can eliminate "works on my

machine" issues by standardizing the development environment.

2.3.3.3 Education and Training environments

Pre-configured sandbox images provide students with secure, ready-to-use

environments for practicing DevOps, security, or containerization, with minimal setup.

2.3.3.4 Experimentation and Learning

Atomic images offer a safe platform for testing different desktop environments, tools,

and configurations. They allow users to experiment with Linux customizations and roll

back changes as needed.

Elaboration on Atomic Images and BlueBuild 6

3 Demo

3.1 Setup

Head to https://workshop.blue-build.org/ and login with GitHub. You’ll need to authorize

the application on the first time. Then click on “New custom Image repository +”:

Name it something and in the next step click on “Set keys cosign automtically”:

Once it’s done open the repository and clone it.

Elaboration on Atomic Images and BlueBuild 7

https://workshop.blue-build.org/

Open recipe.yml in recipes. For this demo we’ll choose aurora-dx with latest version.

image will be published to ghcr.io/<user>/<name>
name: demo-image
description will be included in the image's metadata
description: This is a demo image for my lightning talk.

the base image to build on top of (FROM) and the version tag to use
base-image: ghcr.io/ublue-os/aurora-dx
image-version: latest

Let’s install .NET 8 as a layered rpm package and Rider as a Flatpak.

- type: rpm-ostree
 repos:
 # -
 install:
 - dotnet-sdk-8.0
 remove:
 # -

- type: default-flatpaks
 notify: true
 system:
 install:
 - com.jetbrains.Rider
 remove:
 # -

Elaboration on Atomic Images and BlueBuild 8

Add a ISO build job to the GitHub workflow (after bluebuild job in
.github/workflows/build.yaml):

iso:
 name: Build ISO
 needs: bluebuild
 runs-on: ubuntu-latest
 permissions:
 contents: read
 packages: write
 id-token: write
 steps:
 - name: Build
 uses: jasonn3/build-container-installer@main
 id: build
 with:
 arch: x86_64
 image_name: demo-image
 image_repo: ghcr.io/arminmiau
 image_tag: latest
 version: 41
 variant: kinoite
 iso_name: demo-image-latest_x86_64.iso
 - name: Upload as artifact
 id: upload
 uses: actions/upload-artifact@v4
 with:
 name: ${{ steps.build.outputs.iso_name }}
 path: |
 ${{ steps.build.outputs.iso_path }}
 ${{ steps.build.outputs.iso_path }}-CHECKSUM
 if-no-files-found: error
 retention-days: 0
 compression-level: 0

Commit and push the changes. The workflow will automatically build the new image and
also an installation ISO. Once the ISO has been built you can test it out in a virtual
machine.

Elaboration on Atomic Images and BlueBuild 9

3.2 Deployment

Due to the build and deploying process taking too long for the Lightning Talk, I have my
virtual machine already prepared and this was the installation summary:

While installing you can see that it starts the deployment of the image:

Elaboration on Atomic Images and BlueBuild 10

After logging in we check the .NET version, which should be 8:

Then we can look for Rider, but at first login it will take a short time to appear as Flatpaks
only get installed after first login, because they are sandboxed applications.

Elaboration on Atomic Images and BlueBuild 11

3.3 Layering and live-apply example

With rpm-ostree status we get a brief overview of the deployment status.

To layer a package we can use rpm-ostree install <package>. Let’s install syncthing:

Elaboration on Atomic Images and BlueBuild 12

At the end the command will say: “Changes queued for next boot”.

If we look at rpm-ostree status again, we see that the new change hasn’t been deployed
yet.

We can trigger a live deploy using sudo rpm-ostree apply-live. (Which might not always
work, in my testing it only worked after layering one package and rebooting before
adding syncthing and applying live.)

Elaboration on Atomic Images and BlueBuild 13

Once done we can start syncthing (the background process of it):

When the syncthing daemon has started we can look at the web ui.

Elaboration on Atomic Images and BlueBuild 14

4 Links

If you want to research more yourself here are some sources:

https://ostreedev.github.io/ostree/

https://coreos.github.io/rpm-ostree/

https://coreos.github.io/coreos-assembler/

https://fedoraproject.org/wiki/Initiatives/Fedora_bootc

https://fedoraproject.org/wiki/Changes/OstreeNativeContainer

https://fedoraproject.org/wiki/Changes/DNFAndBootcInImageModeFedora

https://fedoraproject.org/coreos/

https://universal-blue.org/

Elaboration on Atomic Images and BlueBuild 15

https://universal-blue.org/
https://fedoraproject.org/coreos/
https://fedoraproject.org/wiki/Changes/DNFAndBootcInImageModeFedora
https://fedoraproject.org/wiki/Changes/OstreeNativeContainer
https://fedoraproject.org/wiki/Initiatives/Fedora_bootc
https://coreos.github.io/coreos-assembler/
https://coreos.github.io/rpm-ostree/
https://ostreedev.github.io/ostree/

	1 Demo Prerequisites
	2 Explanation
	2.1 General idea of Atomic Images
	2.1.1 Reliability & Consistency
	2.1.2 Simplified Updates
	2.1.3 Improved Security
	2.1.4 Container-Optimized Workflow
	2.1.5 Easy Reproducibility
	2.1.6 Types and examples

	2.2 Projects
	2.2.1 libostree
	2.2.2 rpm-ostree
	2.2.3 Build Tools

	2.3 Custom Images
	2.3.1 Universal Blue
	2.3.2 BlueBuild
	2.3.3 Use cases
	2.3.3.1 Application Deployment
	2.3.3.2 Developer-Team environments
	2.3.3.3 Education and Training environments
	2.3.3.4 Experimentation and Learning

	3 Demo
	3.1 Setup
	3.2 Deployment
	3.3 Layering and live-apply example

	4 Links

